
LBNL-40824 
Preprint 

ORLANDO LAWRENCE 
NATIONAL LABORATORY 

ERNEST 
BERKELEY 

Quantum Orthogonal Planes: 
ISOq,r(N) and SOq,r(N)
Bicovariant Calculi and 
Differential Geometry on 
Quantum Minkowski Space 

Paolo Aschieri, Leonardo Castellani, 
and Antonio M. Scarfone 

Physics Division 

C) 
0 
"C 
1<: 

r 
Ill z 
r 
I 

i§i· 
co 
N 
~ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBNL-40824 

Quantum Orthogonal Planes: ISOq,r(N) and SOq,r(N)
Bicovariant Calculi and Differential Geometry 

on Quantum Minkowski Space 

Paolo Aschieri 

Theoretical Physics Group, Physics Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

-university of California, Berkeley, California 94720 

Leonardo Castellani 

Dipartimento di Scienze e Tecnologie Avanzate, Universita di Torino 
Dipartimento di Fisica Teorica and Istituto Nazionale di Fisica Nucleare 

Via P. Giuria 1, 10125 Torino, Italy 

and 

Antonio Maria Scarfone 

Dipartimento di Fisica, Politecni2co di Torino 
Corso Duca degli Abruzzi 24, 10129 Torino, Italy 

April1998 

This work was supported in part by EEC under TMR Contract FMRX-CT96-0045; by the Director, Office of 
Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. 
Department of Energy under Contract No. DE-AC03-76SF00098; and by the National Science Foundation 
under Grant No. PHY-95-14797 



Quantum Orthogonal Planes: 

DFTT-29/97 
LBNL-40824 

ISOq,r(N) and SOq,r(N) - Bicovariant Calculi 
and Differential Geometry on Quantum Minkowski Space 

Paolo Aschieri 

Theoretical Physics Group, Physics Division 
Lawrence Berkeley National Laboratory, 1 Cyclotron Road 

Berkeley, California 94720, USA. 

Leonardo Castellani 

Dipartimento di Scienze e Tecnologie A vanzate*, Universita di Torino; 
Dipartimento di Fisica Teorica and Istituto Nazionale di Fisica Nucleare 

Via P. Giuria 1, 10125 Torino, Italy. 

Antonio Maria Scarfone 

Dipartimento di Fisica, Politecnico di Torino 
Corso Duca degli Abruzzi 24, 10129 Torino, Italy 

Abstract 

We construct differential calculi on multiparametric quantum orthogonal 
planes in any dimension N. These calculi are bicovariant under the action 
of the full inhomogeneous (multiparametric) quantum group ISOq,r(N), and 
do contain dilatations. If we require bicovariance only under the quantum 
orthogonal group SOq,r(N), the calculus on the q-plane can be expressed in 
terms of its coordinates xa, differentials dxa and partial derivatives Oa without 
the need of dilatations, thus generalizing known results to the multiparamet
ric case. 

Using real forms that lead to the signature (n + 1, m) with m = n- 1, 
n,n+ 1, we find ISOq,r(n+ 1,m) and SOq,r(n+ 1,m) bicovariant calculi on 
the multiparametric quantum spaces. The particular case of the quantum 
Minkowski space ISOq,r(3, 1)/ SOq,r(3, 1) is treated in detail. 

The conjugated partial derivatives 8~ can be expressed as linear combi
nations of the 8a. This allows a deformation of the phase-space where no 
additional operators (besides xa and Pa) are needed. 
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1 Introduction 

Non commutativity of spacetime at the microscopic level could provide an effective 
regularization of gravity, in alternative to discretization methods. It is sugges
tive that a non commutative structure of spacetime emerges in non-perturbative 
attempts to describe string theories [1]. 

In this paper we use the non-commuting geometry [2] of quantum groups [3, 4], as 
defined by their differential calculi [5] -[12], to derive the noncommuting differential 
geometry of the multi parametric quantum orthogonal planes in any dimension. We 
then study real forms that are consistent with the differential calculus and finally 
specialize our treatment to the multiparametric quantum Minkowski space. 

The necessary prerequisite for the work presented here has been the construction 
of inhomogeneous quantum groups of the orthogonal type ISOq,r(N) and of their 
corresponding bicovariant calculi. This has been achieved in past publications [13, 
14, 15, 16] via a projection from the known multiparametric orthogonal groups 
SOq,r(N + 2), and has provided an R matrix formulation for the inhomogeneous 
case. 

Other ref.s on inhomogeneous q-groups can be found in [17, 18]. For multipara
metric quantum groups see. ref.s [19]-[21]. 

In general, i.e. without any restrictions on the deformation parameters, inho
mogeneous groups of the orthogonal type contain dilatations. It is however possible 
to avoid dilatations if one fixes some of the parameters (including the r parameter 
appearing in the off-diagonal terms of the R-matrix) equal to one, their classical 
value. The case r = 1 corresponds to a "quasi-classical" structure, for which the 
original braiding matrix R becomes diagonal (the corresponding deformations are 
then called twistings). In this case it is possible to construct a bicovariant calculus 
on ISOq(N), and consequently on q-Minkowski space [14, 16]. 

We present here a bicovariant calculus on the full multiparametric ISOq,r(N) 
without the restriction r = 1. This calculus, however, is trivial on the SOq,r(N) 
quantum subgroup: it can really be seen as a non-trivial calculus only on the 
coset Funq,r[ISO(N)/SO(N)], i.e. on the quantum orthogonal plane. For r =f: 
1 this I SOq,r( N)-bicovariant calculus on the quantum plane necessarily contains 
dilatations. 

If we require only SOq,r(N) bicovariance [more precisely right covariance under 
ISOq,r(N) and left covariance only under SOq,r(N)], the calculus can be expressed 
in terms of coordinates x, differentials dx and partial derivatives a, without the 
need of dilatations. In this case q-commutations between x, dx and a close by 
themselves, and in fact generalize to the multiparametric case the known results 
of ref.s [22, 23, 24]. Here these results emerge from the broader setting of the 
bicovariant calculus on ISOq,r(N). In this context we are able to explicitly relate 
the partial derivatives a to the IS 0 q,r ( N) q-Lie algebra generators. 

It is natural to expect that a *-structure compatible with ISOq,r(N) and with 
the bicovariant differential calculus will induce a well behaved *-conjugation on the 
differential calculus on the quantum plane, acting linearly on the partial derivatives 
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Oa, (a= 1, ... N). The conjugations that give the real forms ISOq,r(n + 1, n- 1), 
ISOq,r(n, n) and ISOq,r(n, n + 1) are consistent with the ISOq(N) bicovariant dif
ferential calculus. Using these conjugations one can define real coordinates xa and 
hermitian partial derivative operators Pa rv Ba, i.e. momenta. The conjugated 8~ 
are derived from the conjugation of the ISOq,r(N) q-Lie algebra generators and can 
be simply expressed as linear combinations of the Ba, without the need of introduc
ing an extra operator as done in ref.s [25]. The q-commutations of the momenta P 
with the coordinates X define a deformed phase-space that could be studied in the 
same spirit as in ref.s (25]. 

We will be concerned with the conjugation that gives the ISOq,r(n- 1, n + 1) 
calculus and in particular induces a differential calculus on the q-Minkowski space. 
To retrieve the other conjugations, both for N=even and N=odd, just take VAB = 
8~ in the formulae where VAB appears. 

In Section 2 we recall briefly the structure of the ISOq,r(N) quantum groups. 
Their differential calculi are discussed in Section 3, and finally in Sections 4 and 5 
we present the bicovariant calculi on quantum orthogonal planes in full detail. In 
Appendix A we specialize our results to the four-dimensional quantum Minkowski 
space, and list all the relevant formulas for its non-commuting differential geometry. 

2 The quantum inhomogeneous group ISOq,r(N) 

An R-matrix formulation for the quantum inhomogeneous groups I SOq,r(N) 
and ISpq,r(N) was obtained in ref. [15], in terms of the RABCD matrix for the 
SOq,r(N + 2) and Spq,r(N + 2) quantum groups. We recall here the results for 
SOq,r(N + 2). The quantum inhomogeneous group ISOq,r(N) is freely generated 
by the non-commuting matrix elements TAB [A=( o, a, o ), with a= 1, ... N)] and the 
identity I, modulo the relations: 

Tao = T• b = T• o = 0, (2.1) 

the RTT relations 
R AB TE TF TB TA REF 

EF C D = F E CD' (2.2) 

and the orthogonality relations 

C BCTABTDc = cAD' c TA Tc c AC B D = BD (2.3) 

The matrix R controls the non-commutativity of the TAB elements, and its en
tries depend continuously on a set of parameters r, qAB ( qAB appearing only in 
the diagonal part of the R matrix). For r --+ 1, qAB --+ 1 (the "classical limie'), 
RABCD --+ 8~8E. The quantum metric CAB and its inverse cAB depend only on r 
and are given in [ 4]. 

