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Sensitivity Study on Hydraulic Well Testing Inversion using 
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Abstract 

Shinsuke Nakao, Julie Najita: and Kenzi Karasaki 

Earth Sciences Division 

Lawrence Berkeley National Laboratory 

University of California 

Berkeley, California 94 720 

Cluster variable aperture (CVA) simulated annealing has been used as an inversion 

technique to construct fluid flow models of fractured formations based on transient 

pressure data from hydraulic tests. A two-dimensional fracture network system is 

represented as a filled regular lattice of fracture elements. The algorithm iteratively 

changes an aperture of cluster of fracture elements, which are chosen randomly from a list 

of discrete apertures, to improve the match to observed pressure transients. The size of the 

clusters is held constant throughout the iterations. Sensitivity studies using simple 

fracture models with eight wells show that, in general, it is necessary to conduct 

interference tests using at least three different wells as pumping well in order to 

reconstruct the fracture network with a transmissivity contrast of one order of magnitude, 

particularly when the cluster size is not known a priori. Because hydraulic inversion is 

inherently non-unique, it is important to utilize additional information. We investigated 

the relationship between the scale of heterogeneity and the optimum cluster size (and its 

shape) to enhance the reliability and convergence of the inversion. It appears that the 

cluster size corresponding to about 20 - 40 % of the practical range of the spatial 

correlation is optimal. Inversion results of the Raymond test site data are also presented 

and the practical range of spatial correlation is evaluated to be 5 - 10 m from the optimal 

cluster size in the inversion. 
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1 Introduction 
For environmental remediation, management of nuclear waste disposal or geothermal 

reservoir engineering, it is very important to evaluate the permeabilities, spacing and sizes 

of the subsurface fractures which control groundwater flow. Pressure interference testing 

using multiple wells is thou~ht to be a powerful method to collect the information of the 

permeabilities of the fracture system. Once obtaining the pressure transient data, an 

inverse method to match the observed data is recently applied to construct the hydrological 

model [e.g., Doughty, et al., 1994]. Conventional inversion methods are mainly based on 

the conjugate gradient method or maximum likelihood method [Carrera. and Neuman, 

1986]. Such methods, however, will often find a minimum in a close neighborhood of the 

starting (initial) model so that one needs to start very close to the globa,l minimum or to try 

several starting models with the hope that one of them will lead to the best model. 

Simulated annealing (SA) has been recently attracting attention as a powerful stochastic 

inverse method for finding the minimum near optimal values ofa function to solve such a 

problem. SA has been found useful in a variety of optimization problems that involve 

finding optimum (minimum or maximum) values of a function of a very large number of 

independent variables. One example is the traveling salesman problem. A salesman travels 

through a number of cities but must visit each city once before returning to astarting point. 

The problem is optimized if the shorter route is found [e.g., Kirkpatrick et al., 1983; Geman 

and Geman, 1984; van Laarhoven and Aarts, 1987]. In many of these applications, the 

function to be minimized is called the cost function (which is also referred to as the energy 

function). SA is advantageous in that annealing is not forced to converge toward the local 

minimum nearest to the starting point as occurs with conventional minimization methods 

such as conjugate gradient methods. 

In hydrological application, Lawrence Berkeley National Laboratory has been developing a 
SA inverse method for well tests data analyses. Maulden et al. [1994] developed a SA 

inverse method in which a partially filled lattice represents a fracture network and the an 

individual element are changed randomly from conductive to nonconductive or vice versa. 

The effect of the change is examined by numerically simulating well tests and comparing 

them wit~ field tests. In this technique, the finite element code TRINET [Karasaki, 1987] 
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was used as a subroutine to solve for the head distribution at each iteration. Maulden et 

al.'s method changed individual fracture element to be conductive or not, on the other hand, 

Najita and Karasaki [1995] developed a simulated annealing model that uses a variable 

aperture network, namely, the algorithm will change a duster of elements instead of 

single element. They also applied the method to pressure transient data from synthetic 

hydraulic well tests. 

One of the purposes of this paper is to conduct sensitivity studies in order to develop 

general guideline for a field test design. One subject is the relative number of pumping 

wells and observation wells. A second, equally important factor is the location of the wells. 

These two factors are clearly related to the ability to detect heterogeneity. The other 

purpose of this paper is to conduct sensitivity studies to examine relationship between the 

scale of heterogeneity and the optimal cluster size and shape to be specified in the 

inversion. These factors are expected to enhance reliability and convergence because it 

reduces the size of the space where the inversion searches for solutions. We will discuss 

these results using synthetic data. We will also ·discuss the inversion results of the 

Raymond test site data using the present technique. 

2 Concept of Simulated Annealing 
Metropolis et a1.[1953] first used an annealing algorithm to simulate changes in a system 

of interacting molecules at a fixed temperature. This algorithm became popular after it 

was applied to combinatorial optimization problems by Kirkpatrick et al.[1983]. Simulated 

annealing (SA) is a stochastic search method which can be applied to a wide variety of 

problems such as allocation and scheduling problems in operations ·research, image 

restoration [Geman and Geman,1984] and the well-known traveling salesman problem 

[Kirkpatrick et al., 1983; Press et al., 1986]. In addition to the applications cited above, SA 

has also been applied to geophysical exploration [Basu and Frazer, 1990; Sen and Stoffa, 

1991; Vasudevan et al., 1991; Sen et al, 1993; Carrion and Bohm, 1994] and hydrology to 

develop a groundwater management strategy [Dougherty and Marryott, 1991]. 

