
0 

0 

0 

.. 

.. 

0 

LBNL-41101 
UC-405 

ERNEST ORLANDO LAWRENCE 
NATIONAL LABORATORY BERKELEY 

On Updating Problems in 
Latent Semantic Indexing 

Horst D. Simon and Hongyuan Zha 

Computing Sciences Directorate 

November 1997 

·~· . . """' .. ,; 

n 
0 

:::0 "0 m C< 
""II .... 

,.... 
CD z ,.... 
I 

.Q. .... .... 
lSI .... 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



On Updating Problems in Latent Semantic Indexing 

Horst D. Simon and Hongyuan Zha 

Computing Sciences Directorate 
Ernest Orlando Lawrence Berkeley National Laboratory 

University of California 
Berkeley, California 94720 

November 1997 

LBNL-41101 
UC-405 

This work was supported by the Director, Office of Energy Research, Office of Laboratory Policy and 
Infrastructure Management, Office of Computational and Technology Research, Division of Mathematical, 
Information, and Computational Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098, and by the National Science Foundation under Grant No. CCR-9619452. 



ON UPDATING PROBLEMS IN LATENT SEMANTIC INDEXING * 

HORST D. SIMON t AND HONGYUAN ZHA t 

Abstract. We develop new SVD-updating algorithms for three types of updating problems 
arising from Latent Semantic Indexing (LSI) for information retrieval to deal with rapidly changing 
text document collections. We also provide theoretical justification for using a reduced-dimension 
representation of the original document collection in the updating process. Numerical experiments 
using several standard text document collections show that the new algorithms give higher (inter
polated} average precisions than the existing algorithms and the retrieval accuracy is comparable to 
that obtained using the complete document collection. 

1. Introduction. Latent semantic indexing (LSI) is a concept-based automatic 
indexing method that tries to overcome the two fundamental problems which plague 
traditional lexical-matching indexing schemes: synonymy and polysemy [3].1 Syn
onymy refers to the problem that several different words can be used to express a 
concept and the keywords in a user's query may not match those in the relevant 
documents while polysemy means that words can have multiple meanings and user's 
words may match those in irrelevant documents [7]. LSI is an extension of the vector 
space model for information retrieval [6, 9]. In the vector space model, the collec
tion of text documents is represented by a term-document matrix A = [ aij] E R m x n, 

where aij is the number of times term i appears in document j, and m is the num
ber of terms and n is the number of documents in the collection. Consequently, a 
document becomes a column vector, and a user's query can also be represented as a 
vector of the same dimension. The similarity between a query vector and a document 
vector is usually measured by the cosine of the angle between them, and for each 
query a list of documents ranked in decreasing order of similarity is returned to the 
user. LSI extends this vector space model by modeling the term-document relation
ship using a reduced-dimension representation (RDR) computed by the singular value 
decomposition (SVD) of the term-document matrix A.2 Specifically let 

be the SVD of A. Then the RDR is given by the best rank-k approximation Ak _ 
PkEkQI, where Pk and Qk are formed by the first k columns of P and Q, respectively, 
and Ek is the k-th leading principal submatrix of E. Corresponding to each of the k 
reduced dimensions is associated a pseudo-concept which may not have any explicit 
semantic content yet helps to discriminate documents [1, 3]. 

In rapidly changing environments such as the World Wide Web, the document col
lection is frequently updated with new documents and terms constantly being added. 
Updating the LSI-generated RDR can be carried out using a process called fold-in 

• This work was supported by the Director, Office of Energy Research, Office of Laboratory 
Policy and Infrastructure Management, Office of Computational and Technology Research, Division 
of Mathematical, Information, and Computational Sciences, of the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098, and by NSF grant CCR-9619452. 

t NERSC, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720. 
t 307 Pond Laboratory, Department of Computer Science and Engineering, The Pennsylvania 

State University, University Park, PA 16802-6103. 
1 LSI does a. better job dealing with synonymy while polysemy still remains to be a problem unless 

word senses are used. 
2 Various weighting schemes can be applied to A before its SVD is computed (9]. Notice that 

alternative decompositions have also been used for LSI (5]. 
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(3]. Fold-in is less expensive. However, since fold-in is based on the old RDR, it does 
not adjust the representation of existing terms and documents, and therefore retrieval 
accuracy may suffer. In (1, 8], three SVD-updating algorithms are derived focusing on 
the balance among memory usage, computational complexity and retrieval accuracy. 
The purpose of this paper is to point out an error in the derivation of the algorithms 
in (1, 8], and to show that better retrieval accuracy can be obtained with our new 
algorithms. In particular we show that no retrieval accuracy degradation will occur 
if updating is done with our new algorithms. The rest of the paper is organized as 
follows: In Section 2 we state the three types of updating problems in LSI and derive 
new algorithms for handling each of them. In Section 3 we provide theoretical justi
fication for basing the updating process on the RDR of the old document collection. 
Section 4 presents several numerical experiments. Section 5 concludes the paper and 
points out some future research topics. 

