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Abstract 

The potential during inflation must be ~ery flat in, at least, the direction 
of the inflaton. In renormalizable global supersymmetry, flat directions are 
ubiquitous, but they are not preserved in a generic supergravity theory. It is 
known that at least some of them are preserved in no-scale supergravity, and 
simple generalizations of it. We here study a more realistic generalization, 
based on string-derived supergravity, using the linear supermultiplet formal­
ism for the dilaton. We consider a general class of hybrid inflation models, 
where a Fayet-Illiopoulos D term drives some fields to large values. The poten­
tial is dominated by the F term, but flatness is preserved in some directions. 
This allows inflation, with the dilaton stabilized in its domain of attraction, 
and some moduli stabilized at their vacuum values. Another modulus may 
be the inflaton. 
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I. INTRODUCTION 

Cosmological inflation has been regarded as the most elegant solution to the horizon 
and flatness problems of the standard Big Bang universe. Even though it explains why the 
current Universe appears so homogeneous and flat in a natural manner, it has been difficult 
to construct a inodel of inflation without a small parameter. In fact, one needs a scalar 
field (inflaton) that rolls down the potential very slowly to successfully generate a viable 
inflationary scenario [1 ,2]. This requires the potential to. be. almost flat in the direction of 
the inflaton. 

Other cosmological considerations may call for a flatness of the potential in non-inflaton 
directions. For instance, the Affieck-Dine baryogenesis scenario [3] requires a scalar field 
which carries baryon number to have a large amplitude to start with. To maintain a large 
amplitude during the rapid expansion of the universe, the scalar potential needs to either 
be almost flat [3,4], or to have a negative squared mass [5,6]. 1 

In general, it appears rather unnatural to impose an almost flat scalar potential in 
quantum field theory, because such flatness is likely to be destroyed by radiative corrections. 
Specifically, scalar field masses are generally quadratically divergent and are not protected 
by any symmetries. 2 Supersymmetry, however, may maintain the flatness of a tree-level 
scalar potential against radiative corrections due to the nonrenormalization theorem. 

A renormalizable, globally supersymmetric theory typically has several directions in 
which the tree-level potential is very flat. However, because inflation couples the energy 
density of a scalar potential to gravity to cause a rapid cosmological expansion, supersym­
metry has to be made local: supergravity. During inflation, a generic supergravity theory 
lifts the flat directions of global supersymmetry, generating [7,8] a squared mass at least of 
order 3H2 ~ Mpj2 V in magnitude. 3 

This generic result must be evaded for the inflaton field, [8] since in its direction 
IV" I « Mp?V is necessary for slow-roll inflation. (V" is the second derivative of the infl.aton 

1 It should be emphasized, though, that we are looking at the global SUSY flat directions only dur­
ing inflation. After inflation is over one has rapidly oscillating fields and/or thermalized particles, 
and a separate discussion is required in this much more complicated situation. One might argue [5] 
that all fields are likely to acquire masses at least of order H (until H falls below their true mass). 
If that is so, Affieck-Dine baryogenesis may proceed more or less as in [5] or [6], whether or not the 
directions responsible for it are flat during inflation. However, the thermal effects are exponentially 
suppressed if the amplitude of the scalar field is larger than the temperature. The effect of the 
oscillating field on the flat direction depends sensitively on the structure of the non-renormalizable 
Kahler potential terms. Discussion on these issues is beyond the scope of this paper. 

2The exception is when the scalar field is a Nambu-Goldstone boson of a spontaneously broken 
global symmetry. 

3 Here, H is the Hubble parameter defined in terms of the scale factor a by H = a/ a, and 
MpJ = (SnG)-112 = 2.4 x 1018 GeV is the reduced Planck mass. The inflaton potential is V(¢), a 
prime denot~s djd¢, and we have remembered that V ~ 3M~1H2 during inflation. 
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potential, which cannot be much less than the squared mass along the inflaton trajectory.) 
One would like to understand how this evasion comes about, and whether it occurs for scalar 
fields other than the inflaton. 

The question of whether a scalar potential has a flat direction consistent with inflation re­
quires knowledge not only of the superpotential, which is not renormalized so that a specific 
form of it is at least technically natural, but also the Kahler potential, which can be renor­
malized by higher dimension operators with arbitrary coefficients in generic supergravity. 
In fact, one needs to know the Kahler potential at least up to quartic terms to determine 
if the potential is flat. Since these contributions are arbitrary in general supergravity, a 
natural question is whether an underlying quantum theory of gravity, such as superstring 
theory, determines a specific form of Kahler potential that ensures the flatness of the scalar 
potential along certain directions in the field space. 