The concept of SA is· analogous to thermodynamics, in the manner in which liquid · 

metals cool and anneal. In physical annealing, a metal is heated and allowed to cool very 
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slowly in order to obtain a regular molecular configuration ~aving the lowest possible 

energy state. In order to encourage the formation of this crystalline structure, a schedule 

of temperatures is used to govern the rate at which the metal cools. In SA, energy state and 

molecular configuration have exact analogies. The cost or energy function is analogous to 

energy state and the set of free parameters (configuration) is analogous to the 

arrangement of molecules. As in physical annealing, a transition to a new configuration 

has an associated energy change. The following criterion known as the Metropolis 

algorithm is applied in determining whether a transition to another configuration occurs 

at the current temperature. For then-1st configuration Xn-1 and the nth configuration Xn 

with energies(energy function) En-1 and En respectively, the transition proba,bility at some 

system temperature T is given by 

Pr(Xn-1 -7 Xn) = 1 

exp[-(En-En-1)fl'] 

if En -En-1 < 0 

if En-En-1 > 0. (1) 

This criterion always allows a transition to a configuration if system energy is decreased 

and sometimes allows a transition to a configuration with higher energy. The probability of 

a transition to a higher energy state decreases exponentially with the size of the energy 

increase. This· is a stochastic relaxation step that allows SA to search the space of possible 

configurations without always converging to the nearest_ local minimum. If the 

temperature T is held constant, the system approaches thermal equilibrium and the 

probability distribution for the configuration with energy E approaches the Boltzmail 

probability 

Pr(E) = exp(-E/k.T) (2) 

where k is the Boltzman constant. As the system temperature is lowered, the probability of 

accepting configurations with higher energy decreases so that only configurations with 

small energy perturbations are allowed at low temperatures. 

In general, the SA algorithm consists of the following tasks; 1) the element to generate or 

change system configuration randomly, 2) calculations of an objective function (energy or · 

error function), 3) stochastic test to determine whether a randomly changed configuration 

( 
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is accepted or not (Metropolis algorithm), 4) adjustment of current temperature 

according to the cooling schedule. 

Several choices of temperature schedule are possible, and are currently a topic of research 

(e.g., Dougherty and Marryott, 1991). A computationally practical schedule is the widely 

used decrement rule (Press et al., 1986). Given an initial temperature To, assign 

Tk =To a~; k=O,l,2, 3 .... (3), 

where a is between 0 and 1. This general form has been implemented with a= 0.55 to 0.99. 

In this schedule, the current temperature is kept fixed until a finite number of transitions, 

Lk, have been accepted, then the temperature is lowered. 

3 Application to Well Test Inversion 
To use simulated annealing for the inverse of well tests, we consider the two dimensional 

fracture network model as shown in Figure 1. Each element represents a simplified 

fracture. Transmissivity(m2/sec), storativity(m·1), aperture(m), unit thickness(! m) and 

length are imposed on each element. In Figure 1, thick elements represent fractures with 

higher transmissivity. Well locations are specified at node points and pressure transients 

due to pumping or injection are calculated at each node using the finite element code 

TRINET[Karasak1; 1987]. Fluid flow along fractures is assumed to be laminar. It is also 

assumed that apertures are large enough so that the transmissivity of any fracture 

element follows the cubic law 

T = pgb3 /12u, (4) 

where p is the density of water, g is acceleration due to gravity, u is dynamic viscosity of 

water and b is aperture of the element. 

In cluster variable aperture (CVA) annealing, we would like to find the optimum fracture 

network geometry by modifying clusters of element apertures and calculating transient · 

curves to simultaneously match all observed transient curves: At each step of the 
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algorithm, the apertures for one cluster of elements are selected randomly using the Wolff 

algorithm [Wolff, 1989]. This step is analogous to the perturbation step in the general SA 

algorithm. The number of elements in the cluster is limited by the maximum cluster size 

which is specified by the user. Following the perturbation step, well tests are simulated on 

the fracture network and the calculated pressure transient curves are compared with 

observe9. data. The system energy is the sum of the squared differences between the 

calculated and observed pressure transients. 

The Metropolis algorithm is applied to determine whether the current fracture -

configuration is accepted or not, based on the energy change and the temperature 

(Equation 1). When Lk acceptances at Tk have been achieved, the temperature is reduced to 

Tk+l according Equation (2) with a = 0.9, until Lk+l transitions have been accepted at the 

temperature Tk+I. This process is continued until the temperature schedule is exhausted or 

the number of iterations has reached a user-specified maximum. In the following, we refer 

to "minimum energy", however, this is not used to describe the global minimum. Rather it 

is the smallest energy found after completing the maximum number of iterations. We 

expect this to be close to the global minimum (i.e., near optimal). 

4 Sensitivity Study 
4. 1 Relation between Number of Pumping Wells and Resolution 
Sensitivity studies are conducted to examine the relation between the number of 

drawdown wells and the resolution of transmissivities, where we define the resolution as 

the degree of heterogeneity of the fracture network (contrast of the transmissivities and 

geometry of the distribution) that can be extracted by the analysis. As shown in Figure 1, 

consider the 20 m x 20 m two-dimensional region filled with fractures 1 m apart and 

consisting of 441 node points and 840 fracture elements. It is a simple fracture network 

model where the transmissivity of the upper region (Zone 1) is T1(aperture b1) and that of 

the lower region (Zone 2) is T2(aperture b2). All of the following results shown in this 

section are performed using the same fracture model. In all- cases, total number of the 

observation wells is eight including pumping wells. By changing the number of pumping 
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Table 1 Summary of numerical experiment on resolution (NE-1 - NE-6). 

