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Abstract 

The structure and dynamics of axisymmetric tornado-like vortices are explored with a 

numerical model of axisymmetric incompressible flow based on recently developed numerical 

techniques. The model is first shown to compare favorably with previous results, and is then used 

to study the effects of varying the major parameters controlling the vortex: the strength of the con

vective forcing, the strength of the rotational forcing, and the magnitude of the model eddy vis

cosity. The results of simulations with each of these parameters varying independently suggest 

that while maximum windspeeds are proportional to the strength of the convective forcing, the 

structure and time-dependent behavior of the vortex depend almost exclusively on the ratio of the· 

rotational forcing to the model eddy viscosity parameter. 

For certain values of the swirl ratio, which is a measure of the ratio of the azimuthal veloc

ities to the radial velocities of the fluid entering the vortex core, the flow in the vortex core may be 

either steady or oscillating. These oscillations, when present, are caused by axisymmetric distur

bances propagating down towards the surface from above. Attempts to identify these disturbances 

with linear waves associated with the shears of the mean azimuthal and vertical wind give mixed 

results. 

The parameter space defined by the choices for the rotation rate and the eddy viscosity is 

further explored with a large set of numerical simulations. For much of this parameter space we 

find that the vortex structure and time-dependent behavior dependence on the ratio of the rota

tional forcing to the eddy viscosity is confirmed. We also find that for higher Reynolds numbers, 

the maximum possible windspeed increases, and the rotational forcing necessary to achieve that 

windspeed decreases. Physical reasoning is used to explain this behavior, and implications for tor

nado dynamics are discussed. 
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1 Introduction 
The use of numerical models has been one of the leading contributors to advances in our 

understanding of the causes and dynamics of the tornado phenomenon. This method of study can 

generally be divided into two categories: thunderstorm-scale simulations and tornado-scale simu

lations. In the former category, pioneered by Klemp and Wilhemson (1978), three-dimensional 

cloud models are used to numerically simulate the formation and dynamics of the thunderstorms 

that are responsible for tornado formation. While the low resolution of these earlier models could 

only hope to simulate the thunderstorm-scale environment that is believed to lead to tornado for

mation, Wicker and Wilhelmson (1995) recently reported the simulation of tornado-like features 

within a modelled thunderstorm. Tornado-scale models, pioneered by Rotunno (1977), assume a 

particular environment of rotation coupled with convection to create an intense vortex near the 

surface. These models are intended to provide the details of the wind field in the tornado and an 

understanding of the dynamics that lead to that flow structure. Until recently, most tornado-scale 

numerical models assumed the tornado to be axisymmetric, thereby reducing the problem from 

three dimensions to two dimensions in cylindrical coordinates. 

Laboratory models, pioneered by Ward ( 1972), were the first to provide direct measure

ments of the wind field associated with "tornado-like" vortices- a term which could apply to any 

vortex caused by the convergence of rotating fluid along a lower boundary. (These would also 

include waterspouts and dust-devils, for example). For this reason, it seems, the early numerical 
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modellers simulated the environment of the laboratory apparatus rather than that of a thunder-

storm. That is, the vortex was driven by forcing rotating flow into the sides of the domain and 

drawing fluid out the top with some kind of outflow boundary conditions. 

A significant result is that numerical models have been able to reproduce many of the fea-

tures observed in laboratory vortices. The most universal feature of the laboratory results is the 

way in which the flow through the vortex depends on a nondimensional parameter known as the 

swirl ratio: 

s = rro 
2Qh 

(1.1) 

where r is the circulation of the air as it enters the convection region in the apparatus, r0 is the 

radius of the updraft, Q is the volume flow rate per unit axial length, and h is the depth of the 

inflow region (Church et al. 1979). As the value of the swirl parameter is increased, the vortex 

goes through various stages, as depicted in Figure 1: for S<0.1, there is no concentrated vortex at 

the surface. For larger values, a concentrated vortex does appear at the surface, and at some height 

·above it there is a "vortex breakdown" where the flow transitions from a tight, laminar vortex to a 

broader, turbulent state. The vortex breakdown [Harvey (1962); Benjamin (1962); Lugt (1989)] is 

considered to be an axisymmetric analogue to the hydraulic jump phenomenon observed in chan-

nel flows. As S is increased, the altitude of the vortex breakdown decreases, until around S=0.45 

the breakdown is just above the surface. This state has been referred to as a "drowned vortex 

jump," and is generally associated with having the highest near-surface azimuthal wind velocities. 

When S is further increased, the vortex breakdown reaches the surface and the vortex changes to a 

"two-celled" structure, where there is a downward recirculation in the vortex core and the radius 

of maximum winds substantially increases. Still larger values of S results in the appearance of 
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multiple vortices rotating around the vortex core. Three-dimensional models have also reproduced 

this multiple vortex phenomenon [Rotunno (1984); Lewellen (1993)]. A general review of the 

results of laboratory modelling of tornado-like vortices can be found in Church and Snow (1993). 

Wilson and Rotunno (1986), used a model based on earlier work by Rotunno (1979,1984) 

to address the validity of various approximate laminar solutions for swirling boundary layers. 

They found good agreement with those solutions and with laboratory results. Howells, et al. 

( 1988) focused instead on the dynamics over a wide range of swirl ratios and eddy viscosities, and 

studied the effect of no-slip versus free-slip lower boundary conditions. Their results demon

strated that the combination of high swirl ratio, low eddy viscosity, and the no-slip boundary con

ditions produced the highest near-surface windspeeds. This combination (low viscosity but no

slip boundary conditions) may be counter-intuitive at first, but Howells et al. (1988) demonstrated 

was the importance of a thin but strong inward jet at the surface which in the no-slip case drives 

the fluid above the jet much closer to r=O than is possible with free-slip conditions. 

The most recent efforts to study tornadic vortices with an axisymmetric model have been 

by Fiedler (1993,1994,1995) whose motivation was to determine the maximum velocities a sur

face vortex could achieve as compared to the velocity associated with the "thermodynamic speed 

limit" [Lilly (1969); Fiedler and Rotunno (1986)]. This estimated speed limit is made by match

ing the minimum surface pressure, calculated from hydrostatic integration of the overhead ther

modynamic profile, with the central pressure deficit of a Rankine vortex or some other vortex 

profile. For a Rankine vortex, which has solid body rotation v = vmaxrlr max out to some radius 

rmax' and a potential flow v = vmaxr maxlr outside of r=rmax' the pressure deficit ~Pcyc at r=O 

due to cyclostrophic balance must be: 



oo 2 r max 2 

J 
V J Vmax b.p = - p-dr = - p-

2
-rdr-eye r 

0 0 r max 
J 

2 2 1 2 
PVmax' max3dr = -pvmax 

r 
rmax 

5 

(1.2) 

where p is the air density. Note that the size of the vortex, as indicated by r max• does not appear in 

the result. The hydrostatic pressure deficit beneath a convecting updraft may be computed from 

the overhead thermodynamic profile of the updraft column: 

00 00 

T' 
= J p'gdz = - J pg Tdz (1.3) 

0 0 

where p' and T' are the density and temperature deviations in the updraft from the ambient tern-

perature p and T. The assumption that the minumum pressure achievable in the vortex is due 

entirely to this hydrostatic presure deficit gives the thermodynamic speed limit: 

(1.4) 

where C is some constant that depends on the vortex profile. C=l.O for a Rankine vortex, C=0.5 

for a stagnant core vortex [this can be seen by neglecting the first integral expression from (1.2)], 

and C=0.59 for a Burgers' vortex velocity profile. Fiedler used a closed cylindrical domain, which 

has the advantage of preventing inflow/outflow boundary conditions from contributing to the 

energetics of the model. (In fact, many of the previous numerical models used fixed inflow or out-

flow velocities, which can act as variable energy sources.) Rather than modelling the temperature 

of the fluid, Fiedler used a fixed buoyancy field at the center axis of the domain to convectively 

drive the flow and force convergence at the lower boundary. Rotation was created by simply put-

ting the entire domain into solid-body rotation. Fiedler (1993,1994) explored the effects of the 

choice of rotation rate, eddy viscosity and also the additional effect of subsidence warming in the 

core on the maximum windspeeds. Based on the assumption that the pressure deficit of a drowned 
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vortex jump can be approximated by that of a stagnant-core vortex, Fiedler (1994) observed tran

sient vortices that exc.eed the thermodynamic speed limit by a factor of 5. 

