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Abstract. 

Numerical models of groundwater flow require hydraulic conductivity values to be 

assigned to the grid blocks covering the flow domain. However, field-measured 

conductivities tend to be measured at a different scale (usually smaller) than that of the 

grid blocks. The present paper describes a novel approach for upscaling field values to 

block-scale, which combines the_ rigorous result of small-value perturbation analysis with 

a plausible generalization of the first-order results to large variance. Also the correlation 

lengths are assumed to be comparable to block size. Steady-state flow through a block of 

stochastically heterogeneous medium with constant hydraulic head values at the two 

opposite sides is analyzed. An upscaling rule and relationship is obtained between the 

local-scale hydraulic conductivity and the expected mean and variance of block-scale 

conductivity, where the block size is comparable with the correlation scale of the local 

conductivity field. The rather simple expressions obtained are validated using data from 

numerical experiments. Furthermore, a generalized spatial power-averaging method to 

calculate the block-scale conductivity from values of local-scale conductivity is 

developed, in which the exponent value is given as a function of the ratios of flow domain 

dimensions to the respective correlation lengths . 
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1. Introduction 

The theory of fluid flow in statistically heterogeneous aquifers is well developed. 

The starting point for this theory is usually the flow resistance as a local spatial function of 

the geological media, i.e., the local hydraulic conductivity. Typically, the spatial variation 

of the local hydraulic conductivity is described as a random process with a given statistical 

distribution and covariation function. For numerical modeling of groundwater flow, one 

needs to assign hydraulic conductivities to grid blocks that cover the flow domain. For 

porous flow, the law of spatial averaging of hydraulic conductivity is often quite different 

from a simple arithmetic averaging of local-scale conductivity values. One needs to know · 

which upscaling rule to apply from local-scale conductivity to conductivity averaged over 

large blocks (i.e., the block-scale conductivity) to properly ~imulate flow through 

heterogeneous aquifiers. On the other hand, to investigate practical environmental 

problems such as groundwater contamination and the design of underground waste 

disposal sites, one also needs to estimate the information loss on spatial variation of flow 

velocities due to the generally large griding used in the numerical models. Takinginto 

account these losses, it is possible to define effective grid macrodispersion parameters to 

describe solute advective dispersion in aquifers. 

The goal of the present paper is to fmd the up scaling rule and relationship between 

the local-scale hydraulic conductivity and the expected mean and variance of block-scale 

conductivity, where the block size is comparable with the correlation scale of the local 

conductivity field. 
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In recent years different approaches to this problem have been published. Rubin 

and Gomez-Hernandez [1990] developed a first-order approximation for the expected 

mean and variance of the effective block transmissivity of a heterogeneous aquifer, and 

investigated by numerical simulation the variations of these parameters. Ababou and 

Gelhar [1990] obtained particular solutions for effective conductivity of finite one

dimensional flow domains using the local mean and the local mean slope of log 

conductivity. Durloevsky [1991] numerically examined the effective block transmissivity 

for the special case of periodic structure of the local hydraulic conductivity field. 

Desbarats [1992a, 1994] developed a geostatistical model for the block conductivity. In 

his model, conductivity at the block scale is obtained empirically as a spatial power 

averaging of local-scale values. Dukaar and Kitanidis [1993] determined the effective 

block transmissivity using a numerical method based on the Taylor-Aris moment analysis. 

In the works of Indelman and Dagan [1993] and Jndelman [1993], the general approach 

for upscaling local hydraulic conductivity to the global block value was given for isotropic 

and locally anisotropic media and some closed expressions were obtained by small-value 

perturbation analysis. Neuman et al. [1992] and Neuman and Orr [1993] developed an 

exact expression for the mean Darcy flux within bounded domain by using a residual flux. 

The residual flux depends on domain size, and the general form of the integral equation 

for which it was obtained. Paleologos et al. [1996] derived a first-order approximation for 

effective conductivity by using this exact expression and generalized the first-order result 

to strongly heterogeneous media. 

4 



All these publications mentioned above do not contain exact equations for the 

mean and variance of block-scale conductivity of strongly heterogeneous medium for a 

general three-dimensional flow with arbitrary block sizes. 

The present paper describes an approach for problem of block-scale, which 

combines the rigorous result of small-value perturbation analysis with a plausible 

generalization of this first-order product to large variance. The rather simple expressions 

thus obtained are validated using data from numerical experiments. The approach 

described below also allows us to re-examine the spatial power averaging method for local 

data. Landau and Lifshitz [1960] conjectured that for three-dimensional dielectric 

conductivity of a medium an appropriate additive quantity is the cubic root of the 

conductivity values. Much later, Desbarats [1992b], and Debarats and Bachu [1994] 

developed a power averaging method for flow in heterogeneous aquifers by using 

numerical modeling. In present paper a general case is studied in which a new expression 

for the averaging exponent is derived. 

2. Spatial averaging of conductivity 

This section presents a semianalytical method for averaging local-scale hydraulic 

conductivities of a statistically heterogeneous aquifer to obtain block-scale conductivities. 

The method is based on an extrapolation of results obtained by the small-value 

perturbation technique. This development follows the hypothesis. used by Gelhar and 

Axness [1983], Gelhar [1993], Paleologos et al. [1996] for the generalization of first-order 

results to estimate an effective conductivity of strongly heterogeneous media. 

5 



2.1 Definition of the problem 

Consider a heterogeneous aquifer with a scalar point, local-scale hydraulic 

conductivity field that can be modeled as a random function K(x) over spatial coordinates 

x={x1,x2,x3}. The conductivity is often observed to be asymmetrically distributed, and in 

standard practice, a lognormal distribution is found to be a good approximation of 

empirical conductivity data. Following Dagan [1989], Gelhar [1993], and others, let us 

assume the random function Y(x)=lnK(x) to be stationary, ergodic, and Gaussian. Then 

we defme the two first moments of Y(x) as: 

E[Y(x)] = f.l , 

Var[Y(x)] = a 2
, 

Cov[Y(x~ Y(X+ ~] = a 2p(u), 

(la) 

(lb) 

(lc) 

where the autocorrelation function p(u) has an isotropic structure with the same 

correlation scale A m all principal directions of the Cartesian coordinate system 

x= {Xl.X2.X3}· 

Next, consider the flow domain with spatial dimension L = {L1.L2.L3}. Let us use a 

ratio of Li to the correlation scale A as an indicator of the physical spatial dimension of 

flow. If all the ratios Li !A are non-zero, it indicates that flow is three-dimensional in sp;1ce. 