Numerical transmissivity transmissivity Tur2 number of initial energy for iteration 

Experiment for T1 (m2/sec) for T2 (m2/sec) draw down energy minimum number for 

# wells Eo E(min.) minimum 

NE-1 10-6 10·8 100 Hin T2) 51113 0.26 9988 

NE-2 lQ-6 10·8 100 Hin Tt) 2331 0.23 9791 

NE-3 10-6 10·7 10 1(in T2) 619 0.09 6869 

NE-4 10·6 10·7 10 l(in Tt) 2067 0.67 9660 

NE-5 10-6 10·7 10 2(in Tt &T2) 2662 0.71 8092 

NE-6 10-6 10·7 10 . 3(in Tt &T2) 4705 0.30 9900 

wells from one, to three, we evaluate inversion results for the cases where the contrast 

T1tr2 is 10 and 100. The procedure of the pumping test is that the well is pumped at the 

constant flow rate until drawdown reaches near steady state and then the well is shut in 

until steady state is reached. For two and three pumping tests, the same procedure is 

simulated in series. 

Table 1 summarize the numerical experiments with an ID number, values of T1 and T2, 

T1fr2, the number of pumping wells, energy of the initial model (configuration), the 

minimum energy and iteration number at which the minimum energy was reached. The 

initial model (configuration) used here is a homogeneous fracture network in which each 

fracture element has a transmissivity of 10·5 m2/sec (aperture 2.3 x 10·4 m). The pumping 

rates are constant, 0.06 1/min. for wells in zone 1 and 0.6 1/min. for wells in zone 2. The 

initial temperature is set to be 150. Since this algorithm changes configurations by clusters 

of fracture elements, the number of acceptances at each temperature is set to be the 

average number of non-overlapping clusters: the value obtained by dividing the number of 

elements (840) by a cluster size. In this case it is 80, because cluster size is 10 for all cases. 

The temperature is reduced by 10% and totally 10,000 iterations are scheduled. For 

simplicity two replacement apertures are specified. These are the apertures associated 

with T1 and T2 after applying the cubic law. 
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Numerical experiment 1 (NE-1) is the case where the transmissivity contrast T1ff2 is 100, 

and one pumping well is located in the low permeability zone 2. The minimum energy, 0.26, 

was reached at iteration 9,988 (Figure 2). Comparison of pressure transients between 

synthetic observed data and those of the minimizing configuration is illustrated in Figure 3. · 

A good fit of pressure transients is achieved by SA, and the minimizing configuration is 

close to the true configuration in that the boundary between T1 and T2 is clearly defined. 

Figure 4 gives the history of energy transitions at each iteration. We can observe that the 

algorithm allows many transitions to higher energy with an overall decreasing trend in 

energy. The transmissivity contrast for NE-2 is the as same as that of NE-11 T1ff2 is 100, 

however, one pumping well is located in the high permeability zone 1. The minimum 

energy of the system is reached at the iteration 9, 791 with energy 9.23. The boundary 

between T1 and T2 is clearly reconstructed (Figure 5). From these results, we see that it is 

possible to reconstruct such a simple fracture network model by using single pumping well 

if the transmissivity contrast is 100. 

The next four numerical experiments (NE-3 through NE-6) are cases with a transmissivity 

contrast T1ff2 = 10. NE-3 has a single pumping well in the zone d2. NE-4 has a single 

pumping well in the zone 1, NE-5 has two pumping wells in series and NE-6 has a series of 

three pumping wells. The results are shown in Figure 6(a)- (d), respectively. For all cases, 

minimum energies are less than· one. As the number of pumping wells increases, the 

degree to which network configurations match also increases. For NE-3 and NE-4, it is 

noteworthy that the minimum energies are low enough (0.09 and 0.67), however, the 

resulting configurations differ greatly from the "solution". This is caused not by a problem 

in SA itself, but by the inherent nature of pressure transient testing, where a large number 

of equivalent models exists that can match one set of observed data (non-uniqueness). 

Although the value of minimum energy can be one of the guidelines to check the degree of 

convergence and reliability of the inversion, we have to be careful when comparing the 

minimum energy of the result. As the total number of the well is fixed as eight in these 

calculations, increasing the number of pumping wells has a similar effect as increasing the 

number of ray paths in seismic tomography. From these results, it is shown that setting· 

three pumping wells out of eight wells is necessary to reconstruct the fracture network 

with a transmissivity contrast of one order of magnitude. Moreover, in the case of a single 
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drawdown well, locating the pumping well in the higher transmissivity zone makes the 

resulting configuration appear more like the synthetic network than of the pumping well is 

located in the lower transmissivity zone. This finding also holds true for the case ofT1fl'2 = 
100. 

On the basis of these limited number of cases considered, it appears that setting three 

pumping wells out of eight wells is necessary to reconstruct the fracture network with a 

transmissivity contrast of one order of magnitude. As the actual flow geometry will be 

more complicated than the cases considered, one must conduct pumping tests on more than 

three wells to resolve any kind of heterogeneity. 

4.2 Effect of Cluster Size 
In the previous section, we used very simple models to examine the resolution of the 

annealing solution. In this section, we will discuss the results of sensitivity studies using 

spatially correlated fracture models to investigate the relationship between the cluster size 

to be chosen in the inversion and the correlation length. Heterogeneity is introduced to the 

same scale network as seen in Figure 1 (20m x 20m region with 1m fracture elements). 

Transmissivity values are assigned to each fracture element from a lognormal 

transmissivity distribution, with a log mean of 10·6 (m2/sec) and a standard deviation in 

log1o of 0.4343. The range of transmissivity is from 10·7 to 10·5 with a mean of 10·6 (m2/sec). 

Two cases are considered in which the spatial correlation of the transmissivity is isotropic, 

with a correlation length of 1.0 m and 1.67 m, respectively. The transmissivity distribution 

is generated using an exponential autocovariance model. Therefore, the practical range of 

the spatial correlation is 3.0 m and 5.0 m, respectively. The stochastic transmissivity field 

is generated by the numerical code COV AR which uses the covariance matrix 

decomposition method [Williams and El-Kadi, 1986]. 