There is nothing about the concept or derivation of the thermodynamic speed limit which 

proves that it is a real constraint on the maximum velocities that can be generated in a convec

tively driven vortex. This is because the hydrostatic and cyclostrophic assumptions are clearly 

violated in the presence of substantial vertical and horizontal accelerations. Lewellen (1993) 

wrote: "The tornado vortex allows a significant fraction of the potential energy of the parent storm 

to be concentrated into wind kinetic energy where it can cause great damage." How exactly this 

occurs has not been completely answered. 

The results of axisymmetric tornado-like vortex models have been strongly confirmed by 

the first detailed observations of the tornado vortex core reported by Wurman, et al. ( 1996) using 

the most recent advances in Doppler radar technology. Their observations of a tornado near Dim

mit, Texas during the VORTEX field program (Rasmussen, et al. 1994 ), showed maximum wind-

speeds of over 70 ms-1 occurring less than 200 meters above the ground in a tight ring around the 

center of the tornado. The structure of the azimuthal wind field they observed was very consistent 

with those generated by the simulations of Howells, et al. (1988), Fiedler (1993, 1994), and also 

with the results we are about to show. 

In this study we will examine not only the maximum windspeeds of axisymmetric tor

nado-like vortices, but also how the three parameters that characterize the flow - the buoyancy 

forcing, the rotational forcing, and the eddy viscosity - determine these windspeeds as well as the 

structure and behavior of the vortex. We will introduce an internal measure of the relative values 

of the azimuthal and vertical windspeeds in the vortex core which is analogous to the swirl ratio 

(1.1), and we will use this measure as well as other observations to draw new conclusions about 
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tornado-like vortices. We will also examine some cases which exhibit oscillatory solutions and 

determine the cause of these oscillations in the vortex. Finally, the implications of our results are 

discussed. 

2 Numerical Modelling of the Axisymmetric Navier-Stokes 
Equations 

2.1 The equations of motion and non-dimensionalization 

The incompressible Navier-Stokes equations for a constant-density, constant-viscosity 

fluid in cylindrical coordinates, with all azimuthally varying terms eliminated are: 

(2.1) 

(2.2) 

(2.3) 

1 a OW au u ow 
--(ru)+- = -+-+- = 0 ror oz or r oz '- (2.4) 

where u is the radial velocity, v is the azimuthal velocity, w is the vertical velocity, p is the pres-

sure, F2 is a vertical forcing term (the buoyant acceleration), and J.L is the viscosity. The last equa-

tion is the incompressibility condition for axisymmetric flow. 

The variables in (2.1)-(2.4) are non-dimensionalized as follows: 

(u, v, w) = U(u', v', w') (2.5) 

(r, z) = L(r', z') (2.6) 

p = Pp' (2.7) 
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(2.8) 

t = Tt' = (~)t' (2.9) 

where nondimensional variables are indicated by primes, and we have used an advective time 

scale in (2.9). For the moment we will postpone selection of the magnitudes of the dimensional 

parameters U, L, P, and F. Substitution of the scalings (2.5)-(2.9) into the momentum equations 

(2.1)-(2.3) results in the usual nondimensionalization of the Navier-Stokes equations, with 

J.!l p UL = 1 IRe (the inverse Reynolds number) multiplying the diffusion terms, PIp U
2 

multi-

plying the pressure gradient terms, and the nondimensional parameter FLIU2 
multiplying the 

vertical forcing term F z' . 

Following the work of Fiedler (1993), we scale the velocities according to the thermody-

namic speed limit (1.4). We choose the length scale to be the height of the domain, the forcing 

scale F to be the average of the dimensional forcing along the r=O axis, F = ( F z ( 0, z)) , and: 

(2.10) 

P = pFL (2.11) 

v = ~ = 1 
pUL Re 

(2.12) 

Using these scalings, and dropping the primes on the nondimensional variables, we obtain the 

nondimensional equations of motion: 

(2.13) 



av av av UV a 1 a a V 

[ 
2 J -+u-+w-+- = v -(--(rv))+

at ar az r ar rar ai 

aw aw aw - +u- +w
at ar az 

2 

= _ ap + v[!i_(raw)+ a w] + F az rdr ar ai z 

1 a aw au U aw --(ru) +- = - +- +- = 0 
rar az ar r az 

2.2 Numerical integration of the Navier-Stokes equations 

9 

(2.14) 

(2.15) 

(2.16) 

There are two computational challenges to numerical modelling of the equations of 

motion. The first is the enforcement of incompressibility, (2.16); the second is the evaluation of 

the non-linear advection terms in the momentum equations (2.13)-(2.15) in a manner which keeps 

the solution stable. Traditional methods [Rotunno (1979); Fiedler (1993)] have used the following 

techniques. for these problems: First, the radial and vertical momentum equations are combined 

into a streamfunction-vorticity equation and the pressure is thereby eliminated from the problem. 

This, however, creates the need to calculate the streamfunction from the vorticity, which has many 

challenges, particularly the extrapolation of the (unknown) vorticity to the domain boundaries. 

Secondly, the nonlinear terms in the streamfunction-vorticity equation are computed from an 

Arakawa-type Jacobian which keeps the system stable as long as the usual time step constraints 

are met. 

We have instead used a velocity-pressure formulation. First, we consider the equations of 

motion as a simplified vector equation: 

du 
- = F(u)-Vp 
dt (2.17) 

Here we have written the functional F(u) in. place of the advective, diffusive, and vertical forcing 

terms. Since u is always nondivergent, so must be au/at. We also know that an arbitrary vector 
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field, such as one generated by F(u), can be written as the sum of a nondivergent part and an irro

tational (and divergent) part, the uniqueness of which are provided by the boundary conditions. 

Therefore we can conclude that for u to remain nondivergent, - Vp must exactly cancel the irrota

tional part of F(u). Suppose we had some method for directly extracting the nondivergent part of 

F(u). We call this the projection P of F(u) onto the space of divergence-free vector fields. The 

equations of motion can then be succintly written CJu/iJt = P[F(u)] . The theory and technique 

behind this method were introduced by Chorin (1968, 1969) and have been developed extensively 

since then [see, for example, the text by Peyret and Thomas (1983)]. Most recent projection meth

ods are second-order accurate in space and time. In axisymmetric flows the swirling velocity v is 

already nondivergent and is left out of the projection. 

For the nonlinear advection terms, we used a Godunov-type upwinding method developed 

by Colella ( 1987) and Bell, Colella, and Glaz ( 1989) which is also second-order accurate. This 

method approximately solves the Riemann problem in the vicinity of each gridpoint and ulti

mately becomes a fully explicit approximation to a Crank-Nicholson method. The interested 

reader may find more details in Minion (1994) and Minion (1996). 

