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Abstract 

The Feynman path integral is used to quantize the symplectic 

leaves of the Poisson-Lie group SU(2)*. In this way we obtain the 

unitary representations of Uq(su(2)). This is achieved by finding ex

plicit Darboux coordinates and then using a phase space path integral. 
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1 Introduction 

The Feynman path integral reveals in a geometric intuitive way the relation 

between classical and quantum dynamics. However there are few examples of 

path integral quantizations on compact phase spaces. These are interesting 

because they have finite dimensional Hilbert spaces. The simplest example 

· is a phase space with the topology of a torus. A more interesting case is 

obtained by considering a phase space with the topology of the sphere s2 0 

Quantization of this gives the spin. A path integral quantization is described 

in [1, 2]. Here I will present a generalization of this result, the case of the 

deformed spin. 

Let G be a Lie group. On the vector space g* dual to the Lie algebra g 

of G there is a natural Poisson structure. In terms of linear coordinates ei 

and fi~ the structure constants of the group it has the form 

and it is known as the Lie-Kirillov-Kostant Poisson bracket. Its symplec

tic leaves are the orbits of the coadjoint action [13]. The quantization of 

this bracket is the universal enveloping algebra U(g) which is the associative 

algebra with generators ei and relations 

Quantization of the coadjoint orbits of a Lie group G gives its unitary rep

resentations [13]. Various methods were used to quantize these symplectic 

leaves including geometric quantization and the Feynman path integral [1, 2]. 

Note that the vector space g* can be thought of as an abelian group. The 

above picture can be generalized to include Poisson brackets on non-abelian 

groups G* usually called the dual Poisson-Lie groups. This will be extensively 

discussed in Section 2. Quantization of their symplectic leaves gives the uni

tary representations of the quantum group Uq(g). This can be summarized 
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in the picture below. 

Fun(G*) 

t 
Fun(g*) 

-+ Funq(G*) ~ Uq(g) 

t 
-+ U(g) 

The quantization axis is horizontal, with classical Poisson-Lie groups on the 

left and their quantizations on the right. The vertical axis corresponds to de

formation of the abelian case to the non-abelian case. Note that the abelian 

case can be obtained from the non-abelian case by looking at an infinitesimal 

neighborhood of the unit of the group, and rescaling coordinates appropri

ately. Throughout this paper I will refer to the lower part of the picture 

already discussed in [1, 2] as the trivial case i.e. the Poisson bracket on G 

discussed in Section 2 is trivial in this case, and to the upper part as the 

Poisson case. 

I will use the Feynman path integral to quantize the symplectic leaves of 

SU (2)*. In doing this I will follow closely the method used in [1]. In fact, a 

strong parallel exists both at the classical and the quantum levels. Classically, 

the leaves coincide in the trivial and Poisson cases once expressed in terms 

of Darboux coordinates. Consequently, at the quantum level we have the 

same Hilbert space and the two quantum algebras are isomorphic. The path 

integral has the same form in the trivial and Poisson cases, but one has to 

insert different functions to obtain su(2) or Uq(su(2)) generators. 

In Section 2, I review some general Poisson-Lie theory mainly to fix the 

notation and to list some results used later in the paper. The results in this 

section are given using complex coordinates. In Section 3, I describe the 

reality structures of SU(2), its dual and its double. I also give a detailed 

description of the symplectic leaves of SU(2)*. 

In SeCtion 4, I describe Darboux coordinates, formulate the path integral 

and find the radius quantization condition using a quantization condition 

similar to [1]. I also define the Hilbert space and obtain the matrix elements 

of diagonal operators. In Section 5, I study general matrix elements and 
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show that they are representations of the quantum group algebra. In the 

last section I draw some conclusions and suggest how this work might be 

generalized. Finally, the appendix reviews the isomorphism of Funq(SU(2)*) 

and Uq(su(2)) and the derivation of the Poisson bracket on SU(2)* from 

Funq(SU(2)*). 