Two different realizations of transmissivity fields with correlation length of 1.0 m(cases 1A 

and 1B) are shown in Figure 7 and 8. Because transmissivity distributions of these models 

are continuous (thicker lines indicate larger transmissivity), it is difficult to decipher the 

differences in figures. An equivalent discrete transmissivity representation is also shown 

in Figure 7 and 8 for reference, with two threshold values of 3 x 10·6 and 3 x 10·7 (m2/sec). A 

semi-variogram of transmissivity for each case is calculated. It reaches its sill at about 3.0 
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m which coincides with the practical' correlation range chosen for the random fields (Figure 

9). Eight wells are set up in the model and three drawdown tests are simulated in series. 

Pumping wells are indicated by filled circles in Figure 7 and 8. Synthetic observed data 

for the wells was generated based on continuous transmissivity distribution models. Five 

inversions were conducted with cluster sizes of 10, 20, 30, 40 and 60. "To examine the effect 

of cluster size alone, other parameters such as the temperature schedule, time steps and 

flow rate for the pumping wells are kept the same for all inversions. Replacement 

apertureS are Set to 2.3044 X 10·4 m, 1.0696 X 10·4 m and 4.9646 X 10·5 m which COrrespond 

to transmissivities of 10·5, 10·6 and ·10·7 (m2/sec) respectively. A homogeneous 

transmissivity distribution (10·7 m2/sec) is assigned for the initial configuration. 

First, consider the inversion result for the case of the correlation length of 1.0 m(cases lA 

and lB). Figure 10 and Figure 11 show the annealing solutions found using the 5 different 

cluster sizes for case lA and case lB. In these figures, three types of line thickness (thick, 

thin and none) represent element transmissivities of 10·5, 10·6 and 10·7 m2/sec, respectively. 

Table 2 gives the cluster size along with the initial energy, the minimum energy and 

number of iterations at which the minimum energy was reached. The lowest minimum 

energy was reached by a cluster ·size of 10 for both cases. When the cluster sizes are 

smaller than 60, the minimum energy reaches less than 0.1. As the cluster size decreases, 

the minimum energy also decreases except for the cluster size of 20 for case lA and cluster 

size of 40 for case lB. This trend is clearly observed in drawdown matches shown in Figure 

12. Plots of annealing energy versus iteration number are given in Figure 13 (case lA) for 

cluster sizes of 10, 20, 30 and 40. Inversions with larger cluster size show a faster energy 

decrease at first, however, convergence tends to be slow when energies are less than 1.0. 

By visual examination of Figures 10 and 11, it is possible to check the reliability of the 

results. It shows that the results of the cluster size = 10 for both cases appear to give a good 

match to the flow geometry. For case lB a cluster size of 20 also gives a good match, 

although the size of high transmissivity regions are overestimated. Semi-variograms of 

each annealing solution are given in Figure 14 (case lA) and Figure 15 (case lB). Practical 

ranges of the spatial correlation for case lA are 2.9 m, 4:0 m, 4.8 m, 5.8 m and 7.0 m for 

cluster sizes of 10, 20, 30, 40 and 60, respectively. On the other hand, they are 2.5 m, 4.5 m, · 

4.3 m, 5.1 m and 7.0 m for cluster sizes of 10, 20, 30, 40 and 60, respectively for case lB. It 
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Table 2 Annealing energies for several cluster sizes for cases 1A and 1B (correlation 

length of 1.0 m2 

Case 1A 

Cluster Size 10 20 30 40 60 

Initial Energy 1.41 X 103 1.41 X 103 1.41 X 103 1.41 X 103 1.41 X 103 

Minim urn Energy 0.014 0.038 0.032 0.067 0.112 

Number oflterations 9923 9918 "9999 9844 9581 

for Convergence 

Case 1B 

Cluster Size 10 20 30 40 60 

Initial Energy 1.39 X 103 1.39 X 103 1.39 X 103 1.39 X 103 1.39 X 103 

Minimum Energy 0.013 0.024 0.061 0.047 0.122 

Number of Iterations 9867 9901 9904 7773 9914 

for Convergence 

is noteworthy that the same cluster size reaches the annealing solution with 

approximately the same practical range of the correlation for both cases. From these 

results, we observe that cluster sizes of 10 and possibly 20 are the most suitable size to 

obtain reliable results. Since a practical range of 3.0 m includes about 45 fracture elements 

in this case, the optimal cluster size seems to be about 20 - 40 % of the number of fractures 

within the practical range of correlation (equivalently, the optimal cluster dimension is 

about equal to the prescribed correlation length, which is 20 - 40 % of the practical range 

for an exponential model). 

In order to confirm the result mentioned above, we repeated this procedure for a 

correlation length of 1.67 m (case 2). Figure 16 shows the synthetic fracture network model 

with correlation length of 1.67 m, discrete network model and well location. The practical 

range of the spatial correlation is approximately 5. 7 m, a little larger than the value 

specified (Figure 18). This is probably an effect of the grid spacing. Ideally, the grid spacing 

should be considerably smaller than the correlation length. If not, assigning values on a · 

coarse mesh can artificially inflate (or deflate) the correlation length. 
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Table 3 Annealing energies for several cluster sizes for case 2 (correlation length of 1.67 

m 

Cluster Size 10 20 

Initial Energy 1.28 X 103 1.28 X 103 

Minim urn Energy 0.021 0.037 

Number oflterations 9818 9233 

for Convergence 

30 

1.28 X 103 

0.034 

9660 

k-

40 

1.28 X 103 

0.064 

9884 

60 

1.28 X 103 

0.068 

9971 

Figure 17 shows the annealing solutions found using the 5 different cluster sizes (10, 20, 30, 

40 and 60). Table 3 gives the cluster size along with the initial energy, the minimum 

energy and the number of iterations at which the minimum energy was reached. 

