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Abstract 

OPTIMAL SEPARABLE BASES AND 
MOLECULAR COLLISIONS 

by 

Lionel William Poirier 

Doctor of Philosophy in Physics 
University of California at Berkeley 

Professor William H. Miller, Cochair 
Professor Robert G. Littlejohn, Cochair 

1 

A new methodology is proposed for the efficient determination of Green's functions 

and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, 

the best possible separable approximation is obtained from the set of all Hilbert space 

operators. It is shown that this determination itself, as well as the solution of the resultant 

approximation, are problems of reduced dimensionality for most systems of physical interest. 

Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense 

of self-consistent field theory. These distorted waves give rise to a Born series with optimized 

convergence properties. Analytical results are presented for an application of the method 

to the two-dimensional shifted harmonic oscillator system. 

Our primary interest however, is quantum reactive scattering in molecular sys

tems. For numerical calculations, the use of distorted waves corresponds to numerical 

preconditioning. The new methodology therefore gives rise to an optimized preconditioning 

scheme for the efficient calculation of reactive and inelastic scattering amplitudes, especially 

at intermediate energies. This scheme is particularly suited to discrete variable representa

tions (DVR's) and iterative sparse matrix methods commonly employed in such calculations. 

State-to-state and cumulative reactive scattering results obtained via the opti

mized preconditioner are presented for the two-dimensional collinear H + Hz --+ Hz + H 

system. Computational time and memory requirements for this system are drastically re

duced in comparison with other methods, and results are obtained for previously prohibitive 

energy regimes. 



2 

The method is also applied to three-body systems in two different ways. First, nu

merical results are obtained for zero total angular momentum using optimized precondition

ing. The J =/= 0 results are then estimated using helicity-conserving and J-shifting approxi

mations, after minimizing the coriolis coupling via another application of the optimal basis 

method. An "effective potential" interpretation of the helicity-conserving approximation is 

employed, which leads to an improved J-shifting scheme that automatically incorporates 

centrifugal distortion and other effects. Fixed-energy cumulative reaction probabilities and 

thermal rate constants are presented for the 0 + HCl -+ OH + Cl reactive scattering system. 
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Chapter 1 

Introduction 

In the physical world, molecules are constantly colliding, interacting, and fly

ing apart from one another. The fact that there is an interaction, i.e. that molecules 

are not simply invisible to each other, implies that they are transformed somehow as 

a result of these collisions. There are many different ways in which such a change can 

manifest itself, depending on the nature of the colliding particles and their interac

tions. Indeed, this variety is ultimately responsible for the wide diversity exhibited 

by bulk matter. 

Nevertheless, it may not be necessary to understand the details of the in

teractions in order to explain the bulk properties. All that may be required is a 

specification of the overall change of state induced by the collision. This is the idea 

underlying all of scattering theory, in its many forms. It is a particularly useful no

tion for systems in the gas phase. Here, the time of collisions is small compared to 

the time between collisions, and similarly, the interaction length scale is often small 

compared to the average interparticle distance. Consequently, each individual colli

sion is a well-defined event, and it is meaningful to ask what changes to the system 

are induced by a single collision. Moreover, only a small number of constituents are 

involved in a single collisional process-usually just two. 

Our goal therefore, is to apply scattering theory to extract information about 

the chemical and physical properties of molecular systems in the gas phase. This 

could include the conventional scattering quantities such as transition amplitudes 



2 CHAPTER 1. INTRODUCTION 

and differential and total cross sections, as well as information of more interest to the 

chemist, such as the thermal rate constant for a chemical reaction. These inquiries 

are important in their own right, as there is much chemistry of practical interest that 

takes place in the gas phase. However, a thorough understanding of these systems 

can also serve as a stepping stone to more challenging realms such as the liquid phase, 

for which the interactions are evidently more interrelated. 

In any event, an accurate treatment of scattering for molecular systems 

clearly requires quantum mechanical dynamics, which unfortunately poses a challenge 

both analytically and numerically. Given the limitations of present-day computer 

resources, researchers have adopted several different philosophies to deal with this 

challenge. One approach is to tackle the quantum problem head-on, in which case 

accurate results can be obtained, but only for small systems. Another approach is 

to use approximation methods, such as those based on quasiclassical, semiclassical 

or centroid dynamics.1 These can be applied to larger systems, and moreover, often 

provide a pedagogical description that may be lacking in the direct quantum methods. 