In this model, the domain is divided up into rectangular cells, with velocity information 

stored at the cell centers and the scalar information stored at the cell corners. The edges of the out

ermost cells are coincident with the domain boundaries. Most of the simulations reported here use 

grids that are regularly spaced in each direction, with either 64x64 gridpoints or 128x128 grid

points. Over the course of nu;merous simulations, we have found that for quantities such as maxi

mum sustained velocities, the results of 64x64 gridpoint simulations were very similar to those 

with 128x128 gridpoints. A complete description of this axisymmetric incompressible numerical 

model may be found in Nolan (1996). 
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3 Results and Exploration of Parameter Space 

3.1 Comparison to previously reported results 

We tested the model by comparing it to some previously published results, using the same 

type of domain, boundary conditions, and forcing. As discussed above, Fiedler (1993) used an 

axisymmetric incompressible flow model to investigate the formation and maximum windspeeds 

of vortices generated by convection in a rotating domain. He used the streamfunction-vorticity 

method, and modified the equations so that the domain was in solid body rotation at a dimension-

less rotation rate .Q=0.2. His simulations were nondimensional, with a domain height of Z= 1 and 

radius of R=2. This radius was chosen to be large enough so as not to influence the behavior of the 

vortex near r=O. Although our equations did not have a Coriolis term to represent solid body rota-

tion, we were able to reproduce Fiedler's work by initializing the azimuthal velocity with v=.Qr 

and by also setting the boundaries in rotation at the same rate. We used Fiedler's (1993) buoyancy 

field: 

2 2 
Fz(r, z) = 1.264e-20[r +(z-0.5) l (3.1) 

The major and unreproducible difference between Fiedler's simulations and ours is that his model 

used a stretched coordinate system which packed the gridpoints near r=O, z=O, whereas ours was 

designed such that it could only have equal gridpoint separation in each direction. He used 61x61 

gridpoints for most of his simulations, whereas we in this case use 128x128. Finally, we also 

begin with the same value for the nondimensional kinematic viscosity [the inverse Reynolds num-

ber], v=0.0005. 

Figure 2 shows the vertical velocities, azimuthal velocities, pressure, and the velocity vee-

tors in the r-z plane at t=10 for a simulation based on Fiedler's (1993) conditions. The velocity 

vectors in the r-z plane are hereafter referred to as the meridional velocity vectors. Figure 3 shows 
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these fields at t=40 (these times were chosen to compare our results to the previous work). In this 

later result, we can see in the meridional vector velocity plot how the vertical flow in the vortex 

core separates from the r=O axis, and we can also see in the vertical velocity contour plot the 

appearance of a recirculation zone above the vortex core, as indicated by the negative velocities 

just above the surface. This feature is generally interpreted to be ·an axisymmetric equivalent of 

the vortex breakdown seen in the laboratory experiments (c.f. Figure 1). The maximum velocities 

and minimum pressure occurring in the domain as a function of time are shown in Figure 4. This 

pressure is purely dynamic and is defined to be zero in the upper-right hand corner of the domain . 

. One can see a pattern where all three velocities episodically increase and then decrease in time. 

Longer simulations (not shown) revealed that these oscillations in the maximum velocities did not 

decay completely but periodically reappeared for as long as the simulation with these parameters 

was integrated. The cause of these oscillations will be discussed further below in section 4. We 

found that the similarity of our results to Fiedler (1993) was qualitatively very high, while quanti

tatively they were fairly similar although there are significant differences in the maximum veloci

ties. Our maximum azimuthal velocity is Vmax=l.16, which occurs at t=11.6; for Fiedler (1993), 

the result was Vmax= 1.26 at time t= 11. 

By comparing the maximum velocities at t= 10 and t=40, we are inclined to draw the con

clusion that the vortex is much stronger during its intensification stage than when it has settled 

into a nearly steady state. For certain values of rotation rate and eddy viscosity, Fiedler ( 1994) 

observed transient maximum windspeeds as much as 5 times faster than the thermodynamic speed 

limit (vmax=l in this case) defined by the stagnant core vortex. However, it is not likely that these 

transient solutions offer much guidance to the dynamics of real tornadoes, which certainly do not 

form when a fixed vertical forcing field is instantaneously applied to a column of air in solid body 
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rotation. Furthermore, since tornadoes have been observed to produce damaging winds for as long 

as 45 minutes, it is a quasi-steady state solution that should represent them best. With this in mind, 

our goal should be to focus on the dynamics of quasi-steady solutions. 

3.2 The effect of the ceiling at z=l 

It is reasonable to wonder to what extent the "ceiling" at z= 1 effects the formation and 

behavior of the vortex at the lower surface. One may also speculate that the recirculation seen in 

the fully-developed vortex owes its existence, at least in part, to the ceiling. To address these con

cerns, we ran another simulation with the same grid spacing, but twice the domain size in the ver

tical direction; this required using 256 grid points in the vertical direction. The results are shown 

in Figure 5 for the azimuthal and vertical velocities at t= 10 and t=40. Comparing these to the pre

vious results at t=lO and t=40, as shown in Figure 2 and Figure 3, we see thatthese results with a 

higher ceiling are very similar. Note especially the appearance of a recirculation zone above the 

fully developed drowned vortex jump vortex at t=40, although it is slightly weaker in the case 

with the higher ceiling. 

3.3 Two parameters that characterize the flow 

As discussed in section 1, laboratory modellers found a correlation between the structure 

of the tornado-like vortex and the value of the nondimensional swirl ratio S as defined by (1.1). 

This swirl ratio depends on the volume flow rate of the air through the apparatus and its required 

rotation rate as it enters the convection zone. The conventional definition of the swirl ratio is not 

applicable to closed domain models such as ours and that of Fiedler (1993), because the rotation 

and flow rates of the fluid through the central vortex is not under the control of the modeller. How

ever, we can instead define an "internal" swirl ratio based on the measured rotation and flow rates 

of the fluid through the region surrounding the vortex. 

To do this, we define a control volume that surrounds the central vortex, such that the 
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boundaries of the control volume represent the inflow region into the vortex, the outflow region 

above the vortex, the surface, and r=O. We define the internal swirl ratio as: 

ro foor(ro, z)dz 

2
h0 foo w(r, z0 )2rtrdr 

(3.2) 

where r is the circulation rV. For our simulations here we use r0=0.25, and h0=0.25, i.e., the con-

trol volume is a cylinder of radius 0.25 and depth 0.25, adjacent to the corner at r=O, z=O. 

We shall now introduce another parameter that characterizes the flow. Recall that the moti-

vation for Fiedler's work was to determine the maximum windspeeds that can be generated by a 

given buoyancy field. He considered the vertical integral along r=O of the buoyancy function (3.1) 

to be analogous to CAPE (convective available potential energy), which is a way of expressing the 

potential intensity of thunderstorms from their environmental thermodynamic sounding [Emanuel 

(1994)]. Note also that when the background vertical density profile is a constant, the CAPE is 

equal to the potential minimum hydrostatic pressure divided by the density p, i.e.: 

CAPE= 

LNB 

f T' !l.phyd 
g Tdz =- p 

0 

(3.3) 

where LNB is the level of neutral buoyancy and T'(z) is the temperature deviation from the 

background temperature T(z) of a parcel of air rising adiabatically from the surface to the LNB. 

For_ example, the maximum integral of force time distance [integral of b(O, z) ] for the forcing 

used above is 0.5. Fiedler (1993, 1994) argues- that the drowned vortex jump state has a 

cyclostrophic pressure drop which is similar to that of a stagnant core vortex which has C=0.5, so 

the thermodynamic speed limit for his simulations was therefore Vmax= l. Even when the vortex is 

not in hydrostatic balance, we expect from dimensional considerations that the square of the max-
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imum azimuthal velocity would be proportional to the equivalent of the CAPE for our numerical 

model: 

J
l 2 

0 
b(O, z)dz = Cvmax (3.4) 

where C is some coefficient that may also depend on the viscosity and the rotational forcing. As 

discussed in section 1, this coefficient has certain~well known values for various idealized velocity 

profiles. However, this Cis not so easily interpreted since, for a given convective forcing, it is pro-

portional to the inverse of the square of the maximum azimuthal velocity. We define a new veloc-

ity coefficient Cv as: 

c = v 
vmax 

(3.5) 

( 
I )1/2 

2 J
0 

b(O, z)dz 

By this definition, Cv is the ratio of the maximum swirling velocity to the maximum convective 

velocity predicted from the equivalent CAPE, i.e., Cv = vmaxlwcAPE. 