2 Dual Pairs of Poisson-Lie Groups 

A Poisson-Lie Group (PLG) is a pair (G, {,}) where G is a Lie group and 

{, } is a Poisson bracket on G which is compatible with the group operations 

of multiplication and inversion [8]. The compatibility determines the Poisson 

structure at an arbitrary point from its values in the vicinity of the group 

unit. A PLG can be equivalently described as a Poisson Hopf algebra Fun( G) 
which is a commutative Hopf algebra with a compatible Poisson algebra. In 

what follows I will freely exchange these two dual descriptions. 

The Poisson bracket on the group determines a Lie algebra structure on 

the cotangent space g* of the Lie group. Let h1 and h2 be two functions on 

the group G. Then: 

defines a Lie algebra (g*, [, ]*). One can check that this definition is indepen

dent of the choice of functions used to represent cotangent vectors. Let { ei} 
be a basis of g, { ei} its dual basis in g*, and fi~ and J~b the corresponding 

structure constants. The compatibility of the Poisson and group structures 

imposes restrictions on the two Lie algebras. In terms of the structure con

stants, they read 

f s J-ab Jaj-sb Jb ~-sa Jb ~-sa+ fa ~-sb 0 
ij s - is j + is j - js i js i = · (1) 

In fact, similarly to a Lie group being determined up to some global features 

by its Lie algebra, a PLG is in one to one correspondence with a Lie bialgebra 

(LBA). This is a pair (g, g*) of Lie algebras dual as vector spaces whose 
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structure constants satisfy (1). Note that the LBA structure is symmetric 

between g and g*, so to each LBA we can associate a pair of PLGs G and 

G*. 

An equivalent definition of a LBA is given in terms of the cocommutator 

6 the dual of the [, ]* commutator 

6: g -t l\2g, (6(x), ~ 1\ TJ) = (x, [~, TJ]*), x E g, ~' T} E g*. 

Jacobi for [, ]* implies co-Jacobi (6 ® id) o 6 = 0. The compatibility condi

tion (1) translates into the cocycle condition 

6([x, y]) = [~(x), 6(y)J + [6(x), ~(y)] 

where ~(x) = x ® 1 + 1 ® x and similarly for y. 

A quasi-triangular Lie bialgebra is aLBA such that there exists a r E g®g 

which, for all x E g satisfies: 

1. 6(x) = [r, ~(x)]; 

2. I= r+a-(r) is adjoint invariant [I, ~(x)] = 0. Here a- is the permutation 

operator; 

A factorizable Lie bialgebra is a quasi-triangular LBA such that I is non

degenerate. One can use I to identify g and g*. The factorization refers to 

the fact that any x E g can be decomposed as x = x+- x_. Here 

for some~ E g* satisfying x = (I,~® id). Such a~ always exists since I is 

non-degenerate. . 

A PLG G is quasi-triangular if its tangent LBA g is quasi-triangular. 

Similarly a PLG is factorizable if its tangent LBA is factorizable. 
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One can define two important Poisson brackets{,}± on a quasi-triangular 

LBA. 

{f, h}± = (r, \7 f 0 V'h) ± (r, \7' f 0 V''h) (2) 

where 
d d 

(\7 f(x), ~) = dtf(etf.x), (\7' f(x), ~) - dtj(xetf.) 

are the left and right gradients respectively. The {, } _ Poisson bracket makes 

G into a PLG. I will denote it simply by ,. The other bracket {, }+ is also 

very important since it is non-degenerate almost everywhere and makes G 

into a symplectic manifold. 

For every representation p one can explicitly write the Poisson relations 

for the matrix elements of T(x) = p(x) which are coordinates on the group 

as 

(3) 

where r + = (p 0 p)r and the subscript specifies the position in the tensor 

product. It is also useful to definer_= -(p 0 p)a(r). 
The standard example of a factorizable PLG is SL(N, C). In this case 

1 N-1 

r = 2 _L (A- 1
)ij Hi 0 Hj + ~Eij 0 Eji 

l,J=l l<J 

where A is the Cartan matrix, Hi are Cartan generators and Eij are gener

ators which in the fundamental representation are represented by matrices 

with only one non-vanishing entry equal to one in the ij position. In this case 

we can give an explicit description of the dual group SL(N, C)* and its Pois

son structure despite the fact that it is not quasi-triangular. Let SL(N, C)* 
be ·the group of pairs of upper and lower triangular matrices { (L +, L -)} . 

where 

(4) 
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The group multiplication is given by multiplying corresponding matrices 

within each pair. Using the same notation for matrix group elements and 

functions on the group, the Poisson brackets are: 

One can also define 

{Lt,Lt} = [r±,LtLt], 

{L1, L2} = [r ±, L1 L;-], 

{Lt, L2} = [r +, Lt L;-]. 

and the Poisson brackets above become 

(5) 

The derivation of this bracket from the quantum commutation relations is 

discussed in the appendix. The map from ( L +, L-) to L is not one to one. 