However, the results are only approximate and-more importantly-one does not 

always have a reliable estimate for the error bound. 

The approach that we shall adopt is in a certain sense a compromise be

tween these two philosophies. Ultimately, we calculate the exact quantum results; 

however, insodoing we make use of a quantum mechanical approximation known as 

the "optimal separable" approximation, which has both pedagogical and quantitative 

significance. Quite literally, this involves finding from the set of all separable oper

ators on the Hilbert space, the particular operator which most closely approximates 

the true Hamiltonian of interest. Albeit a bona fide quantum operator, the approxi

mate Hamiltonian is easy to evaluate by virtue of its separability. Moreover, an error 

estimate is readily obtainable. One can also use the approximate results as the start

ing point in a perturbation expansion. Because the optimal separable choice is used, 

convergence to the correct results is achieved more quickly than would otherwise be 

the case. 

For scattering applications, the perturbation series in question is the gen

eralized Born expansion of the energy Green's function. All scattering quantities of 
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interest to both physicists and chemists can be derived directly or indirectly from 

this function. These quantities form a natural hierarchy, for which there is a corre

sponding hierarchy of the various kinds of transitions that can occur when molecules 

collide. It is instructive to work through this chain of command in detail; however, 

we shall first present a basic description of reactive chemical systems for the benefit 

of those readers who are not physical chemists. 

The simplest type of exchange reaction in chemistry can be represented 

schematically via 

A+B-tC+D (1.1) 

where A and B represent reactants and C and D are products. During the course 

of the collision, part of one reactant molecule gets transferred to the other, resulting 

in two products of possibly new chemical species. The most fundamental exchange 

reaction for example is H + H2 -+ H2 + H, which is the exchange chemistry analogue 

of the hydrogen,or helium atom in atomic physics. To simplify matters, it is often 

convenient (if artificial) to assume that the three hydrogen atoms lie on a straight 

line. 

The reaction rate for the bimolecular reaction of Equation 1.1 is given by2 

R = [A][B]k(T), (1.2) 

where [] denotes-molar concentration, and k(T) is the thermal rate constant. The 

quantity k(T) is clearly statistical-formally involving all 1023 constituent particles. 

However, under the ideal (rarefied) gas conditions which are assumed here, each 

reactant collision process can be treated independently. One can therefore think of a 

single pair of reactant molecules as constituting a legitimate subsystem, in thermal 

equilibrium with the rest of the gas. Under these conditions, the thermal quantities 

for the system as a whole (such as k(T)) are obtained by simply Boltzmann-averaging 

the appropriate microcanonical (fixed-energy) scattering quantities for a single set of 

reactants. 

The true Hamiltonian describing Equation 1.1 involves all nucleons and elec

trons for a single set of reactants. However, for small molecular systems at typical 
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energies, the Born-Oppenheimer approximation is usually valid, and electronic tran

sitions are often improbable. In such cases, we need only consider nuclear dynamics 

on the ground electronic potential energy surface. For each particular system consid

ered, a new ground state surface must be obtained over the relevant region of nuclear 

configuration space. There are many "quantum chemistry" techniques available for 

determining these surfaces, ranging from semiempirical to rigorous ab initio methods. 

For our purposes, the ground surface is presumed to be known a priori. 

Using the ground electronic surface to define an ·effective nuclear Hamilto

nian, we can characterize quantitatively what happens when reactants collide. The 

various transitions that can occur as a result of collisions can be arranged (in increas

ing order of energy and complexity) as follows: 

• Elastic Scattering-H + H2 --+ H2 + H (k--+ k') 

• Inelastic Scattering-H + H2(v)--+ H + H2(v') 

• Reactive (Exchange) Scattering-H + H2(v)--+ H2(v') + H 

• Dissociation-H + H2 --+ H + H + H 

Under elastic scattering, internal properties of the reactants are unaffected by the 

collision. In inelastic scattering, the internal states (in the collinear H + H2 example, 

the vibrational quantum number of the H2 molecule) can undergo transitions, as a 

result of which the translational kinetic energy is also changed. In exchange scattering, 

the molecules themselves are altered, although the number of reactants and products 

is the same. Finally, if the energies are sufficiently high, dissociation of reactants into 

a larger number of products can also occur. 