Figure 6 shows the internal swirl ratio 51 and the velocity coefficient Cv during the original 

. Fiedler (1993) type simulation described above. 51 is initially not well-defined since no meridi-

onal flow exists at t=O; however, as the vortex forms it quickly adjust to values which are repre-

sentative of the flow under consideration. Around t=lO 51 wildly oscillates around a value of 

approximately 2.5 in a manner similar to the maximum vertical velocites (see Figure 4); as the 

vortex settles into a quasi-steady state these oscillations persist with much smaller magnitudes and 

a seemingly constant frequency. Around t=lO Cv shows large oscillations about a value of0.7, but 

then settles into a nearly constant value of 0.8. This constancy is surprising in contrast to the oscil-

lations in S b and it indicates that even while the ratio of the volumetric flow through the vortex 
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core to the angular momentum entering the vortex core is varying in time, the maximum azi

muthal velocity is nearly constant. 

It should be noted that the value of 51 also depends explicitly on the choice for the dimen-

sions of the control volume defined above. 51 was found to have higher values for larger control 

volumes and lower values for smaller control volumes. Thus this internal swirl parameter is not 

universal in any way and cannot be compared to the swirl ratios measured in laboratory models. 

However, we shall see that this particular definition of the swirl ratio will be useful in the same 

way as the swirl ratio defined for laboratory models. 

3.4 Vortex structure and intensity as a function of the controlling parameters 

We now turn to the major area of investigation of this report: how do· the structure and 

intensity of the vortex depend on the three global parameters that determine the flow? These 

parameters are the strength of the convective forcing, the strength of the rotational forcing (i.e., 

the domain rotation rate), and the magnitude of the model eddy viscosity. To determine these rela

tionships, we performed many numerical simulations of the type outlined above, with different 

values for the three controlling parameters. Due to limitations of computation time, these simula

tions were performed the lower resolution of 64x64 gridpoints. Sets of simulations were per

formed with one of the parameters varying and the other two held fixed. The simulations in all 

cases were integrated from t=O to t=200, and the velocities and internal swirl ratios were recorded 

every 10 time steps during these simulations. The mean values and the variances of the maximum 

velocities and the internal swirl ratio in each case were evaluated using the last 100 time units of 

the simulations. 

We first show the dependence of the results on the strength of the convective forcing. We 

varied the bouyancy forcing from 10% to 200% of its original value, i.e.: 
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(3.6) 

where bF is Fiedler's original buoyancy field (3.1). The rotation rate was 0=0.2 and the eddy vis

cosity was v=O.OOI. Figure 7 shows the mean values of maximum velocities as a function of the 

strength of the convective forcing. The linear relationship between the convective forcing and the 

maximum kinetic energy density of the flow is approximately verified. We also show in Figure 8 

the mean values of 51 and Cv for this range of convective forcing strengths. For low values of the 

convective forcing coefficient, Cv is increasing slowly and 51 decreases slowly with increasing 

convective forcing. However, for Cb> 1 the values become nearly constant and approach S1=2.2 

and Cv=0.79. 

Figure 9 shows the maximum velocities as a function of the rotational forcing, with the 

domain rotation rate 0 varying from 0.02 to 0.4. The model eddy viscosity is held fixed at 

v=0.001 and the convective forcing is again Fiedler's original forcing (3.1). We can see that for 

very low rotation rates the radial and azimuthal velocities are very low, while the vertical veloci

ties are relatively high. For higher rotation rates all three velocities increase, with the vertical 

velocities still exceeding the azimuthal velocities by about 50%. However, for larger rotation rates 

the vertical velocities decrease until they are substantially less than the azimuthal velocities. Over 

this range of values for 0 the maximum azimuthal and radial velocities decrease only slightly. 

Figure lOa shows the mean values of 51 and Cv versus the rotation rate. Not surprisingly, 51 

increases steadily with increasing n. Cv has low values for the lowest values of Q, due to the fact 

that an intense vortex does not form for very low values of the swirl ratio (see Figure 1 ). However, 

for values of 0 where a vortex does form, Cv increases to a maximum of 0.88 when 0=0.08 and 

decreases to 0.70 when 0=0.4. This indicates that the efficiency with which the convective fore-
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ing is converted into azimuthal wind velocity decreases for large rotation rates. 

A comparison of Figure 4 an,d Figure 6 also shows that variations in 51 are a good indica-

tor of variations in the vertical and azimuthal velocities in the vortex core. Thus the variance of 51 

is a good indicator of the variance of the maximum velocities. Figure lOb shows the variance of 51 

versus the rotation rate Q We can see that for values of Q greater than 0.25 the variance increases 

suddenly from negligible values to values on the order of 0.5. Thus we can conclude that for rota

tion rates Q>0.25 the flow in the vortex core is unsteady. 

How does the flow through the vortex core differ between the low-rotation rate and high

rotation rate regimes? Figure 11 shows close-ups of the velocity fields in the vortex core for the 

case when Q=0.1 (plots a and b) and also when !2=0.4 (plots c and d). In the first case the bound

ary layer inflow penetrates all the way to the r=O axis, then turns upward into a strong axial jet 

along the axis. It separates from the axis around z=0.4. The maximum azimuthal velocities are 

V = 0.79 and they occur at r=0.1 and z=0.23. In the second case, the boundary layer inflow also 

penetrates to r=O and turns upward, but the vertical flow breaks away from the vertical axis at 

z=0.15. The maximum azimuthal velocity is less, occurring at r=0.12 and at the much lower alti

tude of z=0.08. Comparison of these two results with the illustrations of the structure of laboratory 

vortices as a function of swirl ratio indicate that the results with Q=0.1 clearly reproduce a low

swirl intense vortex as shown in Figure 1 b, while the results with Q=0.4 clearly reproduce a 

"drowned vortex jump" as shown in Figure lc. 

The high variance of 51 when its average value is 2.5 or greater (see Figure 10) indicates 

that the flow in the vortex core is unsteady in this regime. Figure 12 shows a sample of the time 

evolution of the maximum velocities in this case. All three velocity maximums undergo steady 

oscillations, with the vertical velocities varying the most, as much as 20%. The period of oscilla-
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tion is about 6 nondimensional time units, and the maxima in the vertical velocities leads the max

ima in the radial and azimuthal velocities by about 1 time unit. 

Finally we repeat this analyis varying the model eddy viscosity v while holding the con

vective forcing fixed to its standard value (3.1) and the rotation rate .Q=0.2. Figure 13 shows the 

average maximum velocities for values of the model eddy viscosity varying from v=0.0004 to 

v=0.0022. The result is remarkable in that the maximum velocities change with increasing v in a 

manner that is strikingly opposite to how it changed with increasing rotation rate. By comparing 

Figure 14ab to Figure lOab we can make essentially the same observation in regards to the inter

nal swirl ratio 51 and the velocity coefficient Cv- We thus have the important observation that 

increasing the eddy viscosity has the same effect on the structure of the vortex as decreasing the 

domain rotation rate, and vice versa. Examination of the flows through the vortex core in the high 

and low eddy viscosity cases (not shown) gave nearly identical results to the low and high domain 

rotation rate results (respectively) shown in Figure 11, confiriming this observation. For the 

ranges of these parameters where an intense vortex is present, Cv changes relatively little. Further-

more, we see that in both cases the onset of unsteady flow in the vortex core (as measured by the 

variance of 51) occurs when 51 reaches a value of approximately 2.3. 