It is a 2N-l cover. Later we will define reality structures on this Poisson 

algebras. 

Now I will give a more detailed description of the SL(2, C) and SL(2, C)*. 

Let 

The classical r-matrices can be written as 4 x 4 matrices 

1/4 0 0 0 -1/4 0 0 0 

0 -1/4 1 0 0 1/4 0 0 
r+ = 

-1/4 ' 
r_ = 

1/4 0 0 0 0 -1 0 

0 0 0 1/4 0 0 0 -1/4 

Using (3) after some algebra one obtains 

{a, b} ab/2, 

{a,c} ac/2, (7) 
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{a, d} cd, 

{b,c} 0, 

{b, d} bd/2, 

{ c, d} cd/2. 

Similarly using (6) one obtains 

{a,,B} 

{a,"f} 

{a, 6} 

{,8,"(} 

{,B, 6} 

{"!,6} 

a,B, 

-a"(, 

0, 

a(a- 6), 

a,B, 

-a"(. 

(8) 

A further decomposition of L + as a diagonal matrix and an upper diagonal 

matrix with unit entries on the diagonal, and of L- as a diagonal matrix and 

a lower diagonal matrix with unit entries on the diagonal, is possible. For 

the SL(2, C)* case, we have 

L + = ( a ~ ) ( 1 X+ ) ' L _ = ( a-
1 

0 ) ( 1 0 ) . 
0 a 1 0 1 0 a -x- 1 

It corresponds to Gauss's decomposition of L 

L = ( 1 0 ) ( a
2 ~ ) ( 1 X+ ) . 

X- 1 0 a 2 0 1 

To every LBA (9, 9*) we can associate a factorizable LBA called the double 

Lie bial9ebra ( d, d*). First we define d = 9 + 9*, i.e. the direct sum of vector 

spaces. It has a natural bilinear form (, )d defined in terms of the dual pairing 

(, ) of 9 and 9* 

((x, ~), (y, rJ))d- (x, rJ) + (y, 0, x, y E 9, ~' rJ E 9*. 

We define on d the unique Lie algebra such that: 
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1. g and g* are subalgebras; 

2. the bilinear form (, )d determined by the dual pairing is adjoint invari

ant. 

On the basis of d given by { ei, ei}, the commutator [, ]d has the form 

[ei, ei ]d = Ji; ek, 

[ei,ei]d = f~i ek, 

[ i l - Ji k j-j e , ej d - ik e - ik ek · 

Also d* = g* ffi g, i.e. it is the direct sum of Lie algebras [ei, ej]d· = 0. The 

pair ( d, d*) is a factorizable LBA with r d = ei @ ei E d @ d, thus it is a 

projector on the g factor. Note that sl(N, C) is almost the double of one of 

its Borel subalgebrasa. We can exponentiate d to a Lie group D and {, }

will make it into a PGL. 

The simplest example of the above structure is obtained if we start from 

the trivial LBA (g, g*), i.e. g is a Lie algebra and g* its dual with the trivial 

commutator. G is a Lie group with Lie algebra g and G* = g* is an abelian 

group. D is the cotangent bundle T*G = G x g*. The {, }+ bracket is 

the canonical Poisson bracket on the cotangent bundle, and {, } _ is the Lie 

bracket on g* extended by left translations to the cotangent bundle. 

The double D of a factorizable PLG G can be described in more detail. 