The co-structures of I SOq,r(N) and I Spq,r(N) are simply given by: 

t:J.(TAB) = TAc ®TcB, fi,(TAB) = cACTDcCvB, E(TAB) = 8~. (2.4) 
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After decomposing the indices A=( o, a, o ), and defining: 

-yo - r· -yo u = 0) v = ., z = ., Xa = ya 
- ., 

the relations (2.2) and (2.3) become 

Rab ye yf = yb ya Ref ef c d f e cd 

ya bcbcyd c = cad I 

ya bCacTc d = Cbdi 

Z= 

yb xa = _!_ Rab xerf 
d q ef d 

d• 

prJ,_h cdxcxd = 0 

T b _ qb• yb 
dv- -v d 

qd. 
b b x v = qb.vx 

uv = vu =I 
b b ux = qb.x u 

T b qb•yb u d =- du 
qd. 

li. a C c Yb = -r 2 T b acX 1l 

1 be a 
N N X baX 'l..l 

(r-2 + r2-2 ) 

-yo 
Ya = a (2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where qa• are N complex parameters related by %• = r 2 /%,.,with a'= N + 1- a. 
The matrix PAin eq. (2.10) is the q-antisymmetrizer for the B, C, D q-groups given 
by (cf. (B.4)): 

1 -1 

P ab (RAab ~a~b r- r cabc ) 
A cd =- r + r-1 cd- rucud + rN-2 + 1 cd · (2.18) 

The last two relations (2.16), (2.17) are constraints, showing that the TAB matrix 
elements in eq. (2.2) are really a redundant set. This redundance is necessary if 
we want to express the q-commuations of the I SOq,r(N) basic group elements as 
RTT = TT R (i.e. if we want an R-matrix formulation). We can take as independent 
generators the elements 

ya b' xa, v, u v-1 and the identity I (a= 1, ... N) (2.19) 

The co-structures on the ISOq,r(N) generators can be read from (2.4) after decom
posing the indices A = o, a, •: 

tl(Ta b) = ya c 0 yc b ' tl(xa) = ya c 0 xc + xa 0 v ' 

tl(v) = v 0 v, tl(u) = u 0 u, 
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"'(Tab) = cacyd cCdb ' 
K,(xa) = -K,(Ta c)xcu, K,(v) = u, K,(u) = v , 

(2.22) 

(2.23) 

(2.24) 

In the commutative limit q -+ 1, r -+ 1 we recover the algebra of functions on 
ISO(N) (plus the dilatation v that can be set tothe identity). 

Note 2.1 : as shown in ref. [15], the quantum group ISOq,r(N) can be derived 
as the quotient 

SOq,r(N + 2) 
H 

(2.25) 

where H is the Hopf ideal in SOq,r(N + 2) of all sums of monomials containing at 
least an element of the kind ya 0 , r• b' r• o· The Hopf structure of the groups in the . 
numerators of (2.25) is naturally inherited by the quotient groups [27]. 

We denote by P the canonical projection 

P : Sq,r(N + 2) -t Bq,r(N + 2)/ H (2.26) 

It is a Hopf algebra epimorphism because H = Ker(P) is a Hopf ideal. Then any 
element of Sq,r(N + 2)/ His of the form P(a) and 

P(a) + P(b) - P(a +b) ; P(a)P(b) = P(ab) ; J-LP(a) P(J-La), J-l E C (2.27) 

.6.(P(a)) (P0P).6.N+2(a); c-(P(a))- EN+2(a); "'(P(a))- P("'N+2(a)) (2.28) 

where we indicate by .6.N+2, EN+2 and "'N+2 the co-structures of SOq,r(N + 2). Eq.s 
(2.6) - (2.17) have been obtained in [15] by taking the P projection of the RTT and 
CTT relations of Sq,r(N + 2), with the notation u P(T0 

0 ), v P(T• .), z = 
P(T0 

.), xa = P(Ta .), Ya - P(To a), yab = P(Tab) ; I P(I) ; 0 - P(O), cf. 
(2.5). 

Note 2.2: From the commutations (2.14)- (2.15) we see that one can set u =I 
only when Qa• = 1 for all a. From Qa• = r 2 fqa'• this implies also r = 1. 

Note 2.3: Eq.s (2.10) are just the multiparametric orthogonal quantum plane 
commutations. Choosing as free indices (·~.) in (2.2) yields zxb = Qb.xbz and 

therefore the (squared) length element L = xacabXb commutes with the X elements. 
Similarly we find LTa d = (qd./rfTa dL and Lu = r-2uL, Lv = r2vL. 

Note 2.4: Two conjugations (i.e. algebra antihomomorphisms, coalgebra homo
morphisms and involutions, satisfying "'("'(T*)*) = T) exist on ISOq,r(N) , inher
ited from the corresponding ones on SOq,r(N +2) [15, 16]. We recall here their action 
on the group generators TAB and the corresponding restrictions on the parameters: 
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o trivially as T* = T; corresponds to the real forms ISOq,r(n, n; R) and 
ISOq,r(n, n + 1; R). Compatibility with the RTT relations (2.2) requires l%61 
lqa.l = lrl = 1. 

o Only for N = 2n even: (TAB)* = VAcycDv~, V being the matrix that 
exchanges the index n with the index n + 1; extends to the inhomogeneous multi
parametric case the conjugation proposed by the authors of ref. [26] for SOq(2n, C), 
and corresponds to the real form ISOq,r(n + 1, n- 1; R). 

Explicitly: (Tab)* = vacyc dVdb, (xa)* = vabxb, u* = u, v* = v, z* = z. Compat
ibility with the RTT relations (2.2) requires: 

- -1 (R)nt-+n+l = R , i.e. (2.29) 

which implies lrl = 1; lqa.l = 1 for a=/= n, n + 1; lqabl = 1 for a and b both different 
from n or n + 1; Qab/r E R when at least one of the indices a, b is equal to n or 
n + 1; qa./r E R for a = n or a = n + 1. Compatibility with the CTT relations 
(2.3) is ensured by VCV and C = cr (due to lrl = 1). 

In particular, the quantum Poincare group IS0q,r(3, 1; R) is obtained by setting 
lq1el = iri = 1, q2./r E R, q12/r E R. 

According to Note 2.2, a dilatation-free q-Poincare group is found after the 
further restrictions qh = q2• = r = 1. The only free parameter remaining is then 
q12 E R. 

3 Bicovariant calculus on simple q-groups 

The bicovariant differential calculus on the q-groups of the A, B, C, D series can be 
formulated in terms of the corresponding R-mati·ix, or equivalently in terms of the 
L± functionals defined by: 

(3.1) 

with 1 

(R+)ACBD RCADB' (R-)ACBD (R-1)ACBD. (3.2) 

To extend the definition (3.1) to the whole Hopf algebra A we set 

L±AB(ab) = L±Ac(a)L±cB(b) Va, bE A. - (3.3) 

These functionals generate the Hopf algebra A' paired to A, with b..' ( L ±A B) = 

L±Ac Q9 L±cB , c'(L±AB) = o~ and /'i,'(L±) = (L±)-1 . 

We briefly recall how to construct a bicovariant calculus. The general procedure 
can be found in ref.s [7, 12], or, in the notations we adopt here, in ref. [10]. It 
realizes the axiomatic construction of ref. [5]. 

1for the B, C, D series. For the q-groups of the A series there is more freedom in choosing R+ 
and R-, see for ex. [13] 
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The functionals 
(3.4) 

and the elements of A: 
(3.5) 

satisfy the following relations, called bicovariant bimodule conditions, where for 
simplicity we use the adjoint indices i, j, k, ... with i = l, i = AB 

£1' (fi i) = fi k ® fk i ; c' (fi i) = 8} ' 
fl(M/) = M/ Q9 M1 i ; c(M/) = 8} , 

Mii(a * fi k) = (fi i * a)Mki 

(3.6) 

(3.7) 

(3.8) 

The star product between a functional on A and an element of A is defined as: 

x *a- (id 0 x)f1(a), a* x- (x Q9 id)f1(a), a E A, x E A' (3.9) 

Relation (3.8) is easily checked for a = TAB since in this case it is implied by the 
RTT relations; it holds for a generic a because of property (3.6). 

The space of quantum one-forms is defined as a left A-module r freely gen
erated by the symbols w A~2 : 

(3.10) 

Theorem 3.1 (due to Woronowicz, see last ref. in [5]): because of the properties 
(3.6), r becomes a bimodule over A with the following right multiplication: 

(3.11) 

in particular: 
w ~2TR S = (R-1 )TBtAl (R-1 )A2~2sTRrwf:2 (3.12) 

Moreover, because of properties (3.7) and (3.8), we can define a left and a right 
action of A on r: 

t1L : r ---+ A 0 r 
t1R : r ---+ r 0 A 

f1L(aw A~2 b) f1(a)(J 0 w A~2 ) f1(b) , (3.13) 

f1R(awA~2 b) f1(a) (wB~2 Q9 M~2A1A2 ) f1(b). (3.14) 

These actions commute, i.e. (id Q9 flR)flL = (flL 0 id)flR, and give a bicovariant 
bimodule structure to r. [Property (3.8) is a sufficient and necessary condition for 
f1R(pb) = f1R(p)f1(b)j. 

