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Abstract 

We show that the holomorphic Wilsonian beta-function of a renor

malizable asymptotically free supersymmetric gauge theory with an 

arbitrary semi-simple gauge group, matter content, and renormaliz

able superpotential is exhausted at 1-loop with no higher loops and 

no non-perturbative contributions. 
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1 Introduction 

In this Letter we prove that the holomorphic Wilsonian beta-function of 

an arbitrary renormalizable asymptotically-free supersymmetric gauge the

ory with matter is exhausted at 1-loop with no higher loops and no non

perturbative contributions. 

The technique we employ was introduced by Seiberg [1] and it is briefly 

reviewed here. To obtain the beta-function we compare two versions of the 

~heory with different cutoffs and coupling constants and the same low energy 

physics. The couplings of the theory with the lower cutoff can be expressed 

in terms of the couplings of the theory with the higher cutoff and the ratio 

of the two cutoffs. We can restrict their functional dependence on the high 

cutoff couplings using holomorphy of the superpotential and gauge kinetic 

terms and selection rules. Holomorphy is a consequence of supersymmetry. 

To see this, elevate the couplings to background chiral superfields. They 

must appear holomorphically in the superpotential in order to preserve su

persymmetry. Selection rules generalize global symmetries in the sense that 

we allow the couplings in the superpotential to transform under these symme

tries. Non-zero vacuum values of these couplings then spontaneously break 

these symmetries. Here we only consider U(1) and U(1)R symmetries. In 

the quantum theory they are generally anomalous, but we can use the same 

technique we used for the coupling in the superpotential. We assume that 

the B-angle is a background field and transform it non-linearly to make the 

full quantum effective action invariant. 

Then, following a method used in [2] we translate these conditions on the 

functional relations between the couplings of the theories at different cutoffs 

into restrictions of the functional form of the gauge beta-function. We can 

show that the gauge beta-function is a function of the holomorphic invari

ants allowed by selection rules. Then we can restrict further the functional 

dependence of the beta-function by varying the couplings while keeping the 

invariants fixed. This allows us to relate the beta-function of the original 
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theory to the beta-function of a theory with vanishing superpotential. In ad

dition, we also obtain a strong restriction of the functional dependence of the 

beta-function on the gauge coupling. It has exactly the form of a one-loop 

beta-function. The only ambiguity left is a numerical coefficient which can 

be calculated in perturbation theory. 

Next we make a short detour to explain what we mean by the Wilsonian 

beta-function [3]. The Wilsonian beta-function describes the renormalization 

group flow of the bare couplings of the theory so that the low energy theory 

is cutoff invariant. Additionally, we do not renormalize the vector and chi

ral superfields, i.e. we do not require canonical normalization of the kinetic 

terms. The usual convention in particle physics is to canonically normalize 

the kinetic term. It is obtained by using the covariant derivative [} + gA. 

Instead, here we allow non-canonical normalization of the kinetic term. The 

normalization of the gauge fields is such that the covariant derivative has the 

form [}+A. The gauge coupling only appears in front of the gauge kinetic 

term. In this case it is convenient to combine the B-angle and gauge coupling 

constant g into the complex variable T = 0 /2n + 4ni / g2 
.. In supersymmetric 

gauge theories the beta-function is holomorphic in the bare couplings only 

if we do not renormalize the fields. Even if we start with canonical normal

ization at a higher cutoff, the Kahler potential will not be canonical at the 

lower cutoff. The rescaling of the chiral or gauge superfields is an anomalous 

transformation [2] that destroys the holomorphy of the superpotential and 

the beta-function a. The relation between the beta-functions in the two nor

malizations for the case of a pure supersymmetric Yang-Mills was discussed 

in [2, 4]. The beta-function for canonically normalized fields receives~ contri

butions to all orders in,perturbation theory. Again we emphasize that here 

we are only concerned with the holomorphic Wilsonian beta-function. 

aFor some special theories like N = 2 SUSY-YM the rescaling anomaly of the chiral 

superfields cancels the rescaling anomaly of the vector superfield [2]. For these theories we 

can make stronger statements since the canonical and holomorphic Wilsonian couplings 

coincide. 
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We should also clearly state that the theorem is not valid if any one of 

the one-loop gauge beta-functions is not asymptotically free. This includes 

the case when the one-loop beta-function vanishes. As we will see, exactly in 

this case the U(l)R symmetry is non-anomalous. This makes it difficult to 

control the dependence of the beta-function on the gauge coupling. 