This question has been a difficult one to address, because of other cosmological problems 
in superstring-inspired supergravity theories. The dilaton field exhibits a runaway behavior 
and it has been difficult to obtain a minimum of the potential, consistent with spontaneously 
broken supersymmetry (as required by phenomenology) and vanishing cosmological constant 
(at least on the scale of supersymmetry breaking). Recently, a modular invariant formalism, 
based on string orbifold compactification, was proposed to study the stabilization of the 
dilaton by employing the linear multiplet description of the dilaton [9). 

In the present paper, we explore the possibilities for inflation in the context of this 
formalism. Because we are writing down the supergravity Lagrangian after integrating 
out all the massive string and Kaluza-Klein excitations around a consistent vacuum, the 
superpotential has a power series expansion in the matter fields. It starts at the cubic order, 
and higher order terms are allowed with power suppression in the string scale~ The effective 
mass terms and/or linear terms that are presumably necessary-for inflation will appear when 
some of the fields acquire nonzero values (vev's). 4 We suppose, following Stewart [10), that 
the vev's are generated when a Fayet-Illiopoulos D term is driven to a small value. We show 
how this can preserve some of the flat directions of global SUSY, generating a potential 
flat enough for inflation, which will probably be of the hybrid [11,8) type. (During hybrid 
inflation a non-inflaton field is displaced from the vacuum, and is responsible for most of 
the potential.) 

Our paper is organized as follows. In the next section, we introduce the special form 
of the supergravity Lagrangian obtained from superstrings in [9). Section 3 contains the 
strategy for inflation model-building, and the main discussion on the flatness of the scalar 
potential. We conclude in Section 4. 

We generally set MpJ = 1, where MpJ = (81rGt1
/

2 = 2.3 x 1018 GeV. 

40ther intermediate-scale vev's occurring in Nature (associated say with Peccei-Quinn symmetry, 
neutrino masses or a GUT) might be related to the inflationary one, or they might be in a different 
sector of the theory. , 
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II. SUPERSTRING-DERIVED SUPERGRAVITY 

We are going to show how to construct models of inflation, in the context of a realistic 
supergravity theory derived from the weakly coupled superstring [9]. It is based on a class 
of orbifold compactifications [12,13] with three untwisted three moduli th and contains an 
effective potential for the dilaton, induced by gaugino condensation. Dilaton stabilization in 
the true vacuum is achieved by the inclusion of nonperturbative string effects in the Kahler 
potential, that modify the form of this potential. 5 

An important part of our program is to demonstrate that the dilaton can be stabilized 
during inflation, by the same nonperturbative string effects that stabilize it in the true 
vacuum. First though, we look at a simplified model which ignores the dilaton and the 
gaugino condensate. Then the scalar fields are all in chiral multiplets; they consist of the 
moduli t1, and matter fields which we shall denote by ¢a.6 

The tree-level potential has the usual form V = VF + Vv. The F term is 

(1) 

The superpotential W is a holomorphic function of the complex scalar fields, while the 
Kahler potential K is a function of the fields and their complex conjugates. A subscript n 
denotes the derivative with respect to the nth field, and n the derivative with respect to 
its complex conjugate. (In this context, n runs over both the both matter fields and the 
moduli.) The matrix Knm is the inverse of the matrix Knm· · 

A. The potential ignoring the dilaton 

We suppose that the only relevant part of the D term involves a U(1) with a Fayet­
Illiopoulos term, 

Vn = g: ( Y;q.K.¢. + ~n) 
2 

(2) 

5In this paper "modulus" refers to the three untwisted moduli of the class of orbifold compacti­
fications that we consider in explicit examples. In the usual chiral formalism, the dilaton and the 
universal axion are the real and imaginary parts of of a complex field s. In the linear multiplet 
formalism used here, the axion is replaced by a two-form potential b1.w related to Ims by a duality 
transformation that determines the dilaton .e in the classical limit as .e = (2Res)-1 ; this relation is 
modified in the presence of both perturbative and nonperturbative quantum effects. 

6We include as "matter" the so-called twisted moduli that are Standard Model gauge singlets, 
but have nonvanishing modular weights, For our purposes, their couplings are no different from 
those of twisted matter fields that are SM gauge nonsinglets. 
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In this expression, n runs only over matter fields charged under the relevant U ( 1). Its gauge 
coupling is g, and qn are the charges. As discussed later, weakly coupled string theory 
predicts that eD will be an order of magnitude or so below the Planck scale. 

To warm up, we consider only a single modulus t, corresponding to compactification on 
a six-torus [14]. Its Kahler potential is K = -3ln x where x - t + l- Ln I<Pnl 2

, and W 
is independent oft. This leads to what is termed a 'no-scale' theory [15], in which Eq. (1) 
becomes simply (for I<Pnl << 1) 

(3) 

Instead of Ret, one can regard x as a field since this choice too corresponds to approxi­
mately canonical normalization. The precise form of the kinetic terms is given for example 
in [16]. 