. The elements Mi i can be used to build a right-invariant basis of r. Indeed the 
TJz defined by 

(3.15) 
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are right invariant: 6.R('TJi) = 'T}i 0 I [use x:-1 (a2 )a1 = c-(a)]; moreover every element 
of r can be written as p = 'T}ibi or ai'TJi where bi and ai are uniquely determined. It 
can be shown that the functionals Ji j satisfy: 

'T}ib = (b*fi j)~ 

a'T}i =~[a* (fi i ox:)], 

where a* f (! 0 id)6.(a). 

(3.16) 

(3.17) 

The exterior derivative d : A ----+ r can be defined via the element T 

LAw l E r. This element is easily shown to be left and right-invariant: 

(3.18) 

and defines the derivative d by 

(3.19) 

The factor r-;_ 1 is necessary for a correct classical limit r ---+ 1. It is immediate to 
prove the Leibniz rule 

d(ab) = (da)b +a( db), \fa, bE A . 

Two other expressions for the derivative are given by: 

da = (XAl * a) w A2 / A2 A1 ' 

da = -rJA~2(a * x:'(xA_.L)) 

where the linearly independent elements 

A 1 (f CA 0A j 
X B = r - r-1 J c B - BE 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

are the tangent vectors such that the left-invariant vector fields xA B* are dual 
to the left-invariant one-forms w A~2 , and similarly the right-invariant vector fields 
*x:'(XA_.L) are dual to the right-invariant one forms -rJA~ 2 • The equivalence of (3.19) 
and (3.21) can be shown by using the rule (3.11) for Ta in the right-hand side of 
(3.19). Expression (3.22) is related to (3.21) via Xi *a = (a* Xi)x:- 1(Mii), eq.s 
(3.15), (3.17) and x:'(Xi) = -xix:'(Ji i)· 
Using (3.21) we can compute the exterior derivative on the basis elements TAB: 

(3.24) 

Every element p of r, which by definition is written in a unique way as p = 

aA1 A2W A~2 , can also be written as 

(3.25) 
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for some ak, bk belonging to A. This can be proven directly by inverting the relation 
(3.24). 

Due to the bi-invariance ofT the derivative operator d is compatible with the 
actions !:l.L and !:l.R: 

!:l.L(adb) = !:l.(a)(id 0 d)!:l.(b) , !:l.R(adb) = !:l.(a)(d 0 id)!:l.(b) , (3.26) 

these two properties express the fact that d commutes with the left and right action 
of the quantum group, as in the classical case. 

Remark : The properties (3.20), (3.25) and (3.26) of the exterior derivative (3.21) 
realize the axioms of a first-order bicovariant differential calculus [5]. 

The tensor product between elements p, p' E r is defined to have the properties 
pa 0 p' = p 0 ap', a(p 0 p') = (ap) 0 p' and (p 0 p')a = p 0 (p'a). Left and right 
actions on r 0 r are defined by: 

!:l.L(p 0 p')- P1P~ 0 P2 0 p~, !:l.L : r 0 r -t A 0 r 0 r 
!:l.R(P 0 p') P1 0 P~ 0 P2P~, !:l.R : r 0 r -t r 0 r 0 A 

where P1, p2 , etc., are defined by: 

!:l.L(p) = P1 0 P2, P1 E A, P2 E r 

The extension to p8in is straightforward. 

The exterior product of one-forms is consistently defined as: 

where the A tensor is given by: 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

dA being the entries of the diagonal matrix DAB = cAccBC· From the formula 
(3.29) we can find the q-commutations (generalizing the classical anticommutations) 
of products of one-forms w in terms of a "flip" operator (see the second ref. in [11 ]): 

(3.31) 

Using the exterior product we can define the exterior differential on r : 

(3.32) 
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Which Can easily be extended to fAn ( d : fAn ---t fA(n+l), fAn being defined aS in 
the classical case but with the quantum permutation (braid) operator A [5]). The 
definition (3.32) is equivalent to the following : 

(3.33) 

where () E f"k. The exterior differential has the following properties: 

d( () 1\ B') = dB 1\ ()' + ( -1 )k() A dB' ; d( dB) = 0 , (3.34) 

tlL((}d(}') = tlL( (}) ( id 0 d)tlL ( (}') 

where () E f"k, ()' E f"n. 

The q -Cartan-Maurer equations are found by using (3.33) in computing 
dw c2. 

c1 · 

with: 
A1 B1 C2 _ 2 B C2 A1 B1 A1 C2 B1 

C A2 s2lc1 -- (r _ r-l) [Zs c1 I A2 B2 +bel 6A26s2l 

To derive this formula we have used the flip operator Z on wEB 1\ wc~2 • 

Finally, we recall that the x operators close on the q-Lie algebra: 

where the q-structure constants are given by 

Cik i = Xk(M/) explicitly : 

(3.37) 

(3.38) 

(3.39) 
The C structure constants appearing in the Cartan-Maurer equations are in general 
related to the C constants of the q-Lie algebra [10]: 

C i 1 [C i Ars C i] jk = 2 jk - jk rs · (3.40) 

Using the definitions (3.23) and (3.4) it is not difficult to firid the co-structures 
on the functionals x and f: 

tl'(Xi) =Xi 0 Ji i + E 0 Xi 

E
1(Xi) = 0 

K'(Xi) = -XjK'(jj i) 

tl'(Ji j) = Ji k 0 Jk j ' 

E'(Ji i) = 6} , 
K1(jk j)jj i = bfc = Jk jK'(jj i) · 
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Note that in the r, q -+ 1 limit Ji i -+ 8}c-, i.e .. Ji i becomes proportional to the 
identity functional and formula (3.11), becomes trivial, e.g. wia = awi [use E*a =a]. 

The *-conjugation on A is canonically extended to a conjugation on the Hopf 
algebra A' generated by the L± functional and paired to A. The relation is 

(3.42) 

where the overline denotes complex conjugation. Explicitly, on the x functionals it 
reads 2 [16] 

(XAB)*=-r-N-lXCvVFBVAaREGFCD~ for S0q,r(n+2,n;R); 2n+2=N+2 

(3.43) 
with D~ cnFcEF· Since the conjugation is a linear operation on the q-Lie 
algebra, it can be extended via (3.21) to the differential calculus as well [5], [18]. 
The unique antilinear involution * on r satisfies: 

(ap)* = p*a*, (pa)* =a* p*, (da)* = d(a*); 

!1L(p*) = !1L(p)*, t1n(p*) = t1n(p)* 

(3.44) 

(3.45) 

where (a 0 p)* =a* 0 p* and (p0 a)*= p* 0 a*. It easily extends to fAn, for ex. 
(dO)* = d()* etc. Inverting formulae (3.24) one can also find the induced conjugation 
on the left-invariant one-forms [16]. The explicit relation between the *-structures 
on the x and on the w can be given using the duality (w l, x0v) = 8~82 between 
left-invariant vector fields and left-invariant one-forms [18]: 

(3.46) 

4 Bicovariant differential calculus on ISOq,r(N) 

The existence of this calculus is simply due to the existence of, a subset of the 
functionals (3.4), vanishing on the Hopf ideal H (see Section 2) , and M elements 
that satisfy the bicovariant bimodule conditions (3.6)-(3.8). These are: . 

f. o• J. a• J. •• J. a• J. •• J. •• 
•• Ol • Ol • Ol • bl • bl •• 

P(M•o• o) = v2 
N 

P(M•b• 0
) = vr-TxeCeb P(M·b· d)= VK,(Tdb) 

P(M· •• d) = VK,(Xd) 

P(M•o• •) = 0 

P(M•b• •) = 0 

P(M• •• •) =I 

(4.1) 

(4.2) 
Notice that only the couples of indices (•o), (•b) and ( .. ) appear in (4.1)-(4.2): 
these are therefore the only indices involved in the projected differential calculus 
on ISOq,r(N). 

2 We correct here a misprint of [16] where the factor r-N+l instead of r-N-l appears. Notice 
that there we have used the opposite convention </>*(a) = </>(K(a*)) instead of (3.42). 
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Theorem 4.1: the functionals Ji j in (4.1) annihilate the Hopf ideal H. 

Proof: one first checks directly that the functionals ( 4.1) vanish on the generators 
T of the ideal H, i.e. on T = ya 0 , r• b' r• o· This extends to any element of 
H = Ker(P), because of the property (3.6). Q.E.D. 

These functionals are then well defined on the quotient ISOq,r(N) = SOq,r(N + 
2)/Ker(H), in the sense that the "projected" functionals 

J: ISOq,r(N)--+ C, f{P(a)) = f(a) , Va E SOq,r(N + 2) (4.3) 

are well defined. Indeed if P(a) = P(b), then f(a) = f(b) because J(Ker(P)) = 0. 
This holds for any functional f vanishing on K er(P). 

The product J g of two generic functionals vanishing on K er P also vanishes on 
KerP, becauseKerPisaco-ideal (see ref. [15]): fg(KerP) = (J&Jg)tlN+ 2 (KerP) = 
0. Therefore fg is well defined on ISOq,r(N); moreover, [use (2.28)] fg[P(a)] -
fg(a) = (J@ g)tl(P(a)) = Jg[P(a)], and the product of J and g involves the 
coproduct tl of ISOq,r(N). 