Although the minimum energy is quite small (less than 0.1) for all cluster sizes, a 50% 

energy difference is evident between cluster size 30 and 40. As in cases 1A and 1B, 

inversion runs with larger cluster size achieve faster energy decrease at first, however, the 

convergence tends to slow down below energies less than 1.0. A visual examination of 

Figure 17 shows that the results of the cluster size = 10, 20, 30 and 40 appear to give a good 

match to the flow geometry. Semi-variograms of each solution are -given in Figure 18. The 

practical ranges of the spatial correlation are 3.1 m, 4.5 m, 5.3 m, 5.9 m and> 10.0 m for 

cluster sizes of 10, 20, 30, 40 and 60, respectively. From reviewing these results, cluster 

sizes less than 40, especially 30 and 40 are suitable for obtaining good results. Since a 

practical range of 5.0 m covers an area equivalent to about 130 fracture elements, the 

optimum cluster size seems tobe 20-40% of the practical range, as was found above. 

4.3 Effect of Cluster Shape 
In the sensitivity studies described above, the annealing algorithm was designed to select a 

cluster of fracture elements at random locations (Figure 19). This seems to be a reasonable 

approach for perturbing the network model if information about the system geometry is 

not known a priori. On the other hand, if we have a priori information, namely, geological 

information about regional fractures such as strikes and scales, including such information 

in the inversion as shapes of a cluster might improve convergence and result in a more 

reliable solution. Hence, we added an option in the cluster selection so that the cluster 

12 



shape can be anisotropic (ellipse). Input parameters for an ellipse shape (one can define as 

many ellipses as one like) are the minor axis, major axis and counter-clockwise angle to the 

X direction. After the location of the cluster origin is determined, the shape of the ellipse is 

selected randomly (Figure 19). 

To examine the effect of the cluster shape, we employed a spatially correlated 

transmissivity model. The heterogeneity is introduced to the network of the same scale as 

seen in Figure 1 (20m x 20m region with 1m fracture elements). Transmissivity values 

are assigned to each fracture element from a lognormal transmissivity distribution, with a 

log mean of 10·6 (m2/sec) and a standard deviation in logw of 0.4343( i.e. 2.0 in natural log). 

Practical ranges of the correlation are 2.0 m in the X direction and 4.0 m in the Y direction. 

Figure 20 shows the realization of the correlated transmissivity model and its discretized 

model. To isolate the effect of the cluster shape, other parameters such as the temperature 

schedule, time steps and flow rates for the pumping wells are unchanged between two 

inversions. One of the inversions uses isotropic clusters and the other uses anisotropic 

clusters. Replacement apertures chosen are set to be 2.3044 x 10·4 m, 1.0696 x 10·4 m and 

4.9646 x 10·5 m which correspond to the element transmissivities of 10·5, 10-6 and 10·7 

(m2/sec) respectively. A homogeneous transmissivity distribution (10·7 m2/sec) is assigned 

for the initial configuration. For the case of anisotropic cluster shape, the ellipse with a 

minor axis of 1.2 m and major axis of 2.5 m are specified. These parameters are chosen so 

that the ratio of cluster length in the Y and X direction (i.e., 2.5 m/1.2 m) is close to the 

ration of correlation lengths in the Y and X direction. 

The network geometries obtained by inversion using isotropic clusters and anisotropic 

clusters are given in Figure 21, where the maximum cluster size of 10 is specified. After 
i 

10,000 iterations, the minimum energy of 0.068 is reached at 9,255 iterations for isotropic 

cluster shapes and 0.057 at 9,836 iterations for anisotropic cluster shapes. Although the 

difference in minimum energies between the two cases is not significant, a comparison of 

the configurations shows that the case with anisotropic cluster shapes seems to reconstruct 

the original fracture geometry better than that of isotropic cluster shapes. Figure 22 and 

Figure 23 show the semi-variograms of transmissivity for isotropic and anisotropic cluster 

shapes, respectively. We can observe that each case preserves its anisotropy of practical · 

range of the spatial correlation, which is about 1.0 for the isotropic case and about 2.0 for 
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the anisotropic case. Thus, if geological information of fracture geometry is available, it 

may be possible to incorporate such pieces of information into the inversion. 

5 Application to Field Data 
5.1 Site Description 
Simulated annealing was applied to hydraulic data from the Raymond field site, which is 

located in the foothills of Sierra Nevada, approximately 3.2 km east of Raymond, California. 

In order to develop field testing techniques and analysis methods for characterizing flow 

and transport properties of fractured rocks, the Raymond test site was established in 

collaboration between U. S. Geological Survey, Denver and Lawrence Berkeley National 

Laboratory as part of a task under the bilateral agreement between l)S/DOE and Atomic 

Energy of Canada(AECL). The site lies within the Knowles granodiorite which is light

gray, equigranular and non-foliated, and is widely used as a building material in California 

[Bateman and Sawka, 1981; Bateman, 1992]. 

Nine boreholes were drilled in a reverse V pattern with increasing spacing between 

boreholes (Figure 24). Driller's logs indicate that relatively unweathered granite is located 

beneath less than 8 meters of soil and regolith. The wells are cased to approximately 10 

meters and vary in depth between 7!5 and 100 meters. The water level is normally between 

2 and 3 meters below the casing head. Various geophysical logs, geophysical imaging 

techniques and hydraulic tests have been conducted to image the hydrologic connection of 

the fractured rock mass [Cohen, 1993; Karasaki et al., 1995; Cook, 1995; Cohen, 1995; 

Vasco et al., 1996]. Regional characterization and site· specific fracture measurements 

show that there are two sets of subvertical tectonic fractures: one of the set strikes at 

N30W and the other strikes at N60E [Cohen, 1995]. Two major conductive zones have been 

detected: one occurring near a depth of 30m and the other between 54 to 60 m, which are 

also reconfirmed by the ground penetrating radar reflection and seismic tomography 

survey (Figure 25). 