All of these processes can be dealt with using quantum scattering theory, 

albeit of increasing sophistication as one proceeds down the list. Obviously, the 

number of possible transitions grows very rapidly; and the situation can become 

very complicated even for fairly small molecules. Fortunately, one is not necessarily 

always interested in calculating fully detailed information for such systems. In reactive 

scattering for example, there is a hierarchy of increasingly averaged quantities that 

can be derived from the multichannel S-matrix transition amplitudes Svv' as follows: 
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• State-to-state reaction probability-Pvv' = 1Svv'l2 

• Cumulative reaction probability-N(E) = l:vv' Pvv' 

• Thermal rate constant-k(T) = (N(E))Boltzmann 

Moreover, methods have been developed for calculating each of these quantities di

rectly, i.e. without referring to the less averaged quantities which are lower in the 

hierarchy. 

We conclude this introduction with a brief overview of the remaining chap

ters. The general theory underlying the optimal separable approach is presented 

in Chapter 2, which also includes a treatment of the Born expansion of the energy 

Green's function relevant to scattering theory. In Chapter 3, we shall make use of 

certain shortcuts for obtaining the averaged quantities of the preceding paragraph 

directly. Moreover, the ideas of Chapter 2 are developed into an efficient numerical 

algorithm. As a test application, the collinear H + H2 --+ H2 + H system is considered. 

Finally, all of the ideas developed in the other chapters are applied to the challenging 

O+HCl--+ OH+Cl reaction in Chapter 4, wherein we also make use of improvements 

in the approximate separation of rotational and vibrational motions. 
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Chapter 2 

Optimal Separable Basis Theory 

2.1 Introduction 

Since the time of Newton, if not earlier, physicists have tried to solve com

plicated problems by breaking them down into simpler components. The trick lies 

in "carving up" the initial problem in just the right way so that the components are 

independent of one another and can be solved separately. In classical mechanics, for 

instance, one seeks the first integrals or action-angle variables because these partition 

the Hamiltonian in the most natural way. Of course, finding the best way to slice a 

particular problem may be very difficult, if not impossible. Even in such cases how

ever, one may still be able to find a separable substitute that accurately approximates 

the true system. 

In this chapter, we consider separable approximations of quantum mechan

ical systems. For a given multi-dimensional Hamiltonian ii, a separable approxima

tion flo is an operator whose eigenstates are products of coordinate functions. The 

simplest class of such functions are the direct-product basis sets, which have been uti

lized, for example, in vibrational problems.3•4 These basis sets correspond to what we 

shall in Section 2.2 call "strongly separable" fl0's. However, the general case also in

cludes weakly separable flo's which may provide more accurate approximations of H. 
One such flo gives rise to the "dressed" eigenfunctions of the truncation/recoupling 

method.5 
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It would clearly be desirable if we could somehow examine all possible sepa

rable H0's, and select from that pool the best approximation to the true Hamiltonian. 

Such a procedure would first require a rigorous definition of the metric, or "distance" 

between two operators. The resultant search for the closest separable H0 could then 

be effected by applying the variational calculus to the distance functional on the set of 

all Hilbert-space operators. At first glance, this appears far more formidable than the 

original problem! Nevertheless, we shall demonstrate that with a suitable operator 

metric-specifically, the Frobenius norm of the residual (if- H0)-the variational 

problem itself corresponds to a conventional quantum mechanics problem of reduced 

dimensionality. 

The optimal H0 obtained in this manner can be usefully exploited in a variety 

of ways. The eigenstates of H 0 turn out to be the best mutually orthogonal separable 

approximations to the true eigenstates, in the sense of self-consistent field theory. This 

"optimal separable basis" is therefore a natural starting point for a time-independent 

perturbation expansion of fi. In scattering applications, the stationary scattering 

states of H0 are "distorted waves," 6 in a certain generalized sense (Section 2.4.2). 

These give rise to an optimized distorted wave Born expansion of the energy Green's 

function. This expansion may converge quickly even if the standard Born series is 

slowly convergent or divergent, as is the case for many scattering systems of interest. 