There is a natural way to introduce a coproduct on the f's : 

tlf[P(a) &; P(b)] = J[P(a)P(b)] = J[P(ab)] = f(ab) = tlN+2 f(a@ b) . (4.4) 

It is also easy to show that 

with i, j, k running over the restricted set of indices· •b, ••, oo . Indeed due to the 
vanishing of some f's (a consequence of upper and lower triangularity of L + and L
respectively), formulae (3.41) and (3.6) involve only the Jij listed in (4.1). Then 

Jij[P(a)P(b)] = f\[P(ab)] = fij(ab) = Jik(a)fkj(b) = Pk[P(a)]Jkj[P(b)] (4.6) 

and (4.5) is proved. 

With abuse of notations we will simply write f instead of f. Then the fin (4.1) 
will be seen as functionals on ISOq,r(N). 

Theorem 4.2: the left A-module (A = ISOq,r(N)) r freely generated by wi 
w. a, w: and w. o is a bicovariant bimodule over I SOq,r(N) with right multiplication: 

(4.7) 

where the Ji j are given in (4.1), the *-product is computed with the co-product tl 
of ISOq,r(N), and the left and right actions of ISOq,r(N) on rare given by 

tlL(aiwi) - tl(ai)I@ wi 

tlR(aiwi) tl(ai)wi@ Mj i 
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where theM/ are given in (4.2). 

Proof: by showing that the functionals f and the elements M listed in ( 4.1) and 
(4.2) satisfy the properties (3.6)-(3.8) (cf. Theorem 3.1). It is straightforward to 
verify directly that the elements Min (4.2) do satisfy the properties (3.7). We have 
already shown that the functionals f in (4.1) satisfy (3.6) (c(Jij) = 8} obviously 
also holds for this subset). 

Consider now the last property (3.8). We know that it holds for SOq,r(N + 2). 
Take the free indices j and k as ob, oo and oo, and apply the projection P on both 
members of the equation. It is an easy matter to show that only the f's in ( 4.1) 
and the M's in ( 4.2) enter the sums: this is due to the vanishing of some P( M) and 
to some f's. We still have to prove that the * product in (3.8) can be computed via 
the coproduct .6. in ISOq,r(N). Consider the projection of property (3.8), written 
symbolically as: 

P[M(f ® id).6.N+2(a)] = P[(id ® J).6.N+2(a)M] . (4.10) 

Now apply the definition ( 4.3) and the first of (2.28) to rewrite ( 4.10) as 

P(M)(f ® id).6.(P(a)) = (id ® /).6.(P(a))P(M) . (4.11) 

This projected equation then becomes property (3.8) for the ISOq,r(N) functionals 
f and adjoint elements M, with the correct coproduct .6. of ISOq,r(N). Q.E.D. 

To simplify notations, we write the composite indices as follows: 

(4.12) 

Similarly we'll write qb instead of qb•· 

Using the general formula ( 4. 7) we can deduce thew, T commutations for I SOq,r(N): 

wbTc = qf (R-l)bf yc we 
d r ed f 

wbxc = qb xcwb + )..rlf-lqdCbdyc wo 
~ d 

r2 
wbu = -u wb 

qb 

wbv = qb v wb 
r2 

w•rc d = yc ~· 

1 ~ b w•xc = -xcw•- )..-Tc w 
r2 r b 

w•u = r 2uw• 

w•v = r-2vw• 

wore d = q~r-2Tc dwo 
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(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 



woxc = xcwo 

W
0

U = UW
0 

W
0

V = VW
0 

(4.22) 

(4.23) 

( 4.24) 

Note 4.1: u commutes with all w 's only if r = Qa = 1 (cf. Note 2.2). This means 
that u = I is consistent with the differential calculus on ISOqab;r=qa=1 (N). 

The 1-form T w• = w: is hi-invariant, as one can check by using (4.8)-(4.9). 
Then an exterior derivative on ISOq,r(N) can be defined as in eq. (3.19), and 
satisfies the Leibniz rule. The alternative expression da = (Xi* a)wi (cf. (3.21)) 
continues to hold, where 

f • Xo=--r- r-1 o 

x. = 
1 

-1 [r. - c] r-r 
(4.25) 

are the left-invariant ve~tors dual to the left-invariant 1-forms wb, w• and W
0

• As a 
consequence of ( 4.5) their coproduct is given by 

~(Xb) = X• @ rb + Xc@ rb + c@ Xb 

~(x.) = x.@ r. + c@ x. 
~(Xo) = Xo@ ro + X•@ ro + Xc@ ro + c@ Xo 

The exterior derivative on the generators of I SOq,r(N) reads: 

dTc d = 0 
dxc = -qbr-lTc bwb- r-lxcw• 

du = ruw• 

dv = -r-1vw• 

dz = -qbr-1ybwb- r(1- rN)uwo- r- 1zw• 

( 4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

( 4.31) 

( 4.32) 

(4.33) 

where we have included the exterior derivative on z for convenience. Note that the 
calculus is trivial on the SOq,r(N) subgroup of ISOq,r(N), as is evident from (4.29). 
Thus effectively we are discussing a bicovariant calculus on the orthogonal q-plane 
generated by the coordinates xa and the "dilatations" u, v. 

Every element p of r can be written as p = Lk akdbk for some ak, bk belonging 
to ISOq,r(N). Indeed inverting the relations (4.30)-(4.33) yields: 

r 
wa = --K-(Ta c)[dxc- xcudv] 
- Qa• 

w• = -rudv = r- 1vdu 

o vdz + r-N zdv + r-lf CabXadxb 
w = -------------

r(1- rN) 
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(4.35) 

(4.36) 



Finally, the two properties (3.26) hold also for ISOq,r(N), because of the bi
invariance of T = w•. Thus all the axioms for a bicovariant first order differential 
calculus on I SOq,r(N) are satisfied. 

The exterior product of left-invariant one-forms is defined as 

wi 1\ wi = wi ® wi- Aij klwk ® wl 

where 

(4.37) 

( 4.38) 

This A tensor can in fact be obtained from the one of SOq,r(N + 2) by restricting 
its indices to the subset ob, oo, oo. This is true because when i, l = ob, oo, oo we 
have Ji 1(KerP) = 0 so that Ji 1 is well defined on ISOq,r(N), and we can write 
Ji 1(M/) = [i1[P(Mki)] (see discussion after Theorem 4.1). The non-vanishing 
components of A read: 

A ad = ~r-1 Rad 
cb Qc be 

Aao =r-1)..()a 
co c 

A•d •b = r-1>.8g 
A ad = -q r-lf-1 _xcda eo a 

A•o = r-4 oe 

_H_l A eo _ __ r _2-)..C 
cb - Qc be 

Aod = (.I..)2()d 
co Qc c 

Aao ob = r-4(qa)28g 

A•o eo= >.r- 1(1- r-N) 

Aoo oo = 1 

Aa• _ i"a 
•b- 0 b 

A•• •• = 1 

Ao• eo= 1 

From ( 4.37) it is not difficult to deduce the commutations between the w's: 

1 
- pab wd 1\ we = 0 
qc S cd 

wa 1\ we = -r2w• 1\ wa 

wa 1\ wo = -r-4(qa)2wo 1\ wa 

w• 1\ we = W0 1\ W0 = 0 
N 

e o -4 o e >.r--z- 1 C a b 
w 1\ w = -r w 1\ W + ( N) ba W 1\ W 

% 1- r-

(4.39) 

( 4.40) 

(4.41) 

( 4.42) 

( 4.43) 

where Ps is the q-symmetrizer given in Appendix B. Notice that the dimension of 
the space of 2-forms generated by wa 1\ wb is larger than in the commutative case 
since Ps project into an N(N + 1)/2 -1 (and not into an N(N + 1)/2) dimensional 
space. This is not surprising since the exterior algebra of homogeneous orthogonal 
quantum groups is known to be larger than its classical counterpart. 

The exterior differential on fAn can be defined as in Section 4 (eq. (3.33)), and 
satisfies all the properties (3.34), (3.35). As for SOq,r(N + 2) the last two hold 
because of the bi-invariance of T = w•. 

The Cartan-Maurer equations 

. 1 . . 
dul = (T 1\wt +wt !\T) 

r- r-1 
(4.44) 
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can be explicitly found after use of the commutations ( 4.39)- (4.43): 

dwa = r-1wa A w• 

dw• = 0 

(4.45) 

(4.46) 

(4.47) 

The nonvanishing structure constants C (appearing in the q-Lie algebra, see below), 
given by Cik i = Xk(M/), read: 

cab 0 = -q;;lr-lf-lcba 

Co• o = -r-3(1 + r2) 

C c = -r-loc 
a• a 

c.o o = r-1(1- r-N) 

These structure constants can be obtained from those of SOq,r(N +2) by specializing 
indices, for essentially the same reason as for the A components. 