4 Analysis 
We have seen how, under simple convective forcing that causes convergence, a region of 

fluid in solid-body rotation collapses into an intense vortex near the surface. The highest azi

muthal velocities occur during the development of the vortex, which then settles into a quasi- , 

steady state with maximum velocities determined primarily by the strength of the convective forc

ing. Clearly, there are two issue that call for further investigation: 1) What is the source of the 



20 

oscillations observed in the maximum velocities for certain ranges of the parameters? 2) What are 

the physical reasons for the relationships we have observed, particularly the apparently reciprocal 

relationship between the effect of changing the rotational forcing and changing the eddy viscos

ity? We will address the former issue first. 

4.1 Examination of the oscillations in the vortex core 

In section 3.4 we saw that for large values of domain rotation rate, and/or low values of the 

eddy viscosity, the flow through the vortex core is unsteady. Figure 12 showed that this unsteadi

ness is associated with steady (in some cases) oscillations in the values of the maximum veloci

ties. What is the cause of these oscillations? Why are they not present in the low-swirl case? 

To address these questions we first examined closely the velocity fields in the vortex core 

in the oscillatory regime. To achieve this, we ran a 64x64 gridpoint simulation, with Q=0.4 and 

v=0.001, from t=O to t=213. We recorded the full velocity fields at 0.5 time unit intervals for the 

last 13 time units of the simulation. We then averaged the 26 fields to obtain an "average" state of 

the vortex during the oscillations. This allowed us ~o then derive deviations from this average 

state. Upon examination of these perturbation velocity fields, we observed axisymmetirc distur

bances propagating down from above into the vortex core, which are shown in Figure 15 and Fig

ure 16 in terms of the perturbation meridional vector velocity fields. In Figure 15a, we can 

identify a clockwise circulation centered in the vicinity of r=0.1, z=0.25. 0.5 time units later, in 

Figure 15b, this circulation can be seen to have moved downward slightly and is more distinct. 

This trend continues in the next two frames, and in Figure 15d at t=202 we can also see the begin

nings of a reverse (counterclockwise) circulation appearing above z=0.3. In the next series of 

plots, Figure 16a-d, we can see this new circulation develop and descend until it is in approxi

mately the same location as the original disturbance. Thus the cycle repeats itself indefinitely. 
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We repeated this analysis, but instead for a flow with a steady vortex core by using the 

same parameters as before except with 0=0.15, which puts the vortex in the low-swirl regime, 

without oscillations in the vortex core. Repeating the analysis above, we show in Figure 17 a 

series of deviations of the meridional vector velocities from the mean. In this case, we see that the 

perturbations are much, much weaker than :those we saw before, and rather than descending 

towards z=0.25 where the maximum windspeeds occur, they are stationary. 

Whether or not these waves propagate downwards into the location of the maximum wind

speeds is determined by the group velocities of the waves relative to the vertical velocity of the 

flow out of the vortex. When the vertical velocities are high enough to prevent these waves from 

penetrating to the surface, the vortex is said to be "supercritical," much like the flow upstream of a 

hydraulic jump. When the waves do penetrate to the surface, the vortex is considered to be "sub

critical." From these definitions, we would say that the vortex is supercritical in the low-swirl case 

and subcritical in the high-swirl case. In the following section we will investigate further with a 

numerical analysis of the stability of the flow in the vortex core. 

4.2 Eigenanalysis of axisymmetric disturbances in the vortex core 

The dynamics of axisymmetric (inertial) disturbances in axisymmetric swirling flows have 

recieved considerable attention in the field of hydrodynamic stability. Early work on the stability 

of swirling flows to axisymmetric disturbances were those of Rayleigh ( 1880), for inviscid flows, 

and Taylor (1923), for viscous flows, which are summarized in the subsequent texts such as Lamb 

(1932), Chandresekhar (1961), and Drazin and Reid (1981). In our case we are particularly inter

ested in the dynamics of axisymmetric disturbances in a viscous axisymmetric flow with shear in 

the azimuthal and vertical winds. We neglect the radial wind since it is clearly much smaller than 

the other velocity components in the region of interest. We would like to show that the distur-
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bances we observed above are indeed associated with the shear of the vertical and azimuthal 

winds, and that whether they reach the surface depends on their eigenvalues. 

Equations for the structure and phase speed of axisymmetric disturbances in a viscous 

flow with shear in both the vertical and azimuthal winds were derived in section 79 of Chan-

dresekhar (1961) for swirling flows with azimuthal velocities of the form V(r) = Ar + Blr 

(where A and B are constants - this is the general solution for a steady viscous swirling flow 

between rotating cylinders). These equations describe the evolution of small disturbances of the 

form: 

'( t) A ( ) i(kz + wt) u r, z, = u r e (4.1) 

and so on for the perturbation azimuthal and vertical velocities. Modifying those equations for 

arbitrary azimuthal velocity profiles, we have a system of two equations for the perturbation 

velocity functions u(r) and v(r), in a background flow with mean vertical velocity W(r) and 

mean azimuthal velocity V(r): 

(4.2) 

(4.3) 

where D = a;ar, D* = a;ar + 1/r, and the boundary conditions are: 

u = D D * u = v = 0 at r = 0 (4.4) 

u = Du = v = 0 at r = R (4.5) 

This eigenvalue problem for co can be solved by discretizing the system such that the functions V, 

W, u , and v are replacep by vectors of finite length, and the differential operators are replaced by 
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matrix representations of their usual centered finite-difference approximations. By writing the 

perturbation vectors as a single state vector x: 

X~ [:] 
(4.6) 

the system of equations ( 4.2)-( 4.5) may be reduced to a single discrete eigenvalue problem: 

Ax = roBx (4.7) 

which can be solved with standard generalized eigenvalue routines . 

. The mean flows V(r) and W(r) were acquired from radial profiles of the average azimuthal 

and vertical velocity fields described in section 4.1, for both the high-swirl case with .0=0.4 and 

the low-swirl case with .0=0.15. We used the radial profiles of velocity at z=0.31 since the axi

symmetric disturbances appeared to be very robust at this altitude. These profiles are shown in 

Figure 18. We first chose k=15.7, which corresponds to a vertical wavelength of0.4, our best esti

mate for the axisymmetric disturbances identified above. We set the viscosity to be the same as in 

the numerical simulation, v=O.OOI. 

We did not find any unstable modes at this or any nearby wavelengths. In fact, the dissipa

tion rates for all the modes are surprisingly high, with the imaginary parts of their eigenvalues 

being on the order of 0.5. The structures with the lowest dissipation rates are not similar to the 

axisymmetric disturbances identified above, but rather reside far away from the axis in the most 

quiescent part of the flow. However, we were able to identify modes which are similar to the dis

turbances we are looking for by selcting the one with the largest perturbation radial velocities 

ii.(r) in the vicinity of r=O.l. This mode is shown in Figure 19, and compares well to the distur

bance shown in Figure 15b. 

While we have not identified the source of these disturbances as spontaneously growing 
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unstable modes in the vortex core, some useful information can be found by examination of the 

phase speds and group velocities of these modes in the high- and low-swirl cases. Figure 20 

shows plots of the phase speed cp = -rolk, decay rates Im{ ro}, and the real parts of the eigen-

values ro, as a function of vertical wavenumber for the two examples. The group velocity 

c g = -d ro/ dk may be inferred from the plots of the Re{ ro} . We see that in the high-swirl case, 

the modes. with k=15.7 have a phase speed of -0.18 and a group velocity of +0.07. In the low-swirl 

case, the phase speed is -0.05 and the group velocity is +0.15. Thus we can see that the tendency 

for linear disturbances to travel down the vortex core and reach the surface is much less in the 

low-swirl case than in the high-swirl case. While modes with downward group velocities were 

present for all wavenumbers in both cases, such modes were not similar to the disturbances iden

tified in the numerical simulations, but rather were associated with the downward recirculation 

outside of the vortex. Note also that Figure 20b does indicate the existence of modes near the axis 

with negative group velocities for wavenumbers k<12 in the high-swirl case. 