Dis isomorphic with G x Gas a groupb. The groups G and G* are subgroups 

of D and are embedded as follows 

G c G x G, T-+ (T, T), 

art is the double of a Borel subalgebra divided by the Cartan subalgebra. 
bThis is only true for complex groups. If G has a reality structure the double is obtain 

by imposing .a reality structure on cc x cc where Gc is the complexification of G. 
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Almost all elements (x, y) of the double can be written in factorized form 

(9) 

A pair of Poisson manifolds (P, P') is .called a dual pair [12, 5] if there 

exists a symplectic manifold S and two projections n and n' 

7r / 

p 

s 
'\J n' 

P' 

such that the sets of functions which are pullbacks of functions on P and P' 

centralize each other 

{n*(f),n'*(f')}s = 0, 

An important theorem [12, 4] states that each symplectic leaf of Pis obtained 

by projecting on P the preimage of an element a of P' 

n(n'-1 (a)), a E P'. 

The manifolds D/G and G\D form a dual pair. The symplectic manifold 

is the doubleD of G with the {, }+ bracket. The following projections 

7r / 

G\D 

D 

'\J n' 

D/G 

can be used to induce Poisson structures on D/G and G \D. Since D is 

factorizable G* rv G \ D. Moreover the Poisson structure induced on G \ D 

from D coincides with the original Poisson structure on G*. Then the above 

theorem gives the symplectic leaves of G*. In partkular if G is factorizable, 

n' ( x, y) = xy- 1 = a and the preimage of a has elements of the form ( ay, y). 

Then n(x, y) = y-1x = y-1ay, thus the symplectic leaves are given by the 

orbits of the coadjoint action of G on G \ D. This action is also known as 

the dressing action [4] 

G x (G \D) -t G \ D, (y, a) -t y-1ay. 
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3 · Symplectic Leaves 

In the first part of this section, I will discuss the SL(N, C) case. So far, 

everything was complex. The simplest reality structure one can impose is 

to require everything to be real. We then obtain SL(N, R), its double, dual 

etc. However, we want to obtain SU(N). We start on the double with the 

reality structure 
xt = Y-1_ 

Since G and G* are subgroups, this induces the following reality structures 

(10) 

Once we impose (10) the dual group is no longer simply connected, since ai 

in (4) are real and non-zero. Define SU(N)* as the component connected to 

the unit element of the group. 

We can also describe SU(N)* in terms of L as the set of hermitian, posi

tive definite matrices of determinant one. Then the map ·(L+,L-)--+ L = 

( L-) - 1 L + is one to one and the factorization is unique. 

For SU(2)* the reality structure is a= a, 6 = 6, ~ = 'Y· 

To summarize, the double of SU(N) is SL(N, C), and the factorization 

( 9) can be written x = r-1 L +, that is to say, any matrix of determinant one 

can be decomposed uniquely as the product of a special unitary matrix and 

an upper triangular matrix with real positive diagonal entriesc. 

In particular the double of SU(2) is the proper Lorentz group SL(2, C). 

It is interesting to note that the double of the trivial PLG SU(2), i.e. its 

cotangent bundle, is the proper homogeneous Galilean group. 

Using the two factorizations 

cNote that y is not independent y = (xt)- 1 
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and the projections 1r(x, y) = y- 1x, 1r'(x, y) = xy- 1 we obtain the following 

form for the symplectic leaves 

where (L+, L-) E SU(2)* is fixed, and T parametrizes the leave. This is just 

·the orbit of the right Poisson coadjoint action of SU(2) on SU(2)* 

L --7 T- 1LT .. 

It is convenient to use an exponential parametrization of L = ( L-) -l L + 

L = exp(xio-i) = cosh(r) + sinh(r) ( n3 n_ ) 
n+ -n3 

where o-i's are the Pauli matrices, r2 = I:i xz and ni = xdr. Since tr(L) = 
2 cosh(r) is invariant under the coadjoint action we see that the simplectic 

leaves are spheres of radius r except for the r = 0 leaf, which is zero dimen

sional. In terms of the exponential parametrization, the Poisson algebra (8) 

becomes 

{x-,x+} = 2x3 (x3 +rcoth(r)). 

