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Abstract 

We study membrane scattering in a curved space with non-zero M-momentum 

p11 transfer. In the low-energy short-distance region, the membrane dynamics 

is described by a three-dimensional N = 4 supersymmetric gauge theory. We 

study an n-instanton process of the gauge theory, corresponding to the ex

change of n units of p11 , and compare the result with the scattering amplitude 

computed in the low-energy long-distance region using supergravity. We find 

that they behave differently. We show that this result is not in contradiction 

with the Iarge-N Matrix Theory conjecture, by pointing out that cutoff scales 

of the supergravity and the gauge theory are complementary to each other. 



1 Introduction 

There are three basic length scales in M Theory compactified on a circle [1]: the IIA 

string length l8 , the Planck length lp = g113[8 and the radius of the M-circle Rs = gl8 , 

with g being the IIA string coupling constant. In the weak coupling region g « 1 of the 

IIA string, the three scales line up as 

(1.1) 

In the low-energy short-distance region, the dynamics of D(irichlet) branes [2] is described 

by a gauge theory on the D-brane worldvolume [3-6]. In flat space, the v4-term in the 

scattering amplitude of two DO branes computed in this short-distance region coincides 

with that computed in the supergravity region [4, 7, 8]. In this case the corresponding 

gauge theory has sixteen supercharges, and they protect the scattering amplit\}de from 

corrections that might arise when extrapolating the length scale. Generally speaking, 

amplitudes that are not protected by a sufficient number of supersymmetries may behave 

differently in the two regions. Indeed in [9, 10] it is shown that the v4-term in the DO-brane 

scattering amplitude in a curved space (more specifically the large volume limit of K3, 

called the ALE space) computed in the gauge theory region differs from the amplitude 

computed in the supergravity region. The former lacks subleading terms in the weak 

curvature expansion of the latter. Issues closely related to this were pointed out in [11, 12]. 

It is interesting to study other amplitudes in the gauge theory region and compare 

them with those in evaluated in the supergravity region. In [13], Polchinski and Pouliot 

computed membrane scattering in flat space which an exchange of a non-zero amount 

of M-momentum Pn· The non-zero Pn transfer corresponds toan instanton process in 

the three-dimensional N = 8 gauge theory (with sixteen supercharges) on the membrane 

worldvolume. They showed that the leading term in the one-instanton calculation agrees 

with the leading term in the supergravity side for one unit of M-momentum exchange in 

the region b » R 5ry, where b is the impact parameter and ry = (1- vi1)-
112 is the Lorentz 

boost factor for longitudinal velocity v11 • In view of the result in (10], one may suspect 

that such an agreement does not persist in a curved space. 

In this paper, we study membrane scattering on an ALE space with non-zero p11 

transfer in the gauge theory region using theN= 4 gauge theory (with eight superchages) 

in three dimensions. In curved space, there is an issue of which gauge theory should 

be used to describe the dynamics in the short-distance region [14-16]. In the case of 

membranes, the renormalizability of the corresponding three-dimensional gauge theory 

imposes a strong constraint. As far as we know, the only reasonable candidate is the gauge 
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theory studied in [17-20] whose field content and gauge groups are arranged according to 

the quiver diagrarp. In this paper, we call this the quiver gauge theory. In the orbifold 

limit of the ALE space, the model can be derived from open string dynamics (17], and 

one can argue that turning on Fayet-Iliopoulos parameters in field theory corresponds to 

resolving the ALE space. 

The instanton in three dimensions is a magnetic monopole. In the case studied by 

Polchinski and Pouliot [13], the gauge theory has N = 8 supersymmetry, half of which 

is preserved by the monopole. Consequently, there are eight fermion zero modes in the 

instanton background, which is exactly the right number to compute the v4-term in the 

membrane scattering amplitude, as the superpartner of the F 4 term in the gauge theory 

contains eight fermions. In our case, we find that the monopole in question breaks all the 

supersymmetry. Since our gauge theory has only N = 4 supersymmetry, one can expect 

that the number of fermion zero-modes is still eight. We will verify that this is in fact 

the case. This fact helps us in estimating the normalization of the leading term in the 

instanton computation. 

However the fact that the instanton breaks all the supersymmetry makes it difficult to 

construct it explicitly and evaluate its action. We address this problem in the following 

way. We first construct a field configuration obeying then-monopole boundary condition, 

and show that the action for this trial field configuration is less than n/ e2 times the 

geodesic distance a(X, Y) between the membranes (e: gauge coupling constant). Since 

the instanton minimizes the action for the given boundary condition, the instanton action 

Sinstanton should clearly obey the same upper-bound. We also show that, for any field 

configuration with the n-monopole boundary condition, the action is bounded below by 

n/e2 times the Euclidean distance II X- Y II in the total field space. Thus we obtain the 

inequalities, 
n n 
2 II X- Y II< Sinstanton < 2a(X, Y), 
e e 

(1.2) 

except in the orbifold limit when the inequalities above are replaced by equalities. The 

agreement with the supergravity computation would require the action to be exactly equal 

to ;;a(X, Y). Thus the gauge theory amplitude is exponentially larger the corresponding 

supergravity amplitude. Moreover we show that the error ;;a(X, Y)- Sinstanton grows at 

least linearly in n for large n. 

The membrane scattering amplitude computed using the gauge theory is different from 

the supergravity result. What does this imply to the Iarge-N Matrix Theory conjecture of 

Banks, Fischler, Shenker and Susskind (8]? To understand the origin of the discrepancy, 

we examine the region of validity of the gauge theory computation within the framework 
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of the Iarge-N conjecture. In Matrix Theory, the membrane arises from a collection of a 

large number of DO-branes [21]. The question is, in this set-up, when it is appropriate 

to use the three-dimensional gauge theory to describe the membrane dynamics. If the 

number N of DO-branes is finite, there is a short-distance cutoff 8x ,....., 1/VN on the 

worldvolume of the membrane. In order for the gauge theory description to be valid, the 

length scale of the problem has to be larger than the cutoff length. We find that this 

requires that the Planck length lp and the distance O"(X, Y) between the membranes be 

shorter than 8x, 

lp, O"(X, Y) <<8x. (1.3) 

Therefore, even in the Iarge-N Matrix Theory, the gauge theory description of the me.!_ll

brane is valid only in the short-distance regime. The gauge theory and supergravity 

descriptions cover complementary regimes and there is no overlap between the two. The 

result of this paper is an explicit example where the gauge theory computation is not 

applicable to the long-distance physics of membrane. 

In section 2, we define the gauge theory on the membrane worldvolume and show 

that the instanton breaks all supersymmetries. In section 3, we prove the inequalities 

(1.2) and estimate the error. Section 4 is devoted to an analysis of the zero-modes in 

the instanton background. In section 5, we compare the gauge theory result with the 

supergravity prediction. The last section is devoted to a discussion on the Iarge-N Matrix 

Theory conjecture. In the appendix, we review how the three-dimensional gauge theory 

description of membranes is derived starting from a system of N DO branes, and estimate 

the cutoff length of the gauge theory. 

2 Quiver Gauge Theory for Membrane on ALE Space 

In Matrix Theory [8], the membrane arises from a collection of a large number ofi 

DO-branes [21]. The dynamics of the membrane is described by a supersymmetric gauge 

theory on the worldvolume [22, 23]. In this section, we define the gauge theory for two 

membranes on the ALE space. The derivation of the action is reviewed in the appendix. 

