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1. Introduction 

In ten dimensions, the consistent critical string theories with (at least) sixteen super­

charges have been known since the 1980s. There are (after accounting for the S-duality 

of the two S0(32) theories) four. In D = 9, in addition to the compactifications of the 

D = 10 theories on S 1 we find a new theory with 16 supercharges - the CHL string 

[1,2]. This theory can be obtained by compactifying the Es x E8 heterotic string on a 

circle with radius R9 and orbifolding by the Z2 which identifies the two E 8s and shifts 

x9 --+ x9 + 1r R9 • The resulting heterotic string has E8 current algebra at level 2 on its 

worldsheet. The moduli space of vacua in nine-dimensions is 

S0(9, 1; 7l)\S0(9, 1)/S0(9) X S0(1) . (1.1) 

The low-energy M-theoretic description of this theory involves the compactification of 11 

dimensional supergravity on a Mobius strip [3]. 

In the case of the E 8 x E8 string, dual Type IIA descriptions after compactification 

to 6d on a torus or 4d on K3 x T 2 were given in [4,5,6,7]. For the CHL string, the dual 

of the maximally supersymmetric compactification to 6d was given by Schwarz and Sen 

[8]. Other aspects of the maximally supersymmetric CHL compactifications were recently 

discussed in [9,10]. It is the purpose of this paper to begin the task of finding duals of 

CHL compactifications with less supersymmetry, by finding the IIA and M-theory duals 

of the CHL compactifications to 4 and 5 dimensions with 8 supercharges. 

In investigations of vacua of the E8 x Es heterotic string with 8 supercharges, a proper 

understanding of singular points in the moduli space has led to the discovery of many new 

nontrivial renormalization group fixed points in d = 4, 5, 6 (in [11,12] and much subsequent 

work). Analysis of the dual Calabi-Yau models has been a powerful tool for exploring these 

field theories. One motivation for our work is to provide a similar framework for studying 

novel theories without gravity which may arise in d = 4, 5 from CHL compactifications. 

Results in this direction will appear in a companion paper [13). It wo~ld also be interesting 

to determine whether or not the web of 4d N = 2 string vacua discussed here is connected, 

through phase transitions, to the web of conventional 4d N = 2 Calabi-Yau vacua [14]. 
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2. The Heterotic Theories 

Starting from the 9d CHL string with E8 x U(1) 2 gauge symmetry, one can com­

pactify on K3 x S1 and obtain a 4d N = 2 supersymmetric low-energy theory. From the 

perturbative heterotic string Bianchi identity, one should in addition require a background 

gauge bundle V on the K3 with 

C2(V) = 12. (2.1) 

Said differently, there should be 12 instantons embedded in the E8 . 

One argument that (2.1) is the correct condition is the following. Start with the 

Es x Es string on K3 x T 2 • Imagine there are bundles V1 ,2 embedded in the two E 8 s. 

Then, one can do a Z2 orbifold to obtain the CHL string as long as V1 and V2 are identical. 

The Bianchi identity for the E8 x E8 theory in this case is 

(2.2) 

so in particular to do the CHL orbifold, one requires c2 (V1,2 ) = 12. After orbifolding, one 

is left with the diagonal E8 and a bundle of instanton number 12. 

A more microscopic description of the same vacuum comes from M-theory on a Mobius 

strip M times K3 x S 1 . In this description, the E8 gauge fields and the bundle V live on 

fJ M. One can now imagine more general configurations where N instantons shrink and 

leave the boundary of the world in their avatar as fivebranes wrapping the base of M and 

the circle. 1 Then, the Bianchi identity (2.1) is modified and becomes 

c2(V) + N = 12 . (2.3) 

This can be argued as in the previous paragraph, now by using the general configurations 

studied by Duff, Minasian, and Witten [15]. We will mostly concentrate on finding duals 

in the case that c2(V) = 12, though we also find Calabi-Yau duals for some cases with 

wrapped fivebranes present (notably, the maximal case N = 12). 