If one of the ratios tends to zero, the flow is two-dimensional. For the case when two 

ratios are zero, the flow has a one-dimensional structure. Following the finite differential 

method for numerical modeling of flow, we cover the flow domain by a grid of blocks 

with the length of each side given by bi (hi -5: L i) for each direction of the coordinate 
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system. We intend to assign to each block a value of hydraulic conductivity kb 

appropriately averaged over the block volume. For the widely used case of planar flow, 

where b3 = L3 , we can define the transmissivity of block Tb as Tb = b3·kb. 

The following problem should be investigated. Because a block value is defined as 

an average of the random function K(x), we consider the block-sca,le value to be a 

realization of random function Kb(x). Thus, the goal of this paper .is to find the upscaling 

rule, or the relationship between two first spatial moments of Kb(x) and the moments of 

K(x) or its transformation Y(x). 

2.2 Bounding values for block conductivity moments and proposed 
upscaling equations 

The block-scale conductivity can be obtained by averaging the hydraulic gradient 

and the hydraulic conductivity over a block with a volume V. Rubin and Gomez-

Hernandez [ 1990] gave the following expression for the kb value for an isotropic porous 

medium: 

kb = v-1 I q(x)dx(V-1J J(x)dx)-1
; q(x) = -k(X)Vh; J(x) = Vh' (~) 

v v 

where h is the hydraulic head. 

Note that in this expression, the block-scale value depends not only on the local 

conductivity, but also on the flow gradient. The most significant form of the flow gradient 

on the hydraulic spatial averaging (as it was shown by Shvidler [1986], Dagan [1989], 

Desbarats [1992a, 1994], Indelman et al. [1996]) is the strongly divergent/convergent 

flow, i.e., the local part of flow domain surrounding a pumping or injection well. 
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Generally, however, for the other largest part of the flow domain, the hydraulic head 

changes gradually in space. The quasi-parallel flow in one direction should be considered 

as a more common model of groundwater flow. 

For quasi-parallel flow, the limits of a block volume tending to zero or infinity 

provide the bounds for the expected mean kb = E[Kb] of block-scale conductivity, which 

can be written in the form: 

(3a) 

where ka is the arithmetic mean ofK(x), kg= exp(J.l) the geometric mean, and k4 the value 

of effective conductivity for uniform flow in an infinite medium. Correspondingly, the 

bounds for the variance are: 

0::; Var[Kb(x)]::; Var[K(x)]. (3b) 

A number of theoretical works seeking the effective conductivity of an infinite 

heterogeneous medium was published, including Shvidler [1964, 1986], Matheron [1967], 

Gelhar and Axness [1983], and Dagan [1989, 1993]. The main result of these 

investigations is that an equation for the effective conductivity has the following form for 

the case of lognormal local hydraulic conductivity distribution with isotropic 

autocovariance [ Gelhar, 1993] : 

-I 
gn = n ' 

where n ( n = 1 ,2,3) is the spatial dimension of the flow. 

(4) 
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Note that eq. (4) is rigorous only for the one- and two-dimensional flow cases. It 

has not yet been proven rigorously for three-dimensional flow, and the equation is 

obtained by a generalization of the first-order result using perturbation techniques, and by 

regarding it as a truncation of the Taylor series expansion for the exponential function 

[Gelhar, 1993]. Theoretical contribution in support of eq. (4) was obtained by Dagan 

[ 1993] who showed it to be valid for the second-order approximation in a2 
• 

Unfortunately, there is still no theoretical proof of convergence of the perturbation series 

for any given a 2 
• Numerical Monte Carlo simulations for the determination of effective 

conductivity for three-dimensional flow by Neuman and al. [1992], and Dukaar and 

Kitanidis [1993] show very good agreement between predictions by eq.( 4) and numerical 

results for the range of variance values between one and seven. Thus, practically speaking, 

one can say that eq. ( 4) is valid for effective conductivity for all these flow-spatial 

dimensions. 

Let us propose that an equation for the expected mean of the block-scale 

conductivity has the same structure as eq. (4): 

(5) 

where gsca/e, which we call the upscaling function, depends on the ratio of block sizes to 

the correlation scale of local hydraulic conductivity for a given autocorrelation function 

p(u). It is clear that to satisfy the upper boundary value of eq. (3a), the upscaling function 

should tend to 0 for the very small block size. For the lower boundary, it tends to g 11 when 

the block size tends to infinity. Theoretical contributions in supports of eq. (5) were 
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obtained by Paleologos et al. [1996], that used development of Neuman and Orr [1993] 

for effective conductivity of bounded media. 

Following Desbarats [1992b], assume that Yb(x) = In Kb(x) is stationary and 

multivariate Gaussian, and also assume that 

Var[~ (x)] = (jz . t;'scale' (6a) 

so that the coefficient of variance of the block-scale conductivity Cv is given by: 

(6b) 

where t;'scaie is a variance upscaling function gradually changing from 1 to 0 for the block 

volume changing from 0 to infmity for any given autocorrelation p(u). 

2.3 Small perturbation and first-order approximation 

In this section we outline the first-order results to find the particular structure of 

the upscaling function for quasi-parallel flow. For this, consider three-dimensional block-

scale steady state flow in the x1 direction with the following boundary conditions: constant 

non-random hydraulic head drop M 1 between the two opposite sides of the block along x1; 

and closed boundary conditions on all other sides of the block. For a random local-scale 

conductivity, the total flux Q b through the block is a random value for the given external 

gradient J 1 = 11h1/b1. Thus, the expected mean and variance of block-scale conductivity 

are: 

(7a) 

(7b) 
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where Q = b2b3 is a cross section of the block that is normal to flow; Using the standard 

practice of the small perturbation analysis [Dagan, 1989], and starting with the integral of 

Darcy's law Q = -J kVhdx2dx3 ,k = exp(J.l + Y'), we formally expand 
n 

h = h<0
> + h<1

> + h<2> + · ·· and exp(Y') = 1 + y' + 05Y'2 + ·· · to obtain: 

(8a) 

where 

(8b) 

(8c) 

where Y' is the centered random function, Y' = Y - J.l. 