It looks as if x will run away to infinity, but we shall now see that this need not happen 
if vevs for the matter fields are generated from a Fa yet-Illiopoulos D term. 7 

Suppose that there is only one Wn, say W3 , which comes from a term A.¢1¢2¢3 in the 
power series expansion of W, and occurs because the D term lifts the flat 1 and 2 directions. 
With matter fields I<Pnl « 1 one has Knm ~ x-18nm so this will generate a vev 

(4) 

where cis a constant of order 1. This will give 

(5) 

All of the flat directions are preserved except for n = 1, 2 and 3, and the potential is also flat 
in the direction t. Slopes in these directions can be generated from nonrenormalizable terms, 
departures from the no-scale assumption, gaugino condensation or loop effects. When they 
are included the inflaton (corresponding to the direction of steepest descent in the space of · 
the flat directions) might turn out to be any combination of the flat directions and t. 

Earlier authors working with the potential Eq. (3) supposed instead that x was fixed, 
either by an ad hoc functional form for K(x) [17-19], or by a loop correction [16]. Then all 
of the flat directions are preserved, and Im t and x are also flat. 

For the rest of this paper, we invoke three moduli fields t1. Also, we allow W to have 
a dependence on the moduli, that is determined by the modular invariance of the theory. 
The matter fields are divided into twisted fields ¢A and untwisted fields ¢AI· For the most 
part we suppose that the twisted fields vanish during inflation. Ignoring both them and the 
dilaton, the Kahler potential is 

3 

K =- l:lnx~, (6) 
. 1=1 

7The possibility of generating vevs from such a term has been considered in two previous works 
[8,10], but these failed to notice the crucial effect of the nontrivial kinetic term Kn in Eq. (2). 
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where 

The potential Eq. ( 1) becomes 

X[= t[ + h- L I¢>AII
2

-

A 

In this expression, WI= aWjat[. 

If W does not depend on the moduli t1, we have simply 

V = eK L x1IWAII
2 

I,A 

This is the same as in global SUSY, except for the factors eKXI = xJ/x 1x 2x 3 • 

(7) 

(8) 

(9) 

As in the previous case, a Fa yet-Illiopolos D term may prevent the runaway of the x 1, 

even if W has no dependence on x 1 . 

As pointed out in [16), the preservation of fiat directions for the toy models (3) and (9) 
is a consequence of the Heisenberg invariance [20) of the Kahler potential which depends on 
the scalar fields of these models only through the invariant combinations x and x 1 of the 
moduli tor t1 and the (untwisted) matter fields ¢>A or ¢>IA, 

B. The full potential from orbifold compactification 

To construct a realistic string-derived model, we have to include the dilaton, the Green­
Schwarz term needed to cancel the modular anomaly induced by field theory loop corrections, 
a superpotential for the twisted sector fields, and the effective potential for the dilaton that is 
induced by gaugino condensation. The last two terms break Heisenberg invariance through 
an explicit dependence on the moduli (although the last will be considered negligible in much 
of our discussion). The Kahler potential and the G-S term are not completely known. In 
addition to imposing modular invariance we will assume that they are Heisenberg invariant. 
This is equivalent to the, at least plausible, assumption that the Kahler potential and the 
G-S term involve the untwisted scalar fields only through the radii R1 of compactification of 
the three tori: in string units 1 /2RJ = t 1 + t1- LA 14> AI 12 . We will indicate the modifications 
that occur if this assumption is relaxed. 

To incorporate the dilaton, we turn to the model of [9), which arguably reflects string 
constraints more faithfully than any so far. It was realiz"ed some time ago [21-23) that the 
usual chiral formalism for gaugino condensation, that uses an unconstrained chiral multi­
plet as in interpolating field for the gaugino condensate, is inconsistent with the Bianchi 
identity for the Yang-Mills chiral superfield. The most straightforward way to introduce a 
chiral field with the correct constraint is to identify it with the chiral projection of a vector 
superfield whose components also contain a those of a linear supermultiplet, interpreted as 
the dilaton supermultiplet in this formalism. In fact, the chiral multiplet for the dilaton 
that is commonly used is obtained after a duality transformation from the components of a 
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linear supermultiplet that are remnants of the dilaton, dilatino, and a three-form field of ten 
dimensional supergravity. There is increasing evidence [24] that the linear supermultiplet 
is the correct formulation for the dilaton in the context of superstring theory. Although it 
has been argued [21] that the linear and chiral multiplets are equivalent through a duality 
transformation even at the quantum level and in the presence of nonperturbative effects, 
the implementation of the correct constraint leads to considerable complication in the chi­
ral formalism. Using the linear formalism for gaugino condensation [21,22], together with 
constraints from string theory, including perturbative modular invariance [25] and matching 
conditions [26,27] at the string scale, as well as a parameterization [28,29] of nonperturba­
tive string effects [30] to stabilize the dilaton, it was ·shown [9] that the moduli are naturally 
stabilized at their self dual points in realistic theories [12,13] from orbifold compactifica­
tion. Since the dilaton is stabilized at weak coupling, one expects the result for moduli 
vev's to hold up to possible small corrections that could arise if the nonperturbative string 
corrections to the dilaton Kahler potential are moduli-dependent [31]. 