We will examine the validity of this description in section 6 of this paper. 

According to (13, 23], the coupling constant e of the gauge theory is given by the string 

computing constant g8 as e2 = "(g8 /l8 • The Lorentz boost factor"( is given by 

N/Rs 
"( = £2;zr 
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where N is the number of DO-branes and Lis the size of the membrane. In three dimen

sions, the gauge theory is weakly coupled if e2 is smaller than the vacuum expectation 

value 14>1 of the Higgs field. In this regime, the loop corrections are suppressed by powers 

of e2 /14>1, and the instanton approximation is useful. In our case, 4> is typically related to 

the distance between the membranes a-(X, Y) as 

14>1 = a-(~; Y) · 
s 

(2.2) 

Therefore the gauge theory is weakly coupled when 

14>1 

Rs'Y . 
a-(X, Y) « 1. 

(2.3) 

In section 6, we will show that, if the gauge theory description of the membrane is valid, 

there is such a weakly coupled regime in the parameter space. 

To simplify our notation, in this and next sections, we will set the string scale ls = 1. 

2.1 Construction of the Quiver Gauge Theory 

Let us start with a single flat membrane localized at a point in S 1 x R3 x M, where M is 

an ALE space of type An-l· According to [17], the dynamics of DO branes propagating on 

an ALE space is given by a one-dimensional quiver quantum mechanics. Using this and the 

derivation of the membrane action from the DO brane action in the appendix, we find that 

the worldvolume dynamics of the membrane is described by a three-dimensional N = 4 

supersymmetric gauge theory with gauge group U(1)n = Tif,:-01 U(1)i and one massless 

hypermultiplet charged (+1, -1) with respect to U(1)i x U(1)i+l for each i = 0, ... , n- 1 

(where U(1)n = U(1) 0). The Fayet-Iliopoulos (FI) parameter ( = (~, ... , ~-1 ) is chosen 

so that I:i G = 0. The Higgs branch is the ALE space M which depends on the FI 

parameter ( When ( = 0, the ALE space has an An-1 singularity, which is resolved for 

( # 0. For generic values of(, the moduli space consists of a single mixed Riggs-Coulomb 

branch S 1 x R3 x M, which is identified as the space transverse to the membrane. 

To describe two parallel membranes, we consider the gauge theory with gauge group 

U(2)n = Tif,:-01 U(2)i and one hypermultiplet in (2i, 2i+t) of U(2)i x U(2)i+l for each 

i = 0, ... , n- 1. The moduli space of vacua of this theory was analyzed in (20] and found 

to have various branches. The branch relevant in this paper is the mixed branch (called 

the basic branch in [20], see equation (5.51)) in which_ the .gauge group is broken to the 

U(1) x U(1) subgroup of the diagonal U(2) C U(2)n. This branch receives no quantum 

corrections and is given by the two-fold symmetric product of S 1 x R3 x M, which precisely 
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matches the picture of two membranes at points on the transverse part of the space-time. 

The gauge coupling constant is equal to e.,fii for all U(2)i so that the coupling constant 

for the diagonal U(2) is e. 

2.2 Monopole and Supersymmetry 

To describe membranes moving with a large velocity in the eleventh direction we need 

to turn on a magnetic flux in the three-dimensional gauge theory. The momentum density 

1r11 of each membrane in the eleventh direction is given by the magnetic flux F12/27r Rs of 

the corresponding unbroken U(l) subgroup. Therefore, in a scattering with one unit of 

momentum transfer, the magnetic flux J dx1dx2 F12 of one U(l) increases by 27r and the 

flux of the other U(l) decreases by the s_ame amount. This is realized as the magnetic 

monopole of the SU(2) subgroup of the diagonal U(2). Namely, this is an instanton 

process of this SU(2). 

Later we will need to know the number of fermion zero modes in this instanton back

ground. For this, it is useful to count the number of unbroken supersymmetries. In fact, 

the instanton in question breaks all the supersymmetry. The easiest way to see this is 

to realize the gauge theory using intersecting branes (24]. The brane configuration con

sists of D3 and NS5-branes in type IIB theory on the flat space-time R9 x 5 1 which we 

p_arametrize by x0 , ... , x9 where the 5 1 is in the x6 direction [25). There are n parallel 

NS5-branes spanning the x0•1•2•3•4•5 directions and two parallel D3-branes spanning the 

x0•1•2•6 directions. Since the x 6 direction is finite the worldvolume dynamics of the D3-

branes is at low energies described by a three-dimensional gauge theory. An analysis of 

the open string states shows that the theory has the same gauge symmetry and matter 

content as the quiver gauge theory given above. 

Before we count the number of unbroken supersymmetries in the instanton back

ground, it is useful to briefly review why this configuration has N = 4 supersymmetry in 

three dimensions. Type IIB theory in flat space-time has 32 supercharges parametrized by 

a pair of Majorana-Weyl spinors, t+ and c, of the same chirality f 0."9t± = t±· The NS5-

branes preserve half of the su persymmetries, namely the ones satisfying r 012345t± = ±t±, 
and the D3 branes preserves those that obey f 0126t+ = c. Therefore 32/(2 · 2) = 8 

generators are preserved, which is the number of supersymmetries of N = 4 in three 

dimensions. 

Now let us show that the instanton in question break all the remaining supersymmetry. 

As noted in [24, 25), an instanton in the three-dimensional gauge theory is realized as the 

open Euclidean Dl-brane stretched between the two D3-branes and in the x6 direction. 
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Figure 1: The monopole in the Higgs or mixed Riggs-Coulomb branch (0 < fJ < rr) breaks 

all the supersymmetry. 

If we were in the Coulomb branch, the two D3-branes would have been separated in the 

x 3•
4

•5 directions. Then the instanton realized as the D1-brane would, for D3-branes sepa

rated in x 3 only, impose the additional condition r 36t+ = c for unbroken supersymmetry. 

Since r 36 anti-commutes with r 012345 , this would have been compatible with the condi

tion ro12345t± = ±t± associated with the NS5-branes, thus there would have been four 

unbroken supercharges. We are, however in the mixed Coulomb-Riggs branch. There the 

two D3-branes are separated in a mixed direction of x3,4,s and x7•8•9 , say cos 083 +sin 087 

(see figure 1). Thus the condition is (cosfJr36 + sinfJr76 )t+ =c. In this case, since r76 

commutes with r 012345 , it is not compatible with the condition from the NS 5-branes. This 

proves that the supersymmetry is completely broken by instantons in the Higgs ( fJ = 7r /2) 

or mixed branch (0 =/:- 0, 7r /2). If there were no NS5-branes, the two co'nditions would not 

have been in conflict and some of the supersymmetries would have been preserved. This 

corresponds to the case of N = 8 supersymmetry discussed in [13). 

This has the following consequence in the corresponding N = 2 theories in four dimen

sions. Note that instantons in three dimensions are solitons in four dimensions. In four 

dimensions, the above observation translates into the statement that monopoles in the 

Higgs or mixed branches, if they exist, cannot be Bogomolny-Prasad-Sommerfeld (BPS) 

particles. As is well-known BPS states are in the short multiplet of N = 2 supersymmetry 

consisting of four states, whereas non-BPS states are in the long multiplet consisting of 

sixteen states. If the monopole is not a BPS state, there must be a sufficient number of 

degrees of freedom to make a long multiplet. In the Higgs (or mixed) branch, one N = 2 

vector multiplets (eight states) mixes via the Higgs mechanism with one hypermultiplet 
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(eight states) and in total there are the right number of states to make a long multiplet. 

