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Ron Kimmel 
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and Dept. of Mathematics 
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Abstract 

A simplified color image formation model is used to construct an algorithm for 
image reconstruction from CCD sensors' samples. The proposed method involves two 
successive steps. The first is motivated by Cok's [1] template matching technique, 
while the second step uses steerable inverse diffusion in color. Classical linear signal 
processing techniques tend to over smooth the image and result in noticeable color 
art effects along edges and sharp features. The question is how should the different 
color channels support each other to form the best possible reconstruction. Our answer 
is to let the edges support the color information, and the color channels support the 
edges, and thereby achieve better perceptual results than those that are bounded by 
the sampling theoretical limit. 

1 Introduction 

In recent years, digital cameras for still images and movies, became popular. There are many 
obvious advantages to digital images comparing to classical film based cameras, yet there 
are limitations as well. For example, the spatial resolution is limited due to the physical 
structure of the sensors. 'Super resolution' beyond the sensors resolution can be achieved by 
considering a sequence of images. 

In this note we deal with the reconstruction of a single color digital image from its color 
CCD sensors' information. We limit our discussion to Bayer color filter axray (CFA) pattern 
as presented in Figure 1. We will start with a simple color image formation model and 
explore the relation between the different color channels such that the channels support the 
edges, and the edges support the colors. This relation with a simple color image formation 
model enables a reconstruction beyond the linear optimal signal processing approach that is 
limited by the Nyquist sampling rate . 

. ·This work is supported in part by the Applied Mathematics Subprogram of the Office of Energy Research . 
under DE-AC03-76SF00098, and ONR grant under N00014-96-1-0381. 
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Figure 1: Bayer CFA (color filter array) pattern (US Patent 3,971,065, 1976) . 

We follow Cok 's [1] exposition for constructing the first step of the algorithm: The 
reconstruction stage. The Green component is reconstructed first with the help of the Red 
and Blue gradients . Then the Red and Blue are reconstructed using the Green values, edge 
approximations, and a simple color ratio rule: Within a given 'object' the ratio Red/ Green 
is locally constant (the same is true for Blue/Green). This rule falls apart across edges 
where the color gradients are high, which are the interesting and problematic locations from 
our reconstruction point of view. 

Next the Green, Red, and Blue pixels are adjusted to fit the color cross ratio equivalence. 
The interpolation and the adjustment are weighted by a function of the directional derivatives 
to reduce the influence of ratios across edges. This is the main difference from Cok's [1] 
method, who try to match templates that predict the local structure of the image for a 
bilinear interpolation. 

The second step, the enhancement stage, involves an anisotropic inverse diffusion flow in 
color space, which is an extension of Weickert's gray level texture enhancement method [12], 
Gabor's geometric filter [6], and is based on the geometrical framework for color introduced 
in [11 , 8]. It is also related to the recent results of Sapiro and Ringach [10], and Cottet and 
EI Ayyadi [2]. The idea is to consider the color image as a two dimensional surface in 5D 
(x , y , R, G, B) space, extract its induced metric and smooth the metric in order to sense the 
structure of the image surface beyond the local noise. Then diffuse the different channels 
along the edges and simultaneously enhance the image by applying an 'inverse heat' operator 
across the edges. 

The structure of this note is as follows: Section 2 introduces a simple model for color 
images. Next, Section 3 uses this model for the reconstruction of a ID image. Section 
4 presents the first step of the algorithm, the reconstruction stage, that involves weighted 
interpolation subject to constant cross ratio of the spectral channels. Section 5 presents 
the second step of the algorithm. It is a non linear enhancement filter based on steerable 
anisotropic inverese diffusion flow in color space. Section 5 concludes with experimental 
results on a set of benchmark images. 
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2 A Simple Color Image Formation Model 

A simplified model for color images is a result of viewing Lambertian non fiat surface patches. 
Such a scene is a generalization of what is known as a 'Mondriaan world' . According to 
the model, each channel may be considered as the projection of the real 3D world surface 
normal N(x) onto the light source direction ~ multiplied by the albedo p(x , y) . The albedo 
captures the characteristics of the 3D object 's material , and is different for each of the 
spectral channels. That is , the 3 color channels may be written as 

PR(x)N(x) . f 
PG(x)N(x) . f 
PB(x)N(x) . f (1) 

This means that the different colors capture the change in material via Pi (where i stands for 

R, G, B) that multiplies the normalized shading image J(x) = N(x). f The Mondriaan color 
image formation model [4] was used for color based segmentation [7] and shading extraction 
from color images [5]. Let us follow the above generalization of this model and assume that 
the material , and therefore the albedo, are the same within a given object in the image, 
e.g. Pi(X) = Ci, where Ci is a given constant. Thus , within the interior of a given object the 
following constant ratio holds: 

Ii(x) Pi(X)J(X) Pi(X) Ci 
-.- = _ = - - = - = constant. 
I J(x) pj(x)I(x) pj(x) Cj 

(2) 

That is, the color ratio within a given object is constant. We note, that this is an oversim­
plified assumption for general analysis of color images. However, its local nature makes it 
valid and useful for our technological purpose. 