2. New Updating Algorithms. Let A E nmxn be the original term-document 
matrix, and Ak = Pk"EkQ[ be the best rank-k RDR of A. Following (1, 8], we specify 
three types of updating problems in LSI: 

1. UPDATING DOCUMENTS. Let DE nmxp be the p new documents. Compute 
the best rank-k approximation of 

2. UPDATING TERMS. Let T E nqxn be the q new term vectors. Compute the 
best rank-k approximation of 

3. TERM WEIGHT CORRECTIONS. Let there be j terms that need term weight 
adjustment, ZJ E 'Rixn specify the difference between the old weights and 
the new ones, Yj E nnxj be a selection matrix indicating the j terms that 
need adjusting. Compute the best rank-k approximation of 

W := Ak + YjZJ. 

Notice that in all the above three cases instead of the original term-document matrix 
A, we have used Ak, the best rank-k approximation of A as the starting point of the 
updating process. Therefore we may not obtain the best rank-k approximation of the 
true new term-document matrix. This replacement procedure needs to be justified 
and we will have more to say on this later in Section 3. 

Now we present our new algorithms for the three types of updating problems 
mentioned above. During the presentation, we will also compare our approaches with 
those used in (1, 8]. 

UPDATING DOCUMENTS. Let the QR decomposition of (I- PkP'[)D be 

T A 

(I - PkPk )D = PkR, 

where Pk is orthonormal, and R is upper triangular. For simplicity we assume R is 
nonsingular. 3 It can be verified that , 

P{D] [ Q[ 0 ] 
R 0 Ip . 

3 If (I- PkP{)D is not of full column rank, R can be upper trapezoidal. 
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Notice that [Pk,.l\] is orthonormal. Now let the SVD of 

(2.1) B::: [ ~k P~D ] = [Uk, Uf] [ ~k . i;P ] [Vk, V{]T, 

where Uk and Vk are of column dimension k, and :Ek E nkxk. Then the best rank-k 
approximation of B is given by 

Bk::: ([Pk,.J\]Uk)tk ([ ~k z] vk) T 

In [1, 8], only [:Ek, P[ D] instead of Bin (2.1) is used to construct the SVD of B. The 
R matrix in B is completely discarded. The SVD thus constructed is certainly not 
the exact SVD of B, and can not even be a good approximation of it if the norm of 
R is not small. This situation can happen when the added new documents alter the 
original low-dimension representation significantly. Numerical experiments in Section 
4 bear this out. 

Our approach is certainly more expensive than the less accurate alternative in 
[1, 8]: for one thing we need to compute the SVD of B instead of a submatrix ofit; and 
also in order to form the left singular vector matrix of B we need to compute [Pk, Pk]Uk 

. instead of PkUk, where Uk is the left singular vector matrix of [:Ek, P'{ D]. However, if 
· p, the number of documents added is relatively small, the added computational cost 
is not much.4 

Our presentation for updating terms and for term weight corrections will be brief. 
The above comments regarding the algorithms in [1, 8] also apply in these two up
dating problems as well. 

UPDATING TERMS. Let the QR decomposition of (I- QkQf)TT be 

(I- QkQf)TT = QkLT, 

where Lis lower triangular. Then 

C ::: [ ATk ] = [ P
0
'[ 0 ] [ :Ek 0 ] [Q Q. ]T Iq TVk L k, k . 

Now let the SVD of 

6 = [ ;;k 1] = [Uk,Uf] [ ~k :tq ] [Vk, Vk.Lf, 

where Uk and Vk are of column dimension k, and :Ek E nkxk. Then the best rank-k 
approximation of C is given by 

TERM WEIGHT CORRECTIONS. Let the QR decomposition of (I- PkP'{)Xj and 
(I- QkQf)"Yj be 

4 We will have more to say in Section 4 and Section 5 and for the case when p is large. 
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with Rp and RQ 'upper triangular. Then it can be verified that 

Notice that both [Pk,A] and [Qk,Qk] are orthonormal. Let the SVD of 

W = [ :Ek 0 ] + [ P[ Xi ] [ QrYj ] T = [U U.L] [ tk ~ ] (Vi v;.L]T 
- 0 0 Rp Rp k, k 0 :Ei k, k ' 

where Uk and Vk are of column dimension k, and tk E n_kxk. Then the best rank-k 
approximation of W is given by 