In the Coulomb branch, one vector multiplet mixes with itself and decomposes into one 

BPS and one anti-BPS multiplet. In the mixed branch of N = 4 super-Yang-Mills theory, 

the sixteen states mentioned above decompose again into four BPS/anti-BPS multiplets. 

3 Monopole Solution and Action 

We have found that the monopole solution in our case preserves no supersymmetry. 

This makes it difficult to find an exact form of the solution. We address this issue by 

using the following strategy. 

First we start with the quiver gauge theory defined in the last section, constrain 

almost all massive excitations of the scalar fields to be zero and go to the low-energy 

effective theory. The scalar fields are subject to the D and F-term constraints and are 

only allowed to move along the moduli space of vacua. In this model, we construct a 

trial field configuration obeying the boundary condition for the n-monopole, and show 

that its action is smaller than n/e2 times the geodesic distance a(X, Y) between the two 

membranes. Since the instanton minimizes the action, the instanton action should also 

obey the same upper-bound. We also show that, for any field configuration obeying this 

boundary condition, the action is bounded below by n/ e2 times the Euclidean distance 

II X - Y II between the two membranes. Thus the instanton action for the n-instanton 

should be bounded by these two quantities as 

n n 
2 II X- Y II< Sinstanton < 2a(X, Y), e · e 

(3.1) 

except in the orbifold limit of the ALE space M when the inequalities are replaced by 

equalities. In the following, we assume M is smooth (i.e. ( =J:. 0) unless otherwise noted. 

We then proceed by showing that the above field configuration can be lifted to the 

full quiver gauge theory. To solve the equations of motion of the full theory, we also have 

to minimize the action with respect to the massive modes. We show that this further 

increases the amount of the error, ~a( X, Y) - Sinstanton' although the action still obeys 

the lower-bound in (3.1). 

3.1 Monopole Configuration in the Low Energy Theory 

The low energy bosonic degrees of freedoms of the gauge theory are the scalar fields 

(Xi, Yi) (i = 1, ... , 7) taking values in the moduli space of vacua Sym2 (R3 x M) and 
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the gauge field a~ (a = 1, 2) of the U(1) x U(1) subgroup of th~ diagonal U(2) and are 

described by the Lagrangian density, 

e2.Ce11 = ~ 2:: (8tp,a~1 ) 2 + ]:_gii(X)op.Xiop.Xi + -
2

1 
gii(Y)8p.Yi8p.Yi, (3.2) 

4 a=1,2 2 

where gii is the metric of the space R3 x M. 

In order to construct the monopole, we need to retain the W-bosons A; of the diagonal 

U(2) which are generically massive on the moduli space Sym2(R3 x M) but become 

massless at the diagonal of the symmetric product where the two membranes coincide. 

We therefore consider the U(2) gauge theory1 with the following Lagrangian density, 

2 1 21 i. 1 i. 2+-
e .Ceff = 4tr Fp.v + 2gij(X)8p.X 8p.X1 + 2gij(Y)op.Y 8p.Y1 + 2 II X- y II Ap. AIJ. (3.3) 

where II X- Y II is the W-boson mass given as follows. Recall that the original quiver 

gauge theory has three real scalar fields rjJi in the adjoint representation for each U(2)i, 

and a pair of complex scalars (Qi, Qi) which is in (2i, 2i+l) for each U(2)i x U(2)i+l· At 

each point of the moduli space (X, Y), these matrix-valued scalars can be diagonalized 

(20] as 

(3.4) 

Here both (bi(X), bi(X)) and (bi(Y), bi(Y)) obey the D and F-term constraints of the 

Il U(1)i gauge theory for a single membrane located at X and Y respectively. The 

Euclidean distance II X- Y 11 2 is then defined as 

In other words, II X - Y II is the Euclidean distance of some representative points of X 

and Y in the vector space for the scalar fields of the Tii U(1)i gauge theory for a single 

1The action in (3.3) is actually the U(2) gauge theory in a specific unitary gauge, namely one where 

all scalar fields are diagonal. (In the quiver gauge theory, all scalar fields transform in the adjoint of the 

diagonal U(2)). By introducing an additional 'compensating' U(2) valued field one can make (3.3) into 

a gauge theory where the gauge has not yet been fixed. The unitary gauge chosen here is equivalent to 

choosing the gauge 4> = diagonal in the usual BPS equation F = *D<f>. For the BPS monopole solution, 
this gauge cannot be chosen globally, but only on the two hemispheres of a sphere at infinity. Along the 

equator, one has to glue the solutions together using a non-trivial transition function. In principle we 

would have to do the same thing for the trial monopole configuration that we will construct, but it is 

easy to see that exactly the same transition functions can be used to promote our trial configuration into 
an everywhere well-defined configuration. 
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membrane. That the W-boson mass of the low energy theory is equal to the Euclidean 

distance in the total field space of the quiver gauge theory was pointed out in [9]. The 

value of the Euclidean distance clearly depends on how to take the representative points 

(3.4}. Below we will specify how it is done in our case. 

Let us first rewrite the action (3.3}. For a function f(X, Y) on Sym2(R3 x M), define 

A= ( f(X, Y) 0 ) . 
0 -f(X, Y) 

(3.6) 

We can use this to recombine the kinetic term for the gauge field as 

The effective Lagrangian density (3.3) then becomes 

2 1 2 1 i i ( aJLxj ) 
e .Cell = 4tr (FJLv- f.JLvpDpA) + 2(8JLX , 8JLY )Mij oJLYi + 

+~d tr FA+ 2[ II X- Y 11
2 -f(X, Yf]A;A~. (3.8) 

where the matrix Mij is given by 

( 
g . ·(X) - l.2.L.2L _l.Jll..,.Jll..,. ) M· . - t} 2 {)Xi {)Xi 2 {)X• {)YJ 

tJ - _l.2.L..2..L . ·(Y) - l..&.2.L. . 
2 {)Yi {)Xi 9tJ 2 {)Yi {)Yi 

(3.9) 

We now construct a field configuration which sets the first two terms in the Lagrangian 

density (3.8} to be zero. This can be done by making use of the standard BPS monopole 

solution to the SU(2) gauge theory with a single adjoint scalar field <I>(x). The BPS 

equation for them is 

(3.10) 

A general n-monopole solution to (3.10) is given by Corrigan and Goddard (26]. By 

choosing our U(2) gauge field Att to be equal the n-monopole solution to (3.10) and by 

requiring the massless scalars (X, Y) to obey 

J(X(x), Y(x)) = ¢(x), (±¢: eigenvalues of <I>), (3.11) 

we can set the first term in the Lagrangian density (3.8) to be zero. 