3 The ID Case 

Let us start with a simple 1D example with two colors , see Fig. 2. Our assumption is that 
the colors are smooth within a given object and go through a sudden jump at the boundaries. 
Define the central difference approximation to be DxIi = /£+1;;:£-1 , where Ii I( i.6.x ) is the 
value of the function I (x) at the point x = i.6.x, and .6.x is the spatial discretization interval. 

Given the samples (odd points for the Red and even points for the Green) we use the 
gradient to construct an edge indicator for the interpolation. Let the edge indicator be 
ef = f(DxGi ) , where f( 0) is a decreasing function, e.g. ef = (1 + (DxGi )2t1/2, and 
respectively ei. One simple reconstruction procedure is as follows: 

• Init: Interpolate for the Green at the missing points 

• Repeat for 3 times: 
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Figure 2: The Red and Green components of a ID image. 

• Interpolate the Red values via the ratio rule weighted by the edge indicator 

• Correct the Green values to fit the ratio rule 

• End of loop. 

Note that this is a numerically consistent procedure for the proposed color image for­
mation model. It means that as the sampling grid is refined , the result converges to the 
continuous solution. 

Here , again we recognize the importance of segmentation in computer vision. An accurate 
segmentation procedure, that gives the exact locations of the objects boundaries , would have 
allowed an image reconstruction far beyond the sampling limit (under the assumption that 
within a given object there are no high spatial frequencies). 

4 First Step: Reconstruction 

For real 2D images with three color channels the reconstruction is less trivial. Edges now 
become curves rather than points, and in many cases one needs to interpolate missing points 
along the edges. We would still like to avoid interpolating across edges . 

Based on the simplified color image formation model, the three channels go through 
a sudden jump across the edges. Thus, the gradient magnitude can be used as an edge 
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indicator, and its direction can approximate the edge direction (it is easy to verify that the 
gradient \lG is normal to the level set curves of G(x), i.e. G(x) = const.) 

The directional derivatives are approximated at each point based on its 8 nearest neigh­
bors on the grid. Define the finite difference approximation for the directional derivatives, 
central D, forward D+, and backwards D-, as follows: 

DxGi,j = Gi+lzi -Gi-l,i m DyGi,j = Gizi+1 -Gizi-1 m 2~x 2~y 

Dx,Gi,j = Gi+l zi+1 -Gi-l ,i-1 m Dy,Gi,j = Gi-l,i+l-Gi+l,i-l m 
2J~x2+~y2 2J~x2+~y2 

m m (3) 

D;,Gi,j = Gi+lzi+1 -Gizi D;,Gi,j = Gi±1,i+1-Gi,i 
J ~x2+~y2 J~x2+~y2 

D~Gi,j = Gi-1zi+1-Gizi m D;,Gi,j - Gi,i -Gi+l,i-1 fa 
J~x2+~y2 J~x2+~y2 

At the Green points use max{ ID;,Gi,j I, 1 D;,Gi,j I} for the magnitude of the directional deriva­
ti v:e along the x' direction (and similarly for y'). For the rest of the points and the x and y 
directions use central differences. We thereby construct an approximation for the direction 
derivatives at each and every point. Denote these approximations as DXij, DYij, DX'ij, and 
DY'ij' respectively. 

Next, we generalize an edge indicator function. When a point at location (( i + 1 )~x, j ~y) 
is taking part in the interpolation at the (i~x, j ~y) location, we use the following weight as 
an edge indicator: e~tl,j = (1 + DXi/ + DXi+l,/tl/2 

Based on the edge indicators as weights for the interpolation we follow similar steps as 
for the 1D case to reconstruct the 2D image: 

• Init: Interpolate for the Green at the missing points 

i-l,jG + i+l,jG + i,j-IG + i,j+IG 
G .. _ eij i-I,j eij i+1,j eij i,j-I eij i,j+1 

ZJ - i-I,j + i+l,j + i,j-l + i,j+1 .. 
eij eij eij eij 

Interpolate for the Blue and Red in two steps. 
Step 1 (interpolate missing Blue at Red locations) : 

Step 2 (interpolate at the rest of the missing Blue points): 
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Interpolate the Red with two similar steps. 