We take the Kahler potential I< and the Green-Schwarz term Vas to be 

K = G + ln V + g(V), G = G + L XA, Vas = bG + LPAXA, 
A 

Gr = -ln(Tr + Tr- L I<I>Arl 2
), 

A 

(10) 

where g(V) parameterizes nonperturbative string effects, b = 30/8?T2
, Vis a vector superfield 

whose scalar component ~=tho =£is the dilaton. The Tr are the chiral multiplets containing 
the moduli. The <I> AI are untwisted sector chiral multiplets, <I> AJ having modular weight 
qfJ = Jf, and the <I> A are twisted sector chiral multiplets with modular weights qf > 0 
(typically less than 1).8 The coefficients PA are unknown, but can plausibly be either zero 
or equal to b ~ .38. If the twisted sector fields decouple from the GS term we have PA = 0, 
while if the GS term is simply Vas = bK, we have PA = b. These unknown couplings 
determine the soft SUSY breaking parameters at the vacuum and also during inflation, and 
therefore may be relevant to the issue of maintaining flat directions during inflation. 

To obtain the K that is to be used in calculating the potential, one replaces V, Tr, <I> A 

and <I> AI by the corresponding scalar fields £, t 1, c/J A and c/J AI· (The matter fields will be 
denoted collectively by ¢01 , with a= A or AI.) As before, we define xr = tr + lr- l:A 1¢~1 1, 
and we also define 

(11) 

Then 

I<= ln(R) + g(R)- :Llnxr + LXA, (12) 
I A 

8 The group of modular transformations· on the moduli is generated by tr--+ 1/tr and tr--+ tr ± i. 
Under this group, a matter field </>01 transforms like Tir ry-2q[ ( t 1), where 'fJ is the Dedekind function 
and q[ are the weights of the field. 
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The choices for K and Vas are consistent with what is known (32) from string theory. The 
Lagrangian for the untwisted sector of the theory can be obtained by direct compactification 
of ten-dimensional supergravity. Therefore, we know the part of K that depends only on the 
untwisted fields, which will allow us to keep their masses under control and hence preserve 
some untwisted flat directions. To obtain information about twisted sector couplings, an 
expansion of the S-matrix as power series in matter fields has been used to obtain the moduli­
dependence of the coefficient of <I>~. In writing (10) we made an additional assumption of 
Heisenberg invariance, and dropped higher order terms in the twisted sector fields. The latter 
cannot affect masses if twisted sector :fields vanish during inflation. Under these assumptions, 
the masses of the twisted sector fields during inflation can be determined: m~ = F(qf, bA)V, 
where IF(qf, bA)I rv 1. For example, if we take WA = Wr = WA1 = WA2 = 0 and assume 
IWA31 >> IWI (as in the explicit model introduced below), we get twisted sector masses 
m1 = V(1 - (1 + PBR)qf]. If Heisenberg invariance is not preserved by K and Vas, there 
can be additional terms of the form XAI¢>B1 1

2 f(tr + lr); these can modify the masses of the 
twisted fields by coefficients of order one. 

From the above expressions we find 

(13) 

and near the origin 

(14) 

Supersymmetry is supposed to be broken by gaugino condensation. The condensates 
have masses larger than the condensation scale Ac = lult rv 1013 GeV, where u is the vev 
of the gaugino condensate. Below this scale, we can integrate them out to get the effective 
theory. 

The potential including matter fields was not given explicitly in (9). Assuming that the 
D term vanishes, it is 

V = 
1
:.e2 (Rg'(R) + 1) lu(1 +baR)- 4RW(¢>)eKI21

2 

_136lbau- 4W(¢>)eK/212 + cmmynym' (15) 

where ba is one third the ,8-function coefficient for the confined hidden gauge group (e.g., 
ba = b for E8 , ba = nj81r2 for pure SU(n) Yang-Mills, etc.). The subscript n takes on the 
values I (corresponding to t r), and a = A or AI. Roughly speaking the first and last terms 
correspond, respectively, to the F-terms for the dilaton and for the other fields in the usual 
chiral formulati~m, while the middle term corres:r,_>onds to the usual -3eKIWI 2

. 