The optimal separable basis methodology is also well-suited to numerical 

applications. In the calculation of quantum bound state energies for example, such 

as those relevant to spectroscopy, the standard perturbation expansion is often re

placed by an iterative* Krylov-space algorithm for obtaining eigenvalues, such as 

that originally proposed by Lanczos. 7•8 The efficiency of such algorithms is signifi

cantly improved by selecting a suitable starting vector, which we suggest could be 

obtained from the H0 eigenstates (Section 2.4.1). In microcanonical scattering ap

plications, where one often requires energy Green's function calculations, the matrix 

representation of H0 leads to an optimized preconditioner9 (Chapter 3), which can be 

implemented separately from-or in conjunction with-the various other numerical 

*though not "iterative" in the sense of Cullum and Willoughby.7 
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Green's function techniques currently in use. 

The remainder of this chapter is organized as follows. Section 2.2 provides 

the mathematical preliminaries, including precise definitions of the operator metric 

and separability. Section 2.3 comprises the bulk of the theory underlying the optimal 

separable basis approach. Section 2.4 applies the method to series expansions, and 

examines the issue of convergence. Section 2.5 discusses a simplification that arises 

when the method is applied to Hamiltonians of a standard form. Section 2.6 presents 

analytical results for a benchmark two-dimensional system. This "shifted harmonic 

oscillator" problem has not, to the author's knowledge, been previously considered. 

2.2 Mathematical Preliminaries 

2.2.1 Separability 

We begin with a completely general n-dimensional quantum mechanical 

Hamiltonian 

(2.1) 

The position operators q1, ... , qn and associated Pll ... , Pn satisfy the following com

mutation relations: 

[qi, qj] 

[qi,Pi] 

0 (2.2) 

Under the simplest scenario, eli and 'A are canonically conjugate operators for which 

Fi =in-i.e., standard rectilinear position and momenta. However, it is often conve

nient to use generalized q's, such as angular coordinates, which are not canonical in 

the strictest sense.10 In small molecular systems for example, angular representations 

of the Hamiltonian are very often employed, as a means of reducing the number" of 

degrees of freedom. 11•12 In such cases, the corresponding momentum operators (if they 

can be defined) do not equal -i1i8q, and the standard commutation relations simply 

do not apply13 (Chapter 4). We do not wish to exclude such coordinates from consid-
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eration, given the important role they play in molecular applications; consequently 

in all that follows we require only that Fi =I 0. 

We now divide the degrees of freedom into two categories. To be more 

specific, we designate some set of k < n degrees of freedom as inner coordinates, 

and the remaining (n- k) as outer coordinates. We represent this separation in the 

operator functional form of the Hamiltonian with the following notation: 

(2.3) 

where q1 , ih, ... , qk, Pk are the inner coordinates. The precise determination of which 

degrees of freedom are considered inner coordinates is completely arbitrary. In prac

tice the issue can and should be decided by analytic or computational convenience; 

several practical schemes are presented in Section 2.5.2. 

A "separable basis" is now defined as a basis which is separable in the 

position representation by inner and outer coordinates. In other words, each basis 

function can be expressed as the product of some inner coordinate function multiplied 

by some outer coordinate function. We must distinguish between two distinct types 

of separability: "strong" and "weak." The former corresponds to inner and outer 

factors which are completely independent; i.e., 

(2.4) 

This symmetric situation corresponds to the eigenfunctions of a strongly 

separable H0 of the form 

which follows directly from the commutation relations as specified in Equations 2.2. 

If the classical system corresponding to H0 is (partially) integrable, then the indices 

in Equation 2.4 above are to be considered composite indices. In this case, £ and m 

represent collections of (up to) k and (n-k) quantum numbers, respectively. However, 

we need not restrict ourselves to integrable approximations; the general case includes 

nonintegrable H0's for which £and m must each represent a single index only. 
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In any event, insofar as approximating fi is concerned, the class of strongly 

separable Ho 's is somewhat limited. The range of possible eigenvalue spectra, for 

example, is restricted to additive spectra only. In other words, 

(2.6) 

which may not describe the true spectrum very well, even qualitatively. 

Fortunately, there is a much broader class of separable bases-i.e., those 

satisfying the weak separability condition and characterized by eigenfunctions of the 

form 

(2.7) 

where the inner coordinate functions are now labelled by m as well as f.. The meanings 

of these two labels are very different however; the ¢}m) should be viewed as a family 

of different basis sets ¢>e parametrized by m. Thus, the states corresponding to the 

various values off are mutually orthogonal for fixed m, but not the other way around. 