• Repeat for 3 times: 

• Correct the Green values to fit the ratio rule 

and average between the Blue and Red interpolation results 

G .. _ G~ + G~ 
tJ - 2 

• Correct the Blue and Red values via the ratio rule weighted by the edge indicator 

. . B '+1 . . . B- 1 . ., B· '+1 .. B-. 1 
G ( t+1,J t ,J + t-1,J t-,J + t,J+1 Z,J + z,J-1 t,J-

- ij eij -G. . eij -G' . eij -G.. eij -G .. 
z+l,J t-1,J t,J+1 t,J-1 

+ i+1,j+1 B i+I,j+1 + i-1,j-1 B i - 1,j-1 + i-1,j+l B i - 1 ,j+1 + i+I,j-1 B i+I,j-1 )/ e·· e·· e·· e·· 
~ G·· ~ G·· ~ G·· ~ G·· z+1,J+1 t-1,J-1 t-1,J+1 t+1,J-1 

( ~"!"l,j + ~-:-l,j + e~,j+1 + ~,!-1 + ~"!"1,j+1 + i-:-1,j-1 + ~-:-1,j+1 + e~"!"1,j-1) 
e tJ e ZJ tJ eZJ e ZJ e ZJ e ZJ ZJ . 

. (5) 

• End of loop. 

Up to this point, the original values given as samples were not modified. We have 
interpolated the missing points weighted by edge indicator functions subject to the constant 
cross ratio. Next, we apply inverse diffusion in color to the whole image as an enhancement 
filter. 

5 Second Step: Enhancement 

This section is a brief description of one of the non linear filters introduced in [8] that we 
apply as a second step for enhancing the color image. 

In [6], Gabor considered an image enhancement procedure based on an anisotropic flow 
via the inverse second directional derivative in the 'edge' direction and the geometric heat 
equation as a diffusion along the edge, see also [9]. Cottet and Germain [3] used a smoothed 
version of the image to direct the diffusion. Weickert [12] smoothed the 'structure tensor' 
V' IV' IT and then manipulated its eigenvalues to steer the smoothing direction, while Sapiro 
and Ringach [10] eliminated one eigenvalue from the structure tensor in color space without 
smoothing its coefficients. 
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Figure 3: The Red and Green components painted as surfaces in x, y, I with the inverse 
diffusion (across the edge) and diffusion (along the edge) directions. 

Motivated by all of these results, a new color enhancement filter was introduced in [8]. 
The inverse diffusion and diffusion directions are deduced from the smoothed metric coef­
ficients glJ.v of the image surface. The color image is considered as a 2D surface in the 5D 
(x, y, R, G, B) space, as suggested in [11] . The induced metric coefficients are extracted for 
the image surface and used as a natural structure tensor for the color case. 

The induced metric (glJ.v) is a symmetric matrix that captures the geometry of the image 
surface. Let }'1 and}.2 be the largest and the smallest eigenvalues of (gIJ. V ) , respectively. Since 
(glJ.v) is a symmetric positive matrix its corresponding eigenvectors Ul and U2 can be chosen 

orthonormal. Let U = (Ul!U2), and A ===( ~l ~2)' then we readily have the equality 

(6) 

Note also that 

(7) 

and that 

(8) 

Let us use the image metric as a structure tensor. We extract the structure from the 
metric (glJ.v) and then modify it to be a non-singular symmetric matrix with one positive 
and one negative eigenvalues. That is, instead of diffusion we introduce a controlled inverse 
diffusion in the edge direction. This is an extension of Gabor's idea [6] of inverting the 
diffusion along the gradient direction, see Fig. 3. 

The proposed inverse diffusion enhancement for color images is then given as follows: 

1. Compute the metric coefficients glJ.v' 

glJ.v = 6IJ.v + L I;I~. 
k={R,G,B} 
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or explicitly 

RxRy + GxGy + BxBy ) 

1 + R2 + G2 + B2 y y y 

2. Diffuse the gp,~ coefficients by convolving with a Gaussian of variance p, thereby 

(10) 

(11) 

3. Change the eigenvalues of (gP,l/) such that the largest eigenvalue Al is now Al = -a- I 

and A2 = a, for some given positive scalar a < 1. This yields a new matrix gP,1/ that is 
given by: 

(12) 

4. Evolve the k-th channel via the flow: 

(13) 

Inverting the heat equation is an inherently unstable process. However, if we keep smooth­
ing the metric coefficients, and apply the diffusion along the edge (given the positive eigen­
value), we get a coherence-enhancing flow that yields sharper edges and is stable for a short 
duration of time. 

6 Experimental Results 

We tested the proposed method on four benchmark images that were sampled with Bayer 
color filter array pattern. See Figure 4. The same parameters are used for the reconstruction 
in all the examples, i.e. case dependent tuning was not used for the different images. As 

. a reference we present the result of a bilinear interpolation for the missing points for each 
channel separately. 
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Figure 4: Reconstruction and enhancement results for four benchmark images: Statue, Sails, 
Window, and Lighthouse. For each case, top left is the original image, top right is recon­
struction by simple bilinear interpolation, bottom left is the first step reconstruction, and 
bottom right is the second step enhancement result. 
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