Various partial versions of this·result already exist. The case of a simple 

gauge group with a vanishing superpotential was discussed in [2, 4). It is 

also known that the beta-function is independent of the gauge coupling in 

the case of a simple gauge group with only Yukawa interactions present in 

the superpotential [5). 

Finally, we note that the theorem is valid in theories where no mass terms 

are allowed by the symmetries of the theory. This is of phenomenological 

interest as many supersymmetric extensions of the Standard Model share 

this characteristic. 

2 Simple Gauge Group 

We will consider first the case of a simple gauge group G. Let the generalized 

superpotential W be defined to include the kinetic term for the gauge fieldsb 

(1) 

where 

(2) 

is the usual superpotential and trRTaTb = tRc5ab_ Here M is the cutoff mass 

and was factored out so that all the couplings are dimensionless. The gauge 

coupling g and 0-angle are combined in the complex variable 

e 41fi 
T--+-. 

21f g2 
(3) 

bThe normalization of the gauge fields is that of Reference [2]. 
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Note that unitarity requires 7 to be valued in the upper half plane. Since () is 

a periodic variable it is convenient to introduce a new variable q = e2nir. It 

is valued in the complex plane and transforms linearly under the anomalous 

transformations to be discussed below. Weak coupling is at q = 0. 

Consider now a theory with a different cutoff M' and with the same low 

energy physics. The Lagrangian at the new cutoff is 

£ = L J d2()d20Z/PJe2
vhipi + (/ d2()W(7', )..~jkl m~j' c~, M') + h.c.) (4) 

z 

where in particular, the fields <Pi are not renormalized to canonical normaliza

tion. The Zi depends non-holomorphically on the couplings, so renormalizing 

the chiral superfields would destroy the holomorphic form of W. The new 

coupling 7
1 is a function of the old dimensionless couplings and the ratio 

M / M'. For later convenience we write this as 

(5) 

Supersymmetry requires a holomorphic dependence of 7 on the first four 

arguments. To see this, note that the couplings in the generalized superpo

tential can be considered as vacuum values of background chiral superfields. 

Invariance of the action under supersymmetry transformations requires holo

morph:y of the superpotential. 

To prove the non-renormalization theorem we will use selection rules. 

These are global symmetries of the superpotential with all couplings consid

ered as chiral superfields. We assign them non-trivial transformation prop

erties under the symmetry group. These symmetries will be spontaneously 

broken by non-zero vacuum values of the couplings. In general they are also 

anomalous. We will make them non-anomalous by assigning a charge to q, i.e. 

transforming() to compensate for the anomaly. Consider the U(1)R x U(1) 

global symmetry with the following charge assignment: 
-

Wa <Pi Aijk m·· ZJ Ci q 

U(1)R 1 2/3 0 2/3 4/3 2bo/3 
U(1) 0 1 -3 -2 -1 2 Lit(~) 

-· 
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The quantity bo is given by bo = 3tadj - l:i t(~), where t(Ri) is the 

normalization of the generators for the representation of the chiral superfield 

<Pi· For example, t = 1/2 for a fundamental of SU(N). Define the gauge 

,8-function by 

,821rir = dln(;/M1)2niT
1
jM'=M = ,B(r,Aijk,mij:Ci)· (6) 

The holomorphy of r in (5) translates into holomorphy of the beta-function. 

Since r -+ r + 1 is a symmetry of the theory, ,8 is a single valued function 

of q 

(7) 

First, consider the case when at least one mass term, let us call it m*, can 

be non-zero. If any ci could be non-zero, then there is a gauge singlet field 

which could be given a Majorana mass, so this is the same case as above. 