Since r is constant on symplectic leaves it must be central in the above 

Poisson algebra, which can be checked by direct computation. These Poisson 

spheres and their quantization were first studied in [11]. One can parametrize 

the radius r sphere using stereographic projection coordinates z, z 
x_ x+ 

z= ,z= 
r- X3 r- X3 

After some straightforward algebra we obtain 

1 2 (zz- 1 ) {z,z}r=-(1+zz) _ +coth(r) . 
2 zz + 1 
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The right action of SU(2) on z by fractional transformations 

az- b 
z' = ,---

bz +a 

is a Poisson action i.e. a, b, c, d have non-trivial bracket given by (7). Since 

our path integral is formulated in real time, we do a Wick rotation and obtain 

the Minkowski Poisson bracket 

i 2 (zz- 1 ) {z, z}r =- (1 + zz) _ + coth(r) 
2 zz + 1 

differing from the original one by a phase factor. 

Using non-singular coordinates around the south pole w 

Poisson bracket becomes 

(11) 

-1/z the 

thus the Poisson structure is not north-south symmetric. The infinite r 

limit is singular at the south pole. This particular Poisson structure and its 

quantization was studied in [6, 7]. 

The small r limit is dominated by the coth(r) term and 

{z,z}r ~ ~coth(r) (1 +zz)2
. (12) 

This is the standard Poisson bracket on a sphere of radius coth 1/
2 

( r). The 

right action by fractional transformations on (12) leaves this Poisson bracket 

invariant. Thus the small radius symplectic leaves are almost rotationally 

invariant. 

Next we obtain the symplectic form on the leaves. Let j, h be functions 

on the leaf; each f defines a vector field v f such that v f (h) = {f, h}. Then 

the symplectic form is defined by 
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In local coordinates, the Poisson bracket and the symplectic form have 

the form 
.. 1 . . 

{f, h} = ptJ ad ajh, n = 2niidxt 1\ dx1 , 

and the two antisymmetric tensors satisfy 

P ijr. - J:i 
Hjk- uk. 

In complex coordinates, this is simply pzznz:z = 1, and gives 

n 2 dz 1\ dz ( zz - 1 h ) -l no 
= --:; (1 + zz)2 zz + 1 +cot (r) = - n3 + coth(r)' 

where no is the standard area 2-form on the unit sphere. 

4 Path Integral Quantization 

The path integral quantization of the Poisson algebra on the leaves of su(2)* 
was discussed in [1, 2]. Quantization of these leaves gives the unitary rep

resentations of SU(2). We will do the same for the symplectic leaves above 

and obtain the unitary representations of Uq(su(2)) algebra. This is in fact 

a Hopf algebra but we concentrate here on the algebra structured. 

Before starting the quantization we have to find canonical coordinates on 

the leaves. Note that 

no = sin fJ dfJ 1\ d</J = d(- cos( fJ)) 1\ d¢ 

thus (- cos( fJ), ¢) are Darboux coordinates on the standard S2 . Similarly 

n = d[-ln(n3 + coth(r))]/\ d¢ 

so we define 

_ [ n3 +coth(r) l . 
J = -ln (coth2 (r) _ 1)112 = -ln [cosh(r) + smh(r) n3] 

dThe coproduct and antipode of the L± generators are the same as in the classical 

Poisson-Hop£ algebra 
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where the denominator was fixed by the requirement that J spans a sym

metric interval ( -r, r). We have n = dJ 1\ d¢ = d(J d¢) so we define the 

Poincare 1-form 8 

e = Jd¢+cd¢ 

where c is a constant to be fixed later. Thus the Poisson sphere of radius r 

is parametrized by J and ¢ as 

ns = sinh-1(r)(e-J- cosh(r)), n± = (1- n~) 1 12 e~i<l>_ 

The Poisson algebra on any leaf can be quantized, but in general these 

quantum algebras will not have unitary representations. Unitarity leads to a 

quantization of the radius of the Poisson sphere. Before starting the Poisson 

case let us review two different quantization conditions used in [1, 2] for the 

trivial case. In [2] a geometric quantization condition similar to that used for 

the Dirac monopole or the Wess-Zumino-Witten model was used to obtain 

the allowed values of the radius. The action must be continuous as the path 

crosses over the poles. Equivalently 

(13) 

where the integral is over an infinitesimal loop around the poles. However this 

condition was only used to determine the characters of the representations. 

Also note that, unlike the Dirac monopole where the action is a configuration 

space action, both in the trivial and the Poisson case one has a phase space 

action. 