4.3 The reciprocal relationship between rotation and eddy viscosity 

Measurement of the "internal swirl ratio" offers a way to characterize the state of the vor-

tex as the parameters are varied. We have seen that for values of internal swirl ratio above 2.5, the 

flow at the vortex core is highly oscillatory, with alternating periods of strong and weak meridi

onal flow through the vortex core. The internal swirl ratio, and the behavior of the vortex, appears 

to remain constant for a wide range of convective forcing strengths, which indicates that increas

ing the magnitude of the buoyancy forcing increases the wind speeds, but does not significantly 

change the flow structure in the vortex. We have also observed that varying the eddy viscosity has 

an effect on the vortex flow that is reciprocal to the effect of varying the rotational forcing - that is, 

increasing the viscosity has an effect similar to decreasing the rotation. 
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To further explore the apparently reciprocal nature of the rotational forcing and the eddy 

viscosity we performed a large number of 64x64 resolution simulations with varying values of 

both Q and v. Through the use of the Cray T3E at the National Energy Research Scientific Com

puting Ceneter (NERSC), we were able to efficiently produce an ensemble of 120 simulations 

with varying parameters. We found mean values and variances of the velocities, the internal swirl 

ratio, and the velocity coefficient for the parameter space defined by 0.=0.06,0.09 ... 0.33, and 

v=0.0006,0.0007 ... 0.0017. The results are depicted in Figure 21, Figure 22, and Figure 23, which 

show the values of the mean internal swirl ratio, the mean velocity coefficient, and the variance of 

the internal swirl ratio, respectively, as functions of Q and v. 

If the structure of the vortex did indeed depend solely on the ratio of the rotation rate to the 

eddy viscosity, then we would expect the swirl ratio to be purely a function of the ratio of these 

two parameters, i.e.: 

(4.8) 

If this were the case, then 51 would have constant values on rays emanating from the origin of the 

Q-v plane. For the most part, this is indeed what Figure 21 indicates. There are two caveats: 1) 

Examination of the contours of 51 showed that they did not extrapolate exactly back to the origin, 

but rather to a point where v=O and Q has a small positive value. 2) One can clearly see that the 

hypothesized dependency for 51 breaks down for large values of Q and small values ofv. 

For the present we can only speculate as to the cause of these anomalies. The relationship 

we have discovered may after all only be approximate. The structures of the solutions may also 

have an additional dependence on the Reynolds number itself as defined by the convective forcing 

and the eddy viscosity in (2.10) and (2.12). Indeed, the results shown in Figure 8 do suggest a 

weak dependence of 51 on the Reynolds number. We also note that the deviations from (4.8) for 
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large Q and v are also associated with unsteady flow in the vortex core, as shown in Figure 23. 

The relationship may break. down due the unsteadiness of the solutions in this regime. We must 

also consider the possibility that the solutions are under-resolved by the model in these cases. 

We can offer a hypothesis as to why the curves of constant 51 do not extraploate back to 

the origin. Grid-based numerical models of the Navier-Stokes equations generally have a small 

amount of built-in numerical viscosity which effectively increase the actual viscosity of the 

model. If we take this additional viscosity into account the lines of constant 51 may indeed trace 

back to the origin where the true viscosity is zero. 

The results in Figure 22 for the velocity coefficient Cv show a more complicated structure. 

The maximum azimuthal velocities increase both for decreasing Q and decreasing v, and for each 

value of v, there is a particular value of Q which produces the highest azimuthal velocities. We 

should note, however, the high azimuthal velocities indicated in the very lower left corner of the 

domain are not particularly meaningful in regards to tornado-like vortices. Examination of the 

solutions in this regime showed that an intense, near-surface vortex had not formed in these cases 

-the solutions were similar to the low swirl ratio, no near-surface vortex results of the laboratory 

experiments as depicted in Figure 1 a. Thus while large azimuthal velocities were present, they 

were not near the surface. Fortunately, we can use 51 as a guide to when a near-surface vortex is 

present. Since an intense, near-surface vortex is not present when 51 < 1.5, we may consider the 

results in this regime to be irrelevant in regards to the maximum windspeeds of tornadoes. 

Along with the results of the increasing-buoyancy simulation, all the results show that the 

vortex windspeeds are determined by the convective forcing and the velocity coefficient, while the 

structure and behavior of the vortex are determined by the relative values of the rotational forcing 

and the viscosity. The consideration of two hypothetical experiments helps to clarify the relation-



27 

ships we have observed. The first hypothetical experiment is similar to the one we have simulated 

but without rotation, i.e., imagine the forced convection of an incompressible fluid above a sur

face, by a fixed buoyancy field with length scale L and forcing scale F. Scaling U as before by the 

convective velocity scale, U
2 

= FL, we find a single dimensionless parameter which we will call 

the convective Reynolds number: Rec = UL/v. The second problem is the interaction of an 

unbounded vortex with a stationary lower surface, in which case the only two dimensional param

eters are the circulation r=rv of the fluid in the far field, and the kinematic.viscosity v. As earlier 

researchers such as Barcilon (1967), Burggraf et al. (1971) and Serrin (1972) found, these two 

parameters necessarily form a single dimnesionless parameter that controls the flow which is 

sometimes called the vortex Reynolds number: Rev = r /v. 

Putting these two problems together, we can see that these two Reynolds numbers neces

sarily control the flow in tornado-like vortices, which in our dimensionless model are 

Rec = 1 /v and Rev = .Q/v. From the numerical simulations we have seen that the velocity 

coefficient is a function of both parameters, while the structure and dynamics of the flow (i.e, the 

internal swirl ratio) is apparently a function of Rev only. Why does the structure and behavior of 

the flow depend so strongly on the vortex Reynolds number only? The internal swirl ratio depends 

on the volume rate of the flow up through the axis of the vortex, which is ultimately determined by 

the strength of the radial inflow in the surface boundary layer and whether or not this radial inflow 

penetrates to the axis at r=O. The surface boundary layer, in turn, can be approximated by the 

boundary layer beneath a potential vortex. From the "point of view" of the boundary layer, r and 

v are the only dimensional parameters! Therefore, these parameters control the radial inflow, 

which in turn determines the structure and behavior of the vortex. 
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5 Conclusions 
Our results are in general agreement with previous tornado-vortex research, with the 

important new observation of the controlling effect of the ratio of rotational forcing to eddy vis

cosity on the structure and behavior of axisymmetric tornado-like vortices. This dynamical rela

tionship is important for two reasons. First, it unifies the results of previous papers, such as those 

by Rotunno (1979), Walko and Gall (1986), Howells, et. al. (1988), and Fiedler (1994, 1995), 

which reported a variety of results regarding vortex structure and maximum wind speeds for a 

variety of values for the rotational forcing and eddy viscosity. For example, in regards to how the 

model parameters affected the maximum windspeeds, Fiedler ( 1994) reported that "The decrease 

in viscosity has little effect on the maximum windspeed of the most intense vortex, but has a large 

effect on the value of 2Q that produces the most intense vortex. With v0=2.5x104 , the most 

intense vortex occurs with 2Q=0.07 ... With v0=1.25x104 , the most intense vortex occurs with 

2Q=0.04 ... " Thus Fiedler observed that the maximum winds peed as a function of the rotation rate 

was different for different viscosities - in fact for this example the rotation rate of maximum wind

speed is approximately halved when the viscosity is halved; this is indeed the relationship we 

have demonstrated and explained. 