Using the values of the A and C tensors given above, we can explicitly write the 
q-Lie algebra of translations and dilatations on ISOq,r(N) as: 

2 -4 0 XoXb - qb r XbXo = 
-2 -1 XcX• - r X•Xc = -r Xc 
-4 -(1 + r2) 

XoX• - r X•Xo = 3 Xo r 
QaP~b cdXbXa = 0 

A combination of the above relations yields: 
N 

Xo +A X•Xo =A -2qar-"2 N xacbaXb 
r- + r-

Notice the similar structure of eq.s (2.17) and (4.52). 

( 4.48) 

( 4.49) 

(4.50) 

( 4.51) 

(4.52) 

The *-conjugation on the x functionals and on the one-forms w can be deduced 
from (3.43) [use (qJ )-1D1b = qbD1b] 

( )*- -N-nf 1 Dd - -N- -nf Dd - -N- Df -nd Xb - -r v b- jXd- -r qbv b JXd- -r qb bv jXd 
QJ 

(x.)* = -x. 

(Xo)* = -r-2N-2Xo 

( 4.53) 

( 4.54) 

( 4.55) 

whereas the conjugation on thew one-forms can be deduced from (3.46) and (4;53)
( 4.55) or directly from their expression in terms of dx, du, dv differentials ( 4.34)
(4.36) remembering that (da)* = d(a*): 
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5 Calculus on the multiparametric orthogonal quan
tum plane: coordinates, differentials and par
tial derivatives 

5.1 ISOq,r(N) bicovariant calculus 

In this section we concentrate on the orthogonal quantum plane 

_ (ISO(N)) 
M = Funq,r SO(N) , (5.1) 

i.e. the ISOq,r(N) subalgebra generated by the coordinates xa and the dilatations 
u,v. 

We study the action of the exterior differential d on M and the corresponding 
space f M of 1-forms. f M is the sub-bimodule off formed by all the elements adb Or 
(da')b' where a, b, a', b' are polynomials in xa, u and v [of course adb = d(ab)- (da)b]. 

We will see that a generic element p of r M cannot be generated, as a left module, 
only by the differentials dx, dv, i.e. it cannot be written as p = aidxi + adv. We 
need also to introduce the differential dz (or equivalently dL = d( xaCabxb)). Thus 
the basis of differentials is given by dxa, dv, dz and corresponds to the intrinsic basis 
of independent one-forms wa, w• and W

0
• Note that du can be expressed in terms of 

dv since du = -u(dv)u = -r2u 2dv = -r-2(dv)u 2 [see (5.83) below]. 

Commutations 

The commutations between the coordinates xa, u and v have been given in Sec
tion 2. The commutations between coordinates and differentials are found by ex
pressing the differentials in terms of the one-forms w as in ( 4.30)-( 4.33), and using 
then the x, u, v commutations with the w's given in (4.13)-(4.24). The resulting 
q-commutations ·between x and dx are found to be: 

(5.2) 

where the projectors Ps and PA are defined in (B.4), and we have used the tensor 
notation Aabcdxcdxd A(x 0 dx) etc. The remaining commutations are given in 
formulae (5.80)-(5.91) in Table 1. 

Let us consider the above formula, giving the x, dx commutations. If we multiply 
it by P0 we find 0 = 0. Thus from this equation we have no information on 
Po(x 0 dx). Applying instead the projectors Ps and PA yields 

P8 (x 0 dx) = r2P8 (dx 0 x) ; PA(x 0 dx) = -PA(dx 0 x) (5.3) 

which does not allow to express xadxb only in terms of linear combinations of ( dx )x 
since no linear combination of P8 and PA is invertible. The space of 1-forms has 
therefore one more dimension than his classical analogue because we are missing a 
condition involving the one dimensional projector P0~1 = QN(r)Cabc ef, see (B.4). 
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However, if we consider the 1-form dL d(xeCefxf) -an exterior derivative of 
polynomials in the basic elements - we can write the commutations between the x 
and dx elements as follows: 

dx0x -(Ps + PA + P0 )x 0 dx + (Ps + PA)d(x 0 x) + Pod(x 0 x) 

P8 dx 0 x + PAdx 0 x- P0x 0 dx + Pod(x 0 x) 

(r-2 Ps- PA- Po)x 0 dx + Pod(x 0 x) (5.4) 

where we have used the Leibniz rule, the commutations (5.3) and Ps + PA + P0 = I. 
Equivalently we have 

involving the dv and dz differentials. 

The presence of dz can also be explained within the general theory by recalling 
that r is a free right module [see paragraph following (3.15)]. A basis of right 
invariant 1-forms is given by (3.15) and we explicitly have: 

-r-1dxa u = -r- 1dTa. ,.,(r• .) 
-r-1dv u = -r-1dT•. ,.,(r• .) 

1!._1 
r 2 [d ec f N-2 ec d f] 2 

(1 - rN)(1 + rN-2) X efX - r X ef X U 

-rN-1 -rN-1 
rN _

1 
[dzu+dyb"'(xb) +du,.,(z)] = rN _

1 
dT0 s"'(Ts.) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

To derive the expression for fJ 0 use: Yb = -r-lfuxeCefT1 b; dyb "'(xb) = r-lf du xxu+ 

r-lf dx xu2
; dz = d( 1;~lfN uxx) = 1;~lfN (du xx + dx xu+ xdx u); "'(z) ="'(To.) = 

r-N z; uxx = r2xxu; udx X= dx xu, where XX L xecefXf. 
The 1-forms (5. 7)-(5.8) in r do not contain any ya b element and therefore belong 

to r M as well; they are linearly independent and freely generate r M as a right 
module because they freely generate the full r as a right module. The extra 1-form 
rJ 0 (or dz) is therefore a natural consequence of the right module structure of r. 

In summary: either dL or dz or fJ0 are necessary in order to close the com
mutation algebra between coordinates and differentials. Thus the commutations 
involving z and dz appear in Table 1. 

We have seen that dv u; dxa u and fJ0 freely generate r M as a right module; 
recalling that r is also a free left module, we have the : 

Proposition 5.1 The M-bimodule rM, as a left module (or as a right module), 
is freely generated by the differentials dx, dL (or dz) and dv. Proof: to show that 
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aidxi + adL + a.dv = 0 ==> ai = 0, a = 0, a. = 0 express dxi, dL, dv in terms of 
wa, wow•, see ( 4.30)-( 4.33), and recall that r is a free left module. 

Note 5.1 From (5.80), (5.81) and the commutations of L with x and u we have 
xcdL = dLxc, udL = dLu and vdL = dLv. These relations and (5.79) show that 
inside r M there is the smaller bimodule generated by the differentials dxa and dL. 

We now examine the space of 2-forms. By simply applying the exterior derivative . 
d to the relations (5.79)-(5.91) we deduce the commutations between the differentials 
given in Table 1. As with the wa's in eq. ( 4.39), the relations in (5.92) are not 
sufficient to order the differentials dxa. 

ISOq,r(N) - coactions 

All the relations we have been deriving have many symmetries properties because 
they are covariant under the actions on M and r of the full ISOq,r(N) q-group. In 
fact we have the following three ISOq,r(N) actions: 

1) the coproduct of ISOq,r(N) can be seen as a left-coaction !!:.. : M ---+ 
ISOq,r(N) 0 M: 

(5.10) 

2) the left coaction 6-L: r---+ ISOq,r(N)@ r, when restricted to rM gives 

(5.11) 

and defines a left coaction of ISOq,r(N) on rM compatible with the bimodule 
structure of fM and the exterior differential: 6-Li (adb) = 6-(a)(id@ d)!!:..(b). 

rM 
3) the right coaction 6-R : r---+ r@ ISOq,r(N) does not become a right coaction 

of ISOq,r(N) on fM; however we have 

(5.12) 

this map is obviously well defined and satisfies 6-RI (adb) = 6-(a)(d@ id)!!:..(b) 
rM 

Va, bE M since M c I SOq,r(N). 
We call this calculus ISOq r(N)-bicovariant because 6-LI and 6-RI are com-

' rM rM 

patible with the bimodule structure of r M and with the exterior differential. 