5.2 Data of Hydraulic Well Testing and Model 
Hydraulic well testing has conducted at the Raymond test site in several occasions [e.g., 
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Cohen, 1993; Karasaki et al., 1995; Cook, 1995; Cohen, 1995]. The data used in this study 

was taken in the summer of 1995. Each of the nine wells was injected systematically with 

fresh water using a straddle packer system. The distance between the straddle packers was 

roughly 6 meters. A typical injection test was, on the average, ten minutes. The pressure in 

the water tank was controlled and maintained at a constant pressure using compressed air. 

Neither the flow rate nor the downhole pressure was actively controlled; they 

spontaneously adjusted themselves accordingly · to the transmissivity of the injection 

interval. The advantage of this method are the simplicity of the set-up and the ease of test 

execution. Mter each test, the packer string was lowered by approximately 6 meters. Depth 

intervals sealed by packers during a particular injection were kept unobstructed during 

the next, so that the entire length of the well was tested. There were approximately 15 

injection tests per well in all nine wells. While these injections were conducted, the 

pressures in the remaining 31 intervals were simultaneously monitored. As a result, a total 

of 4,200 interference pressure transients were recorded. A schematic of the packer set up 

in the site is shown in Figure .26. To construct a hydraulic model using such a large 

number of interference data, a binary inversion method was developed [Karasaki et al., 

1995; Cook, 1995]. In their method each set of the pressure transient data was reduced 

down to a binary set: 1(yes) if an observation zone responds to an injection, and O(no) 

otherwise, and they successfully visualized connections between wells. 

From such a large number of interference data, we selected three sets of injection data; 

injection into wells 0-0, SE-1 and SE-3. These injection intervals are located approximately 

between depths of 20 to 30 meters. Intervals of the interference response are also located 

in these depths. We believe these intervals are confined in the upper conductive zone 

shown in Figure 25. Injection flow rates were, on the average, 6.4 l/min. for well 0-0, 5.9 

1/min. for well SE-1 and 6.51/min. for well SE-3. It should be noted that for a pair of wells, 

injecting at the first and observing at the second does not always give the same pressure 

response when their roles are reversed (i.e., injecting at the second and observing at the 

first). For example, Injection into well 0-0 gives about 1.5 meters change of head in well 

SE-3, on the other hand, injection into well SE-3 gives 0.2 meters change of head in well 0-

0. This is probably because the injection interval is much shorter than the observation 

intervals. 
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The template (model) of the Raymond test site consists of a 32 x 32 regular grid with 2.5 

meters fracture elements which covers an 80 m x 80 m area (Figure 27). The total numbers 

of nodes and elements are 1089 and 2112, respectively. The observation data of wells SW-4 

and SE-4 is not included in the model, since the interference response is not observed for a 

600 second injection into well 0-0, SE-1 nor SE-3. In all the calculations discussed below, 

we impose an initial head value of 0 meters for all nodes and elements, so that the relative 

head changes of wells are examined. We also assign constant head conditions (0 meter) on 

the outer boundary of the mesh. As an initial (starting) configuration, all fracture elements 

have transmissivity 10·5 (m2/sec), aperture 2.3044 x 10·4 m and length 2.5 m. The 

equivalent specific storage of the fracture elements are set to be 0.1 m·1 and held constant 

throughout the inversion. If we set the specific storage of the fracture element to be 10·5 

m·1 (a typical value for rigid fractures), a steady state is reached at a very early time. The 

relatively large specific storage value we use is more consistent with the time scales 

observed in the field data. The imposed injection flow rates are based on the averaged 

measured data. Replacement apertures specified in the inversion are 1.0696 x 10·3, 4.9646 

x 10·4, 2.3044 x 10·4 and 1.0696 x 10·4 m, which correspond to element transmissivities of 

IQ-3, i0-4, 10·5 and IQ-6 (m2fsec), respectively. Other parameters such as the temperature 

schedule and time steps are held fixed for all the calculations in the following section. 

5.3 Results and Discussion 
The inversion was used four times to find configurations that matched the pressure 

transient data. Each inversion was run with the same temperature schedule from the 

initial temperature of 30, for 10,000 iterations. Four inversion results are shown in Figure 

28 to Figure 31. The first result was found using a cluster size of 10 with isotropic cluster 

shapes, the second and third results were found using cluster sizes of 20 and 40 with 

isotropic cluster shapes. The fourth result was found using a cluster size of 20 with 

anisotropic cluster shapes, with strikes at N30W and N60E. Note that the transmissivity of 

the outer region of the grid (beyond a radius of 37.5 meter from the origin) was held at 10·5 

(m2/sec) throughout the inversion. We can observe that· annealing results consistently 

show a strong connection with a trend of about N30W to N45W, between wells SE-2 and 

SW-1. We can also see that SW-3 is relatively isolated in all results. This is because SW-3 

had a very low interference response from all of three well injections (see Figure 32). Aside · 

from these two features, the results of isotropic cluster shapes all seem to show relatively 
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Table 4 Annealing energies for several cluster sizes (Raymond test site data) 

Cluster Size 10 20 40 20 (anisotropic cluster) 

Initial Energy 3.33 x 103 3.33 x 103 3.33 x 103 3.33 x 103 

Minimum Energy 3.205 4.109 5.795 4.187 

Number of Iterations 9469 9225 9937 9964 

for Convergence 

random transmissivity distributions, while the result of anisotropic cluster shapes show 

the N30E to N45E trend of low transmissivity zones. 

Table 4 gives the cluster size along with the initial energy, the minimum energy and 

number of iterations at which the minimum energy was reached. The lowest minimum 

energy, 3.205, was reached with a cluster size of 10. As the cluster size decreases, the 

minimum energy also decreases. Comparison of pressure transients between observed data 

and calculated data for the minimum energy configuration for the case of cluster size= 10 

is illustrated in Figure 32. A relatively good match between the observed and calculated 

data was obtained. In this figure, symbols and lines represent the observed and calculated 

data, respectively. 