So far the function f(X, Y) has been arbitrary. To obtain the upper bound in (3.1) 

we choose the function to be the geodesic distance between X and Y, 

J(X, Y) = a(X, Y). (3.12) 
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With this choice, the matrix Mii is positive semi-definite. This follows from the Hamilton

Jacobi equation for the geodesic distance 

.. 8a 8a .. 8a 8a 
gtJ(X) 8Xi 8Xi + g'l(Y) 8Yi 8Yi = 1. (3.13) 

The second term in the Lagrangian density (3.8) can be set to be zero if (8p,Xi, 8p,Yi) is 

the zero eigenvector of the matrix Mij, namely 

9ii(X)8p,Xi 

9ii(Y)8p,Yi (3.14) 

To solve this equation, we use the following property of geodesics. Suppose (Xo(r), Yo(r)) 
is a geodesics on Sym2 (R3 xM) with T being the proper time and with the initial condition 

Xo =Yo at T = 0. (3.15) 

Because of the property of geodesics, 

. ·(X ) dXt _ 8a(Xo, Yo) . ·(Yr) dYd _ 8a(Xo, Yo) 
gtJ 0 dr - 8X& ' gtJ 0 dr - 8Yd . (3.16) 

the equations (3.11) and (3.14) are both satisfied by setting 

X(x) :__ Xo(cf>(x)), Y(x) = Yo(ci>(x)). (3.17) 

Thus we find that, for the field configuration given by (3.10) and (3.17), the Lagrangian 

density (3.8) becomes 

(3.18) 

The second term in the right-hand side is negative definite for the following reason. As we 

will show in the next subsection, in order to lift the above monopole solution to the original 

quiver gauge theory, we must choose a gauge slice for the IIi U(2)i gauge symmetry that 

is normal to the gauge variation at any value ofT. For such a choice, the hyper-Kiihler 

quotient metric induced on the geodesic is the same as the restriction of the flat Euclidean 

metric to the gauge slice, and the geodesic length a( X, Y) is the same as the length of the 

slice measured by the flat metric. Since II X- Y II is the length of the straight segment 

connecting the same end points measured by the same flat metric, this must be smaller 

than the length of the slice which is equal to a(X, Y). Since the first term of (3.18) is a 

total derivative, its integral is determined by the n-monopole boundary condition. Thus 
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we find that the action for the field configuration (3.10), (3.17) is bounded above by the 

geodesic distance as 

I 3 n 
Self= d XLeff < e2a(X, Y)jx-+oo (3.19) 

Since the instanton minimizes the action, Sinstanton is smaller than the action Sef 1 for the 

trial monopole configuration considered here. Thus it should also obey the same upper 

bound. 

We can also use (3.8) to find a lower bound on the instanton action. For this, we set 

f(X, Y) to be the Euclidean distance II X- Y II· The Lagrangian density then becomes 

2 1 2 1 i i ( 8Jl.Xi ) 1 ( ) e Leff = 4tr (FJ.Lv- EJ.LvpDpA) + 2(8J.LX ,8J.LY )Mii f)J.Lyi + 2d tr FA. 3.20 

It is easy to see that the matrix Mii is now strictly positive definite and the second term 

in the right-hand side is positive. We thus obtain the lower bound 

n 
2 II X- Y II< Self e 

(3.21) 

for any field configuration satisfying the n-monopole boundary condition. 

3.2 Estimate of the Error 

Let us estimate the size of the error, 

;a(X, Y)- Seff =~I d3x[a(X(x), Y(x)) 2
- II X(x)- Y(x) 11 2 ]At A;. (3.22) 

When n = 1, the main contribution to the error comes from the region where the distance 

r from the center of monopole is less than the Compton wavelength of the W-boson. 

When the distance between X and Y is shorter than the typical curvature radius Rc of 

M, the difference between the geodesic distance and the Euclidean distance is estimated 

as 

In our monopole configuration, 

a(X(r), Y(r)) ¢(r) 
1 

acoth(ar)- -, 
r 

(3.23) 

(3.24) 

where a in the ·right-hand side is the value of a( X, Y) at r = oo. By combining with the 

known expression for the W-bosons A± in the BPS solution, we find 

a6 [a2(X, Y)- II X- y w ]At A; rv R2F(ar), 
c 

(3.25) 
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where F(~) is a certain function which decays exponentially for large~· The error (3.22) 

for ri = 1 is then estimated as 

1 0"3 lnoo 
2 a-(X, Y) -Self"' 2R2 d~e F(~). 
e e c o 

(3.26) 

This in fact is of the same order as the difference of the geodesic distance and the Euclidean 

distance between X and Y. Because of the exponential suppression by F(a-r), the main 

contribution to the integral (3.22) is from the region within the Compton wavelength of 

the W-boson. Since the instanton action Sinstanton is in general smaller than the trial 

monopole configuration, the actual error \a- - Sinstanton for the instanton action can be 
e ' 

larger than the one given by (3.26). 

Now let us estimate the magnitude of the error for an arbitrary value of n. For 

this, it is easiest to consider the case of the well-separated BPS monopoles as our trial 

configuration. If the distance between monopoles is larger than the Compton wavelength 

of theW-boson, the behavior of then-monopole solution near the core of each monopole 

can be approximated by that of the single monopole solution. Since the integrand of 

(3.22) is positive definite, there is no possibility of cancellation of the errors. Thus for the 

well-separated n-monopole, 

n . na-3 fnl 2 
2a-(X, Y) -Self"' 2R2 ~~ F(~). 
e e c o 

(3.27) 

Since the instanton action is smaller than that of the trial configuration, the actual error 

can be larger than this. Thus we find that the difference between the geodesic distance 

;; a-( X, Y) and the instanton action Sinstanton is at least of the order n for large n. 

3.3 Lifting to the Quiver Gauge Theory 

The low-energy theory with the Lagrangian density (3.3) is not renormalizable in three 

dimensions. It could still be used for computations if the energy scale of the problem 

is smaller than that set by the curvature of the moduli space M. The energy scale 

for the instanton solution is determined by how fast the fields A~', X and Y change 

on the membrane worldvolume and it is controlled by the values of X and Y at the 

infinity, typically by the distance a-(X, Y) between the membranes. Thus we expect 

that computations done in the low-energy theory (3.3) suffer large corrections when the 

distance a-(X, Y) is comparable to the curvature radius of M. In particular, for the 

purpose of computing subleading terms in the weak curvature expansion of the scattering 
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amplitudes, the analysis using the low-energy theory is not sufficient and we have to use 

the renormalizable gauge theory discussed in section 2. 

It turns out that the instanton action for the full quiver gauge theory obeys the same 

bound (3.1) as the instanton action for the low-energy e~ective theory. In this subsection, 

we show that the field configuration constructed in the previous subsection can be lifted to 

that of the quiver gauge theory and that the value of the action for the lifted configuration 

remains the same. Thus the upper-bound for the instanton action given by (3.1) also holds 

for the quiver gauge theory. In the next subsection, we show that the instanton action 

for the quiver gauge theory is in fact lower than that of the low energy theory, but is still 

bounded from below as in (3.1). 

First let us briefly review the procedure to obtain the non-linear sigma model on the 

Kahler quotient as the classical low-energy effective theory of the quiver gauge theory. 