For a fixed choice of instanton and fivebrane numbers satisying (2.3), we can still 

find a whole web of vacua by considering bundles with different structure groups, yielding 
-

different unbroken non-Abelian gauge groups G c E8 . By passing to a generic point on the 

Coulomb branch of G, one obtains an Abelian gauge theory characterized by the number 

1 By the base of M we mean a representative of the nontrivial class in H1 (M), which looks 

like a base if one locally views M as a fibration of the interval over S1
. 
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of vector and hypermultiplets. Some of the expected gauge groups and matter contents 

are presented below in Table 1, in terms of 

n = 8-N (2.4) 

One should consider 

(2.5) 

in the table, since for n < 0 there are no stable bundles with the right instanton number 

on K3. The number of hypermultiplets nH at a generic point in the Coulomb branch of 

G is given below, while the number of vector multiplets at a generic point is given by 

nv = rank( G) + N + 3 . (2.6) 

It is important to emphasize that we only list the unbroken subgroups of the perturbative 

E8 in Table 1; the table ignores the omnipresent U(1)3 which appears in (2.6), as well as 

the N vector multiplets on the (wrapped) fivebrane worldvolumes. 

In addition to listing the gauge group G, we have presented the relevant singularity 

type expected to produce Gin the Calabi-Yau dual, and the expected G charged matter 

content (which becomes massless at the origin of the G Coulomb branch, in the classical 

heterotic string theory). The charged matter content is simply computed using c2 (V) and 

the index theorem, as in [5]. Decompose the adjoint of E8 under G x H (where H is the 

commutant of G in Es) as 

(2.7) 

where Mi is the G representation and Ri is the H representation. Then it follows from 

the index theorem that the number of left-handed spinor multiplets transforming in the 

Mi representation of G is given by 

N M; = dim(Ri) - ! r C2 (V) index(Ri) . 
2 jK3 

(2.8) is normalized to properly count numbers of hypermultiplets. 

(2.8) 

The detailed explanation of the singularity types (and in particular the occurence of 

"split;" ''non-split," and "semi-split" singularities, denoted with superscript s, ns, and 

ss) can be found in [16), from which Table 1 has been lifted with suitable modifications. 

The geometrical realization of non-simply laced gauge groups was first explained in [17]. 
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Roughly speaking, the threefold singularities can be understood as elliptic surface singu­

larities fibered over an additional curve. There can he monodromies which orbifold the 

· naive (A-D-E) gauge group coming from the surface singularity by an outer automorphism 

as one goes around singular points on the additional curve, yielding a non-simply laced 

group. In the "split" cases this does not occur, while in the other cases such an outer 

automorphism does act. 

In all cases in Table 1 where a multiplicity becomes negative, the corresponding branch 

with gauge group G does not exist (there aren't enough instantons to break Es to G). In 

addition, the complete Higgsing of E8 is only possible for n ~ 6. 

Table 1: Some Strata in the Moduli Space 

Type Group Matter content nH 

E1 E1 (~)56 n+33 

E6 E6 (n- 2)27 2n+32 
Ens 

6 F4 (n- 3)26 3n+30 
ns 

5 80(10) (n- 4)16 + (n- 2)10 3n + 29 
nns 

5 80(9) (n- 3)9 + (n- 4)16 5n+24 
ns 80(8) 

-./ 

(n- 4)(8c + 8s + 8v) 5n + 24 4 

nss 
4 80(7) (n- 5)7 + (2n- 8)8 7n+ 15 

nns 
4 G2 (3n- 14)7 lln-2 

As 
3 8U(4) (n- 6)6 + (4n- 16)4 7n + 15 

Ans 
3 80(5) (n- 7)5 + (4n- 16)4 9n+ 2 

Al X Al 80(4) (n- 8)(2, 2) + (4n- 16)[(1, 2) + (2, 1)] 9n+ 2 
As 

2 8U(3) (6n.....: 30)3 lln-2 

A1 8U(2) (6n- 32)2 17n- 33 
ns 

6 80(12) ~32 + (n-;- 4 )321 + (n)12 n+30 
nns 

6 80(11) (~- 2)32 + (n -,1)11 3n+29 
As 

5 8U(6) ~20 + (r + 2n)6 + (n- r- 6)15 2n- r + 25 
Ans 

5 8p(3) (2n + ~r)6 + (n- r- 7)14 + ~r14' 3n + 19- 2r 
As 

4 SU(5) (3n- 8)5 + (n- 6)10 4n +24 

None None ( only possible for n ~ 6 ) 29n- 100 

In the case G = 80(12), an additional integer r is required to specify the heterotic 

vacuum. That is because the commutant of 80(12) in Es is 80(4) ~ 8U(2) x 8U(2), 

and we can embed r + 4 instantons in one 8U(2) and n- r instantons in the other 8U(2). 
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In order to keep at least 4 instantons in each SU(2) (which is the minimum number for 

which a suitable SU(2) bundle exists), we must require r :2: 0 and (n- r) :2: 0. The cases 

G = SU(6): Sp(3) are also r-dependent, because they can be obtained by Higgsing S0(12) 

for suitable r, but not by Higgsing E7 with 56s. 