The first-order result is E[Qb] = Q<0l- E[Q<2l]; and Var[Qb] = Var[Q(ll]. Taking 

into account the boundary conditions and the ensemble averaging eqs. (8a) and (8b ), we 

obtain: 

(9a) 

(9b) 

where g can be formally represented by a combination of the Green function for the 

Laplace equation and the autocorrelation function [Shvidler, 1986]: 

~ b2 ~ 

g(xpx2 ,x3 ) = J J JVGx
1 

• Vpx'tdx1dx 2dx3 

0 0 0 

(9c) 
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The hard work to analytically integrate (9c) for the finite-domain Green function was first 

made by Shvidler [1986], who applied the autocorrelation function of the symmetric-

exponential structure: 

p(u) = TI exp(- ui) ui =jx; -x;j 
i=l ll 

(10) 

The resulting equation for g3 for a block that has different lengths in all three directions 

has the form: 

(lla) 

where function ip is a "directional" dimensionless variance of the expected mean of 

random function along a given axis, i.e.,: 

u u 

ip( u) = u-2 J J exp( -ju- u' ~dudu' = 2u-2 [exp( -u) + u -1] 
0 0 

(lib) 

Combining eqs. (9a) and (lla) for eq. (7a) gives the first-order value for the expected 

mean of block-scale conductivity: 

(12) 

For the variance ofblock-scale conductivity, we easily find from eqs. (7b) and (9b) that 

(13) 

The equations for g and ~ can be applied for any flow spatial dimension. By letting b3 

equal to zero, we obtain the equations for g 2 and ~2 for flow in two dimensions, and by 
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additionally letting b2 equal to zero, we obtain the equations for g 1 and ;-1 for one 

dimensional flow. Note that for a block with equal lengths in all n spatial dimensions, 

gn = (1- ;-n)ln. 

Formally we could also ~se small perturbation analysis by expanding the local 

conductivity around its arithmetic mean, i.e., K = ka + k'. Taking into account that for the 

lognormal distribution and small values of the variance, Var[K(x)] I k; z a2 and 

autocorrelation oflocal conductivity, pk(u) ~ p(u), and then using the same technique as 

above, we obtain a slightly different first-order result for the two first moments of block

scale conductivity. It can be written for the general n-dimensional case as: 

k, = k, exp( ~ )o- o-'g.), 

Var[kb] = k;cr2 
• ;-n. 

(14) 

(15) 

To generalize the first-order results, we adopt a conjecture used by Gelhar and 

Axness [1983], Gelhar [1993], and Paleolougos et al. [1996], which considers an 

expression like eq.(l4) as the first two terms of a series. Thus we can consider eqs. (12) 

and (14) as the product of the Taylor series expansion of the proposed equation (eq. 5) for 

the expected mean of the block-scale conductivity. It yields the value of upscaling 

function gscale in eq. (5) to be gscale = gn. By substituting in eq. (II a) the bounding values 

for the ratio of the block size to correlation scale, it is easy to find that for very large 

blocks gn = n-1
, and for the small block sizes gn ~ 0. Thus, the bounding values for the 

upscaling function are satisfied. 
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For the variance of block-scale conductivity, we can replace the value of 

conductivity on the expected mean of block-scale conductivity kb in eqs. (12) and (14) and 

extend it for large variance values using the Desbarats [1992b] assumption that Yb(x) has 

a lognormal distribution. This gives the value of upscaling function ~scale in eq. ( 6) as 

£"scate = £"0.. 

Let us consider the equations for the upscaling function for two frequently used 

correlation functions: exponential 

p(u)= exp[- (16a) 

and Gaussian 

(16b) 

It is impossible to directionally integrate the exponential correlation to obtain the close 

form integral even for the variance. We can geometrically relate the separation r used in 

eq. (16a) and the separation r' = :t~;- u;j used in eq. (10) by the inequality: 
i=l 

(17) 

Thus, the bounds for upscaling functions for the case of exponential correlation can be 

written in the following form 
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(18) 

Direct numerical calculation of the four- and six-times integral to obtain the ~2 and ~3 

values for the exponential correlation can be compared with the analytical estimation by 

using eq. (13). The comparison shows that the analytical solution in eq. (13) for 

symmetric-exponential correlation is favorable for predicting the value of the exponential 

correlation with a maximum absolute error ofless than 0.01 by replacing the correlation 

scale A by the effective scale Ae, where Ae = aA.. It was found that the value of the 

numerical constant a is 1.25 for the two-dimensional case and 1.5 for the three-

dimensional one. Furthermore, for all calculations for the exponential correlation case, the 

equations should be used with the replacement of the actual correlation scale by the 

effective correlation scale. 

For the Gaussian autocorrelation function, direct substitution in eqs. (9b) and ( 11 b) 

gives the same form as eq. (13) but with different values of the multiplication product cp. 

h . . £ b. . b. 
T us, m the equation or ~e we should replace cp( )._ ) by cp ( ~ ), where 

u u 

cp'(u) = u-2 I I exp[- (u- u')2 )tudu' =u-2
( J;u · erf(u) + exp( -u2

) -1). (19) 
0 0 

Using the linear property for the first-order approximation we can find the 

equation for the autocorrelation function Yb(x) (Appendix A). The results given in 

Appendix A show that the correlation scale of block conductivity is equal to bi+ A. It is 
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approximately equal to the scale of local conductivity for small block size and equal to 

block side length for a large b/ A ratio. 

Unfortunately, we cannot evaluate gn for any given dimension of flow and 

Gaussian autocorrelation. For a one-dimensional flow case, the equation for g 1 for this 

correlation has the same structure as that of the function for exponential correlation, but 

with cp( i ) replaced by cp ' ( ~ ) . We will assume that such a substitution is also valid for 

two- and three-dimensional flow. 

Thus, this subsection presents an analysis that allows us to find approximate 

upscaling functions for the expected mean and variance for block-scale conductivity. 

These functions depend on physical flow dimension, the type of autocorrelation of log 

local conductivity, and the ratios of block lengths in different directions to the correlation 

scale of the local conductivity. 

2.4 Effective transmissivity of an uniform confined aquifer 

For regional-scale modeling, a planar two-dimensional model of flow averaged 

over the vertical coordinate (i.e., over aquifer thickness) is often used. The transmissivity 

of aquifer T can be defined by using the Dupuit-Forscheimer-Boussiness assumption 

[Bear, 1979] as: 

4 
T(x,y) = J k(x)dx3 , (20a) 

0 

where L3 is the thickness ofthe aquifer. 
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Note, that according to this definition the transmissivity is a simple arithmetic 

average of conductivity, which is valid for the following very special cases: a) when there 

is a perfect layered aquifer with scalar local conductivity; and b) when the local hydraulic 

conductivity is a tensor with the vertical component tending to infinity. Dagan [1989], 

taking into account these limitation of arithmetic vertical averaging, suggested the 

following definition for the transmissivity of a heterogeneous aquifer: 

(20b) 

where kefo is the effective conductivity value. 