(The sigma model on the hyper-Kahler quotient can be obtained simply by restricting to 

the zero of the F-term potential.) Suppose we are given a complex scalar field <I> in .a 

representation of the gauge group G, with the Lagrangian density 

1 e2 dimG 

.C = 22 II Fp,v W + II DJL<I> 11 2 +2 L I<I>tTa<I>- (al 2
· 

e a=l . 
(3.28) 

The last term is the D-term potential where Ta 's are the generators of the gauge group 

and (a is the FI parameter which has values in the center of the gauge group only. We 

consider for simplicity only the region of the values of the scalar field where the gauge 

group is completely broken. The gauge field acquires a mass from the second term and 

we can first integrate out the gauge field. The second term II D<I> 11 2 contains terms 

linear and quadratic in the gauge field and we can eliminate the gauge field by completing 

the square, ignoring their kinetic terms for the moment. The variation of this term 

with respect to the gauge field is expressed, with the aid of the D-term constraint, as 

6 II D<I> W= -26A~ <I>tTaDp,<I>. It is extremized if 

MabAt = -(Ta<I>)taJL<I> (3.29) 

where Ma.b = (Ta<I>)tn<I> is a matrix which has an inverse Mba if the gauge group is 

completely broken by <I>. Next, we solve (3.29) with respect to A~ and plug the solution 

into II D<I> W. We obtain 

. (3.30) 

This yields the non-linear sigma model Lagrangian density Gij)p,Xi8JLXJ on the Kahler 

quotient for an arbitrary choice of the gauge slice X -t <I>(X) in the D-constrained 

manifold. 
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Substituting (3.29) into the gauge kinetic term II FJ..Lv W, we obtain a higher derivative 

term for <I>. Therefore the resulting Lagrangian density would be in general different 

from the one given by (3.3). Fortunately this is not the case for the monopole solution 

constructed in the previous subsection. If we can choose a gauge slice <I>( X) so that it is 

everywhere normal to the gauge orbit, the right-hand side of (3.29) vanishes. In general, 

such a slice may or may not exist. If it exists, the term in II D<I> 11 2 linear in AJ..L vanishes 

for such a gauge slice and the second term of (3.28) becomes of the form 

(3.31) 

Therefore we can set the gauge field AJ..L to be equal to zero and still get the non-linear 

sigma-model Lagrangian density. 

In our quiver gauge theory, such a normal slice does not exist for a generic configuration 

(X(x), Y(y)). Fortunately our monopole solution is special in the sense that it evolves 

along a one-dimensional subspace in the total field space. This is because (X, Y) depends 

on xJ..L only through the single function ¢(x) as in (3.17). Therefore we can choose a normal 

slice for this configuration and obtain (3.31) for the kinetic term of the scalar field. The 

normal section can be chosen so that all bifundamentals are simultaneously diagonalized 

as in (3.5). If we keep only the gauge field of the diagonal U(2) subgroup, then the term 

quadratic in AJ..L in (3.31) is 

(3.32) 

where II X - Y 11 2 is defined by (3.5). Thus, the Lagrangian density of the quiver gauge 

theory for this configuration is the same as Left in (3.3) if we set all the massive fields 

equal to zero, except for the W-bosons in the diagonal U(2) subgroup. 

3.4 Effects of Massive Modes 

We have shown that there is a particular configuration of the quiver gauge theory,. 

satisfying the boundary condition for the n-monopole, such that its action is bounded 

from above by ;;a(X, Y). The configuration, however, may not be a solution to the full 

equations of motion of the quiver theory as we are simply setting the massive fields to be 

equal to zero, except for the W-boson of the diagonal U(2). In this subsection, we will 

estimate the effects of the massive modes. We will show that they increase the amount 

of the error estimated in section 3.2. 

When we turn on the massive modes of the scalar fields, the monopole solution will 

deviate from the BPS configuration (3.10), (3.17). The massive modes are not negligible 
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when the moduli space embedded in the large field space has non-zero extrinsic curvature. 

In such a case, the motion of the massless modes along the moduli space in general 

generates a centrifugal force (or rather centripetal force in this case as we are considering 

an Euclidean rather and Minkowskian equation of motion), which will cause the trajectory 

to deviate from the moduli space. The situation is illustrated in figure 2. Here we will 

show that, unless the FI parameters (are all equal to zero, the centripetal force is non

zero. The case with ( = 0 corresponds to the orbifold limit of M. Thus, with the massive 

fields turned on, the monopole solution deviates from the BPS configuration found in the 

previous section. This is an additional difficulty in finding an exact form of the instanton 

solution. However, the very fact that the actual solution deviates from the BPS solution 

means that the action for the solution is smaller than the one evaluated in the last two 

subsections. 

Figure 2: The trajectory does not follow the ground state of the potential due to the 

centripetal force. 

Let us study how the solution deviates from the sigma-model solution. In the gauge 

theory described in section 2.1, there is one hypermultiplet field (Qi, Qi) which is in (2i, 2i) 

for each U(2)i X U(2)i+l· The D and F-terms foreach U(2)i are 

D A _ A (;r,.ta ;r,.b ,i..a;r,.tb) _(A 
i -(Jab '~'i-1 '~'i-1 - '~'i '~'i - i li, (3.33) 
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where a, b = 1, 2 are the hyperkahler indices as 

(3.34) 

and aA=l,2,3 are the standard Pauli matrices. The potential for the scalar fields of the 

gauge theory is then 
3 

V(<I>) = L L triD~- (/lil2
, (3.35) 

i A=l 

where tr is over the U(2)i gauge group representation. 

Suppose the general solution to V(<I>) = 0 is parametrized by moduli'fields ¢P as 

<I>f = <I>f(o/¢). By construction, the BPS configuration satisfies 

(8Df) 8<I>f(o) = O 
8<I>f l~=~o a¢a , 

(3.36) 

namely normal vectors to the moduli space are given by derivatives of the D-terms Df 
with respect to <I>, modulo gauge transformation. As the metric in the total field space is 

flat, the centripetal force is given by 

F/ = 

(3.37) 

Here we used (3.36) a couple of times to reduce the equation. 

Now we are ready to show that the centripetal force ~A is in fact non-zero for the 

solution constructed in the previous section, except in the orbifold limit of M. As the 

fields <I> in the monopole configuration depend on x through the propertime T = ¢(x), the 

vanishing of the force ~a = 0 would require 

(3.38) 

This, however, is the same as the D and F-term constraints for Sym2(R3 x M) with 

( = 0. This means that Dr<P(o) is on the orbifold. It, is straightforwa;d to show that this 

is possible only if <l>(o) itself is on the orbifold. This means ( = 0. Thus we find that the 

centripetal force is non-zero unless ( = 0. 

On the other hand, the action is clearly larger than the Euclidean distance in the 

total field space. To see t~is, suppose we remove the D an F-term potentials from the 

Lagrangian density. We then have the fli U(2)i gauge theory coupled to massless scalar 

fields. By using the standard BPS argument, one can easily show that the action for 
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the field configuration obeying the n-monopole boundary condition is bounded below by 

;t II X- Y II· Adding the D and F-term potentials back would simply increase the value 

of the action. Thus the action of the quiver gauge theory is also bounded below by the 

Euclidean distance. 

This concludes the proof of the inequality 

~ II X- Y 11 2< Sinstanton < ~<J(X, Y), 
e e 

(3.39) 

and the estimate of the error ;t<J(X, Y)- Sinstanton· 

4 Instanton Calculation 

In this section we briefly summarize some aspects of the instanton calculation that 

one needs to do in order to compute the leading term in the membrane scattering process. 