3. Calabi-Yau Duals 

3.1. Method for Finding Calabi-Yau Duals 

There is a well known string-string duality relating the heterotic string on T 4 to type 

IIA compactifications on K3. Schwarz and Sen found an analogous statement for the 

compactification of the 9d CHL string to six dimensions on a T 3 [8]. Namely: they found 

that this 6d CHL string is dual to Type IIA on a Z 2 orbifold of K3 which preserves precisely 

twelve of the twenty (1: 1) forms. The other eight are projected out of the untwisted sector. 

This exactly reproduces the rank reduction (by eight) of the CHL string. 

Normally: the 8 "missing" (1, 1) forms would be resurrected in the twisted sector. 

However, by also embedding a Z2 action in a RR U(1) gauge group, they were able to 

remove the twisted sector contributions. The Z 2 gauge flux is concentrated at the orbifold 

fixed points of the geometrical Z2 action on the K3: and removes the blow-up modes. The 

conclusion is that IIA on this particular K3/Z2 is dual to the CHL string. 

As was discussed in [8], a more geometrical formulation of the same Z2 action can be 

given in M-theory. The E8 x E8 heterotic string on T 4 is dual to M-ti1eory on K3 x S 1 . If 

we go to the E 8 x E 8 point in moduli space and do the CHL orbifold: the exchange of the 

two Ess maps in M-theory to a Z2 which exchanges the two E 8 singularities of the K3. If 

we take the K3 to be an elliptic fibration with coordinate z on the P 1 base and a defining 

equation of the form 

then the z2 acts by 

y2 = x3 + xf(z) + g(z) 

1 
z-+ -, y-+ -y . 

z 

(3.1) 

(3.2) 

The two Es singularities naturally arise at z = 0, oo and are identified by (3.2). The shift 

on the heterotic circle maps: in M-theory, to a shift on theM-theory S 1 . Therefore, the Z 2 

symmetry is freely acting in M-theory: and the possibility of fixed point contributions to 
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the spectrum does not arise. In the IIA picture, the U(1) RR gauge field arises via Kaluza­

Klein reduction along the M-theory circle, and the shift on the S 1 therefore embeds a Z2 

action in the U(1). 

We are interested in using a similar technique to find Calabi-Yau duals for 9d CHL 

strings compactified to 4d on K3 x S 1 , or to 5d on K3. We can use the above duality and 

the adiabatic argument [18] to find duals as follows.·. 

Consider the heterotic E8 x E8 string on K3 x T 2 with (12,12) instantons in the two 

E8s. After maximal Higgsing, it is known to be dual to the IIA compactification on the 

Calabi-Yau X given by an elliptic fibration over P 1 x P 1 with hodge numbers (3, 243). 

If we Higgs "symmetrically," then we can still perform the CHL Z2 by exchanging the 

two E 8s and shifting one of the circles of the T 2 . This will leave us with a CHL string 

compactification with 132 hypermultiplets and 3 vector multiplets. The corresponding 

Calabi-Yau dual XcHL should have hodge numbers (3, 131). More accurately, these should 

be the contributions to the hodge numbers from the "untwisted" cohomology classes, 

ignoring any modes which originate at the Z2 fixed loci on XcHL· 

Using the adiabatic argument, we can construct XcHL from X. X is a K3 fibration, 

and we can implement the action (3.2) on the K3 fibers of X, while at the same time 

acting on the P 1 in a way that preserves 4d N = 2 supersymmetry (the precise details 

are provided in §3.2). If we consider M-theory on X x S1 and at the same time act with 

a shift on the S 1
, then the overall Z2 action will be free. This is why the massless modes 

should come from the "untwisted sector" of XcHL = X/Z2. In fact, one finds agreement 

with the expected (3, 131). 