3. Justification for the Use of Ak. We will concentrate on the DOCUMENT 
UPDATING PROBLEM in what follows. Notice that in updating we use the matrix 
[Ak, D] instead of using the true new term-document matrix [A, D] as would have 
been the case in traditional SVD updating problems. So it is a critical issue whether 
the replacement of A by its best rank-k approximation is justified for there is always 
the possibility that this process may introduce unacceptable error in the updated 
RDR. To proceed we introduce some notation: for any matrix A E n_mxn, we will use 
bestk(A) to denote its best rank-k approximation, and its singular values are assumed 
to be arranged in nonincreasing order, 

cr1(A) 2: cr2(A) 2: · · · 2: crm(A). 

Our first result compares the singular values of [bestk(A), D] and [A, D]. As a con
vention when we compare the singular values of two matrices with the same number 
of rows but different number of columns we will count the singular values according 
to the number of rows. We now state two simple results without proof. 

LEMMA 3.1. Let A E n_mxn. Let V be orthonormal. Then 

cri(AVT) = cri(A), i = 1, ... , m. 

LEMMA 3.2. Let A= (Al, A2]. Then cri(At) :::; cri(A), i = 1, ... , m. 
THEOREM 3.3. Let A E n_mxn be the original term-document matrix, and let 

DE n_mxp represent the newly-added document vectors. Then 

cri([bestk(A), D]) :::; cri([A, D]), i = 1, ... , m. 

Proof Let the SVD of A be 

A= [Pk,P{]diag(:Ek,:Et)[Qk,Qtf 

Then we have for i = 1, ... , m, 

cri([A, D]) = cri([[Pk, P{] diag(:Ek, :Et ), D]) 

= cri([Pk:Ek, D, Pf:Et]) 

= cri([Pk:EkQf, D, Pf:Et]) (by Lemma 3.1) 

= cri([[bestk(A),D],Pf:Et]) 
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Noticing that [bestk(A),D] is a submatrix of [[bestk(A),DJ,Pt<EtJ we obtain the 
result by invoking Lemma 3.2. 0 

It is rather easy to find examples for which the strict inequalities hold in the 
above Theorem. Next we investigate under what conditions replacing A by bestk(A) 
has no effect on the computed RDR. We first state the following result without proof. 

LEMMA 3.4. Let the SVD of A E nmxn be A = I:::1 O'iUivr with Ui and Vi the 
i-th left and right singular vector, respectively. Then for p ~ k we have 

m 

bestk(A) = bestk(A- L aiuiv[). 
i=p+1 

THEOREM 3.5. Let B = [A, D], 5 B -= [bestk(A), D], where A E nmxn and 
DE nmxp with m ~ (n + p). Moreover assume that 

f3T B =X+ a2 I, 0' > 0, 

where X is symmetric and positive semi-definite with rank(X) = k. Then 

bestk(B) = bestk(B). 

Proof. The general idea of the proof is to show that what is discarded when A is 
replaced by bestk(A) will also be discarded when bestk(B) is computed from B. To 
this end write 

AT A 2 [ AT A - 0'2 I AT D ] 
B B - a I = DT A DT D - a2 I . 

Since rank(X) = k, it follows that rank( AT A- a2 I) ~ k and rank(DT D- a 2 I) ~ k. 
Let the eigendecompositions of 

AT A- a2 I= VA diag(E~,O)V}, DT D- a2 I= VD diag(Eb, O)VJ, 

where EA E nkl Xkl, ED E nk2 xk2 are nonsingular with k1 ~ k, k2 ~ k. We can write 
the SVD of A and D as follows: 

(3.2) A= UA diag(EA, aitl)VJ = [Ui1), Ui2)] diag(EA; aitl)[Vj1l, vj2lf, 

(3.3) D = UDdiag~ED,ait2 )VJ = (Uj.;l,uj;l)diag(ED,ait2 )(V~1 ), V2)JT, 

where Ui1) E nmxk1 ,Uj.;l E nmxk2 , and h = n- k1,t2 = p- k2, respectively. Now 
write VJ AT DVD in a partitioned form as 

(3.4) 

Since X = f3T B- a2 I is symmetric positive semi-definite and rank( X) = k, it follows 
that 812 = 0, 821 = 0, 822 = 0 and k1 + k2 = rank( X) = k. Using the SVD of A and 
D in (3.2) and (3.3), Equation (3.4) becomes 

[Ui
1
)EA,aUi

2
)fl'[Uj.;lED,aUj;l] = [ 8~1 ~ ] , 

5 The iJ defined here is different from that in (2.1). 
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L 

FIG. 1. Singular value distributions: 3681 X 1033 tenn-document matrix of MEDLINE Collection 
{left) and 2331 x 1400 CRANFIELD Collection {right) 

which leads to6 

u~l) .L ui;l, u~2) .L ul;l, ufl .L ui;l. 