We will work in the orbifold limit where all F-I parameters vanish. In this limit we we 

will see that there are precisely eight fermionic zero modes, all originating in the broken 

supersymmetries. Turning on the FI parameters will make the calculation quite a bit more 

involved, but it is clear that for sufficiently small parameters the number of fermionic 

zeromodes will remain eight and that the resulting amplitude will be nonvanishing. 

To perform the instanton calculation we adapt the notation of [13] in order to facilitate 

a comparison with the N = 8 calculation done in that paper. Thus, we start with N = 1 

supersymmetric Yang-Mills theory in ten dimensions, and dimensionally reduce the theory 

to three dimensions. This yields an N = 8 theory in three dimensions, which can also be 

viewed as an N = 4 theory with an extra adjoint hypermultiplet. We can then change the 

hypermultiplet representation from adjoint to some arbitrary other representation while 

preserving half of the supersymmetry. 

The ten-dimensional indices will be denoted by capitals M = 1, ... , 10, and we will 

decompose this into a six dimensional index m = 1, ... , 6 and an index a= 7, ... , 10. The 

six dimensional index can be further decomposed into the three-dimensional space-time 

index J.L = 1, 2, 3 and another index p = 4, 5, 6. The ten-dimensional gamma matrices are 

Tf..£ = <Jf..£®1®71, rp = 1®fp®72, and Ia = l®fa®72· Here, <J and 7 are Pauli matrices 

and r is a set of 8 X 8 seven-dimensional gamma-matrices. One finds that rll = 1 ® 1 ® 73 

and that the charge conjugation matrix is C = <J2 ® C(7) ® 7 1. The ten-dimensional fermion 

and the supersymmetry parameter t are both Majorana-Weyl. The reduction from ten 

to three dimensions is performed by decomposing the ten-dimensional index as indicated 

above. The 4, ... , 10 components of the gauge field become scalars in three dimensions. 
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I.{Jp Ap are three scalar fields in the adjoint and part of the vector multiplet, whereas 

Q n = An are the scalars in the hypermultiplet 1 . The fermion is decomposed in the + and 

- eigenvalues of the operator 

(4.1) 

The + eigenvalues are the adjoint fermions in the vector multiplet denoted by A, whereas 

the - eigenvalues are the fermions in the hypermultiplet denoted by '1/J. The supersym

·metries that survive are those that satisfy Pt = t. The action of the three-dimensional 

N = 4 theory reads 

S = :2 J d3x(~(FmnFmn + 2FmnFmn + Dn/3Dn{3) +~(A, {;)TMDM(A, '1/J)). (4.2) 

Here Fp,n = Dp,Qn, etc. The quantity Dn/3 contains the D- and F-term equations, to turn 

on a FI parameter one just has to add suitable constants to Dn/3· 

In the orbifold limit, a BPS monopole has the property that the gauge field A~ is 

independent of i, i.e. only a gauge field for the diagonal U(2) is turned on, and that Q~, 

the hypermultiplet transforming as (2i, 2i+l), is also independent i. This is precisely a 

normal slice as discussed in section 3.3. The BPS equations read 

(4.3) 

where Bp, = ~ip,vpF;v is the m~gnetic field and npnp +nann = 1 are the components of a 

unit vector. 

The fermion zero modes can be obtained from the supersymmetry variations of A and 

. . 
z z 
2Fmn'Ym'Yni + 2Dn/3'Yn'Yf3i 

z 
2 Fmn'Y[m'Yn]f.· 

evaluated in a monopole background. This yields the zero modes 

(4.4) 

(4.5) 

(4.6) 

These are somewhat different from the ones in [13], because the unbroken supersymmetries 

do not depend on the choice of monopole. 

1 Since the hypermultiplets can be in a complex representation, one should in fact first combine 

Q7, Qs and Q 9, Q10 into two complex adjoint scalars and then replace the adjoint index by some other 

representation· 
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To determine the bosonic zero modes, we need to impose a suitable gauge. If Dm, Da 

are the background covariant derivatives, i.e. (DaQf3)a = (Q01TaQf3), then we impose 

(4.7) 

where am and q01 are quantum fluctuations around Am and Q01 • Then it is easy to find 

the three translational zero modes indexed by v = 1, 2, 3 

(4.8) 

The fourth zero mode is associated to U(1) rotations. As in [13] or in [27] one finds 

that it reads 

(4.9) 

The denominator is the Euclidean distance in field space as before. 

The inner products of these zero modes form a diagonal four by four matrix, as follows 

from the fact that I d3x(Fp.pFvp + Bp.Bv) = t5p.v I BpBp, and I d3x(Fp.vBp.) = 0. 

Next, we consider the one-loop determinants. The gauge fixing term-is"' I d3x((Dmam)2+ 
(D01q01 )

2 ), and the corresponding ghost term in the Lagrangian, bD2c, gives rise to det( -D2)k 

in the one-loop path integral for the U(2)k gauge theory. The bosonic fluctuations add 

up to 

am6.mnan + am6.maqa + qa6.amam + qa6.a(3q(3 (4.10) 

where L\mn = - D2t5mn - 2Fmn and similarly for the other components of L\. 

In order to simplify the form of the kinetic term we try to diagonalize F as much 

as possible. Since the quiver gauge theory has a cyclic Zk symmetry it is convenient to 

perform a discrete Fourier transformation and replace a:n, q~ by a~, q~, where r is the 

Fourier label r = 0, ... , k - 1. One has to be a bit careful as one is dealing with real 

fields, but the result is that the bosonic kinetic term contains 6k copies of the operator 

- D 2 and for each r one copy of the four-component operator 

(4.11) 

acting on the four components (a~, xr). Here, we defined 

1 ( r 1 + cos(2nr/k) r sin(2nr/k) -r) 
~ ~~+ 2 ~~+ 2 ~~ 

r 

( 4.12) 

( 4.13) 
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After a further change of basis ~r can be rewritten as 

( 4.14) 

The square of the Dirac operators that appear in the fermion kinetic terms (one has 

to treat 'lj; and ). together) is found to be equal to 

(4.15) 

This acts on a combined space with P = ±1. The two linear operators npr P and n 0T a 

anticommute. Again, it is convenient to perform a discrete Fourier transformation to 
. -

diagonalize the operator (4.15) as much as possible. The operator (4.15) becomes block 

diagonal, each block acting on (N, 'lj;r, ;.-r, 'lj;-r). The explicit form of each block is 

1 + lnpl l+cos( 2;:;r) 
2 lna:l 0 

sin( 2.-r) 
2 k Ina: I ·. 

l+cos( lf-) I I 1-lnPI sin( 2;:;r) 
0 

-D2 -ia B ® 2 no: - 2 lna:l 
®1 (4.16) JL JL sin( 2&;r) l+cos( 2;:;r) 

0 - 2 lnal 1 + lnpl 2 lna:l 
sin( 2 ,.r) 

2 k Ina I 0 
l+cos( 2&r) 

2 lna:l 1-lnpl 

The four by four matrix appearing here is equal to the identity matrix plus an orthogonal 

matrix, and is straightforward to diagonalize. This shows that the square of the Dirac 

operator contains four copies of~-:- and four copies of~;:- for each r -:- 0, ... , k- 1, where 

The total nonzero mode determinants are then 

IT det(~~) det(~;:-) 
r=O det(~r)2 det( -D2 ) 2 

where det is the determinant with the omission of the zero modes. 