Given that M-theory on XcHL x S 1 is dual to the 4d N = 2 CHL compactification, 

we can now make the circle very large and obtain an approximate 5d duality between 

M-theory on XcHL (with the prescription that the Z2 fixed points cannot be resolved) 

and the compactification of the 9d CHL string on K3. More precisely, we need to take 

a double-scaling limit to go ·to the M-theory description, as in [19]. The Kahler classes 

of XcHL as measured in Type IIA and M-theory, which we will call KnA and KM, are 

related by 

(3.3) 

where T is the two-:brane tension and R is the radius of the circle. If we take R to infinity · 

but wish to keep the Kahler classes of the Calabi-Yau fixed in M-theory units, we must 

take KIJA ---7 oo as welL Note that although X also admits an "F-theory limit," which is 
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dual to an £ 8 x E8 compactification on K3, XcHL does not. The F-theory limit involves 

shrinking the elliptic fibers of X, and the Z2 action which turns X into XcHL destroys 

the relevant fibration structure. This is not surprising, since there is no obvious way to 

get theories with 6d (1, 0) supersymmetry starting with the 9d CHL string. 

Alternatively, as in [8), we can view the S 1 shift as a Z2 RR flux in IIA string theory. 

Then we see that IIA on XcHL, with suitable Z2 fluxes at the orbifold fixed points, is dual 

to the maximally Higgsed 4d N = 2 CHL vacuum. 

More generally, one can first "unHiggs" some gauge group G by going through suitable 

extremal transitions starting with X. Of course, one should unHiggs symmetrically in the 

two E 8s. Then, using the same fibre-wise argument to find the correct Z2 action, we can 

find Calabi-Yau duals for the general CHL compactifications on K3 discussed in §2. We 

have done this in many cases, and find complete agreement with the CHL expectations. 

Generally, N = 2 supergravity in 4d requires a local integrability structure on the 

vector moduli space known as special geometry (globally, it requires the positivity of the 

kinetic terms). Both requirements are naturally satisfied for the moduli spaces of Calabi­

Yau threefolds. A natural generalisation is to consider the moduli space of an invariant 

sector under a group action on the Calabi-Yau. This is familiar for rigid N = 2 theories, 

where one has to consider quite generally certain subsectors of the moduli space of a 

Riemann surface and not the full abelian variety, but a Prym variety. However, unlike 

the Riemann surfaces, the CY is not an auxiliary surface for decribing the moduli space. 

Hence, in general twisted sectors have to be considered, and one ends up with the moduli 

space of another CY. The CHL string gives a rationale for dealing only with invariant states 

under particular Z 2 actions. It would be very interesting to see whether other invariant 

sectors of Calabi-Yau moduli spaces can also arise in special string constructions. 

3.2. Toric Description of the Calabi- Yau Duals 

As described in §3.1, to construct a dual description of the N = 2 CHL vacua in four 

dimensions, we start with the non-perturbative equivalence between the £ 8 x E8 heterotic 

string on K3xT2 with symmetric embedding in the E8s and Type IIA (liB) on Calabi-Yau 

spaces X (X*). To find simple tests of the duality we shall consider perturbative CHL 

compactifications. Then, X will be a K3 fibration [20), and the IIA dual will be a Z2 

orbifold of X. Using the adiabatic argument, we expect the Z2 to act as in [8) on the K3 

fibre of the CY manifold. 
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The relevant CY manifolds on which such Z2 actions are to be expected are constructed 

as follows. We consider the most general elliptic fibre X 6 (3, 2, 1) in affine coordinates 

(3.4) 

Here we view the ai as functions of the coordinate t of C. Locally, the Kodaira types I of 

minimal singularities of the fibre over (x, y, t) = (0, 0, 0) were analysed using a generalized 

Tate's algorithm in [16]. The type is specified essentially2 by the degree of ai in t, see 

Table 2 of [16]. 

To get a compact Calabi Yau model we instead view the ai as sections of line-bundles 

over 1P1 x 1P1 of type O(ki)@ O(ki) with ki = 2, 4, 6, 8, 12 respectively. If we forget about 

one of the 1P1s, this yields a K3. If (t : t') are homogeneous coordinates on the remaining 

1P1
, the singular fibres which occur at the north and south pole are dete.rmined by the 

lowest degrees of the homogenous polynomials ai of degree ki in t and t' respectively (as 

in Table 2 of [16]). 