However in [1] it was shown that in order to obtain the matrix elements of 

su(2) a non-trivial phase has to exist as the path crosses the poles. Requiring 

the correct matrix elements one obtains the quantization condition 

(14) 

This gives the same result as (13) for the Cartan generator and thus for the 

characters. Here I will use (14) and show that we obtain the standard matrix 

elements of the quantum qroup generators. 
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Imposing (14) at the north and south poles we obtain the quantization 

r = Nn/2 where N is a positive integer. For N odd one can set c = 0 but a 

non-zero c is required for even N. The simplest choice is c = n/2. We can 

write the two cases together as 

8 = ( J + M!i/2) d¢, M = 0, 1. 

Next I list some of the functions on the Poisson sphere that I will quantize, 

expressed in terms of Darboux variables J, ¢ 

a 

X± 

( -1 + 2 cosh(r)e-1 - e-21 ) 112ei¢ 

(-1 + 2cosh(r)e-J- e-21 ) 1/ 2e-i¢ 

2 cosh(r) - e-J 

e-J/2 

(-1 + 2cosh(r)e1 - e21 ) 112e±i¢ 

The general structure of this functions is 

O(J, ¢;) = F(J)e~P¢, p = 0, ±1. 

Note also that 

tr(L) = 2cosh(r) = 2cosh (Nn/2) = qN + q-N, 

(15) 

where we introduced q = eh/2. Since tr(L) only depends on r, it is central 

in the Poisson algebra and will be central in the quantum algebra. In fact 

tr(L) is the Casimir of Uq(su(2)). 
Next we discuss the Feynman path integral. Consider first for simplicity 

a Hamiltonian H(J), i.e. a function of J and not of¢. Wave functions are 

functions on s1 (or periodic functions of ¢) and let 1 ¢) be a ¢ eigenvector. 

The propagator on S1 can be expressed in terms of the propagator on the 

covering space of S1 , which is the real line by 

(¢' I e-kHT I ¢) = L (¢'+27m I e-kHT I ¢)o (16) 
nEZ 
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where formally 

(¢' I e-kHT I c/J)o = JJ VJV¢ ek for[e-H(J)dt] 
27rll, 

(17) 

where ¢ is integrated over the whole real line and J over the ( -r, r) interval. 

To make sense of the formal expression we divide T into P intervals arid let 

c/Jo = ¢, cPP = ¢'. Then 

(¢' I e--j;HT I c/J)o =I I1i dJi I IT dc/Ji eifli l:;f(J;+c)(¢;-4>;-l)-H(J;)T/P] (18) 
27r1i . 

~ 

The ¢ integration can be performed leading to delta functions which allow 

us to do all but one of the J integrals. Then the propagator on S1 takes the 

form 
. !Nii/2 dJ (¢' 1 e-ifHT 1 ¢) = L _ e-i/liH(J)T ei/1i(J+c)(<P'+27rn)e-i/1i(J+c)¢ 

nEZ -Nii/2 21ffi 

Using the Poisson resummation formula 

L e27rina = L b(a- k) 
nEZ kEZ 

we perform the last integral and obtain 
ik¢' -ik¢ L _e_ e-i/liH(h)T _e _ 

k .j2i .j2i 
[Jkf$Niij2 

where Jk = n(k- M/2). The sum is over all integers k such that ( -N + 
M) /2 ::; k ::; ( N + M) /2. We see that not all states propagate. We can make 

the path integral unitary by projecting out the states that do not propagate. 

Define the Hilbert space as the vector space spanned by the vectors 

I m) =I Jb ei(m+M/2)¢ I ¢), m = -j, ... 'j 

where, according to angular momentum conventions, j is a half integer such 

that N = 2j + 1 . Note that the exponent is always an integer and N is 

the total number of states. The maximum value J = ±Nli/2 is not reached 

quantum mechanically. It differs from the results in [2] but agrees with [1] 

as previously mentioned. It was pointed out in [1] that this is similar to the 

non-zero ground state energy of the harmonic oscillator. 