(4.17) 

(4.18) 

It would be interesting to complete the one-loop calculation along the lines of [13] 

and to compare to the supergravity result. We do expect quantitative agreement in the 

orbifold limit, but this clearly requires a rather nontrivial calculation in the quiver gauge 

theory. 

Finally, we will demonstrate that the instanton calculation yields a nonzero result by 

showing that there are precisely eight fermionic zero modes. It is known that ~t has 

· . two zeromodes and ~Q. has no zeromodes [28], thus we need to show that the operators 

~-: and ~;:- have no zeromodes for r =fi 0. For this purpose consider the operator D>. = 
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CJp.(Op. + Ap.) + i>..rp, where Af.L is the monopole gauge field, F = *Drp and 0::;)..::; 1. We 

have 

(>..2 - 1)rp2 + D1DA 

(>..2 - 1)rp2 +DAD! 

-(Dp.Dp. + rp2
)- i(1 + >..)CJp.Bp. 

-(Dp.Dp. + rp2
)- i(1- >..)CJp.Bw 

(4.19) 

(4.20) 

The operator -(Dp.Dp. + rp2) is the operator -D2 above. We see therefore that for).. < 1, 

-D2
- i(1 ± >..)CJp.Bp. is the sum of two positive semidefinite operators. The only possible 

zeromodes are common zeromodes of DA or D1 and rp. But such zeromodes would also 

be zeromodes of -D2 , which has no zeromodes. Hence, -D2 +iACJp.Bp. has no zeromodes 

for 0 ::; ).. < 2, and neither have D..; for r :f. 0. 

5 Supergravity Computation 

For membrane scattering in flat space, the supergravity computation for the process 

with exchange of one unit of longitudinal momentum' f:lp_ = 1/ R ( R = Rs'Y) gives 

the following coefficient multiplying the fourth power of the transverse velocity of the 

membrane 

( 
1 3 3 ) b 

Attat(b, R) "" R3lJ3 + R2b4 + Rbs exp (- R). (5.1) 

It was shown by Polchinski and Pouliot [13) that the leading term for R « b agrees 

with the leading term in the instanton calculation in the N = 8 gauge theory in three 

dimensions. (The second and the third terms between the parenthesis in the right hand 

side have the form of two and three-loop corrections. It would be interesting to compare 

these with the gauge theory computations. In particular, the above form suggests that 

the agreement with the supergravity computation requires a non-renormalization theorem 

beyond three-loop in the gauge theory computation.) 

In the curved space case, we just have to replace the above expression by an appropriate 

Green's function 1 on S1 x R3 x M. When the distance between the two membranes 

is shorter than the typical curvature radius of M, we can use the De Witt-Schwinger 

expansion to evaluate the Green's function for the exchange of n-units of p11 as 

oo ( R3 0 )i 
Acurved(X, Y; R) ""~ a1(X, Y) 

2
n 2 oR Attat(CJ(X, Y), Rjn), (5.2) 

1This can be shown by treating one membrane as a source and the other as a probe, as in (13]. Notice 

that because the membranes have equal mass this is only a good approximation for the leading term in 

the velocity expansion of the scattering amplitude. 
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where the coefficients ai for the Ricci-flat Kahler manifold is given by 

ao(X, Y) 

a1(X, Y) 

a2(X, Y) 

1, 

- 1 ~0 Ra,a~Ra{J··rva~'a2 (X, Y)8va2(X, Y), 

1 R Ra.B"f5 (X Y) 180 a,8"(5 ' a3 ' = ... ' ... 

For R « a(X, Y), it becomes 

[ 
n3 3n2 3n 

Acurved(X, Y; R) "' R3a3(X, Y) + R2a4(X, Y) + Ra5(X, Y) + 
n

2 3 3R ) 
a1(X, Y) (2R2a2(X, Y) - 2a4 (X, Y) - 2na5 (X, Y) + 

+a2(X, Y)( n + · · ·) + · · ·] exp (- n a(X, Y)). 
4Ra(X, Y) R 

(5.3) 

(5.4) 

In the graviton .scattering w~th zero p11 transfer studied in. [9, 10], the subleading 

terms in the adiabatic expansion (5.2) were a major source of the discrepancy between 

the supergravity and gauge theory computations. For finite N, the quantum mechanics 

of DO branes cannot generate such subleading terms. The situation seems better in our 

case here as the subleading terms take the form of an expansion in 

R 
---""-
a( X, Y) - 14>1' 

(5.5) 

which corresponds to loop corrections in the gauge theory. As the instanton breaks all 

the supersymmetry, we expect loop corrections to appear to all orders in the perturbative 

expansion in the instanton background. 

However we have already seen that the instanton action in the gauge theory com

putation is not equal to the geodesic distance a(X, Y) but is smaller than that. This 

means that the gauge theory amplitude ~s exponentially larger than the corresponding 

supergravity amplitude. The first non-trivial curvature dependence appears in the first 

order correction and is proportional to a1 (X, Y). It would be also interesting to compare 

this with the gauge theory computation. 

6 Gauge Theory and Supergravity 

In this paper, we performed an instanton computation for the quiver gauge theory, 

which describes the dynamics of membranes in the ALE space in the low-energy short

distance region. We found that the gauge theory amplitude is different from the super

gravity amplitude. 
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As far as we know, the quiver gauge theory is the unique theory in three dimensions 

which is renormalizable and reproduces the correct moduli space structure. In one relaxes 

the renormalizability condition, it would be possible to construct a model whose instanton 

action is exactly equal to ~a(X, Y). The Lagrangian constructed in [16] may well have 

this property since its low energy action is given by (3.3) with the Euclidean distance 

in the last term replaced by the geodesic distance, thereby removing the error term in 

(3.18). However, as we noted earlier, a non-renormalizable theory cannot be used for 

the instanton computation if it involves quantities of order a(X, Y)/ Rc or smaller, where 

Rc is the typical curvature radius of M. Since the issue is whether the instanton action 

Sinstanton agrees with the geodesic distance ~a(X, Y), including the subleading terms in 

the expansion in a(X, Y)/ Rc, the computation done using the non-renormalizable model 

cannot be trusted and we have to rely on a renormalizable gauge theory. 

What does this result imply for the Iarge-N Matrix Theory conjecture [8]? To under

stand the origin of the discrepancy, it is important to examine the region of validity of 

the gauge theory computation within the framework of the Iarge-N conjecture. For large 

but finite N, the worldvolume of the membrane has the short-distance cutoff given by 

L 
8x = .JN' (6.1) 

where L is the size of the membrane [8, 29, 30]. As pointed out in [13], the length scale 

for the gauge theory on the membrane differs from that on the target spacetime by the 

factor of'"'( = Nl!/ R8 L2
• In particular the cutoff of the gauge theory is given by 

.JNz3 
8i = '"'(8X = LRsp. (6.2) 

Since the size of the cutoff is crucial in the following discussion, we will rederive this 

formula in the appendix of this paper, starting from the Iarge-N Matrix Theory. The 

gauge theory description is applicable only if the cutoff 8i is smaller than the scales set 

by the gauge coupling constant 

-2 ls £2 
e -----

- 9'"'1- NRs' 

and the Compton wave-length of theW-boson 

1"'1-1 z; 
'f' - a(X, Y) 

The condition 8i « e-2 requires 

lp « 8x, 
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a(X, Y)Rs. 