Now, let ( t : t') and ( s : s') be the homogeneous parameters of the first and the second 

1P1 
.. We denote the global model by Iw tIe were we understand that singular fibres of 

type (In, Is) appear at t = 0 and t' = 0 with (s, s') generic and (/e, lw) appear s = 0 and 

s' = 0 with (t, t') generic. The Newton polyhedron ~ of (3.4) is the convex hull of 

(0, 0, 0, 2), (0, 0, 3, 0) 

(a~w),a;n),vi), (a;w),ki- a~s),Vi), (3.5) 

(ki -a~ e), a~n), Vi), (ki- a~ e), ki - a~s), Vi), 

with i = 1, 2, 3, 4, 6 and vi = (1, 1), (2, 0), (0, 1), (1_, 0), (0, 0) shifted by ( -1, -1, -1, -1), 

and always contains the origin3 . Let A be the coarsest lattice, which contains all integral 

points inside ~' V = AlR the real extension, A* and V* the dual lattice and vector space 

respectively [21 ]. The polyhedra are reflexive if 

Li* = {x E V*jj(x,y) 2: -1, 'ily E ~} (3.6) 

2 Up to some factorisation conditions, which have to be imposed in a few cases as extra 

constraints. 
3 For the fibre K3 the corresponding polyhedra are obtained by deleting the first or second 

entry of these vectors. 
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is a lattice polyhedron in A* and in this case ~ defines a Calabi-Yau or K3 space (21 ]. 

For affine patches reflexivity implies the condition for having canonical hypersurface sin­

gularities given in (22],[23] and the toric description gives a straightforward prescription 

to resolve them (23]. Of course reflexivity is stronger, i.e. it is not always possible to 

compactify the affine patches to a c1 = 0 manifold. 

Points in ~ * which are not at co dimension one correspond to divisors in 1P .6.., which 

intersect with the hypersurface and give rise to divisors in the CY. Most commonly in the 

examples below the intersection with the hypersurface yields one irreducible divisor on the 

CY. i.e. there is one (1, 1)-form for each point in codim 2 and 3 in ~ *. In general the 

number of irreducible divisors is given by the number of points interior to the dual face 

plus one, see [21] for details. There are "' homology relations in the full set of divisors, 

where K = dimc(X) + 2. So in order to count the independent (1, 1)-forms in the CY 

(K3), one must subtract 5(4) from the number of these divisors. 

If we write the resolved (3.4) in Batyrev-Cox coordinates its specialization to any affine 

patch of the toric variety can be neatly displayed. In particular it is easy to identify the 

exceptional divisors, which are needed to resolve the singularities of the affine equations 

(3.4). The form of the polynomial is 

_ ""'b· II {v;,vj)+l P- L t xj , (3.7) 
j 

where the sum runs over the relevant points vi of ~ and the product over the relevant 

points vj of~*. E.g. the affine patch with the (3.4) singularity in one patch of the 1P1 is 

obtained by setting all variables in (3.7) to one except of the ones associated to v;, v;, v; 
(see the Appendix). The mirror polynomial has the analogous definition with ~ and ~ * 

exchanged. 

Points in ~ correspond to monomials in the defining equation of the hypersurface 

( 3. 7) and their coefficients correspond generically to independent complex structure de­

formations. They in turn are in one to one correspondence with the (2, 1) forms of the 

CY. But also in ~ the codimension one points do not contribute to the complex structure 

deformations and hence to (2, 1)-forms. The reason here is that one can use the projective 

invariance group of the toric ambient space JPGW(L\*,C) to set (gauge) all their coef­

ficients to constant values (zero). We shall call points not on codimension one relevant 

points. As (3.7) is quasihomogeneous, i.e. scale invariant under a overall rescaling of the 
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Xi, we shall rather consider4 the GW(~* ,C), which contains a (C*)"' action of independent 

rescalings of the variables Xj· This leaves (3.7) invariant upon a (C*)"' rescaling of the 

coefficients ai· We can (gauge) fix this freedom of rescaling by setting n, additional coeffi­

cients ai to one. So generically the number of (2, 1)-forms is the number of relevant points 