The second reason these findings are important is that they indicate how these vortices will 

behave as we increase the Reynolds number to values that apply to the atmosphere. In particular, 

we see two trends that are significant: 1) as the model eddy viscosity is decreased, the maximum 

possible windspeed (for the best choice of rotation rate) increases, and 2) less and less rotational 

forcing is required to achieve that maximum windspeed. This first point is significant because it 

means that axisymmetric models may yet produce realistic tornado windspeeds if they can be run 

with more "realistic" Reynolds numbers. The second point is particularly important because one 
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of the obvious weaknesses of current numerical tornado-vortex simulations is that they supply the 

vortex with a steady, symmetric, and unlimited field of rotating fluid. Our results show that as the 

Reynolds number is increased less and less rotation will be necessary to produce a realistic tor

nado vortex. 

Finally, our conclusions have some interesting implications for real tornadoes and the 

wide variety of structures and behaviors they exhibit. Tornado aficionados are familiar with two 

typical tornado structures: the tight, wound-up vortex with a nearly laminar appearance (typical of 

waterspouts, for example), and the broad, diffuse vortex with a wide base and an extremely turbu

lent flow (typical of severe torndaoes in the central U.S.). In analogy with the laboratory experi

ments, these two cases have been recognized as. vortices in the low-swirl and high-swirl regime, 

respectively. Our results suggest that the structure of a tornado is determined entirely by the angu

lar momentum of the background rotating wind field and an as yet undetermined appropriate 

value for the turbulent eddy viscosity, which may depend on various factors such as surface 

roughness. Given these parameters, the maximum windspeeds will then be the proportional to the 

intensity of the convection that supplies the vertical forcing (the overhead thunderstorm) and to 

the appropriate value of the velocity coefficient Cv-

The structure and dynamics of actual tornadoes will therefore depend crucially on the 

details of their turbulent swirling boundary layers. This leads to the inevitable conclusion that a 

complete understanding of tornado vortices, that can make more precise claims for observables 

such as the maximum windspeeds, will require an understanding of how a fully turbulent swirling 

boundary layer is different from a laminar approximation. 
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Figure Captions 

Figure 1: Illustrations of four of the stages that laboratory and numerical models of tornados pro

duce as the swirl ratio is increased from zero: a) weak vortex stage; b) surface vortex 

with vortex breakdown above the surface; c) drowned vortex jump (breakdown just 

above the surface); d) two-celled vortex with stagnant core. The solid lines are stream

lines of meridional flow, the arrows indicate the direction and details of the circulation, 

and the "M" marks the location of the maximum azimuthal (swirling) velocities. 

Figure 2: Results for the Fiedler ( 1993)-type simulation at t= 10: a) Swirling (azimuthal) velocity; 

b) vertical velocity; c) pressure; d) meridional velocity vectors in the r-z plane. Dashed 

contours indicate negative values, maxima and minima are indicated, and the contour 

intervals are indicated at the top of each plot.All plots show the domain for O<r<l, 

O<z<l, except for the meridional vector velocity plot, which is for 0<r<0.3, O~z<0.3. 

Figure 3: Results for the Fiedler (1993)-type simulation at t=40: a) Swirling (azimuthal) velocity; 

b) vertical velocity; c) pressure; d) meridional velocity vectors in the r-z plane. Dashed 

contours indicate negative values, maxima and minima are indicated, and the contour 

intervals are indicated at the top of each plot. All plots show the domain for O<r< 1, 

0<z<1, except for the meridional vector velocity plot, which is for O<r<0.3, 0<z<0.3. 

Figure 4: Maximum velocities and minumum pressure as a function oftime in the original Fiedler 

(1993)-type simulation: vertical velocity (dash-dot), azimuthal velocity (dashed), in

ward radial velocity (solid), and pressure (solid, negative). 
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Figure 5: Results of a Fiedler (1993)-type siumlation with twice the domain height: a) contours 

of azimuthal velocity at t= 1 0; b) contours of vertical velocity at t= 1 0; c) contours of az

imuthal velocity at t=40; d) contours of vertical velocity at t=40. The domain in each 

frame is from 0<r<1, 0<z<2. Dashed contours indicate negative values, maxima and 

minima are indicated, and the contoru intervals are indicated at the top of each plot. 

Figure 6: Internal swirl ratio 51 (solid line) and velocity coefficient Cv (dashed lined) during the 

Fiedler ( 1993 )-type simulation shown above. 

Figure 7: Averages of t~e squares of the maximum velocities as a function of the strength of the 

convective forcing: average squared radial velocities are marked by circles, azimuthal 

velocities are marked by x's and vertical velocities are marked by +'s. 

Figure 8: Average values for the internal swirl ratio 51 and the velocity coeffcient Cv as a function 

of the strength of the convective forcing; 51 is marked by the circles and Cv is marked 

by the +'s. 

Figure 9: Average maximum velocities as a function of the rotation rate .Q: radial velocities are 

marked by circles, azimuthal velocities are marked by +'s, and vertical velocities are 

marked by x' s. 

Figure 10: a) Average values for the internal swirl ratio 51 and the velocity coefficient Cv as a func

tion of the rotation rate .Q of the domain. 51 is marked by the circles and CL is marked 

by the +' s; b) Variance of S 1 as a function of the rotation rate .Q of the domain. 

Figure 11: Close-up of the velocity fields in the vortex core for two different domain rotation rates: 
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a) close-up of the azimuthal velocity field for Q=0.1; b) close-up of the meridional ve

locity vectors for Q=0.1; c) close-up of the azimuthal velocity field for Q=0.4; d) close

up of the meridional velocity vectors for Q=0.4. The contour intervals or maximum ve

locities are indicated at the top of each frame. 

Figure 12: A sample of the time evolution of the maximum velocities in a Fiedler (1993)-type sim

ulation with Q=0.4 and v=0.001: maximum inward radial velocities (solid), azimuthal 

velocities (dashed), and vertical velocities (dash-dot). 

Figure 13: Average maximum velocities as a function of the model eddy viscosity: average max

imum radial velocities are marked by circles, azimuthal velocities are marked by +'s 

and vertical velocities are marked by x' s. 

Figure 14: a) Average values for the internal swirl ratio 51 and the velocity coefficient Cv as a func

tion of the model eddy viscosity v. 51 is marked by the circles and Cv is marked by the 

+' s; b) Variance of S 1 as a function of the model eddy viscosity v. 

Figure 15: Meridional vector velocity plots of the deviations from the average velocity field of the 

vortex in the oscillatory, high-swirl regime: a) deviation from the mean at t=200.5; b) 

t=201.0; c) t=201.5; d) t=202.0. The plots show the domain from 0<r<0.5, 0<z<0.5. The 

maximum velocities are indicated at the top of each frame. 

Figure 16: Meridional vector velocity plots of the deviations from the average velocity field of the 

vortex in the oscillatory, high-swirl regime: a) deviation from the mean at t=202.5; b) 

t=203.1; c) t=203.6; d) t=204.1. The plots show the domain from0<r<0.5, 0<z<0.5. The 

maximum velocities are indicated at the top of each frame. 
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Figure 17: Meridional vector velocity plots of the deviations from the average velocity field of the 

vortex in the steady, low-swirl regime: a) deviation from the mean at t=180.0; b) 

t=180.5; c) t=l81.0; d) t=181.5. The plots show the domain from0<r<0.5, 0<z<0.5. The 

maximum velocities are indicated at the top of each frame. 

Figure 18: Radial profiles of average azimuthal and vertical velocities at z=0.3125 in the two sim

ulations considered in section 4.1: a) azimuthal velocity, high-swirl case; b) vertical ve

locity, high-swirl case; c) azimuthal velocity, low-swirl case; d) vertical velocity, low

swirl case. 