The factor Gnm is the inverse of the matrix Gnm, with 
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and e = r/ fry is the logarithmic derivative of the Dedekind function ry. The factors Yn are 
given by 

Yn = eK/2 (Wn + Gn W) + ~(b- ba)Gn 
u u 

+4 L(PA- ba)(XA)n- 2(b- ba)e(ti)tSni. 
A 

(18) 

Because we are dealing with a linear multiplet, the superpotential W is independent of 
the dilaton. This is in contrast with the case for the chiral multiplet formulation, and is 
an important simplification. The superpotential has a power series expansion in the matter 
fields which we take to be 

W =LAm II <fJ~':n II ry(ti?('L-a n':r.q]-1) (19) 
m a I 

with the n~ positive integers or zero. The ii dependence of each coefficient is dictated 
by modular invariance, which requires that W transforms like TII ry-2(tr) (up to a modular­
invariant holomorphic function, which we do not consider because it would have singulari­
ties). Using this expression one sees that 

~~=WI= 2e(ti) (~q[</JaWa- w). (20) 

Putting all this together, the potential is 

V = 1 ~R2 (Rg'(R) + 1) lu(1 +baR)- 4RWeKI2 1
2

-
1

3
6

ibau- 4WeKI2 1
2 

+I: (IIxit) IYAI2 +I: 1 B x 
A I . 1 +PAR I 1 + bf + 'L-B(1 + PBR)qi XB 

[I AI (Z~(t1 )x1 + 1) - eKI' ~ .PA1wA{ 

+xi~ IWAieK/2 + 2e(ti)AI¢AI1
2
]. (21) 

In this expression, 

or equivalently 

Also, 

1 { K/2 U } YA = cPA e [cPA WA + XA W] + 4(PA- ba)XA 

= eK/2 [WA + KA W] + ~(PA- ba)KA 
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where KA = ( TI1 x?1) ¢A· 

This potential has degenerate vacua with broken supersymmetry, at t 1 = 1 and t1 = ei1r/6 

(with all matter fields equal to zero in both cases).9 Only the former was considered in [9], 
but the qualitative features are the same if one takes t 1 = ei1r/6 • 

If V » u2 (restoring the Planck mass, V 114 » 1011 GeV), then u is presumably negligible 
and we obtain 

(26) 

This corresponds to Eq. (8), with the dilaton and twisted-sector fields now included. 

III. BUILDING A MODEL OF INFLATION 

Guided by references [8,10], we suppose that during inflation the following conditions 
hold. 

1. The gaugino condensate u is negligible, corresponding to V 114 » fo"" 1011 GeV. 

2. Every term in the expansion (19) of W vanishes (i.e., at least one of the fields in each 
term vanishes). 

3. All derivatives of W with respect to the fields vanish, except for Wc3 which is fixed 
during inflation corresponding to a single untwisted matter field a = C3. 10 

4. All matter field values are « 1. 

Somewhat less specific conditions would have essentially the same effect, but these have the 
virtue of simplicity, and we shall later be making a specific proposal for achieving them. 

Since the twisted fields cPA are « 1, the terms XA defined by Eq. (11) are also « 1. · 
Both cPA and XA can be ignored in Eq. (26), which becomes simply 

9These vacua correspond to 2~(tJ)XJ + 1 = 0. Points in field space that are obtained from these 
vacua by a modular transformation do not represent physically distinct vacua, since the group of 
modular transformations is a gauge discrete symmetry as opposed to a global one. 

10The choice I = 3 is arbitrary, and one could allow nonvanishing Wa for more untwisted fields 
from the same sector without changing anything. As we shall see later, one might also allow 
nonvanishing Wa for fields from two or all three of the untwisted sectors, but for the moment we 
insist on just one. 
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feg(C) 
. v- IW. 12 

- (1 + bf):f~x2 °3 
· 

. (27) 