Partial derivatives 

The tangent vectors x in ( 4.25) and the corresponding vector fields X* have "flat" 
indices. To compare X* with partial derivative operators with "curved" indices, we 

~ 

need to define the operators a: 

(5.13) 
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~ r r-N 
a.(a) - -(Xb * a)K,(Tb e)xeu- r(x. * a)u- ( N) (Xo * a)z (5.14) 

~ r1-r 
~ 1 
8o(a) = - ( N) (Xo * a)v (5.15) 

r1-r 

so that 
~ ~ ~ ~ 

d a =Be (a) dxe + a.(a)dv + 8o(a)dz = 8c(a)dxc (5.16) 

[C = (o, c, o), dxc = (dz, dxe, dv)] which is equation da = (Xe * a)we + (x. * a)w• + 
~ 

(Xo * a)wo in "curved" indices. The action of Be on the coordinates xc = (z, xe, v) 
is given by 

(5.17) 

From the Leibniz rule d(ab) = (da)b +a( db), using (5.16) and the fact that dxc = 
(dz, dxe, dv) is a basis for 1-forms, we find for example: 

(5.18) 

~ 

The tangent vector fields Xe* of this paper and the partial derivatives a are deriva-
tive operators that act "from the right to the left" as can be seen from the deformed 

~ 

Leibniz rule (5.18). This explains the inverted arrow on a. 
~ ~ 

Eq. (5.18) gives the Be, xb commutations. The rest of the Be, xB commutations 
reads: 

~ ~ rlf-2 (1- r 2) ~ 
a.(axb) = qb1 a.(a)xb- ceb (1 - rN) Be(a)z 

&o(ax') = q,/io(a)x'- c" r"t(~
2

~1 r~~') /i,(a)v 

~ -2 ~ 
Be(av) = r qe8e(a)v 
~ ~ 

a.(av) = r- 2 a.(a)v +a 
~ ~ 

Bo(av) = 8a(a)v 

~ -1~ 
8e(az) = qe 8e(a)z 
~ -2~ 
a.(az) = r a.(a)z 
~ ~ ~ 

8a(az) = r 2 8o(a)z +a+ (r-2 -1)8.(a)v 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

We can also define derivative operators acting from the left to the right, as in ref.s 
(23], using the antipode K, which is antimultiplicative (one can also use (3.22)]. For 
a generic quantum group the vectors -K,'-1 (Xi) -Xi o /'l,-

1 act from the left and 
we also have 

(5.27) 
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as is seen from ~'(Xi)= -xi~'Ui i) and "''-1(/k i)fi k = o; [third line of (3.41)]. 
We then define the partial derivatives Be so that 

da = dxc Be(a) . (5.28) 

Again the action of Be on the coordinates is 

(5.29) 

The Be, x 8 commutations are given in Table 1. 

5.2 SOq,r(N) bicovariant calculus 

Commutations 

Since the PA.b cdxcxd = 0 commutation relations allow for an ordering of the 
coordinates (moreover the Poincare series of the polynomials on the quantum or
thogonal plane is the same as the classical one), it is tempting to impose extra 
conditions on the differential algebra of the q-Minkowski plane, so that the space 
of 1-forms has the same dimension as in the classical case. We require that the 
commutation relations between x and dx close on the algebra generated by x and 
dx: 

(5.30) 

where a is an unknown matrix whose entries are complex numbers. Any such matrix 
can be expanded as a= aPs + bPA + cP0 with a, b, c = const. From (5.3) we have 
a = r- 2 Ps - PA + cP0 ; therefore condition (5.30) is equivalent to 

P0(dx 0 x) = cPo(x 0 dx) (5.31) 

and supplements eq.s (5.3). Taking its exterior derivative leads to a supplementary 
condition on the dx, dx products (for c f- -1): 

Po(dx 1\ dx) = 0 . (5.32) 

From (5.92) and (5.32) it follows that dx 1\ dx = (Ps + PA + P0 )(dx 1\ dx) = 
PA(dx 1\ dx), or [see the definition of PA in (B.4)] : 

dx 1\ dx = -r R dx 1\ dx . 

which allows the ordering of dx, dx products. 
Using (5.4), (5.31) and (B.3), we find 

dx0x (r- 2Ps- PA)(x 0 dx) + Po(dx 0 x) 

(r- 2Ps- PA)(x 0 dx) + cPo(x 0 dx) 

(r-2 Ps- PA + rN-2 Po)(x 0 dx) + (c- rN-2 )P0 (x 0 dx) 

(5.33) 

r-lfl-1(x0dx) + (c-rN-2 )P0 (x®dx). (5.34) 
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The consistency of the commutation relations (5.33) and (5.34) with the associa
tivity condition on the triple dxi dxi xk fixes c = rN- 2 i.e.: 

P0 (dx Q9 x) = rN- 2P0 (x Q9 dx) ; (5.35) 

the x, dx commutations (5.34) then become: 

x Q9 dx = rR(dx Q9 x) (5.36) 

and reproduce (in the uniparametric case) the known x, dx commutations of the 
quantum orthogonal plane ·[24]. 

Coactions 

This calculus is no more covariant under the ISOq,r(N) action, 

(5.37) 

but we are left with covariance under the SOq,r(N) action 

(5.38) 

In other words, lh : r~ --t SOq,r 0 r~ defined by (h(adb) = b(c)(id Q9 d)b(b) with 
b(xa) = ya b Q9 xb is a left coaction of SOq,r(N) on the bimodule r~ where f~1 
is rM with the extra condition (5.31) [cf. (5.11)]. Similarly, the map bR(adb) = 
b(a)(d Q9 id)b(b) is well defined [cf. (5.12)]. 

Left covariance under (5.37) is broken only by (5.31). Indeed, while relations 
(5.3) are left and right I SOq,r(N)-covariant, the extra condition (5.31) is not left 
ISOq,r{N)-covariant : .6.L[P0 (dx Q9 x)- cPo(x Q9 dx)] =1- 0, \I c. It is right I SOq,r{N)
covariant, .6.R[P0 (dxQ9x) -cP0 (xQ9dx)] = 0, only for c = rN- 2 , as can be seen using 
Tb ddxa = d(Tb dxa) = .L..Ra~1dxe T 1 d and (B.6). Therefore the choice c = rN- 2 

qd 
preserves the right coaction .6.R. 

Note 5.2 We can reformulate the quotient procedure rM --t r~ in a more abstact 
setting by COnsidering that r M is a subbimodule of the bicovariant bimodule f. 
In (5.8) we have expressed the xecefdxf H dxecefXJ commutation via the right 
invariant 1-form 1]

0
• A condition on r (and therefore on r M) that preserves right 

ISOq,r(N) covariance, i.e. compatible with .6.R [as given in (4.9)], is: 1]0 linearly 
dependent from the remaining right invariant 1-forms dv u and dxa u. It is easily 
seen that since 1]0 is quadratic in the basis elements xa the only possible linear 
condition is 1}

0 = 0, and this gives exactly (5.35). The M-bimodule r~ is therefore 
generated by the differentials dxb and dv. Since left ISOq,r(N) covariance is broken 
(whereas right ISOq,r(N) covariance is preserved), the relation between the left 
invariant 1-forms is nonlinear. Explicitly we have 

1:!.._2 

W
o qa a r 2 c a b • 

= - r2 VYa w + N 2 abX X w r +r 
(5.39) 
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[express dz in terms of dxi,dv in (4.36) and use the expansion of dxb and dv on wa 
and w• as given in (4.30),(4.32)]. 

Partial derivatives 
~ ~ ~ ~ 

The relevant a operators reduce to Be, a., and the Be, xb, commutations be-
come: 

(5.40) 

(5.41) 

~ ~ 

while the Be, v commutations are unchanged. Note the dilatation operator a. 
appearing on the right-hand side of (5.18) or (5.40). The Be, xiJ commutations 
with C = (c,o), B = (b,o) are collected in Table 2. 

From d2 (a) = 0 = d(Be(a)dxe) = BB(Be(a))dxB Adxe and the q-commutations 
of the differentials (5.92)-(5.98) one finds the commutations between the partial 
derivatives: 

~ ~ ~ ~ a.ao- 8o8. = 0 

Similarly the a A, aB commutations are given in Table 2. 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

We now give an explicit relation between the Be, a. and the q-Lie algebra gener
~ 

ators Xc' x. (a similar expression holds also for the 8 derivatives). Recalling (3.22) 
we have: 

(5.46) 

where here C = (c, o) because we have set rt = 0. Putting together (5.46) and 
· (5.6),(5.7), the relations da = dxe Be(a) give, \Ia E ISOq,r(N) : 

a.(a) = r-1u(a * ti:'(x.)) . (5.47) 

The commutations between the partial derivatives given in Table 2 were obtained 
from d2 = 0, but can be also derived via (5.47) and the q-Lie algebra ( 4.48)-( 4.51 ). 

Similarly we can introduce the right invariant vector fields 

he - [ t\:1 (Xc) 0 id] ~ (5.48) 

and use their Leibniz rule [which follows from ~(ti:'(Xc)) = ~~:'(Xc) 0 c + ~~:'(JD c) 0 
ti:'(xv) ]: 

(5.49) 
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to rederive the a, x, u commutations. For example we have haxb = rv8~+(r/qb)Re~cxche 
+r>..h. that together with ac = r-1uhc gives 

Conjugation 

The commutations in Table 2 are consistent under the conjugation (already 
defined for xa and dxa) 

v* = v, (dv)* = dv, (a.)*= u- a. 

(5.50) 

(5.51) 

where the entries da h~ve been defined after eq. (3.30). This can be proved directly 
by taking the *-conjugates of the relations in Table 2, and by using the identity 
(2.29) and: 

(5.52) 

dcd-,;1Rcgha(R-1)eacd = OhO~; Rabcddadb = Rabcddcdd 

dcRcg = rN-109. Rab d-ld-1 = Rab d-ld-1 he h' cd a b cd c d 
(5.53) 

1 1 
Qa = - for a=/= n, n + 1, Qn = -- (5.54) 

Qa Qn+l 

We now derive the conjugation on the partial derivatives from the differential 
calculus on I SOq,r(N). This is achieved by studying the conjugation on the right 
invariant vector fields h. 