(6.3) 

(6.4) 

(6.5) 



and ox<< 1¢1-1 gives 

a(X, Y) ~ ox. (6.6) 

The gauge theory description is valid only if both the Planck length lp and the distance 

a(X, Y) between the membranes are shorter than the cutoff distance ox on the membrane. 

Thus the gauge theory and the supergravity cover complementary regimes and there is 

no overlap between the two. 

The condition (6.5) also implies that the radius R of the boosted M-circle is smaller 

than the Planck length because 

(6.7) 

It is interesting to note that a membrane wrapped on the boosted M-circle becomes a 

string whose tension f;-2 is equal to the cutoff scale of the membrane as 

{if 
is= y Ei =ox. (6.8) 

Combined with (6.5), for the gauge theory description to be valid, the length scales need 

to line up as 

(6.9) 

If we identify the wrapped membrane as the fundamental IIA string, this is exactly the 

condition for the D2-brane to be described by the gauge theory (4]. Thus we have made 

a full circle and came back to our starting point (1.1). Beyond this regime, we cannot 

ignore non-renormalizable interactions generated by massive excitations of the wrapped 

membrane and there is no reason to believe that the gauge theory correctly describes the 

membrane dynamics. The instanton computation in this paper is an explicit example of 

this fact. In the gauge theory regime, the effective coupling constant is given by 

R 
(6.10) 

1¢1 L2a(X, Y) a(X, Y). 

Therefore the gauge theory is weakly coupled if R ~ a(X, Y). This condition is compat

ible with (6.9). We conclude that, even in the Iarge-N limit of Matrix Theory, the gauge 

theory description of the membrane is valid only in the short-distance regime. 

Another context in which the gauge theory analysis presented in this paper may be of 

relevance is the scattering of gravitons in type liB string theory compactified on an ALE 

space withY-momentum transfer (31]. Here, the starting point isM-theory compactified 

on a two-torus times an ALE space. In the Seiberg-Sen limit (5, 6] we obtain after T

dualizing the two-torus an U(N) three-dimensional quiver gauge theory. M-theory on T 2 
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is dual to type liB string theory on a circle, and the magnetic flux of the three-dimensional 

gauge theory corresponds to the momentum along the circle (called Y-momentum in (31]). 

Thus exchange of Y-momentum corresponds to an instanton process in the quiver gauge 

theory. Repeating the analysis in this paper will once more result in a discrepancy between 

the gauge theory and supergravity calculation. In this case the resolution is probably again 

that there exists a short-distance cutoff for the three-dimensional gauge theory, so that 

the gauge theory only describes the short-distance regime. Massive states from wrapped 

branes give rise to an UV cutoff in three dimensions, in a similar way as the short-distance 

cutoff discussed above could be attributed to a membrane wrapped on the boosted M

circle (see (6.8) ). It would be interesting to understand this in more detail, and to see 

how general this phenomenon is. 
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Appendix 

A Short-Distance Cutoff on Membrane 

It has been shown in (22, 23] that small fluctuations of membranes in the large-N 

Matrix Theory are described by a three-dimensional gauge theory. In order to understand 

the region of validity of the gauge theory description, we estimate here the cutoff length 

of the gauge theory. For flat eleven-dimensional spacetime, N DO-branes are described 

by the gauge theory in (0 + 1) dimensions of (32]. The bosonic part of the action is 

(A.1) 

In the case of 51 x R6 x M, we use the quiver gauge theory of (17]. We treat only the case 

with a single membrane, but the generalization to several memqranes is straightforward. 

Following (8], we introduce canonical variables p and q with the commutation relation 

z 
[q,p] = N. (A.2) 

We consider the matrices M 1 as periodic functions of p and q with periods 1. The 

commutator and the trace are replaced as (M, M']-+ ~{M, M'} and Tr-+ N fro,IJ2 dpdq, 

where {,} is the Poisson bracket. For finite N, this is an approximation which is valid 

only for slowly varying functions. More precisely, the short distance cutoff is set by the 

uncertainty relation 
1 

6p6q rv N" (A.3) 

A flat membrane of size L x L can be realized (8, 21, 22] as the background with 

(A.4) 

Here we introduce coordinates on the membrane x1 , x~. of period L by Lp = x2 , Lq = -x1
. 

With respect to these coordinates, the bracket and the trace are expressed as 

L2 (aM aM' aM oM') 
[M, M'] ----t iN fJxl fJx2 - fJx2 fJxl ' 

N h 1 2 Tr ----t £ 2 dx dx . 
[O,Lj2 

(A.5) 

(A.6) 

Now let us consider fluctuations around the background (A.4) parametrized by spatial 

components of a gauge field (A1 , A2 ) and the transverse position Xi (i = 3, ... , 9) of the 
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membrane as 

(A.7) 

The covariant derivatives and commutators are given as 

When we consider fluctuations of wavelengths longer than the cutoff set by the uncertainty 

(A.3), <5x 1<5x 2 
rv £ 2 / N, the two derivative terms in the above are all negligible and we 

only have to keep the one derivative terms. (When we compute [ M 1 , M 2]2, the product 

of the constant term and the two derivative term in [ M 1 , M 2] gives a finite contribution. 

However it is a total derivative and does not contribute to the action.) In the long 

wavelength regime, (A.8) can be rewritten in terms of the curvature as 

Substituting them into (A.1) and throwing away the constant term, we obtain 

S = (A.10) 

g~l, ~ 1 dtdx'dx' [(iv'f- t;' ( ~r (a,x'f + ( ~r (FOr)' -l;' ( ~)' (F,,f] 

= ;, ~I dtdx'dx
2 

[<Bo¢')
2

- (~;; r (8,¢')
2 + ( ~;; r (FOr)'- ( ~;;) 

4 

(F,)'] , 

where we have normalized the scalar field by the string tension as 4>i = t-;2 Xi. The action 

does not look Lorentz invariant in ( 2 + 1) dimensions because of the various powers of 

Nl2 Nl3 
""- s_ P 
I- £2 - £2R 

s 
(A.ll) 

that appear in it. In fact, these different powers can be removed by rescaling the spatial 

coordinates on the membrane [13] as 

(A.12) 
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After the rescaling, we have 

S = ~jdtdx1dx2 ((8o</i)2
- (8r</i)2 + (For)2

- (Fi2)2
), 

9s'Y 
(A.13) 

where the spatial integration is over (0, "fL] x (0, "fL]. From this we see that the gauge 

coupling constant is given by 
2 9s'Y 

e = z:· (A.14) 

The uncertainty relation (A.3) is translated to the coordinates xr as c5x1c5x2 
rv 'Y2L 2 fN 

which implies 
~r L v'Nl; 

6x rv "(- = --. 
y'N LRs 

(A.15) 

Since the mass of the membrane is l; 3 L 2 the M-momentum is given by 

N _3 2 Vn 
Pu = R = (lp L ) J 2 ' 

s 1- v11 

(A.16) 

where v11 is the velocity in the eleven-th direction. Therefore, 'Y = Nl;/ R 8 L 2 can be 

identified as the Lorentz boost factor (1 - vil)-~ in the limit Vu rv 1. 
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