As before, the indices f and m may be either singular or composite. 

In any event, Equations 2.2 now imply a corresponding weakly separable H0 

conforming to 

(2.8) 

where the H~ut comprise an independent set of mutually commuting operators whose 

simultaneous eigenstates are the <t'm(qk+b ... , qn)· Note that in addition to being 

manifestly asymmetric, Equation 2.8 is seen to incorporate a much broader range of 

operators than Equation 2.5. Moreover, the corresponding energy eigenspectra are 

completely unrestricted, and need not in general conform to the additive restriction 

of Equation 2.6. The weakly separable situation is therefore much improved with 

respect to mimicking the energy spectrum of the true Hamiltonian. 

In finding the best separable approximation H0 to the full Hamiltonian H, 
we must specify which definition of separability is to be used. There are undoubtedly 

certain situations for which it is appropriate to consider symmetric separability only. 

This might be the case for example, for a system possessing a natural symmetry to 



12 CHAPTER 2. OPTIMAL SEPARABLE BASIS THEORY 

begin with. Nevertheless, Equation 2.5 is a special case of Equation 2.8; and we 

shall clearly do much better, in general, by extending the search to include the entire 

weakly separable domain. 

2.2.2 The Nature of Weak Separability 

It is worth digressing a bit on the nature of the two forms of separability we 

have just defined. The strong form is what we usually associate with independent, 

or "uncoupled" systems. These systems can be "solved"-i.e. all relevant physical 

quantities determined-by solving a single reduced-dimensional subsystem for each 

category of coordinates, e.g. Hin and flout in Equation 2.5. Due to symmetry, it is 

immaterial which of the two reduced problems is tackled first. In contrast, a lack 

of symmetry arises in the weakly separable case because the inner functions depend 

on the quantum numbers of the outer functions, but not vice-versa. Although this 

situation is a familiar one encountered often in quantum mechanics-e.g., the Yim 
spherical harmonic functions-the generic form of the corresponding H0 as expressed 

in Equation 2.8 is not usually considered. 

In any event, the inherent asymmetry of the weakly separable situation is 

very evident in H0 ; it is clear that such operators are in general neither indepen

dent nor uncoupled. Nevertheless, the coupling in such systems can be regarded as 

trivial, in that the entire system can still be solved completely by solving a collec

tion of reduced-dimensional subsystems-although the number of subsystems that 

must be solved is larger than in the strongly separable case. Specifically, by solving 

the H~ut eigenproblems first, these operators can be replaced by their corresponding 

eigenvalues (labelled by m) in the expression for H0 . Equation 2.8 then becomes an 

m-parametrized collection of independent subsystems of the inner coordinates only. 

Note that the asymmetry induces a natural ordering for the coordinate cat

egories, in that the outer coordinate problem must be tackled before the inner coordi

nate problem can be dealt with. This feature is characteristic of adiabatic approxima

tions; indeed, it is probably appropriate to view Equation 2.8 as a kind of generalized 

adiabatic operator, where the fast and slow degrees of freedom correspond to inner 
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and outer coordinates, respectively. The standard adiabatic approximation ensues in 

the special case for which the H~ut are the position operators for the slow degrees of 

freedom. 

We conclude with a rough analogy-of solely pedagogical value--between 

separable operators and systems of simultaneous linear equations. Solutions to the 

latter satisfy the standard linear algebra equation 

(2.9) 

where x is the unknown. In the general case, the number of operational steps required 

to solve Equation 2.9 scales as N 3 , where N is the number of equations and unknowns. 

However, if A is diagonal, the solution requires only N operations. Moreover, each 

component of x can be solved independently, in any order. Diagonal matrices are thus 

like strongly separable operators. On the other hand, weakly separable operators 

are like triagonal matrices, for which x can be efficiently solved on a component

by-component basis, but only if the components are evaluated in a particular order 

(starting from the top of the triangle and ending at the base). The effort is greater 

than the diagonal case, but far less than the general case, for which a component-by

component analysis is not even possible. 

2.2.3 Defining the Operator Metric 

Our ultimate goal is to apply the variational calculus in order find the weakly 

separable H0 that most closely approximates fi. An operator metric must be defined; 

i.e. some mapping that associates a non-negative real number with a pair of operators. 