16 



5 Matrix Elements and the Quantum Alge

bra 

Since this is a phase space path integral some care must be taken when 

quantizing functions which depend on canonically conjugate variables. The 

standard mid-point prescription for a function of the form .:J(J)if>(cp) is to 

write it as .:J(Ji)if>[(¢i + ¢i- 1)/2] in the path integral. Thus for functions of 
the form O(J, ¢) = :F(J)eiP<P I will use :.F(Ji)eip(</J;+<Pi-l)/2. To calculate the 

matrix elements of such an operator we insert it in the path integral (18) with 

H = 0 and take T infinitesimal. For the prescription above it is sufficient to 

consider only one time interval. The matrix elements are 

(¢'I 0 I¢)= L I dJ ei/h(J+c)(<P'+2rrn-<P):F(J)eip(¢'+2rrn+¢)/2 = 
nEZ 21rfi 

eik<P' e-i(k-p)¢ 
2:: I<C F(Jk) v'2i 

k v 27r 27r 

where Jk = fi(k- M/2- p/2), and I used Poisson resummation before per

forming the J integral. Then the matrix elements in the {I m)} basis are 

given by 

( O)m'm = (m' I 0 I m) = :.F[(m'- p/2)/i] Om'-p-m,o, m == -j, ... , j. (19) 

Using the opposite mid-point prescription :.F[ ( Ji + Ji-d /2]eip¢; gives the 

same matrix elements. However in this case one has to consider at least two 

time intervals if working in the cp representation. This prescription is more 

convenient when working in the J representation. 

We can use (19) to calculate matrix elements of any function on SU(2)*. 
Mid-point prescription in the path integral results in a special ordering of 

the quantum operators, when expressed in terms of J and ¢, called Weyl 

ordering. If one starts from the Gauss's decomposition, uses path integral 

to obtain the matrix elements of a and X± and then uses them to express 
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L± as products of quantum matrices, we obtain the quantum commutation 

relations [9]. Using (19) we obtain 

(20) 

One can check by direct calculation that relations (20) are representations of 

the algebra generated by a, X± with relations 

x-a 
-1 

qx+X- - q X-X+ 

where >. = q- q- 1 . Using this we define the quantum matrices £± as 

L+ ~ ( ~ a~I ) ( ~ ~+ ) ' 

L- ~ ( a~I ~) ( -~- ~). 

(21) 

One can use (21) to check that £± satisfies the quantum group commutations 

relations [8, 9, 10] 

R±Lr Li = Li Lr R± 

R+Li L2 = L2 Li R+ 

R_L1 Lt = Lt L1 R_ 

(22) 

where the quantum matrices are given in the appendix. Alternatively, using 

the representations 

18 



/ 

of the quantum L± in terms of Jimbo-Drinfeld generators discussed in the 

appendix, the relations (21) are equivalent to 

(24) 

The Jimbo-Drinfeld generators of Uq(su(2)) can be obtained in the path 

integral by inserting 

1i-12J (25) 

A- 1[2(cosh(r)- cosh(J)jl/2 e±i¢_ 

Note that unlike a and X± the insertions above are already quantum. In 

addition while the functional dependence in terms of J and ¢ can be easily 

obtained from (23) the overall normalization of X± has been adjusted to -" 

give the standard result. The same kind of normalization adjustments are 

necessary if one tries to insert the matrix elements of L± directly into the 

path integral. This just reflects ordering ambiguities of quantum operators. 

Alternatively one could get the standard result without any adjustments 

of normalization by using a non-midpoint prescription. For example the off

diagonal element of L + equals ax+ with this specific ordering in the quantum 

case. Since the path integral gives time ordering we can obtain the desired 

quantum ordering by using the following prescription 

e-J;/2 ( -1 + 2cosh(r)e(J;+J;_l)f2 - eJ;+J;- 1 ) 112 e+i¢_ 

Note that I only used a mid-point prescription for X+ and not for a. The 

matrix elements obtained using (19) are 

2m Om' -m,O, 

{2 coth[n(j + 1/2)]- 2 coth[n(m ± 1/2)]}1
/

2 
Om'-m=t=l,O· 

The generators of su(2) are obtained using 

2J, (26) 

(r2 _ J2)1/2 e±i¢_ 
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In this case it is possible to write all generators without using 1i while in the 

deformed case a different rescaling for each generator is required to eliminate 

h. The matrix elements obtained using (19) 

21im bm'-m,o, 

1i[(j + 1/2)2
- (m ± 1/2?F12 

bm'-·m=fl,O 

are just the standard matrix elements of the su(2) algebra 

6 Concluding Remarks 

In addition to trying to generalize the results in [1, 2] my goal in this paper 

was to better understand the quantization (22) of the Poisson bracket (5). 