Let (; be an orthonormal basis of 

n([uJl, ul;l]) n n([U~2), ui;l]).L, 

where we have used no to denote the column space of a matrix, and no.L the 
orthogonal complement of the column space. Then we can write 

A (2) (2) . - [ (Vj~))T CVh~))T l 
[A,D] = [U,UA ,UD ]dlag(B,a1tpCTlt2 ) ( 2) T , 

(VA ) 0 
o cvg))T 

where iJ E nkxk with all its singular values greater than cr. Therefore, 

B = [A,D] = [O,ui;l]diag(B,crlt2 ) o CVh1))r +crU~2)[(Vj2l)r,o]. [ 
cvl1

))r o ] 

o cvg)f 
the right hand side of the above is easily seen to be B + crU~2)[(Vj2l)r,o], and the 
relation bestk(B) = bestk(B) then follows from Lemma 3.4. 0 
. The matrix fJT B in Theorem 3.5 has a so-called low-rank-plus-shift structure, a 
concept that has been used in sensor array signal processing [11, 12]. We now assess 
how well this structure can fit the term-document matrices of some standard document 
collections. Figure 1 plots the singular value distributions of two term-document 
matrices, one from the MEDLINE collection, the other CRANFIELD collection [2] 
used in the next section as well. We compute a low-rank-plus-shift approximation 
of a term-document matrix A in the following way: Let the SVD of A be A = 
Pk :Ek Q[ + Pf :ET; ( QT;) T, and let cr be the mean of the diagonal elements of :EJ;. Then 
the approximation is taken to be A(k) = Pk:EkQ[ + crPf(QJ;)T. For the MEDLINE 
collection we have IIA-A(lOO) IIF/IIAIIF = 0.2909 and for the CRANFIELD collection 
we have IIA- A(200)IIF/IIAIIF = 0.2786. 

6 we use S .L T to denote STT = 0. 
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TABLE 1 

Comparison of average precisions for MEDLINE collection 

p 100 200 300 400 500 600 700 
s 933 833 733 633 533 433 333 

Meth1 65.36 65.52 66.58 67.16 66.98 66.56 66.48 
Meth2 64.26 64.40 58.48 50.78 46.90 44.04 44.97 
Increm 65.36 65.61 65.61 66.33 66.65 66.58 66.75 

4. Numerical Experiments. In this section we use several examples to illus
trate the algorithms developed in Section 2 and compared them with those in [1, 8]. In 

~ all of the examples, we use the weighting scheme lxn. bpx [5, 9]. The partial SVD of 
the original term-document matrix is computed using Lanczos process with one-sided 
reorthogonalization scheme proposed in (10]. For each method and the corresponding 
parameters, we tabulate the average precision in percentage which is computed using 
the 11-point interpolated formula [4, 5]. All the computations are done on a Sun Ultra 
I workstation using MATLAB 5.0. 

EXAMPLE 1. We use the MEDLINE text collection [2]. The term-document 
matrix is 3681 x 1033 and the number of queries is 30. The RDR is computed using a 
two-step method based on updating: for a given s we compute a rank-k approximation 
of the first s columns of the term-document matrix using the Lanczos SVD process, 
and then we add the remaining documents to produce a new rank-k approximation 
using updating algorithms. In Table 1, k = 100, p is the number of new documents 
added, Meth1 is the updating algorithm in Section 2 and Meth2 is that used in [1, 8). 
Row 3 and row 4 of the table gives the average precisions in percentage. As is expected 
Meth1 performs much better than Meth2 for those seven comninations of p and s. 
What is surprising is that Meth1 performs even better than rank-k approximation 
using the whole term-document matrix for which the average precision is 65.50%. 

Instead of updating a group of p new documents all at once, we also carry out a 
test by breaking these p new documents into subgroups of 100 documents each, and 
use the updating algorithms to update one subgroup at a time. Row 5 of Table 1 
gives the computed average precisions for k = 100 for our updating algorithm. Since 
the algorithms in [1, 8) always discard the R matrix in (2.1) therefore it makes no 
difference to the updated low-rank approximation whether it is computed with all the 
new documents all at once or incrementally with each subgroup at a time. 