For a generic Hopf algebra, with tangent vectors Xi, we deduce the conjugation 
on h from the commutation relations between h and a generic element of the Hopf 
algebra: 

(5.55) 

We multiply this expression by K'
2(Ji i)(b0 ) [where we have used the notation (id® 

.6.).6.(b) = b0 ® b1 ® b2] to obtain 

(5.56) 

Now, using '!f;(b) = [K'('!f;)]*(b*) and then applying * we obtain (here a= b*) 

(5.57) 

This last relation implies 

(5.58) 
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Notice that *oK,12 is a well defined conjugation since ( *o"''2 )
2 = id . 

We now apply formula (5.58), valid for a generic Hopf algebra, to the *-conjugation 
and the right invariant vector fields of this section; we have: 

(5.59) 

(5.60) 

From these last relations and ac = r-1uhc we finally deduce -dt;1VbarNab and 
(aa)* = (a.)*= u- a. as in (5.50), (5.51). 

5.3 The reduced SOq,r(N)-bicovariant algebra generated by 
xa, dxa, aa 

Note that the algebra in Table 2 actually contains a subalgebra generated only by 
xa, dxa, aa: indeed a. vanishes when acting on monomials containing only the coor
dinates xb, as can be seen from (5.117). This calculus is I SOq,r(N)-right covariant 
because it can also be obtained imposing the conditions TJ• = 0 and X• = 0 that 
are compatible with the right coaction tlR and the bimodule structure given by the 
Ji i functionals. 

Table 3 contains the multiparametric orthogonal quantum plane algebra of coor
dinates, differentials and partial derivatives, together with a consistent conjugation. 
We emphasize here that this conjugation does not require an additional scaling op
erator as in ref. [25]. Thus the algebra in Table 3 can be taken as starting point 
for a deformed Heisenberg algebra (i.e. a deformed phase-space) . 

Real coordinates and hermitean momenta 

We note that for the real form ISOq,r(n + 1, n- 1), the transformation 

(5.61) 

(5.62) 

(5.63) 

defines real coordinates xa. On this basis the metric becomes C' = (M- 1)TCM-1 
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(where M is the transformation matrix X= Mx): 

rlf-1 + r-lf+l 0 

0 rlf-2 + r-1+2 

C' = ~ 0 0 
2 0 0 

0 

0 

2 0 
0 2 

0 
-(rlf-2 - r-lf+2 ) 

0 
0 

-(rlf-2 + r-1+2) 

0 

( .!Y._1 _.!Y.+l) - r2 -r 2 
0 

0 
0 

0 
N N 

-(r2-1 + r-2+1) 

(5.64) 
and reduces for r -+ 1 to the usual SO ( n + 1, n - 1) diagonal metric with n + 1 plus 
signs and n- 1 minus signs. Notice that the diagonal elements of C' are real while 
the off diagonal ones are imaginary; moreover C' is hermitian (and can therefore be 
diagonalized via a unitary matrix). 

As for the coordinates X, it is possible to define antihermitian x and 8, and real 
w and dx. To define hermitian momenta we first notice that the partial derivatives 

(5.65) 

behave, under the hermitian conjugation *, similarly to the coordinates xa (see 
(5.50), (5.51)): 

(aa)* = -aa a#n,n+l 

(an)* = -an+1 . 

As in (5.61)-(5.63) we then define: 

-in - -
Pa = J2 ( 8a + 8a') , 

-n - -
Pn+l = J2(8n- 8n+l) 

-in - -
Pa = J2 (8a- 8a'), a>n+l 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

It is easy to see that the Pa are hermitian: Pa * = Pa, and that in the classical limit 
are the momenta conjugated to the coordinates xa: Pa(Xb) = -inb~. In the r =I= 1 
case we explicitly have (use da' = d-;;_ 1

, dn = dn+l = 1): 

a' 1 · lY. ! -! Pa(X ) = -'i'lnEar 2 (da - da ) where Ea = 1 if a< nand Ea = -1 if a> n + 1 

while the other entries of the Pa(Xb) matrix are zero. 
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By defining the transformation matrix Nab as: 

Pa- -i1iNab0b (5.71) 

we find the deformed canonical commutation relations: 

(5.72) 

where 

S bc = N eMb R~ fh (M-1)9 .'(N-1) c Eb _ i p (Xb) N cMb ad a f eg d h ' a = Ti a = a c (5.73) 

Similarly one finds all the remaining commutations of the P, X and dX algebra. 
Notice that no unitary operator appears on the right-hand side of (5.72). Our 
conjugation is consistent with (5.72) without the need of the extra operator of ref. 
[25]. 

For n = 2 the results of this section immediately yield the bicovariant calculus 
on the quantum Minkowski space, i.e. on the multiparanietric orthogonal quantum 
plane Funq,r(IS0(3, 1)/ S0(3, 1)). The relevant formulas are collected in Appendix 
A. 

Table 1: the ISOq,r(N)-bicovariant xA, aA, dxA algebra 

pr;,_b cdxcxd = 0 

xbv = qbvxb ; xbu = q"b 1uxb 

1 be a 
Z = - N N ? X baX U 

(r-2 + r2--) 

ZV = r2vz ; ZU = T-
2uz 

qaxaz = zxa 

udxc = q~ (dxc)u 
T 

udu = r-2(du)u; udv = r-2 (dv)u 

udz = (dz)u 
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(5.74) 

(5.75) 

(5.76) 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

"(5.84) 



r2 
vdxc = - ( dxc)v 

qc 

vdu = r2 (du)v; vdv = r 2(dv)v 

vdz = (dz)v 

zdxc = qc( dxc)z 

zdu = r-2 (du)z + (r-2
- 1)(dz)u 

zdv = r2 (dv)z + (r2
- 1)(dz)v 

zdz = r-2 (dz)z 

Ps(dx 1\ dx) = 0 
r2 q 

dxc 1\ du = --du 1\ dxc; dxc 1\ dv = ---%dv 1\ dxc 
qc r 
1 

dxc 1\ dz = --dz 1\ dxc 
qc 

du 1\ du = dv 1\ dv = 0 

du 1\ dv = -r-2dv 1\ du = 0 

dz 1\ du = -du 1\ dz; dz 1\ dv = -dv 1\ dz 

dz 1\ dz = 0 

OcXb = c5~I + (r2 Ps- PA- Po)becdXdOe- (1- r2 )8~v8. 
!:!.. ( 2) b b bcr2 1-r 

a.x = qbx a.- c (1- rN) ZOe 

rlf (1- r 2) a xb = q-lxbo - cbc vo 
o b o ( 1 _ rN) c 

a 2 -1 !:) cV = r qc Vue 

8.v = r2v8. +I 

00 V = V00 

OcZ =%ZOe 

a.z = r 2z8. 

00 Z = r-2Z00 +I+ (r2
- 1)v8. 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

(5.93) 

(5.94) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

(5.100) 

(5.101) 

(5.102) 

(5.103) 

(5.104) 

(5.105) 

(5.106) 

(5.107) 

Table 2: the SOq,r(N) - bicovariant xa, v, 8a, a., dxa, dv algebra 

p~b cdxcxd = 0 

xbv = qbvxb 
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Conjugation: 

x ® dx = r R( dx ® x) 
xcdv = qc(dv)xc + .Ar(dxc)v 

r2 
vdxc = -(dxc)v 

qc 

dx 1\ dx = -rRdx 1\ dx 

dxc 1\ dv = - q~dv 1\ dxc 
r 

dv 1\ dv = 0 

OcXb = rfibecdxdoe + b~[I + (r2
- 1)v8.] 

a.xb = qbxba. 

o.v = r2vo. +I 

(xa)* = Dabxb, (dxa)* = T)abdxb, (oa)* = -rN d;;tDbaob . 

v* = v, (dv)* = dv, (8.)* = u- a. 