The gauge beta-function is U(1)R x U(1) invariant. This statement is 

non-trivial and requires some explanation. Consider some arbitrary coupling 

)... that transforms linearly under some U(1) or U(1)R symmetry. Its beta

function ,8>.. must also transform linearly with the same charge as )... 

iQ:-,a,B ( \ ) _ ,8 ( iQ:-,a' ) e >.. A, . . . - >.. e A, ... (8) 

where Q>.. is the charge of).... This is true in particular for the beta-function 

of q. However when we go to the T variable we have 

,8 d 2 . I d 2 . I ,8 -1 R 
2Trir = d ln( M / Ml) nzr = dq nzr q = q Pq· (9) 

The additional q factor makes the T beta-function invariant. In what follows 

we only consider the gauge beta-function since all the others are trivial, i.e. 

there are no perturbative [6] or non-perturbative [1] corrections to the usual 

superpotential. We will drop the subscript and denote it ,8. 

First consider U(l)R invariance. It requires that 

(10) 
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However, the variables of f are not U(1) invariant. They have charges 

6Tadj, 0, 3, -3, respectively. Invariance under U(1)R x U(1) requires that 

/3 is a yet another function 

( 

A 2tadj 

/3 =F ~ -1 q bo 'q 
m*. 

(11) 

We next take the limit m* --+ 0 keeping q and all the arguments ofF constant. 

If b0 > 0, this corresponds to taking all couplings except r to zero. Assuming 

that /3 is continuous we· see that f3(q, Aijk, mij, ci) = f3(q, Aijk = mij = ci = 0) 

and thus it is independent of all the couplings in the superpotential. In fact 

when the superpotential vanishes it is known [2, 4] that the beta-function is 

a constant and the gauge coupling only runs at 1-lbopc. This just reflects the 

fact that no U(1)R x U(1) holomorphic invariant can be constructed solely 

in terms of q. Note the importance of holomorphy in these arguments. For 

example, if we do not require holomorphy qq is invariant under an arbitrary 

U(1) and U(1)R symmetry. No higher loops or non-perturbative corrections 

are present and we conclude that 

f3 = bo. (12) 

An exception to the previous argument occurs when the gauge and global 

symmetries of the theory allow only Yukawa couplings to be present in the 

superpotential. For these theories , 

'• (13) 

The beta-function must be U(1)R invariant. This requires 

f( 2boai/3 ' ) _ j( A ) e q, /\ijk - q, ijk · (14) 

cNote that this result can also be written as ftg = - 1:~2 g3 which is just the standard 

1-loop beta-function. . ' 
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Then by holomorphy /3 is independent of q. Further, invariance of /3 under 

. the U(1) symmetry requires that f is a function of ratios of Aijk only. We 

may choose one of the non-zero Aijk, )..* say, and divide through by >.*. Then 

(15) 

Consider the limit Aijk -t 0 while keeping the ratios Aijk/ )..* constant. \Ve 

know that in this limit /3 reduces to the one-loop result. So assuming that 

/3 is continuous, we find f3(>.ijk) = f3(>.ijk = 0) = b0 , i.e. it is independent of 

the Yukawa couplings. 

To conclude this Section, we note that our discussion of the proof of 

the theorem was divided into two cases requiring separate proofs. Here we 

present a short argument that extends the proof of the theorem, valid when 

at least one mass term is allowed, to theories which do not admit any bare 

mass terms. Consider a theory with Lagrangian .C for which the symmetries 

of the theory forbid the presence of any mass terms. To this theory, add a 

non-i:qteracting gauge-singlet field with mass m*. More concretely, the new 

theory defined at M is described by the Lagrangian 

Lnew = .C + j d20d20il>bil>o + (/ d20Mm*il>~ + h.c.) . (16) 

This new theory satisfies the conditions of the theorem proven when at least 

one mass term is allowed, so the beta-functio,n of the new theory, f3new, is 

exhausted at one-loop. But we can conclude on physical grounds that f3new 

is identical to /3, the beta-function of the original theory, since in integrating 

over momentum modes M to M' the contribution from the gauge singlet 

completely factors out since it is non-interacting. So by this argument the 

proof of the theorem for theories with mass terms can be extended to theories 

for which mass terms are forbidden by the symmetries of the model. 