It is physically clear that to estimate the effective transmissivity of a very thin 

aquifer, one should use the value of kefu equal to the effective conductivity for two

dimensional flow. Now, to obtain the effective transmissivity for any aquifer thickness 

we can formally calculate the block-scale conductivity for the block size in each direction 

to be equal to the size of the flow domain in this direction (hi= Li). Consider the case of a 

two-dimensional planar uniform flow (L 1/A and L2/A~oo ). The calculation of gscale for this 

case,: 

(2la) 

gives the value of effective transmissivity T ef as: 

(21b) 

where gr(u) = <p(u) for the symmetric-exponential correlation oflocal-scale conductivity, 

gr(u) = <p( u I a) for the exponential correlation, and gr(u) = <p' (u) for the Gaussian 
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correlation. From eqs. (21a) and (21b) one can see that to increase the value of the ratio of 

the aquifer thickness to the correlation scale, the effective conductivity kefu must change 

from the effective conductivity of two-dimensional flow to the effective conductivity of 

three-dimensional flow. The other bounding case for the transmissivity value that should 

be considered is the one-dimensional flow, i.e., L /A.--7oo and Lz(A.--70, for which we 

obtain: 

(22) 

Now we try to expand the relationship (22) to obtain an approximate expression of 

the effective transmissivity for the case of anisotropic spatial correlation of local 

conductivity. Consider the anisotropic correlation of Y(x) field with the horizontal scale Ah 

(Ah = A1 = 1..2) larger than the vertical scale Av (Av = 1..3). Under such conditions the 

effective horizontal conductivity of a uniform medium can also be calculated by using eq. 

(4) with the value of gu in terms of the ratio of correlation scales e = A./A.3 [ Gelhar, 1993, 

p.lll]: 

1 1 [ 8
2 ~ ] gil =--2 - ~arctg'\le2 -1-1 

2 e -1 e2 -1 
(23a) 

Then, on the basis of eq. (21a), the expression for the gscale function for anisotropic 

aquifer is proposed to have the following structure with numerical constants a, b: 

(23b) 
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To the obtain the unknown constants a and b, we take into account the physical bounds for 

the upscaling function, i.e., the value for the two-dimensional flow case ( L-JA.r~O , 

gscale~l/2), and that for the three-dimensional case ( LA3~oo , gscale~g11 ). These 

considerations produce the following proposed expression for the effective transmissivity 

of an anisotropic aquifer: 

(23c) 

Figure 1 shows the relationship between the effective transmissivity of an aquifer 

and the dimensionless aquifer thickness for the case of a Gaussian correlation of local-

scale conductivity and for different e values. All the curves were calculated for ci = 1, and 

they were normalized by dividing the results by the effective transmissivity value for two-

dimensional flow. 

2.5 Power averaging of the local-scale conductivity data 

In this subsection we outline an approach within the framework presented above to 

fmd the exponent of the power-averaging method that is used for spatial averaging local-

scale conductivity data to obtain the block-scale conductivity. Following Desbarats 

" [1992b], and Desbarats and Bachu [1994], we define the spatial average value kb of the 

point random function K( x) over the volume Vas: 
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Figure 1. Gaussian correlation relationship· between effective transmissivity and aquifer 
thickness (see text). Curves are labeled by the ratio of horizontal to vertical direction 
hydraulic conductivity correlation scale (e). 

1 

kb = [v-1JvK(x)w dV ]';;;·, m * 0; 
(24) 

kb = expf-1 fv lnK(x)dV) m = 0. 

For m = -1, m = 0, and m = 1, eq. (24) yields harmonic, geometric, and arithmetic 

averaging, respectively. To evaluate the appropriate exponent value from the geometry of 
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flow domain, let us consider the following useful relationship from the properties of the 

ensemble "power" mean of lognormal distribution: 

(25) 

To reach the expected mean of block-scale conductivity power-averaged over the 

block with volume V, let us consider the associated transformation for ln Kb. Starting from 

eq. (24) we obtain 

E[ln K ,] = a,-'EHv~ f exp (m(JL + Y')tv)] = 

~+m-•~m(J+v~[(mY'+~
2 

y''+···}v )] , 
(26a) 

(26b) 

and taking into account that for a smallx value of ln(l+x)::::: x -x2/2, after integration and 

averaging we have: 

(27a) 

(27b) 

Using the precondition that a distribution of ln Kv is a normal distribution, taking into 

account eq. (25), and using the power-averaging method of local data over the block, we 

fmally have the expected mean E[Kv] of block-scale conductivity, 

(28) 
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To estimate the value of exponent m, we compare eq. (28) to the proposed 

upscaling equation (eq. 5) for the expected mean of the block-scale conductivity. This 

gives the relationship for m, 

(29) 

Using this exponential value for averaging, one can calculate the power-averaged values 

of kv that has the same expected mean as the hydraulically averaged kb values. Taking into 

account that for an n-dimensional block with equal side length gscate = (1- t;; n) In ; we 

obtain the known bound results [Desbarats, 1992b] for n-dimensional flow: m = 1- 2n-1
• 

Thus, for the one-dimensional flow case, m = -1; for the two-dimensional case, m = 0; and 

for the three-dimensional case, m = 1/3; note that these values do not depend on block 

size. 

For horizontal flow in a confined aquifer that has a thickness comparable to the 

correlation scale of local conductivity and a horizontal grid block side length much greater 

than the correlation scale (i.e., t;;n ----t 0), according to eqs. (2la), (21 b), and (29) the value 

of mis 

(30a) 

This value gradually increases from 0 to 113 with increasing aquifer thickness L 3 

(Figure 2). For an anisotropic aquifer the value of exponent m can also be predicted by 

using eqs. (23c) and (29): 

22 



e 
~ 

~ 
e 

0.40 

0.30 

B 
R e 0.20 

~ 
~ 
~ a 
r e w 0.10 

~ 

Bound value for a three-dimensional cubic domain 

Gaussian autocorrelation 

0.0 4.0 8.0 12.0 16.0 
Aquifer thickness in the integral scales 

Figure 2. Relationship between the exponent ro value and the aquifer thickness. 

20.0 

(30b) 

Note that here the value of m changes from 0 to 1 and is different from the one 

proposed by Desbarats and Bachu 's [1994] relationship for m (m = 1 - 2g11), which is 

valid only for a very thick aquifer where L-JAr-?oo. 