in ~ minus n,. Analogous to the situation with ~ *, certain points in ~ can correspond 

to several (2, 1)-forms. These points correspond to the deformation modes of curves (of 

genus g) of singular loci, with a C2 /Zr action on the normal bundle. The resolution of the 

curves supports g(r- 1) additional (2, 1)-forms, which do not correspond to deformation 

parameters in (3.7). Again the number of additional (2,1) forms is given by the number 

of interior points in the dual face cff. [21 ]. The gauge fixing of the coefficients determines 

the dimension of the moduli space. There remains however generically a (huge) discrete 

subgroup of GW(~*,C) of invariances of (3.7), the so called R symmetries. As we shall 

see, the Z2 symmetry on the coordinates lifts part of the R symmetries of the moduli space 

of the invariant sector. 

According to [20], we can identify the complexified volume of e.g. the (w, e) IP1 with 

the heterotic dilaton and as long as we are interested only in generic perturbative gauge 

enhancements we keep the fibre over this IP1 generic, i.e. Iw = Ie = ! 0 , which implies 

a;w) = a;e) = 0. Moreover as we want to have cases with symmetric unhiggsing of the· 

gauge group to perform the Z2 modding we look at models X(l) ·- Io ~Io. We list in 

Table 2 various cases. 

The ~2 symmetry acts by by exchanging 

IJ : t --:-t t'' t' -7 t 
' 

y -7 -y. (3.8) 

It is obvious that (3.5) has two symmetry planes associated with the exchange of (t, t') and 

(s, s'). To act with (3.8), we must tune the complex structure parameters bi in front of 

the monomials of p, which corresponds to points above and below the symmetry plane, to 

symmetric or antisymmetric values (depending on whether they multiply y). We must take 

the normal subgroup N of GW(~ *,C) w.r.t. to (3.8) to subtract the reparametrisation 

invariance. If we can globally diagonalize (3.8) , as e.g. in the example below, it is easy to 

4 E.g.for the elliptic curve X6 (1, 2, 3), GW(b.* ,C) is generated by the weight compatible trans­

formation t t-7 at, x t---t b1x + ~t2 and y t-7 c1y + c2tx + C3t3 with complex coefficients. Three 

parameters correspond to the (C* )3
, while three can be used to set the coefficients of the three 

codim 1 points k1, k2, k3 ( cff. Appendix A) to zero. 
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see that the dimension of N is the number of invariant points in codimension one. However 

for general actions, that is not the case and we have to explicitly determine N to count 

the independent a--invariant (2, 1) forms. 

In fact due to (3.6) the dual polyhedron also has two such symmetry planes and we 

have to enforce symmetric values of the vector moduli in the mirror polynomial as well. 

The counting of invariant (1, 1)-forms proceeds in a way similar to the counting in the .6. 

polyhedron, and is summarized in Table 2. 

For all entries except the E§ case, one should compare to the n = 8 compactification 

of §2 (with no small instantons). For the E§ case, all of the instantons are small and one is 

in the N = 12 case of §2. Then, G = E8 so there are 20 + 12 = 32 hypermultiplets corning 

from the K3 moduli and positions of the (wrapped) fivebranes, and 12 + 8 + 3 = 23 vector 

multiplets at generic points in the Coulomb branch. In all cases, using 

- h1,1 - h2,1 + 1 nv- inv' nH- inv (3.9) 

we find agreement between the CHL expectations and the numbers of Z2 invariant coho­

mology classes. 

Table 2: Symmetric n = 8 models and Z2 invariant sector. The numbers in the 

brackets correspond to non-toric deformations associated to curve singularities in X. 

X(I) Group h 1,1 h1,1 hl.l inv 
h~,l znv 

X(II*) (Es) 2 43(22) 43 (0) 23(0) 31(10) 

X(! II*) (E1) 2 17(0) 61(0) 10(0) 40(0) 

X(IV* 8
) (E6) 2 15(0) 75(0) 9(0) 47(0) 

X(IV*ns) (F4) 2 11(0) 107(20) 7(0) 53(10) 

xu;ns) (S0(11)) 2 13(0) 85(14) 8(0) 52(7) 

X(I{ 8
) (S0(10) 2 13(0) 85(0) 8(0) 52(0) 

xu;ns) (S0(9) )2 11(0) 107(5) 7(0) 63(5) 