A. A simple possibility 

In order to proceed, we need to know the dependence of IWc3l on the moduli and the 
dilaton. Following reference [8), let us first suppose that W c3 (considered as a function of 
the matter fields and the t 1) is independent of t 3 , but has dependence on t 1 and t2 which 
stabilizes the potential. Then flat directions are preserved for matter fields in the I = 3 
sector (except for any which are spoiled by coupling to fields that are displaced from the 
origin) and the t3 direction is also flat. This is because the terms in Eq. (26) that give zero 
contribution to V, also give zero contribution to the squared masses of these fields. Flat 
directions in the I = 1 and I = 2 sectors are not preserved because of the factors x1 and x 2 

in Eq. (27). As noted earlier, the masses of twisted sector fields obtained from Eq. (26) could 
be modified by unknown coefficients of order one, if the assumption of Heisenberg invariance 
of the Kahler potential is dropped. The inflaton trajectory could be any combination of t3 

and the flat I = 3 directions (excluding ¢c3 which is supposed to be fixed). 
These conditions would be achieved [8] if Wc3 came from a term A2¢c3 , with A indepen­

dent of the matter fields. Then, modular invariance would imply that A2 ex ry- 2 (h)ry-2 (t2 ), 

and 

(28) 
) 

To discuss the stability of the moduli, we can set the matter fields equal to zero so that 
x 1 = t 1+t1. As shown in [8), Vis stabilized at h = t2 = ei1r/6 up to modular tra~sformations. 
The squared masses ofthe canonically normalized t 1 and t 2 turn out to be precisely V, which 
presumably hold them in place during inflation. 

The value t 1 = ei1r/6 corresponds to a fixed point11 of the modular transformations. 
Since it must be an extremum of the potential, it is not particularly surprising to find that 
it represents the minimum during inflation. As we noted earlier it also represents a P\>ssible 
true vacuum. As a result, the moduli stabilized at this point during inflation will remain 
there, and, as has often been noted before, would not be produced in the early Universe. 

To complete this simple model, note that IWc31 has no dependence on the dilaton. The 
Eq. (27) gives · 

fe
9 

1 V ( 0 1 bf ) v = ,\1 + b£' v = £ 1 + ~g - 1 + b£ ' 

11 V (£2 11 b
2
f

2 
) VI ( £ 1 bf! ) v = £2 g - 1 + ( 1 + b£)2 + c 1 + g - 1 + b.e . (29) 

11The other fixed point in the fundamental domain, namely t1 = 1, is a saddle point of potential 
(28); see e.g. [33]. 
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We require V' = 0, V" > 0 for stabilization, which means 

f I bf 
g + 1 = 1 + bf' 

o2 " b2f2 
{_ g > 1 - (1 + b£)2 (30) 

The function j(f) is related to g(f) by a differential equation (which assures a canonical 
form for the Einstein term in the Lagrangian): 

g'f = f- j'f. (31) 

An example (taken here for calculational simplicity) of a choice for f that reflects string 
nonperturbative effects [30), and stabilizes the dilaton at weak coupling [a( mstr) ~ .17) and 
vanishing cosmological constant, is 

f = 4.25e-lfv'bl(l- .53/Vbf.). (32) 

With this parameterization the potential (27) has a local minimum at f = 4.2, which is in 
the domain of attraction and roughly satisfies our initial assumption that f = 0(1) during 
inflation. 

B. More general possibilities 

Contrary to what was stated in [8], one cannot argue that Eq. (28) always holds, because 
in general W is an arbitrary expression of the form Eq. (19). Although WA3 transforms like 
(ry(t1)ry(t2))-2, this is automatically satisfied by Eq. (19) and it does not in general determine 
the dependence of WA3 on the ti at (say) fixed values of the matter fields. More specifically, 
since we are working in the context. of string theory, we need to justify the emergence of a 
superpotential term linear in a matter field, since the effective Lagrangian from string theory 
contains terms of cubic and higher order. Thus a linear term can arise only from some fields 
acquiring vev's. 

In fact, something like Eq. (28) may be applicable under rather general circumstances. 
Let us a assume that at the string scale, W includes a term of the form 

W = >.¢c3 [ry(tt)ry(t2)r2 II cPa II [ry(ti)] 2
q] , (33) 

a I 

where the product over a does not contain ¢c3. We suppose that during inflation, there are 
nonzero vevs lc/Jal 2

, with the modular invariant form 

lc/Jal 2 II x?1 = cafda II [xiiry(ti) 4W1
, (34) 

I I 

where Ca is a constant. As we shall see, vev's of this form can indeed be generated from 
a Fayet-Illiopoulos D term. Such vevs will drive c/Jc3 to zero as required. Once the fields 
with these vev's have been integrated' out to give an effective theory relevant to the scale of 
inflation, the moduli-dependence of the potential (27) takes the form 
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v ()(II [11J(tr)l 4 xrr
1

' nr=1,2 = L~p[ +q[) -1, n3 = L(P~ +qf). (35) 
I a a 

Bearing in mind our earlier discussion, we want one or more ofthe nr to vanish, providing 
flat directions suitable for inflation. Any remaining n 1 should be negative, which as we noted 
after Eq. (28) will ensure that the corresponding moduli are stabilized at t 1 = ei1r/6 . (Positive 
nr are excluded, because the potential would be driven to zero in the direction tr -too (or 
0).) Inflaton candidates are the modulus (or moduli) with nr = 0, and matter fields in the 
corresponding untwisted sector( s) which correspond to flat directions. 