It is also interesting to note that if we want to calculate the effective conductivity 

of the flow domain L confined in all directions by using the power-averaging method, the 
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value of exponent ro depends on the ratio of domain side-length along the mean flow 

direction (L 1) to the domain side-lengths normal to it (L 2, L 3). This means that for a given 

aquifer thickness L 3 and L 1 =~:L2 , different values of ro are obtained for cases of the mean 

flow gradient applied along L 1 and L2 , respectively. Such an apparent aquifer anisotropy is 

due to the limitation of flow "freedom" in a heterogeneous confined flow domain. 

Thus, results obtained in this subsection are a new addition to the Desbarats' 

[ 1992b] equation for power-averaging of local spatial data to simulate the hydraulic 

averaging of a heterogeneous medium. For equal block side lengths in all n dimensions of 

flow, the exponent value (co) depends only on the physical dimension of the flow. 

However, for an arbitrary ratio of block side-lengths it also depends on these lengths, and 

can be calculated using eq. (29). 

3. Verification against numerical results 

A number of assumptions were made to determine the upscaling equations for the 

expected mean and variance of block-scale conductivity. In this section the semianalytical 

equations for the expected mean of block conductivity and its variances are verified 

against numerical results found in recent publications. 

3.1 One-dimensional flow 

In general, to obtain the expected mean and variance of block-scale conductivity 

for the one-dimensional flow case, one does not need detailed numerical flow modeling, 

because the value of block-scale conductivity for a grid block with size b1 can be directly 

obtained by harmonic averaging the local data. In this subsection we would like to verify 
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two of the preconditions used: a) is spatially power-averaged block conductivity 

distribution a lognormal-like distribution? b) can up scaling eqs. (5) and (6b) predict the 

expected mean and the coefficient of variance of one-dimensional block-scale 

conductivity for large d2 values? One particular problem results from these two 

preconditions. In Appendix B one can find that for a lognormal distributed local 

conductivity field with the exponential structure of correlation, the correlation scale of 

conductivity is essentially less than the scale of log conductivity for large variance d2 

values. Thus, in this subsection we will also examine what is the effective correlation 

scale of local conductivity. 

For purposes previously mentioned, the exponential correlated one-dimensional 

process was precisely simulated on a fine grid with the ratio of spacing to correlation scale 

equals to 0.05 and different values of cr. The total length L 1 of each realization was 250 

times the correlation scale. For each realization, the numerical one-dimensional analog of 

eq. (24) with the exponent value w = -1 was used to calculate the conductivity averaged 

over the blocks of length b1• Figure 3 shows the empirical cumulative probabilities of the 

logarithm of block-scale conductivity for one-dimensional flow obtained by power

averaging local conductivities with d = 3. ·One can see from this figure that distributions 

of averaged conductivity appear lognormal for the wide range of cumulative probability 

values. This supports the precondition of lognormal distribution of block-scale values of 

conductivity. 
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Figure 3. The empirical cumulative probabilities of the log of block-scale conductivity for 
one-dimensional flow. Curves are labeled by the ratio of the block-side length to the 
correlation scale (see text). 

In Figures 4 and 5 one can see the analytical and numerical calculations of the 

expected mean and the coefficient of variance of block-scale conductivity for the one-

dimensional case. Numerical results were obtained by power-averaging with the 

exponential value ro = -1 over the blocks of the exponential correlated one-dimensional 
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Figure 4. The expected mean of block-scale conductivity for the one-dimensional flow case. 
Lines are analytically calculated values and symbols are numerically calculated values. 
Curves are l~beled by the values of log conductivity variance. All data were normalized by 
dividing them by the geometric mean. 

process with cr values equal to 1, 2 and 3. The expected mean and the expected 

coefficient variance Cv also were calculated analytically by using the upscaling equations 

for the one-dimensional flow case, i.e.,: 
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Figure 5. The coefficient of variance of block-scale conductivity for the one-dimensional 
flow case. Lines are analytically calculated values and symbols are numerically calculated 
values. Curves and symbols are labeled by the values of log conductivity variance. 
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Figure 4 shows a very agreement of numerical and analytical results for all used d 

values. The agreement for the coefficient of variance is good for d = 1 for any size of 

block side length. For larger if values the agreement of numerical and analytical data 

begins to be good when the block-size value exceeds four times the correlation scale. Note 

that for analytical calculations of the expected mean, we used the correlation scale for log 

local conductivity and got a very good agreement between numerical and analytical 

results. According to these results, it is believable that the scale of log is really the 

effective scale for averaging hydraulic conductivity. 

3.2 Two-dimensional flow 

Rubin and Gomez-Hernandez [1990] and Gomez-Hernandez [1991] investigated 

the block-scale transmissivity using numerical simulation of steady-state flow on a fine 

grid after averaging the numerical result over blocks that have a size larger than the grid 

cell size. The steady-state two-dimensional flow in a rectangular aquifer with stochastic 

local-scale transmissivity field was simulated. The boundary conditions imposed were: no 

flow along the boundary parallel to one axis; and constant heads in each of the boundaries 

parallel to the other axes. The local-scale transmissivity was defined as a stochastic 

process with an isotropic exponential correlation function and lognormal distribution. The 
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size of the simulated domain L 1xL2 was equal to 6.5 x 6.5 times the log transmissivity 

correlation scale. To numerically simulate the aquifer it was subdivided into a grid with 

the length of each side of the grid cell equal to 0.1 of the correlation scale. For a constant 

value of the mean of log local transmissivity and different values of variance, 200 

realizations of the transmissivity field for each variance value were simulated using a 

turning band method in the grid nodes. For each realization, the steady-state flow was 

modeled by the finite difference method, using this numerical grid and the mentioned 

boundary conditions. Then, the values of block-scale transmissivity were computed for 

different block sizes by using the discrete version of eq. (2) for two-dimensional flow, and 

blocks of different sizes growing outwards from the center of the simulated domain. The 

mean and the variance of block-scale transmissivity were obtained for different block 

sizes by averaging over all 200 realizations for each local-scale transmissivity variance 

value. 