Figure 19: Modal structure with vertical wavelentgh 0.4 and maximum radial velocities at r=0.1 

found from eigenanalysis of the vortex core in the high-swirl case. 

Figure 20: Plots of phase speed, decay rate, and the real parts of ro versus vertical wavenumber k 

for the modes with maximum amplitude at r=0.1: a) phase speed and decay rate, high 

swirl case; b) ro, high-swirl case; c) phase speed and decay rate, low-swirl case; d) ro, 

low-swirl case. 

Figure 21: Contour plot of the mean value of the internal swirl ratio as a function of the domain 

rotation rate Q and the eddy viscosity v. 

Figure 22: Contour plot of the mean value of the velocity coefficient Cv as a function of the do

main rotation rate Q and the eddy viscosity v. 

Figure 23: Contour plot of the variance of the internal swirl ratio 51 as a function of the domain 

rotation rate Q and the eddy viscosity v. Due to the wide range in values for the vari-

38 



ance, the contour levels have been chosen arbitratily to have the following values : 0.04, 

0.08 ... 0.16; 0.2, 0.4 .... 1.2. 
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Figure 1 Illustrations of four of the stages that laboratory and numerical models of tor
nados produce as the swirl ratio is increased from zero: a) weak vortex stage; 
b) surface vortex with vortex breakdown above the surface; c) drowned vortex 
jump (breakdown just above the surface); d) two-celled vortex with stagnant 
core. The solid lines are streamlines of meridional flow, the arrows indicate 
the direction and details of the circulation, and the "M" marks the location of 
the maximum azimuthal (swirling) velocities. 
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c) d) 
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Results for the Fiedler (1993)-type simulation at t=lO: a) Swirling (azimuthal) 
velocity; b) vertical velocity; c) pressure; d) meridional velocity vectors in the 
r-z plane. Dashed contours indicate negative values, maxima and minima are 
indicated, and the contour intervals are indicated at the top of each plot.All 
plots show the domain for O<r<l, O<z<l, except for the meridional vector 
velocity plot, which is for 0<r<0.3, 0<z<0.3. 
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c) d) 
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Results for the Fiedler (1993)-type simulation at t=40: a) Swirling (azimuthal) 
velocity; b) vertical velocity; c) pressure; d) meridional velocity vectors in the 
r-z plane. Dashed contours indicate negative values, maxima and minima are 
indicated, and the contour intervals are indicated at the top of each plot. All 
plots show the domain for O<r<l, O<z<l, except for the meridional vector 
velocity plot, which is for O<r<0.3, 0<z<0.3. 
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Figure 4 Maximum velocities and minumum pressure as a function of time in the origi
nal Fiedler (1993)-type simulation: vertical velocity (dash-dot), azimuthal 
velocity (dashed), inward radial velocity (solid), and pressure (solid, nega
tive). 
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a) b) 
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c) contours of azimuthal velocity at t=40; d) contours of vertical velocity at 
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Figure 8 Average values for the internal swirl ratio 51 and the velocity coeffcient Cv as 

a function of the -strength of the convective forcing; S 1 is marked by the circles 

and Cv is marked by the +'s. 
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Figure 10 a) Average values for the internal swirl ratio 51 and the velocity coefficient Cv 
as a function of the rotation rate Q of the domain. 51 is marked by the circles 

and CL is marked by the +'s; b) Variance of 51 as a function of the rotation rate 

n of the domain. 
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Figure 11 Close-up of the velocity fields in the vortex core for two different domain rota
tion rates: a) close-up of the azimuthal velocity field for Q=0.1; b) close-up of 
the meridional velocity vectors for Q=0.1; c) close-up of the azimuthal veloc
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The contour intervals or maximum velocities are indicated at the top of each 
frame. 
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Figure 12 A sample of the time evolution ofthe maximum velocities in a Fiedler (1993)
type simulation with .Q=0.4 and v=O.OOl: maximum inward radial velocities 
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Figure 13 Average maximum velocities as a function of the model eddy viscosity: aver
age maximum radial velocities are marked by circles, azimuthal velocities are 
marked by +'sand vertical velocities are marked by x's. 
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Figure 14 a) Average values for the internal swirl ratio 51 and the velocity coefficient Cv 
as a function of the model eddy viscosity v. S 1 is marked by the circles and Cv 
is marked by the +'s; b) Variance of 51 as a function of the model eddy viscos
ity v. 
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Figure 15 Meridional vector velocity plots of the deviations from the average velocity 
field of the vortex in the oscillatory, high-swirl regime: a) deviation from the 
mean at t=200.5; b) t=201.0; c) t=201.5; d) t=202.0. The plots show the 
domain from 0<r<0.5, 0<z<0.5. The maximum velocities are indicated at the 
top of each frame. 
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nr=84 nz=64 [u,w] at t=203.6 lvlmax=0.1282- Fiedler93 omega=0.4 nu=0.001 
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Meridional vector velocity plots of the deviations from the average velocity 
field of the vortex in the oscillatory, high-swirl regime: a) deviation from the 
mean at t=202.5; b) t=203.1; c) t=203.6; d) t=204.1. The plots show the 
domain from 0<r<0.5, 0<z<0.5. The maximum velocities are indicated at the 
top of each frame. 
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a) b) 
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c) d) 
nr=64 nz=64 [u,w] at t=181 lvlmax=0.001131 - Fiedler93 omega=0.15 nu=0.001 nr=64 nz=64 [u,w] at t=181.5 lvlmax=0.0009887- Fiedler93 omega=0.15 nu=0.001 
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Figure 17 Meridional vector velocity plots of the deviations from the average velocity 
field of the vortex in the steady, low-swirl regime: a) deviation from the mean 
at t=l80.0; b) t=l80.5; c) t=181.0; d) t=181.5. The plots show the domain 
from 0<r<0.5, 0<z<0.5. The maximum velocities are indicated at the top of 
each frame. 
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Rad. prof. of vt at z=0.3125 
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b) 
Rad, prof. of vz at z=0.3125 
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Figure 18 Radial profiles of average azimuthal and vertical velocities at z=0.3125 in the 
two simulations considered in section 4.1: a) azimuthal velocity, high-swirl 
case; b) vertical velocity, high-swirl case; c) azimuthal velocity, low-swirl 
case; d) vertical velocity, low-swirl case. 



Maximal mode for r=0.1, k=15.708 cp=-0.14225 decay rate=0.51163 
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Figure 19 Modal structure with vertical wavelentgh 0.4 and maximum radial velocities 
at r=O.l found from eigenanalysis of the vortex core in the high-swirl case. 
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Pt\ase speed (o) and decay rate(+) vs. k, lor maximal mode at r=O.l 
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Figure 20 Plots of phase speed, decay rate, and the real parts of ro versus vertical wave
number k for the modes with maximum amplitude at r=O.l: a) phase speed 
and decay rate, high swirl case; b) ro, high-swirl case; c) phase speed and 
decay rate, low-swirl case; d) ro, low-swirl case. 
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Figure 21 Contour plot of the mean value of the internal swirl ratio as a function of the 
domain rotation rate Q and the eddy viscosity v. 
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Figure 22 Contour plot of the mean value of the velocity coefficient Cv as a function of 
the domain rotation rate Q and the eddy viscosity v. 



Contour plot of variance of S(l) vs. Omega and Nu 
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Figure 23 Contour plot of the variance of the internal swirl ratio S 1 as a function of the 
domain rotation rate Q and the eddy viscosity v. Due to the wide range in val
ues for the variance, the contour levels have been chosen arbitratily to have the 
following values: 0.04, 0.08 ... 0.16; 0.2, 0.4 .... 1.2. 
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