The results of this section ar'e also valid for a semisimple gauge group. 

We shall sketch the proof in the next section. 

7 I 



3 Extension to a semi-simple gauge group 

Assume that the gauge group is G = ITA G A with each G A a simple group. 

Also assume that the superpotential has the form given in Section 2. Then 

if all the simple gauge groups are asymptotically-free the Wilsonian beta-' 
functions of all the gauge couplings are one-loop exact. 

For each simple gauge group G A define 

()A 41fi 
7A=-+-

27f g~ 
(17) 

and introduce qA = e2
1rirA as in Section 2. We extend the U(1)R x U(1) 

selection rules of Section 2 by assigning all gauge chiral multiplets Wa,A 

charge (1, 0). Then qA has charge (2b~ /3,2 'L-i tA(~)). It will be conveinent 
1 

to define ~A= (qA)~. Then ~A has charge (2/3,2'L.itA(Ri)/b~). Weak 

coupling is at ~A = 0 since b~ is positive. 

The beta-functions for each simple gauge group are defined as in Section 

,2, so that 

(18) 

is a function of holomorphic invariants and invariant under the U ( 1) R x U ( 1) 

symmetry. 
( 

We do the proof for two cases: 

1. Only Yukawa couplings are allowed. 
I 

2. At least one mij =!= 0 is allowed. 

In the first case invariance of fJA under U(1)R requires that fJA is a function 

of ratios of ~B only. That is, 

(19) ) 

We have divided through by an arbitrarily _chosen ~B., so that each ~B other 

than Ks. appears in the argument ofF only once. Now consider the weak 

/. 
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coupling limit KB ---+ 0 for all the gauge couplings. The argument of the 

beta-functions is 

(20) 

Since by assumption the one-loop beta-functions all have the same sign it 

is possible to take this limit while keeping the ratios KB / KB. fixed. In this 

limit the beta-function is a function of the Yukawa couplings only. So as

suming that the beta-functions are continuous in this limit, we find that 

f3A(KB, Aijk) = f3A(KB = 0, Aijk) = FA(Aijk)· But now we may use the U(1) 

symmetry to conclude that f3A is a function of Aijk/ >.*. The argument of Sec

tion 2 may now be repeated and we conclude that f3A(qB, Aijk) = constant. 

For the second case a straightforward generalization of the argument of 

Section 2 may be repeated and we conclude that 

(21) 

Then the argument used in the first case of this Section is used to conclude 

that FA is independent of all of the qB and superpotential couplings. 
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Note 

The statement of this theorem for the case of a simple gauge group was also 

made in the lecture notes [7). In that proof the author considers a super

potential containing no composite operators, i.e. only operators linear in 

the fundamental fields. Of course such superpotential is not gauge invariant. 

However it is is only used in an intermediate step to simplify the study the · 

charge assignment for the couplings in the physical gauge invariant super

potential. The U(1) charge of the coupling of a composite operator equals 

the sum of the charges of the couplings of the fundamental fields entering 

the composite. However in [7) it is also assumed that the U(1)R charge of 

the couplings of composite gauge invariant operators in the superpotential 

equals the sum of the charges of the couplings of fundamental fields forming 

the composite. While this is true for usual U(1) symmetries since the super

potential has charge zero and the sum of charges of the couplings must equal 

minus the sum of charges of the fields entering the composite, for U(1)R 

symmetries the superpotential has charge two and the arithmetic is more 

complicated. Because of this, the proof in [7] only works for a superpotential 

linear in matter fields, i.e. when only gauge singlet chiral superfields are 

present. We also generalized the theorem to a semi-simple gau.ge group. 
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