EXAMPLE 2. We repeat the tests in Example 1 for the CRANFIELD collection 
[2). The term-document matrix is 2331 x 1400 and the number of queries is 225. Table 
2 gives the results of the computations. For this example, the dimension for the RDR 
is chosen to be k = 200. In the incremental method we again update a subgroup of 
100 documents at a time. 

EXAMPLE 3. We use the 4322 x 11429 term-document matrix from the NPL 

TABLE 2 

Comparison of average precisions for CRANFIELD collection 

p 100 200 300 400 500 600 700 800 900 
s 1300 1200 1100 1000 900 800 700 600 500 

Meth1 41.53 41.26 41.70 41.38 41.81 41.53 41.58 41.48 41.36 
Meth2 41.89 41.65 42.08 41.03 39.24 37.58 34.65 32.11 29.38 
Increm 41.53 41.30 41.63 41.57 41.43 41.36 41.14 41.30 41.36 
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TABLE 3 

Comparison of average precisions for NPL collection 

p 200 400 600 800 1000 1200 1400 
s 4122 3922 3722 3522 3322 3122 2922 

Meth2 22.34 20.87 19.72 19.16 17.88 17.72 17.60 
Increm 22.66 22.37 22.32 22.47 22.11 22.04 22.16 

collection [2). The number of queries is 100. We apply the TERM-UPDATING algo
rithm in Section 2. Since the original term-document matrix has the terms sorted in 
nonincreasing document frequency, we apply a random permutation to the rows of the 
term-document matrix before we extract any submatrix. For a given s we compute 
a rank-k approximation of the first s rows of the permuted term-document matrix 
using the Lanczos SVD process, and then we add the remaining terms to produce a 
new rank-k approximation. For both Meth2 and INCREM we add 100 document at a 
time. 

5. Concluding Remarks. We showed that better average precisions can be 
obtained using the updating algorithms developed in this paper. We also provided 
theoretical justification for basing the updating procedures on the RDR of the original 
document collection. We have only presented a result assuming exact low-rank-plus
shift structure. In future research we will consider the case when the low-rank-plus
shift structure only holds approximately. We also have used an incremental approach 
to handle the case when the number of new documents is large. Another approach will 
be first to find the RDR of the set of new documents and then merge it with the RDR 
of the original document collection. These issues will be discussed in a forthcoming 
paper. 

REFERENCES 

[1] M.W. Berry, S.T. Dumais and G.W. O'Brien. Using linear algebra for intelligent information 
retrieval. SIAM Review, 37:573-595, 1995. 

[2] Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart. 
[3] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas and R.A. Harshman. Indexing by 

latent semantic analysis. Journal of the Society for Information Science, 41:391-407, 1990. 
[4] D. Harman. TREC-3 conference report. NIST Special Publication 500-225, 1995. 
[5] T.G. Kolda and D.P. O'Leary. A semi-discrete matrix decomposition for latent semantic in

dexing in information retrieval. Technical Report UMCP-CSD CS-TR-3724, Department 
of Computer Science, University of Maryland, 1996. 

[6] G. Kowalski. Information Retrieval System: Theory and Implementation. Kluwer Academic 
Publishers, Boston, 1997. 

[7] R. Krovetz and W.B. Croft. Lexical ambiguity and information retrieval. ACM Transactions 
on Information Systems, 10:115-141, 1992. 

[8] G.W. O'Brien. Information Management Tools for Updating an SVD-Encoded Indexing 
Scheme. M.S. Thesis, Department of Computer Science, Univ. of Tennessee, 1994. 

[9] G. Salton. Automatic Text Processing. Addison-Wesley, New York, 1989. 
[10] H.D. Simon and H. Zha. Low rank matrix approximation using the Lanczos bidiagonalization 

process with applications. Technical Report CSE-97-008, Department of Computer Science 
and Engineering, The Pennsylvania State University, 1997. 

[11] G. Xu and T. Kailath. Fast subspace decompsotion. IEEE Transactions on Signal Processing, 
42:539-551, 1994. 

[12] G. Xu, H. Zha., G. Golub, and T. Kailath. Fast algorithms for updating signal subspaces. IEEE 
Transactions on Circuits and Systems, 41:537-549, 1994. 



.. 

0 

§};;J~I§b-"fij' ~"~>J'UI!J§I @l!§lo):i!!#IL§? ~ ~ 

·®m~~a @::a&a:IIY3\'?o~~ 

0 .. 

. ' 

.. 

" 0" 

0 

" 

0 

0 

0 

0 

0 

" 

I 

/I 