1 1 
qa =-for a# n,n + 1, qn =-

qa qn+l 

(5.110) 

(5.111) 

(5.112) 

(5.113) 

(5.114) 

(5.115) 

(5.116) 

(5.117) 

(5.118) 

(5.119) 

(5.120) 

(5.121) 

(5.122) 

(5.123) 

Table 3: the reduced SOq,r(N) -bicovariant xa, 8a, dxa algebra 

Conjugation: 

x ® dx = r R( dx ® x) 

dx 1\ dx = -r R(dx 1\ dx) 

OcXb = rflbecdXdOe + b~I 
PA.b cdoboa = 0 

(xa)* = Dabxb, (dxa)* = Dabdxb, (oa)* = -rNd;;tDbaab 
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A X, dX, P commutations for the D=4 quantum 
Minkowski space 

X real and P hermitean: X* = X, P* = P 

Parameters 

Two parameters: r, q = q12, with 

I I 1 q R - -1 - q r=, -E =?r=r ,q=-
r r 2 

Definitions 

- r q 1 _ r q 
,\ - - -, 11 r + r~ , 11 - +-

q r q r 

XX commutations 

X 2 X 1 = 
1 

_ [11,ux1 X 2 + 11-XX2 X 4 + {5..,ux 3 X 4 - i.X-XX 1 X 3J 
112 + ,X2 

X 3 X 1 = 1 
_ [11,UX1 X 3 + 11-XX3 X 4 - i.X,UX2 X4 + i.X-XX 1 X2] 

112 + ,\2 

x4xl = xlx4 + ~(x2 x2 + x3 x3) 
2 

x3x2 = x2x3 

X 4 X 2 = 1 
_ [11,ux2 X 4 - 11-XX 1 X 2 - i.X,UX 1 X 3 - i.X-XX3 X 4J 

112 + ,X2 

X 4 X 3 = 
1 

_ [11,ux3 X 4 - 11-XX 1 X 3 + i.X,UX1 X 2 + i.X-Xx2 X4J 
112 + ,\2 

X dX commutations 

X 1dX 1 = .!:_(r-2 + 3r2)(dX1)X1 - ,\

2 
[(dX4)X1

- (dX1)X4] 
4 4 

- ~[(dX2)X2 + (dX3)X3] + 2_(r2 - r-2)(dX4)X4 
2 4 

X 1dX2 = 2_r,U(dX2 )X1 + r,\ d[X1
- X 4]X2 - ir.X(dX3 )X4 

2 2 2 

X 1dX3 = 2_r,U(dX3 )X1 + r,\ d[X1 - X 4]X3 + i_r.X(dX2)X4 

2 2 2 

X 1dX 4 = [2_(r2 - r-2) + 1](dX4)X1 + ,\
2 

[(dX 1)X1 - (dX4)X4] 
4 . . 4 

- ~[(dX2)X2 + (dX3)X3] + [2_(3r 2 + r-2)- 1](dX1)X4 
2 4 
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X 2dX 1 = ~rjL(dX1 )X2 + r-\ dX2(X 1 + X 4
) + ir5.(dX4 )X3 

2 2 2 

X 2dX2 = TJi (dX2)X2 - TA (dX3)X3 - ~d[X1 - X 4](X1 + X 4
) 

2 - 2 2 

X2dX3 = TJi(dX3)X2 + TA(dX2)X3 
2 2 

X 2dX 4 = ~rjl(dX4 )X2 + r-\ dX2(X 1 + X 4
) + ir5.(dX 1)X3 

2 2 2 

X 3dX1 = ~rjl(dX1)X3 + r-\ dX3(X 1 + X 4
)- ir5.(dX4 )X2 

2 . 2 2 

X3dX2 = TJi (dX2)X3 + TA (dX3)X2 
2 2-

X3dX3 = TJi(dX3)X3 - TA(dX2)X2 - ~d[X 1 - X 4](X 1 + X 4 ) 
2 2 2 

X 3dX 4 = ~rjl(dX4)X3 + r-\ dX3(X 1 + X 4
)- ir5.(dX1)X2 

2 2 2 

X 4dX 1 = [~(r2 - r-2) + l](dX 1)X4 - ,\

2 
((dX 1)X1

- (dX4)X4
] 

4 4 -

+ ~[(dX2)X2 + (dX3)X3] + [~(3r2 + r-2)- l](dX4)X1 

2 4 

X 4 dX2 = ~rjl(dX2)X4 --: r
2
-\ d[X 1

- X 4]X2 - ~r5.(dX3)X 1 

X 4 dX3 = ~rjL(dX3)X4 - r-\ d[X 1 - X 4]X3 + ir5.(dX2)X1 

2 2 2 

X 4dX4 = ~(r-2 + 3r2)(dX4)X4 + -\
2 

((dX4)X1
- (dX1 )X4

] 
4 4 

+ ~[(dX2)X2 + (dX3)X3] + ~(r2 - r-2)(dX 1)X1 

2 4 

dX dX commutations 

(Products between dX are exterior (wedge) products) 

dX 1dX 1 = 0 

dX 1dX2 = 
1 

- [-J-tjldX2dX 1 + JiAdX4dX2 - i5.jldX4dX3 - i-\5.dX3dX 1
] 

~-~ - -

dX 1dX 3 = 
1 

- [-J-tjldX3dX 1 + JiAdX4dX3 + i5.jldX4dX2 + i-\5.dX2dX 1
] 

/i2- _\2 

dX 1dX4 = -dX4 dX 1 

dX2dX2 = -~dX4dX1 
2 

dX2dX3 = -dX3dX2 

1 - - 4 3 
dX2dX4 = - [-J-tjldX4dX 2 - J-t-\dX2dX 1 + i-\jldX3dX 1

- i-\-\dX dX] 
/i2- _\2 
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dX 3dX3 = -~dX4dX1 
2 

dX 3dX4 = 
1 

- [-p,[tdX4dX3
- p,>.dX3dX 1

- {5..[tdX2dX 1 + i>..\dX4dX2
] 

J-£2- )..2 

dX4dX4 = 0 

P X commutations 

Defining 

r).. [ 1 4 2 1 4 ) ( 2 3 )] A -4 (X - X ) ( g - P4) + r (X + X ) ( P1 + P4 + 2r X P2 + X P3 

r).. [ 1 4 2 1 4 2 3 )] B -4 (X -X )(P1- P4)- r (X +X )(P1 + P4)- 2r(X P2 +X P3 

the commutations are: 

1 1 1 . 2 
P1X - x P1 +A= --rtnr J-t 

2 r[t 2 r 1 4 - 3 ] gx --X P1- -[->.(X +X )P2>.X P4 = 0 
2 2 

gX3 - rp,X 3 P1 - !::.[->.(X1 +X4)P3- i.\X2P4) = 0 
2 2 

gX4 - r 2X 4P1 + B- r>.X 1P4 = ~inr2 >. 

P2X 1 - r[t X 1 P2 - !::.[->.X2(g + P4) + i.\X4 P3) = 0 
2 2 

2 r J-t 2 r).. [ 3 ( 1 4) ( )] . 2 P2X - 2 X P2 - 2 X P3 + r X +X P1 + P4 = -znr 

P2X3 - rp, X 3P2 + TA X 2P3 = 0 
2 2 

· 4 r[t 4 r[ 2 .- 1 ] P2X - -X P2 - - >.X (P1 + P4) + z)..X P3 = 0 
2 2 

1 rjl, 1 r[ 3 .- 4 ] P3X --X P3 - - ->.X (P1 + P4) - z>.X P2 = 0 
2 2 

2 rp, 2 r>. 3 
P3X - -X P3 + -X P2 = 0 

2 2 
3 rp, 3 r>.[ 2 ( rl 4)( )] . 2 P3X - 2 X P3 - 2 X P2 + r X +X g + P4 = -znr 

P3X 4 - r[t X 4P3 - !::.[>.X3(g + P4)- i.\X1P2] = 0 
2 2 

P4X 1
- r 2X 1P4 + B- r>.X4P1 = ~inr2 >. 

2 r p, 2 r [ ( 1 4) . - r3 ] P4X - 2 X P4 - 2 ).. X + X P2 + z>.X P1 = 0 

3 rp, 3 r[ ( 1 4 .- 2 ] P4X - 2X P4- 2).. X +X )P3 - z>.X P1 = 0 
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P P commutations 

p2 p 1 = 
1 

_ [J.LfLP1 P 2 - J.LAP2 - i~jLP3P4- i~>..PtP3] 
J.l2 + )..2 

p3 p 1 = 
1 

_ [J.LfLP1 P3 - J.LAP3 P4 + i~jLP2P4 + i~>..P1P2] 
J.l2 + )..2 

p4pl = plp4- ~(P2P2 + P3P3) 

p3p2 = p2p3 

p 4 p 2 = 
1 

_ [J.LfLP2 P4 + J.LAP 1 P2 + i~jLP1 P3- i~>..P3P4] 
J.l2 + )..2 

1 . - -
p 4 p 3 = _ [J.LfLP3 P4 + J.LAP1 P3 - i>..jLP1P2 + i>..>..P2P4] 

J.l2 + )..2 

B R matrix of orthogonal q-groups: properties 

Let R be the matrix defined by flab cd - Rba cd· 

Characteristic equation and projector decomposition: 

with 

(R- ri)(R + r-1I)(R- r 1-N I)= o 

R- fl-1 -· (r- r- 1)(I- I<) 

R~ p -1p + 1-N n = r s- r A r r 0 

Ps = r+~-1 [R + r- 1 I- (r-1 + r 1-N)P0] 

PA = r+;-1 [-R + ri- (r- r 1-N)Po] 

(B.l) 

(B.2) 

(B.3) 

Po= QN(r)I< (B.4) 

QN(r) (CabCab)-1 = (1-r ~)(;:rN 2) ' !{abed= cabCcd 

I= Ps + PA +Po 

Other properties involving the q-metric: 

C R~bc (RA -1)cf c ab de= ad fe, 

C R~ ab _ r1-NC ccdR~ ab _ r1-Ncab ab cd - cd, · cd -

The identities (B.5) hold also for R -t fl- 1 . 
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