X(Ions) (S0(7)) 2) 9(0) 121(6) 6(0) 70(3) 

X (Ions) (G2)
2 7(0) 151(20) 5(0) 85(10) 

X(fs) 8
) (SU(5) )2 11(0) 91(0) 7(0) 55(0) 

X(IJ) (SU( 4) )2 9(0) 121(0) 6(0) 70(0) 

X(I3) (SU(3)) 2 7(0) 151(0) 5(0) 85(0) 

X(h) (SU(2) )2 5(0) 185(0) 4(0) 102(0) 

X(Io) no gen. 3(0) 243(0) 3(0) 131(0) 
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Let us discuss the X(Io) case in some detail. From (3.5) we see that .6. has six corners 

at VI= (-1,-1,-1,1), v2 = (-1,-1,2,-1), v3 = (-1,11,-1,-1), V4 = (11,-1,-1,-1), 

v5 = (11, 11, -1, -1) and v6 = (-1, -1, -1, -1). The .lattice A is spanned by standard 

unit vectors ei in 1R4
• We can diagonalize the action of (3.8) without changing the shape 

of .6.. On the new coordinates s, s', i, i', z, x, y, the Z2 acts by Xi H exp(27riri)xi with 

r = ¥(0, 0, 0, 1, 0, 0, 1). This Z2 orbifoldisation does commute now with the action of the 

algebraic torus defining the toric ambient space and hence can be taken by considering the 

quotient lattice A = A/7L. of A spanned by 

(3.10) 

with A* the dual to A, as in (21]. 

The resolved orbifold Calabi-Yau X = Xj7L.2 is defined by the old polyhedra (.6., .6. *) 

in the coarser lattice f' = r /7L.2 and the finer dual lattice A*. Note that A* = A* /7l..2 

and this defines an action of the 7L.2 on A*, which in turn can be used to define the dual --orbifoldization X/7l..2/7L.2 = X. The invariant (2, 1)-forms ((1, 1)-forms) correspond to 

those points of .6. ( .6. *), which are on the coarser lattices A (A*) 5 . 

Points in A*, but not in A* correspond to the twisted (1, 1)-forms ofthe original, and 

points in A but not in A correspond to the twisted (2, 1)-forms of the dual orbifold. 

In the particular case of X (Io), htt (X) = 3 and htJ(X) = 131 while h1,1 (X) = 9, 

h2,1 (X) = 153. Keeping the invariant modes, we find agreement with the expectation from 

the CHL construction. 

The vector moduli space of the CHL string is described by the deformations of the 

mirror polynomial. The mirror manifold of X (!0 ) can be itself obtained by a quotient of 

a group G of order 72 on X. The quotient lattice AM is spanned by er = e1 + e2 + e3, 

er = 12e2, er = 3e3 and er = 2e4 • The mirror polynomial is defined by (3. 7) with i 

5 Hence it seems difficult to find such group actions which diminish both the numbers of (1, 1) 

and (2, 1) forms. However frequently one can deform the (vector) moduli space to a point, where a 

sufficient number of (vector) moduli become non-toric, so that their number now indeed depends 

on the points in the dual lattice. E.g. if we set for the X(J.41 ) model the perturbations which 

corresponds to v; and v;, to zero, we get the cohomology h1
•
2 = 185(0) and h 1

•
1 = 5(1). Then 

under (3.10) we get the CHL cohomology in the invariant sector: h~~~ = 102(0) and h~.;,~ = 4(0). 

Similarly the X (I Es) example is at a point in the moduli space where (3.10) gives the CHL 

spectrum. 
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running over the relevant points of b., which are in AM and j running over the relevant 

points in b.* 

p = xo(a1y2+a2x3 +z6 { a3(ss'tt')6 +a4(st) 12+as(st') 12+a6(s't) 12+a7(s't') 12 }+aoxyss'tt'), 

(3.11) 

where the coordinates (s, s', t, t', z, x, y) for the CHL mirror are identified by the action of 

G, which is generated by r 1 = 1
1
2 (-1,0,0, 1,0,0,0), r2 = ~(0,0,0, 1, -1,0,0) but not by 

r3 = ~(0, 0, 0, 1, 0, 0, 1) as it would be for the mirror of the X(Io) model. As a consequence 

the CHL moduli space is a double covering of the one of the X (!0 ) model. 