Any R± satisfying R± = 1 + hr ± + 0(1i2
) used in (22) would give the same 

Poisson bracket in the classical limit. The 0(1i2
) and higher order terms are 

fixed by requireing that (22) are commutation relations of a Hopf algebra 

deformation of the original Poisson-Hopf algebra. It is natural then to ask 

what is the relation of this quantization to the quantization known as Weyl 

quantization. Of course this question could be answered using algebraic 

methods without appealing to path integrals. At least for the case of SU(2), 

I found that the functions X± and a appearing in the Gauss's decomposition 

play a special role. Their quantization using Weyl ordering gives the same 

commutation relations as in the quantum group quantization. It would be 

interesting to investigate if this result still holds for an arbitrary SU ( N). 

It should be possible to generalize the path integral formulated in this pa

per to arbitrary classical groups. The similarity between the trivial and the 

Poisson cases for SU(2) suggests that a starting point could be the path in

tegral quantization of the coadjoint orbits of classical groups discussed in [2]. 

The existence of a non-trivial phase as the path crosses the poles discussed 

in [1] is present in the Poisson case too. A better understanding of the origin 
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of this phase would be welcomed. 

Let us now compare the trivial and Poisson cases. The symplectic leaves 

in both cases are spheres parametrized by (z, z) in stereographic projection. 

The group SU(2) acts in the same way on the leaves in the two cases, i.e. 

by standard rotations of the spheres, but in the trivial case the bracket is 

invariant under the action, while in the Poisson case the action is only a 

Poisson action. However, once the symplectic form is expressed in Darboux 

coordinates ( J, ¢) the leaves appear to be identical. As a consequence the 

path integral has the same form as in [1, 2], but since the transformation 

to the Darboux variables is non-trivial in the Poisson case, SU(2) acts in a 

complicated way on the leaves, and functions on SU(2)* have a complicated 

dependence on (J, ¢). Compare for example (25) and (26). Thus the same 

path integral generates different matrix elements because we insert different 

functions in the trivial and Poisson cases. This shows explicitly that on the 

same symplectic manifold one can implement both a trivial and a Poisson 

symmetry. The question of which is the actual symmetry of the system is 

a dynamical one, and can only be answered after we know the Hamiltonian. 

Finally, I conjecture that as in the SU(2) case, for an arbitrary classical 

group, the path integral has the same form in the trivial and Poisson cases. 
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Appendix 

Here we list some relations defining the quantum group Funq(SU(2)*) and 

discuss its relation to Uq(su(2)) [8, 9, 10]. We only discuss the algebra and 

ignore all other issues. The quantum qroup Funq(SU(2)*) is a factorizable 

quasi-triangular Hopf algebra. As an algebra it is generated by triangular 

matrices L± satisfying quantum commutation relations 

R±Lt L~ = L~ Lt R± 

R+Li L2 = L2 Li R+ (27) 

R_L1 Lt = Lt L1 R_ 

where 

q 0 0 0 q-1 0 0 0 

R+ = q-112 0 1 A 0 , R_ = q1/2 
0 1 0 0 

0 0 1 0 0 -A 1 0 

0 0 0 q 0 0 0 q-1 

The universal enveloping algebra Uq ( su ( 2)) is a quasi-triangular Hopf algebra. 

It has 'generators H, X± which satisfy the Jimbo-Drinfeld relations 

qH _ q-H 
[H, X±]= ±2X±, [X+, X_]= 

1 q- q-
(28) 

In [9] it was shown that these two Hopf algebras are isomorphic. The iso

morphism is given by 

(29) 

As in the classical case we can define the matrix L = ( L-) - 1 L +. It satisfies 

the following equation: 

(30) 
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as can be checked using (22). 

In the classical limit we define r ± matrices by R± = 1 + nr ± + O(n2
). 

Then 

and we obtain the following Poisson structure 

This is just the original Poisson bracket (6) which was the starting point for 

the path integral quantization. 
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