In analogy with the complex vector space notion of a dot product, we define the inner 

product of two operators A and Bas follows: 

A* iJ = tr(AtJ3) (2.10) 

In keeping with the vector analogy, the norm of A is then given by IAI2 = tr(AtA), 

and the distance between A and B by IE- AI. 
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In any explicit matrix representation, the above definition of the norm be-

comes 

(2.11) 

where the Aii are the individual matrix elements. In this form, Equation 2.11 is 

known as the Frobenius, or "F-norm" .14 The Frobenius norm is but one of several 

competing matrix norm definitions, of which the so-called "Euclidean Norm" 15•16 is 

usually preferred in conjunction with Hilbert space operators. One reason is that 

the Euclidean norm of such operators is often finite, whereas the Frobenius norm is 

usually infinite. 

Nevertheless, for our purposes, the Frobenius norm turns out to be the most 

appropriate definition (Section 2.3.2). Despite the aforementioned infinities (which 

do not pose a significant problem-Section 2.3.3), it has many advantages. Like the 

standard vector norm, the Frobenius norm is representation-independent; yet it is 

readily calculated in any given representation as the sum of the individual matrix 

element square moduli .. Clearly, Equation 2.11 is the most intuitive extension of the 

conventional complex vector norm, IVI2 = l::i lvil2
• The most compelling justification 

however, which at this stage is also the least obvious, is that different subblocks of A 
contribute independently to the total norm (Section 2.3.1). 

2.3 Obtaining the Optimal Separable Basis 

The problem of obtaining the optimal H0 is now well-formulated; namely, 

we seek to minimize IJ{- Hoi with respect to variations of H0 subject to the weak 

separability constraint. This is best approached in two stages. First, for a particular 

choice of outer basis 'Pm, we determine the best H0 and corresponding inner bases 

</>~m). This gives rise to a new interpretation of the relationship between ii and H0 , 

as is discussed in Section 2.3.1. The second stage, discussed in Section 2.3.2, is to 

optimize with respect to a variation of the outer basis set. 
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2.3.1 Optimization with Respect to a Fixed Outer Basis 

For this subsection, a definite, fixed choice of the outer basis set 'Pm IS 

assumed throughout; although the particular choice itself is arbitrary. Consider the 

explicit representations of if and H0 in the partially diagonal basis 

(2.12) 

Now consider all weakly separable variations of H0 whose eigenfunctions incorporate 

the particular outer basis set 'Pm selected above. While the form of if in the new basis 

is generally quite arbitrary, the form of H0 is constrained to be block-diagonal in m 

(i.e. a Omm' factor is present). Apart from this constraint however (as well as that of 

hermiticity), the form of H0 is otherwise completely arbitrary. From Equation 2.11 

however, it is clear that the minimal lif - Hoi ensues when H0 is defined as the 

block-diagonal portion of if. 
This fact is true because the block-diagonal and the off-block-diagonal por

tions of if contribute to the total F-norm independently. Specifically, the contribution 

of the latter to the norm of the residual must be the same for all choices of H0 , whereas 

the former can clearly be reduced to nothing by simply declaring H0 to be the actual 

diagonal blocks of if. Adopting this choice for H0 , the residual matrix b..= if- Ho 
is comprised of just the off-block-diagonal matrix elements of if. 

We shall find it very convenient to interpret fi as a collection of coupled 

k-dimensional subsystems. To be more specific, each block of H0 represents a par

ticular subsystem of the inner coordinates only (labelled Hmm); and the whole Ho 
represents an ( n - k )-dimensional collection of such subsystems parametrized by the 

outer index m. 

According to this interpretation, the off-block-diagonal elements b.. must 

clearly represent the coupling constants between subsystem pairs. Since the full His 

in general a rank-2n tensor, and H0-by virtue of being block-diagonal-is a tensor of 

rank (n+k), the coupling constants are oflarger rank than the subsystems themselves, 

generally speaking. t For most Hamiltonians of physical or chemical interest however, 

trn this context "rank" refers to the dimensionality of a generalized tensor, rather than to the 
number of non-zero eigenvalues of a matrix. 
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fi is sparse in that the majority of the position representation matrix elements are 

zero; and the inner coordinates can be chosen so that A is actually of rank (2n- k) 

or less (Section 2.5.1). 