Another interesting example [5], which is not in Table 1, comes from the E8 x E8 

heterotic theory on K3xT2 with symmetric SU(2) instanton embedding (n1 , n 2 ) = (10, 10) 

in the £ 8 x E8 and n = 4 in the "stringy" SU(2) of the T 2 , which we take to be at an 

enhanced symmetry point. It has 2(20-3) hypermultiplets from the instantons in the E8s, 

8-3 from the ones in the SU(2), 20 from the gravitational sector and 2(3 ·56- 133) from 

higgsing the E7 • Orbifolding by the CHL Z2 , we find that the hypermultiplet counting for 

the CHL string should be 17 + 5 + 20 + 35, while there should be 2 vector multiplets. The 

polyhedron for the CHL dual is spanned by v1 = (11,-1,-1,-1), v2 = (-1,5,-1,-1), 

v3 = ( -1, -1, 5, -1), v4 = ( -1, -1, -1, 1), and v5 = ( -1, -1, -1, -1). After the quotient 

by (3.10) we get hti'(X) = 2 and h~~i'(X) = 76 and the resolved cohomology is h1 , 1 (X)= 5 

and h2, 1 {X) = 101. Again, the invariant cohomology is in accord with the expectation for 

the CHL spectrum: 
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4. Appendix 

Although (3.5) and (3.6) define b.* for all cases, here we give a more concrete de­

scription in a convenient basis (see also [16][24]) 6 Let ky = (0, 1), kx = (1, 0), ko = (0, 0), 

6 In this basis one can easily visualize the K3 polyhedron, see [24]. This basis is related to the 

( ~ ~ ~ ~) one which comes out of direct application of (3.6) by the matrix 
2 0 1 0 
3 0 0 1 
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k1 = (0,-1), k2 = (-1,-1), k3 . (-1,-2), kz = (-2,-3) be the Newton polyhedron 

of the X 6 (1,2,3) elliptic curve and v;:; = (O,n,ki)- Then .6.* always involves the rele­

vant points vo = (0, 0, 0, 0), v; = (1, 0, -2, -3), v;, = ( -1, 0, -2, -3), v; = (0, 1, -2, -3), 

v;, = (0, -1, -2, -3), v; = (0, 0, -2, -3), v; = (0, 0, 1, 0), v; = (0, 0, 0, 1), which describe 

the dual polyhedron and hence the vector moduli space of X(I0). The unhiggsing of .6.* 

adds the following points. 

Table 3: Dual Polyhedra for the symmetric cases 

X(I) group additional points 

X(II*) (Es) 2 . ±6 ±2 ±4 ±3 ±2 ±1 
vk= · · · vk= , vk3 'vk2 'vk1 ' vko 

X(III*) (£7) 2 ±4 ±2 ±3 ±2 ±2 ±1 
vk= · · · vk= , vk3 'vk2 'vk1 'vko ' 

X(IV* 8
) (E6) 2 ±3 ±2 ±2 ±2 ±1 ±1 

vk= 'vk= , vk3 'vkz 'vk1 ' vko ' 
X(IV*ns) (F4) 2. 

±3 ±2 ±2 ±1 
vk= , vk= 'vk3 'vk1 ' 

X(Iins) (80(11))2 ±2 ±2 ±1 ±2 
vk= 'vk3 'vk2 'vk1 ' 

xu;s) (80(10)2 ±2 ±2 ±1 ±1 ±1 
vk= 'vk3 'vk2 'vk1 'vko 

X(I;ns) (80(9) )2 ±2 ±2 ±1 ±1 
vk= , vk3 'vk2 'vk1 ' 

X (Ions) (80(7))2) ±2 ±1 ±1 ±1 
vk= 'vk2 'vk1 'vk1 ' 

X (Ions) (G2) 2 ±2 ±1 
_ vk= 'vk1 , 

X(Is) 8
) (8U(5))2 v±1 v±1 v±1 v± 

k3 ' k2 ' k1 ' ko ' 
x(I:) (8U(4))2 v±1 v±1 v±1 

k3 ' k2 ' kl 

X(I:J) (8U(3))2 v±1 v±1 
k:'! , k2 

X(I2) (8U(2))2 v±1 
k3 

X(Io) no gen. -
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