In order to evaluate the inversion results, we conducted a cross validation test. We 

modeled two other injection tests, with injection into wells SW-2 and SW-3, which were not 

included in the inversion as injection data. Table· 5 shows the case number (CV1 -CV 4) 

along with the cluster size and its shape, and the minimum energy for well SW-2 and SW-

3 injection. For injection into well SW-2, the energy becomes approximately 20 for cases 

CV1 and CV2, while the minimum energy becomes approximately one hundred for cases 

CV3 and CV4. For injection into well SW-3, all of the energies obtained are approximately 

280, which indicates that the annealing solutions do not predict the behavior around well 

SW-3 accurately. This might be caused by the fact that the SW-3 had a very low 

interference response from all of three injection wells used in the inversion. If we include 

the well SW-3 injection data in the inversion, reliable transmissivity distribution around · 

SW-3 will be obtained. 
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Table 5 Predicted energies of injections into well SW-2 and SW-3 for four annealing 

solutions 

Case Number CV1 CV2 CV3 CV4 

Cluster Size 10 20 40 20 

Cluster Shape Isotropic Isotropic Isotropic Anisotropic 

Energy for '22.39 26.75 99.82 91.25 

SW-2 Injection 

Energy for 285.53 286.51 285.37 286.33 

SW-3 Injection 

The cross validation result of the injection into well SW-2 indicates that the configuration 

obtained using a cluster size of 10 or 20 with isotropic cluster shapes (cases 5A and 5B) are 

the most suitable among the inversion results. This suggests that the transmissivity 

distribution of the upper conductive zone of the Raymond test site is rather isotropic. 

Moreover, the practical range of the spatial correlation of the site can be estimated from 

the optimal cluster size, and it appears to be approximately 5 - 10 meters. Semi

variograms of each solution are given in Figure 33. Practical ranges of the spatial 

correlation that correspond to the-cluster sizes of 10 and 20 are approximately 6.0 m and 

10.0 m, respectively. 

As mentioned before, the system energy, reflecting the difference between the observed 

and calculated pressure transients, is the only function being evaluated and minimized in 

this algorithm. We showed that the information of spatial correlation provides additional 

available data for determining the transmissivity distribution model of the site, in that the 

optimal cluster size for an inversion approximately corresponds to the spatial correlation 

length. This means that we are able to include information about spatial correlation into 

· the inversion as a cluster size (and/or cluster shape) if that parameter is known a priori. 

Even if parameters describing sp~tial correlation are unknown a priori, the process of 

selecting reasonable cluster size using this algorithm may lead us to estimate a possible 

range of spatial correlation. 
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6 Summary and Conclusion 
The inversion of hydraulic pressure transient well testing using Cluster Variable Aperture 

(CVA) simulated annealing has been applied as an inverse technique to construct fluid flow 

models in fractured formations. Sensitivity studies using a simple fracture model with 

eight wells show that, in general, it is necessary to conduct drawdown (or injection) tests 

with at least three wells in order to reconstruct the fracture network with a transmissivity 

contrast of one order of magnitude, particularly when the cluster size is not known a priori. 

As the real flow geometry will be more complicated than the cases considered, it is 

recommended to conduct pumping (or injection) testing on more than three wells. 

We investigated the postulated use of the correlation length (or observable information 

regarding the scale of the heterogeneity) as an input parameter to enhance the reliability 

or convergence of the inversion. It reveals that the optimal cluster size seems to be about 

20 -40% of the practical range of spatial correlation for the transmissivity. This suggests 

that analyzing the optimal cluster size which gives the minimum energy makes it possible 

to estimate the spatial correlation parameters for the transmissivity distribution in the 

region. 

Since hydraulic inversion results are inherently non-unique, it is important to utilize any 

relevant information. We showed that a priori information such as fracture strike and 

scale can also be taken into account to conduct inversions with the annealing by specifying 

this information in the cluster shape. This can be effective to enhance the reliability or 

convergence of the inversion. 

We applied the inversion algorithm to the hydraulic well test data at the Raymond test site. 

We estimated that the practical range of the spatial correlation of transmissivity to be 5 -

10 meters, since a cluster size of 10 to 20 gives the minimum energy. This result was 

confirmed by the cross validation of the injection test data which was not used in the 

inversion. 
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Figure 1 Example of synthetic fracture network. 

Each element represents a fracture. 

Circles on the upper left figure ~how the 

well locations. . 
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Figure 2 Inversion result (minimizing element 

configuration) for NE-1. Open circles 

show location of observation wells and 

black circle show well location of the 

pumping well on the upper left figure. 



/ 

ITERATION 

Figure 4 Energy (error) versus iteration for NE-1. 

23 

0 . ..,. 

0 

~---~----¢ 
' 

£. ~ 
~ <t. 

' ~ 
i ~ 

1 J; 

f t ~ ~ 
r T 

t- ' ' 
~ ' 

~ ' ' ' 
' ~ 

~ ~ 

" <t. 

" ~ 

J. ~ 

f ~ 
~ ' T ' 

<t. --=--~ ~------; _________ 
0 100 200 300 

TIME(s) 

Figure 3 Drawdown match for 

configuration for NE-1. 

~
•o 

0 0 
0 

0 

0 89 
0 101 
A 177 
+ 181 
X 261 
0 265 
v 341 
8 353 

II II 

400 

the minimizing ~ 

Figure 5 Inversion ·result (minimizing element 

configuration) for NE-2. 