In contrast with the earlier situation, any or all of the n 1 can vanish. If they all vanish, 
one could generalize Eq. (33) to be a sum over terms, with ¢>c3 is replaced by fields from 
different untwisted sector. 

The dilaton-dependence ,of V is 

e9 (R.)f!d 

Vex 1+bi!' 

for which the minimization conditions (32) become 

I bf! 

Rg + d = 1 + b£' 

(36) 
a 

(37) 

The condition that the potential be positive definite requires [9,28] Rg' > -1 and since 
0 :=:; b£/(1 + b£) < 1, stabilization can occur only if d < 2. With the parameterization 
introduced above, there is a minimum within the domain of attraction (i.e., with R ~ 1.4) 
for -3.3 ~ d ~ 1.4. 

Taken literally, this model gives an exactly flat inflaton potential, and no mechanism for 
ending inflation. There are many possibilities for generating a slope. It can come from small 
departures from assumptions 2-4, from the gaugino condensate or loop corrections. Also, if 
the vev's are generated by a D term that term will be driven to a small but nonzero value; 
this will generate a slope from the inflaton-dependence of the factors Knn in Eq. (2). With 
the slope in place, a generalization of the model exhibited in reference [10] allows inflation 
to end by the hybrid inflation mechanism. 

Provided that no matter fields charged under the strongly coupled hidden gauge group 
acquire large vev's during inflation, the condensate potential Vc will indeed be present. 
Let us estimate the mass it generates for the moduli with n1 = 0. As mentioned above, 
the model is viable only if the moduli are close to their vacuum values - i.e. within the 
domain of attraction - during inflation. In this case the mass of moduli with nr = 0 is 
m;

1 
~ Vc(Ri), where Ri is the value of the dilaton field during inflation. The magnitude of Vc 

is governed by the value of the string-scale gauge coupling g2 (£i) = 2Ri/[1 + f(Ri)], and the 
condition that the vacuum energy vanishes in the true vacuum assures that this is a slowly 
varying function near its vacuum value Rv. For the parameterization used above with d = 1, 
(g- 2 (Rv),g- 2 (Ri)) = (.44, .13), u(Ri) ~ 102u(Rv), mt1(Ri) ~ 5mt(Rv) ~ 100TeV « vt. (Note 
that Vc(Ri) is of order (1011 GeV) 4 as one would expect.) 

Flat directions in the corresponding untwisted sector are lifted by mass terms of order 
lmq,A1 1

2 "'m;
1 

as long as l¢>rAI 2 ~ Retr. This contribution is negative if lc/>rAI 2 ~ .2Retr, and 
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is much smaller than that induced [16] by loop effects ( -m~ rv 10-2 V). If either of these 
gives the dominant slope, the spectral index n = 1 +2m2 /V is very close to 1. 

Finally, we note that the "moduli problem" [34,35] encountered in generic supergrav­
ity /superstring inflationary scenarios, is considerably alleviated in the model studied here. 
While the dilaton is stabilized at a value shifted from its vacuum value by an amount of 0(1), 
its mass is about 106GeV [9], and its decay does not contribute to the moduli problem. 12 

The moduli masses are about 20 TeV, which is sufficient to evade the moduli problem of [34] 
only if R-parity is violated [35] (or the moduli abundance is diluted by thermal inflation 
[37]). If R-parity is conserved, the problem is still evaded for those moduli that are stabi­
lized at the vacuum value t 1 = ei1r/6 . It is possible that the requirement that the remaing 
moduli (e.g., t 3 in the above example) be in the domain of attraction is sufficient to avoid 
the problem altogether. 

C. Generating vev's with the D term 

In many models vev's of the form (34) with p[ = 0, da = 1 arise from a Fayet-Illiopoulos 
D term, whose contribution to the potential is given by Eq. (2). In string models it arises 
as a GS counter term, introduced [38] to cancel a U(1) gauge anomaly of the effective 
field theory (with no corresponding string theory anomaly), analogous to the the GS term 
introduced in III.B to cancel the modular anomaly. Orbifold models with an anomalous 
U(1) and supersymmetric vacua have been found in [12,13], and the GS D term has been . 
used in various applications to phenomenology. 

In the linear multiplet formalism, the gauge coupling constant g (defined at the string 
scale) which appears in Eq. (2) is given by 

2 2£ 
g = f(R) + 1 . 