Figure 6 compares the numerically calculated mean of the block-scale 

transmissivity and analytically predicted values of the expected mean as a function of the 

block side length and the variance of log local-scale transmissivity. The two-dimensional 

version of eq. (5) was used for the analytical prediction of the expected mean. To calculate 

the gscale values for two-dimensional exponential correlation using eq. (lib), the effective 

correlation scale was increased 1.25 times. All numerical and analytical results were 

normalized by dividing by the effective value for two-dimensional uniform flow. One can 

see from Figure 6 that the comparison results show a good agreement of analytical 
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Figure 6. The expected mean of block-scale transmissivity for the two-dimensional flow 
case. Lines are analytically calculated values and symbols are numerically calculated 
values. Curves are leveled by the values of log conductivity variance. All data were 
normalized by dividing by the geometric means. 

prediction with numerical data up to variances equal to 3. The errors of prediction for 

variance equals 4 are not significant for block side lengths exceeding two times the 

correlation scale. 

Figure 7 shows the same graph for the coefficient of variance of block-scale 

transmissivity. As in the one-dimensional case, the coefficient of variance of the block-
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Figure 7. The coefficient of variance of block-scale transmissivity for the two-dimensional 
flow case. Lines are analytically calculated values and symbols are numerically calculated 
values. Curves and symbols are labeled by the values of Jog conductivity variance. 

scale values is less predictable analytically than the expected mean. One the possible 

reason for the numerical values being smaller than the analytical ones is that the flow 

domain was equal to 6.5 x 6.5 times the correlation scale. This means that the variance of 

log transmissivity for this finite domain was less that the ensemble variance by a factor of 

(1-~z(6.5)), which gives a value of about 90% for the ensemble variance. 
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3.3 Three-dimensional flow 

Dukaar and Kitanidis [1993] investigated the block-scale transmissivity using the 

numerical method based on general Taylor-Aris moment analysis. This method allows to 

find out the effective parameters of two-dimensional flow by solving specially 

determinated periodic three-dimensional flow problem and then integrating the results into 

the vertical direction. Thus, in this paper the block-scale transmissivity was determinated 
\ 

using a three-dimensional spatially variable local hydraulic conductivity tensor and locally 

variable three-dimensional flow. The stationary Gaussian log conductivity variation 

process with the Gaussian covariation function was used for generating a three-

dimensional local hydraulic conductivity field. A number of experiments for determining 

effective grid transmissivity were performed for various block sizes and log conductivity 

variances. For each block size and variance of log conductivity the expected block-scale 

transmissivity mean and the variation coefficient were obtained by averaging the results of 

over 10 realizations. 

The series of experiments discussed in this subsection examined the influence of 

aquifer thickness on block-scale transmissivity. The expected block-scale transmissivity 

mean was found for the aquifer thickness (L3) change from 1 to 30 times the correlation 

scale, and for a constant horizontal block size equal to 30 times the correlation scale. 

Figure 8 shows the comparison of analytical and numerical values of the mean block-scale 

transmissivity. Analytical values of transmissivity were determined as L 3·kb, where the 

block-scale conductivity kb values were calculated for the given block size equal to 
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Figure 8. The expected mean of block-scale transmissivity for three-dimensional flow case. 
Lines are analytically calculated values and symbols are numerically calculated values. 
Curves are labeled by the values of log conductivity variance. All data were normalized by 
dividing by the geometric mean. The horizontal block length equals to 30 times the 
correlation scale. 

30x30xL3 times the correlation scale. All data were normalized by dividing by the 

effective value for two-dimensional uniform flow. From Figure 8 one can find a very good 

agreement between numerical and analytical data for the variance equals to 1 and 

satisfactory agreement for variances equal to 2 and 3. 
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Figure 9 shows an agreement of numerical and analytical calculations of the 

coefficient of variation of block transmissivity for variance of log conductivity equals to 2 

and two different values of the aquifer thickness: 10 and 4 times the correlation scale, 

respectively. 

1.2 

4 

• 10 

0.8 

0.4 

0 10 20 30 
Horizontal block side length in units of correlation scale 

Figure 9. The coefficient of variance of block-scale transmissivity for three-dimensional 
flow case. Lines are analytically calculated values and symbols are numerically calculated 
values. Curves and symbols are labeled by the values of aquifer thickness in units of 
correlation scale. The log conductivity variance equals to 3 for cases in this figure. 
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Desbarats [1992b] used results of three-dimensional numerical simulations of 

steady-state flow in a heterogeneous medium with the exponential correlation oflog local

scale conductivity to estimate the expected mean of block-scale conductivity and the value 

of power-averaging exponent for a rectangular flow domain. Then he computed the values 

of block-scale transmissivity for different block sizes by using the discrete version of eq. 

(2) for three-dimensional flow. To investigate the effect of the geometry of flow domain 

on the power-averaging exponent m, he numerically estimated the m values for the domain 

that had constant side lengths in two directions ( b2 = b3 = 3 times the correlation scale) and 

increased the side length along the main flow direction (b 1) from 0 to 20 times the 

correlation scale. Analytically, the value of the exponent can be predicted by using 

eq. (29) for the three-dimensional flow case and given block side lengths. 

Figure 10 shows the comparison of the numerical and analytical results. One can 

see from this figure a good agreement of analytical data and numerical experiments for the 

relatively cubic blocks. However, when the transversal block length increases, the 

difference between analytical and numerical data also increases. The reason for this can be 

found in the numerical data and in the analytical estimations. Note that for the exponential 

structure of correlation we use the symmetric-exponential correlation function to 

approximate. That is why the bounding lines (dashed) are shown in Figure 9. The 

bounding lines were calculated taking into account eqs. (17) and (18). One can see from 

this figure that the numerical data are bound by these lines. 
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Figure 10. Power-averaging exponent value versus the block side length along the main 
flow direction for the constant block-length transverse flow. 

Thus, in this section the comparison of the proposed upscaling equations for the block-

scale conductivity with numerical data shows that analytical estimates (using eq. (5)) of 

the expected mean of block-scale conductivity agree well with numerical data for all 

physical dimensions of flow and local-scale hydraulic log conductivity variances up to 3. 

Although the coefficient of variance ofblock-scale conductivity predicted by eq. (6b) does 
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not agree so well with the numerical data for small block sizes, asymptotically the method 

gives satisfactory results for large blocks. Thus, the verification presented here show that 

the proposed upscaling equations can be used to estimate block-size conductivities. 

4. Discussion and conclusion 

Present development of upscaling properties of a stochastic heterogeneous medium 

from the local-scale data to a larger scale can be useful for a broad range of applications of 

stochastic theory investigating flow in confined domain. Let us discuss some problems 

where we can see applications ofthe approach discussed in this paper. 