Figure 6 Inversion result (minimizing element configuration) for transmissivity 

contrast of 10; (a) NE-3, (b) NE-4, (c) NE-5, (d) NE-6. 
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(a) (b) 
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Figure 7 The synthetic fracture network model with 1.0 m correlation length (case 

lA): (a) continuous transmissivity distribution and (b) its equivalent discrete 

distribution. Filled circles indjcate pumping wells. 
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The synthetic fracture network model with 1.67 m correlation length (case 

lB): (a) continuous transmissivity distribution and (b) its equivalent discrete 

distribution. Filled circles indicate pumping wells. 
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Figure 9 Omnidirectional semi-variogram of transmissivity distribution for the 

synthetic fracture network (case lA and lB). 
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Figure 10 Inversion results (minimizing element configuration) for case IA shown for 

different cluster sizes. The discretized synthetic fracture network is also 

shown for reference. 
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Figure 11 Inversion resl!lts (minim"izing element configuration) for case lB for 

different cluster sizes. The discretized synthetic fracture network is also 

shown for reference. 
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Figure 14 Omnidirectional semi-variogram of transmis~ivity distribution of the 

inversion results for case lA for different cluster sizes. 
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Figure 15 Omnidirectional semi-variogram of transmissivity distribution of the 

inversion results for case lB for different cluster sizes. 
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Figure 16 The synthetic fracture network model with 1.67 m correlation length (case 2). 

(a) continuous transmissivity distribution and· (b) its equivalent discrete 

distribution. Filled circles indicate pumping wells. 
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Figure 17 Inversion results (minimizing element configuration) for case 2 for different 

cluster sizes. The discretized synthetic fracture network is also shown for 

35 



y(lhl) 

5.4e-12 

4.8e-12 

4.2e-12 

3.6e-12 

3e-12 

2.4e-12 

1.8e-12 

1.2e-12 

6e-13 

0 
0 

y(lhl) 

1.6e-11 

1.4e-11 

1.2e-11 

1e-11 

8e-12 

6e-12 

4e-12 

2e-12 

0 
0 

y(lhl) 

1.6e-11 

1.4e-11 

1.2e·11 

1e-11 

8e-12 

6e-12 

4e-12 

2e-12 

0 
0 

Synthetic fracture network (case 2) Cluster size = 10 

• • 

• 
• 

• 

. . • . . . . • . . 
•• • • 

• • 
• 

2 4 6 8 
I hi 

Cluster size = 20 

• • • • • . • • • • • • 
• • 

• 
• 

2 4 6 8 
I hi 

Cluster size = 40 

• • . . • • • • • • • • • 
• 

• 
• 

2 4 6 8 
I hi 

y(lhl) . 1.6e-11i 

1.4e-11 • 
1.2e-11 

1e-11 

8e-12 
• 

6e-12 

4e-12 

2e-12 

0 
10 0 2 

y(lhl) 

. 1.2e-1 1 

1e-11 

8e-12 

6e-12 
• 

4e-12 • 
2e-12 

0 
10 0 2 

y(lhl) 

• 9e-12 

8e-12 

7e-12 

Se-12 

Se-12 

4e-12 

3e-12 • • 
2e-12 • • 1e-12 • 

0 
10 0 2 

. ............. . 

4 6 
I hi 

Cluster size = 30 

8 

• • ••••••• 
• • 

4 6 8 
I hi 

Cluster size = 60 

. • 
• 

• • • • • 

4 6 8 
I hi 

10 

•••• 

10 

• • . 

10 

Figure 18 Omnidirectional semi-variogram of the inverted transmissivity distribution 

for case 2 for different cluster sizes. 
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Figure 19 Example of an isotropic fracture cluster Oeft) and an anisotropic fracture 

cluster (right). 
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Figure 20 The synthetic fracture network model with 2.0 m correlation length in the X 

direction and 4.0 m in the Y direction: (a) continuous transmissivity 

distribution and (b) its equivalent discrete distribution. Filled circles 

indicate pumping wells. 
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Figure 21 Inversion results (minimizing element configuration) for the anisotropic 

transmissivity field. The discretized synthetic· fracture network is also 

shown for reference. 

39 



Isotropic cluster 
Anisotropy (Y/X) = 1.0 

y(lhl) Direction X 

1.8e-11 • • • • • ---
1.6e-11 ... • • • • • 
1.4e-11 

12e-11 

1e-11 

8e-12 

6e-12 

4e-12 

2e-12 

0 
0 2 4 6 8 10 

I hi 

y(lhl) Direction Y 
• 1.8e-11 • • • • • 

1.6e-11 • • • • • • 
1.4e-11 

12e-11 

1e-11 

8e-12 

6e-12 

4e-12 

2e-12 

0 
0 2 4 6 8 10 

I hi 

Figure 22 Semi-variogram of the inverted transmissivity distribution (isotropic cluste.r 

shape). 
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Figure 23 Semi-variogram of the inverted transmissivity distribution (anisotropic · 

cluster shape). 
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Figure 24 Well configuration at the Raymond test site. Large dots and small dots 

indicate 25 em and 15 em diameter wells, respectively. 
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Figure 25 Conceptual model of hydrogeologic structure at the Raymond test site (after 

Cohen, 1995). 
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Figure 26 Unfolded view of the wells and typical packer locations during the 

systematic injection tests. Note the length of the injection interval is much 

shorter than the packed-off zones in non-injection wells. 
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Figure 27 Initial model for the Raymond test site and well locations. 
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Figure 28 Inversion results (minimizing element configuration) with cluster size 10 for 

the Raymond test site. 
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Figure 29 Inversion results( minimizing element configuration) with cluster size 20 for 

the Raymond test site. 
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Figure 30 Inve~sion results (minimizing element configuration) with cluster size 40 for 

the Raymond test site. 
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Figure 31 Inversion results (minimizing element configuration) with cluster size 20 

and anisotropic shapes for the Raymond test site. 
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Figure 32 Pressure match for minimizing configuration for cluster size of 10. 
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Figure 33 Omnidirectional semi-variogram of transmissivity distribution of the 

inversion results for the Raymond test site for cluster size = 10 and 20. 
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