The scale en of the Fa yet-Illiopoulos term is given in this formalism by 

c _ 2£Tr(T) 
<.,D- 1927r2 ' 

(38) 

(39) 

where Tis the generator ofthe anomalous U(1 ), whose trace Tr(T) = "£.. qn is perhaps [39,13] 
of order 100. 

Using Eq. (13), one sees that vev's generated by the D term will be ofthe form Eq. (34)P 
If this were the only source of vev's, d would just be the dimension of the the superpotential 

12Even though there is no constraint from the Big-Bang N ucleosynthesis because of its high mass 
and hence early decay, it still dilutes the baryon asymmetry by a factor of roughly 10-12 . A very 
efficient mechanism, such as Affieck-Dine mechanism, can generate enough baryon asymmetry to 
withstand the dilution [36]. 

13 In [10], Knm. was set equal to Onm in the D-term. Including the nontrivial K will in general 
affect the flatness, as the present discussion demonstrates. 
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in (33) with d 2 3. The potential (36) would be driven to zero in the direction of vanishing 
gauge coupling £ --+ 0. However vev's induced by a D term can induce other vev's with 
a different £-dependence through superpotential terms. If, for example, there is a gauge 
invariant, modular covariant superpotential term 

( 40) 

the superpotential 

(41) 
n 

is allowed by all the symmetries. Now suppose the D term induces modular invariant vev's 
for </J2 and </;3: 14 

(3 = 2, 3. ( 42) 

Then if cl is nonzero, wl ( w) does not vanish unless < ¢1 >= VI # 0. Solving w/3 = 0, (3 = 
1, 2, 3 gives a single equation: qPW,a = I:n ncn( w I F)n = 0, which is solved by w IF = y'Cl = 
constant. Then 

( 43) 

It is easy to satisfy the condition d < 2 by including such fields in the superpotential (33). 
For example, if w = ¢A1¢B2¢C'3 in (40) and W = </Jc3¢AI¢B'2¢C"3'f/(t3)2 in (33), with D 
term induced vev's for ¢B2, ¢c,3, ¢B'2, <Pc,3 , one recovers precisely the behavior in (27) and 
(28). 

The magnitude of the potential will be of the form 

. (44) 

In this expression, A is a ratio of dimensionless couplings in the superpotential (times a 
coefficient of order 1), 3 + n is the dimension of the term Eq. (33) of the superpotential, 
and A is scale of nonrenormalizable terms in the superpotential. Using Eq. (39), and the 
perturbative superstring estimate A2 = M?tr = g;trM~1 , this gives 

·(45) 

14The ratio of </>2 and </>3 vev's can be fixed, for instance, by gauging a non-anomalous U(l) 
symmetry under which they have the opposite and equal charges. 
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One expects that 9str will be at most an order of magnitude below unity, 15 but the other. 
factors can be smaller. With reasonable val~es liken = 1 or n = 2, one can easily achieve 
the result V 114 ;S 10-2 Mp1 required by the COBE normalization. 

IV. CONCLUSION 

We have shown how to construct a general dass of inflation models, with some very 
desirable properties. The scale of inflation is set by a Fayet-Illiopoulos term, derived from 
the superstring. Some of the fiat directions of global SUSY are preserved, and the potential 
is also fiat in the direction of at least one of the moduli. All of these fiat directions are 
candidates for the infiaton field. The dilaton is stabilized within its domain of attraction, 
and the remaining moduli are stabilized at or near their vacuum values. The models may 
avoid the usual moduli problem. 

These inflation models are constructed within the framework of a specific, modular in­
variant, model of supersymmetry breaking in the true vacuum, that invokes string nonper­
turbative effects to stabilize the dilaton. It is based on a class of orbifold compactifications 
with just three untwisted moduli iJ, and the dilaton is described by the linear supermultiplet 
formalism. 

Although the specific model contains a definite mechanism for stabilizing the dilaton 
in the true vacuum, this is actually irrelevant for our proposed models of inflation because 
they make the inflationary energy scale much bigger than the scale of SUSY breaking in 
the true vacuum (V 114 » 1011 GeV). If, for instance, SUSY breaking in the true vacuum is 
gauge-mediated, our models of inflation still work provided that the dilaton is described by 
the assumed linear-multiplet formalism. 

Let us emphasize that what we have given is only a strategy for model-building. We have 
shown how to achieve a sufficiently fiat inflationary potential, but we have not exhibited a 
complete model. Such a model would define the slope of the inflationary potential, and 
would include a mechanism for ending inflation. To achieve this last objective we would 
presumably need a hybrid inflation model, along the lines of the one given in reference 
[10]. To exhibit such a model would seem to be a worthwhile project, and might be quite 
nontrivial. 
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