4.1 Computational stochastic subsurface hydrodynamics 

Direct numerical simulation of processes is used to understand flow and transport 

phenomena in a strongly heterogeneous medium. Examples of such an approach can be 

found in Tsang et. al. [1988], Tompson and Gelhar [1990]. The basic approach here is to 

simulate flow and transport in a heterogeneous medium by using a very fine numerical 

grid to obtain the representative fields of head and flow velocity; that is, the model of 

natural velocity fluctuation. Van Lent and Kitanidis [1996] stated, that typically a 

discretization of 5-10 nodes per correlation scale is required and it should be even finer as 

the log of local conductivity variance increases. 
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A typical example where this approach can be used is a three-dimensional 

contaminant plume spreading in uniform flow in a heterogeneous medium [Tompson and 

Gelhar, 1990]. For example, the size of the modeling flow domain is an important critical 

number in examining transversal and ·longitudinal macrodispersion. On the one hand the 

domain size should significantly exceed the correlation scale (by one or two orders of 

magnitude). However, precise modeling of the flow field requires a very fine resolutions 

of the grid (by an order ofmagnitude of 10-1 and 10-2 on the correlation scale). Trying to 

satisfy these two criteria one can run into computational problems because of the need of 

billions of grid nodes. A reasonable way to resolve this problem is to decrease the domain 

size of the transversal-to-flow section (relative the longitudinal direction). Using the 

upscaling equations discussed in this paper, one can determine how this domain compares 

to the uniform media. Table 1 show the ratio of the expected means of block-scale 

hydraulic conductivity for d2 = 3 and for a flow domain having a the constant length 

L1=50 times the correlation scale in one direction, and different domain sizes in the other 

two directions. The k1 value was calculated when the main flow direction is along L 1; the 

k2 value was calculated for the case when the main flow direction is along L2• Here ker is 

the effective value for a three-dimensional uniform medium. One can see from the table 

that the influence of apparent anisotropy of a bounded flow domain can be significant for 

a non-cubic domain with the small (less than 0.2-0.3) ratio of the domain size in the 

longitudinal direction to the size in the transversal direction. 
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Table 1. Comparison of the expected conductivity in the longitudinal direction k1 and 
the transverse direction k2, and the effective value for uniform flow ker for a 
rectangular flow domain. 

Domain kl/k2 kl/k2 klfkef k2fkef 
Dimensions L 1x Gaussian Exponential Gaussian Exponential 
~X~ correlation correlation correlation correlation 

50x1x1 0.091 0.130 0.208 0.266 

50x5x5 0.534 0.455 0.662 0.598 

50xl0x10 0.769 0.690 0.840 0.784 

50x15x15 0.861 0.806 0.906 0.868 

50x20x10 0.910 0.871 0.939 0.913 

50x30x10 0.960 0.941 0.973 0.961 

50x40x40 0.985 0.978 0.990 0.985 

50x50x50 1.00 1.00 1.00 1.00 

Another useful application is to use the power-averaging method to calculate 

interface conductivity between grid nodes for simulating flow in a heterogeneous medium. 

The values of interface conductivity can be calculated by using simulated values of 

conductivity in two neighboring nodes along a given direction. For the cubic blocks, the 

exponent m value should be 1/3. 

4.2 Upscaling and downscaling from local data to the transmissivity of an 
aquifer 

Another possible application is an upscaling and downscaling from local data to 

the aquifer transmissivity, which is averaged over aquifer thickness. Sometimes the value 

of aquifer transmissivity should be estimated by using core-scale data measured in a 

vertical section of an aquifer. To achieve this, the power-averaging method with the 
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exponent value defined by eqs. (30a) and (30b) can be used for upscaling from the point-

measured conductivity to the aquifer transmissivity. 

Sometimes field data present the opposite problem; that is, data on spatial variation 

of transmissivity are available, but one needs to know the variation at the local-scale level. 

This problem, of course, cannot be solved correctly for a general case, because the scale of 

the measuring tools here is larger than the scale of the local data. However, the method 

developed in this paper can be useful for one particular important problem: to estimate the 

variance of log local-scale conductivity cr by the use of the known value of log 

transmissivity variance d-T obtained from the field data. Let us assume the variance of 

transmissivity to be equal to that of the local-scale value. According to the obtained 

upscaling equation for the variance, these values are related by: 

(32) 

The problem is that, as a rule, we do not know exactly what is the real volume of the 

"block," which is represented by the transmissivity measuring point. Formally we know 

that in the vertical direction it is the aquifer thickness L 3• To obtain the size of this "block" 

in a horizontal direction, we can use the autocorrelation function to perform the averaging 

over a block random function (Appendix A). The integral correlation scale of this function 

I is equal to the sum of the block horizontal size and the correlation scale of random 

function .A. Thus, obtaining from the variogram analysis of the field transmissivity data its 

horizontal correlation scale Ih , one can rewrite eq. (32) as: 

(33a) 
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Taking into account that for a large u <p(u):::: 2/u we obtain the relationship between 

variances and correlation scales oflocal-scale conductivity and transmissivity: 

Thus, to estimate local-scale conductivity variance one needs the variance and the 

correlation scale of field-measured transmissivity data. 

4.3 Summary and conclusion 

(33b) 

This paper presents the development of a relationship between the local-scale 

hydraulic conductivity and the conductivity hydraulically averaged over a block, i.e., 

block-scale hydraulic conductivity. The block-scale conductivity is considered to be a 

stochastic function, and a semianalytical method is used to obtain the expected mean and 

the variance of this function. The results are summarized as follows: 

1. The equation for the expected mean of the block-scale conductivity has the form 

kef =kg exp[ CT
2

( ~- gscale)] for a given lognormal distribution of local-scale 

hydraulic conductivity with isotropic autocovariance. The equation for the variance of 

the log of the block-scale conductivity has the form Var[.Yz,(x)] = CT
2 ·~scale. The 

upscaling functions gscale and ~scale are different for the cases of quasi-parallel and 

convergent flows. In the case of quasi-parallel flow, the equation for the upscaling 

function is obtained by using perturbation analysis, followed by extrapolation of the 

result to a large variance oflocal hydraulic conductivity. 
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2. The derived equation for the block-scale conductivity completely described the result 

for the flow domain within limits of small and large values of the ratio of block size to 

the local hydraulic conductivity correlation scale (for any spatial flow dimensions). 

Comparison of these analytical results with numerical calculations of the expected 

mean and variance of the block-scale conductivity, given in recent technical literature, 

shows good agreement over a broad range of log local-scale conductivity variance for 

all physical dimensions of the flow domain. 

3. An equation of effective transmissivity for uniform flow in an aquifer whose thickness 

is comparable to the correlation scale of local hydraulic conductivity is proposed on 

the basis of asymptotic solutions of the upscaling function. The value of effective 

transmissivity thus obtained depends on the ratio of correlation scale to aquifer 

thickness, and lies between the effective conductivities of the two- and three

dimensional cases. An equation for effective transmissivity of aquifer with different 

correlation scales of local conductivity in the horizontal and the vertical directions is 

also proposed. 

4. The spatial power-averaging method of local-scale conductivity data described by 

earlier authors is developed in this paper, and an analytical equation for the averaging 

exponent is obtained. This equation gives for three dimensional flow the value of 113, 

which agrees with the Landau and Lifshitz (1960) conjecture. However, for a flow 

domain which is infinite horizontally but of a limited size in the vertical direction, the 

averaging exponent is found to be between 0 and 113. In general, the value of the 
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exponent depends on the ratio of the aquifer thickness and the correlation scale of 

local conductivity. 
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Nomenclature 

n. 

L(LJ .. ,Ln) 

b(bJ .. ,bn) 

K(x) 

Kb(x) 

Y(x) 

J.1 

d 

p(u) 

A. 

· gscale 

~scale 

(J) 

spatial dimension offlow, where n = 1 or n = 2 or n = 3, [-] 

Cartesian coordinate system, [L] 

size of flow domain, [L] 

size ofblocks covering the flow domain, [L] 

spatial variable local hydraulic conductivity, [LIT]. 

block-scale hydraulic conductivity, [LIT] 

stationary random field, where Y(x) = In K(x), [-] 

mean value of Y(x), where J.1 = E[Y(x)], [-] 

log conductivity variance, where d = Var[Y(x)], [-] 

log conductivity autocorrelation function, [-] 

integral correlation scale of log conductivity, [L] 

geometric mean of local hydraulic conductivity, where kg= exp(f.l), [L/T] 

effective value of hydraulic conductivity for uniform flow (LIT). 

expected mean of block-scale conductivity, where kb = E[Kb(x)], [L/T]. 

upscaling function, [-] 

up scaling function, [-] 

averaging exponent, [-] 
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APPENDIX A: Block Covariation Function for Gaussian Stochastic Process 

Let us consider a stationary random function Y(x) with Gaussian autocorrelation: 

n 

CovY = cr2 IT exp(-x} I A;,), (A.l) 
i=l 

where n = 1,2,3 is a space dimension of Y, xi a separation along i-axis, and Ai the 

correlation scale. 

The covariation function Cov(x,B) averaged over blocks of random function Y(x) can be 

represented in the form: 

n 

Cov(x, B)= cr2I1 Cov0 (xi I A;, Bi I A;), (A.2) 
i=l 

where Bi is a block-side length along the i- direction and the partial covariation 

Cov0(x I A,B I A) is 

B X+o5B X+x+O.SB 

Cov0( ~,'I)= B-2 I I exp[- (81 - 82 )
2 I A2 }i81d82 • 

X--Q5B X+x-O.SB 

(A.3) 

Upon integrating (A3) we obtain the equation for partial covariation as a function of 

dimensionless block side length B = B I A, and dimensionless separation x = x I A : 

Cov0 (x,IJ) = O.s'IJ-1 {.{n[(x0 + l)erf(x+ 1J)- 2x0 erf(x) + (x0 - l)erf(x- B))] 
- - - .(A.4) 

+ B -I [ exp (-(:X+ B) 2 
) - 2 exp (-.X) + exp (- (.X- B ) 2 

) ]} ; x0 = x I B 

For the zero separation eq. (A.4) is going to be equal to eq. (19): 

Cov0 (0,B) =q/(B). (A.5) 

The autocorrelation function p( .X, B) of a value averaged over the block can be calculated 

as: 
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(A.6) 

For a small ratio of the block-side length to the correlation scale, eq. (A.6) is Gaussian 

autocorrelation, and for a ratio of more than 5-7, the equation for autocorrelation function 

can be rewritten in the simple form: 

n 

R (.X, B)= fi (1- xi I Bi) · or 0 for xi > Bi (A.7) 
i=l 

The correlation scale along each direction of averaged process equals to ~ + Bi . 
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APPENDIX B: Integral Scale of Spatial Covariance of Lognormal Distributed 
Random Function 

Let us analyze the spatial correlation scale for stationary random function K(x) for 

the given normal distribution of Y = log(k) with the expected mean f..l, the variance r:l , 

and the spatial covariance Cavy = cr2r(x). Here r(x) is the function of the separation 

between the points. Using the moment-generating function for a normal random variable 

M(n) = E[exp(nY)] = exp(nf..l + cr2 n 2 I 2), (B. I) 

the second spatial moment Covk(x) will be: 

(B.2a) 

and for the normalized autocorrelation function pk(x) dependent on distance and variance: 

(B.2b) 

It is clear from the structure of eq. (B.2b) that for the small values of variance ff-7 0 the 

normalized autocorrelation function Pk(x) is almost the same as function p (x). However, 

for the large variance these functions can be very different. Let us inspect the difference 

between autocorrelation functions p(x) and Pk(x) for two spatial autocorrelation functions 

of Y(x): i.e., exponential covariance, p(x) = exp( -xI A.); and Gaussian covariance, 

p( x) = exp[-{ 0.25nx I A.) . We will use the ratio of the spatial integral scales equals to 

~ 

J Pk(x)dx 

1=.::.~---

I p(x)dx 
0 

(B.3) 
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The results of the integration of eq. (B.3) are shown in Figure 11. One can see that for the 

exponential structure of covariance for the realistic values of variance if of about 1-3, the 

. integral scale for K(x) changes from 0.767 to 0.433 times the scale for Y(x). For the 

Gaussian correlation the difference between the K(x) and Y(x) scales is much smaller. 

1.2 

s 0.8 
~ 

~ 
fl 

~ 
£ 
p 0.4 

~ 

0.0 2.0 4.0 
Variance of Log(K) 

6.0 

Figure 11. Ratio of the spatial integral scales (Equation B.3} as a function of the variance of 
log (K} for the two autocorrelation structures. 

49 



The calculations of integral scale show that for the exponential structure of 

autocovariance ofY(x), the autocorrelation function (B.2b) for K(x) can be approximated 

by the exponential function pk == exp( -xI A.k) with the integral scale Ak equal to: 

(B.4) 
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