Having determined the optimal H0 for a particular outer basis set CfJm, it 

remains only to minimize IAI with respect to a variation of this outer basis. According 

to the coupled subsystems picture, this is equivalent to minimizing the total subsystem 

coupling in the usual least-squares sense. This intuitively satisfying interpretation 

holds only by virtue of the Frobenius norm metric; indeed, the coupled subsystem 

perspective itself would be inappropriate if one were to use a different definition of 

the norm. 

2.3.2 Optimizing the Outer Basis 

In quantum mechanics, a general change of basis is effected via a unitary 

transformation. For our purposes, since we are interested in varying the outer ba

sis only, we must restrict ourselves to unitary transformations involving only the 

outer coordinates iik+bPk+b ... , iin,Pn· In other words we consider only those uni

tary transformationst 

(2.13) 

This restriction has two advantages, the first being that (J has no effect on 

the ii.b'PI, ... , ijk,Pk due to Equations 2.2, so that the fi dependence on these coordi

nates is unaffected by the transformation. Classically, (J (if unitary) is analogous to 

a canonical transformation of the following form: 

Qi = qi } for i ~ k. 
Pi =Pi 

The (passively) transformed fi can therefore be written as 

fi = H'(ijl,Pl, · • ·, iJ.k,Pki Qk+b pk+b · · ·, Qn, Fn), 
----------------------------

tstrictly speaking, (; may be isometric. 

(2.14) 

(2.15) 
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for which the new position representation would correspond to what we have been 

calling the "partially diagonal basis." 

The second advantage is that determining the optimal outer basis is a 

problem of reduced dimensionality. Mathematically, we have a constrained eigen

vector problem where the inner coordinates now play the role of parameters. The 

k-dimensional constraint on (J generally disallows complete block-diagonalization of 

H; nevertheless, minimizing ILil has the effect of removing all unessential non

separability from the system. Indeed, if fi happens to be weakly separable to begin 

with, then it can be block-diagonalized by some (J of the Equation 2.13 form, in which 

case all of the coupling is removed, as is intuitively appropriate. In the general case 

ILil cannot be made to vanish altogether, but can be greatly reduced-via the optimal 

choice of outer basis-so as to reflect only the minimal coupling actually inherent in 

the system. 

Note that since IHI2 is representation-independent and 

(2.16) 

minimizing ILil is equivalent to maximizing IHol·§ The latter approach is often more 

convenient because the total H0 contribution above is simply 2:m 1Hmml2 , where the 

norm is now a dimensionally-reduced version of Equation 2.11 acting on the inner 

coordinates only. 

In any event, we seek the optimal choice of the set 'Pm; and as with all 

variational methods, optimization is signalled by candidates which satisfy an appro

priate stationarity condition. In our case, ILil must be stationary with respect to all 

infinitesimal outer unitarity transformations, of which we need only consider the ele

mentary (pair-wise) transformations explicitly. By evaluating all pairs independently, 

we obtain the following: 

I Hmm1 * (Hmm- Hm'm') = 0 for all { m, m'} (2.17) 

where Hmm' = ('Pm' I fi I 'Pm)· The operators Hmm' etc., being blocks of the full 

Hamiltonian in the partially diagonal representation, act on the inner coordinates 

§One must be careful when infinities are involved, however. 
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only. The '*' operation is simply the inner coordinate version of the Equation 2.10 

matrix dot product affiliated with the Frobenius norm metric. 

Equation 2.17 above is thus the desired optimization condition, and perhaps 

the central result of this entire dissertation. Note that this equation can be naturally 

interpreted as a mutual orthogonality condition on the blocks of fi. Alth~mgh Equa

tion 2.17 is simple and intuitive, it applies only in the 'Pm representation. It does not, 

for instance, provide us with some differential equation in the original coordinates, 

as do many other applications of the variational method. 

Nevertheless, Equation 2.17 still serves as a very useful guide in particular 

applications. The optimal outer basis can always be determined numerically, for 

example, using a simple block algorithm17 that is the focus of Chapter 3. Analytically, 

any intuitively selected candidate for the optimal 'Pm can always be checked directly 

against Equation 2.17. Even if the equality fails, the lack of orthogonality can be 

used a measure of "efficiency," or proximity to optimality. If the optimal basis is 

analytically intractible, then a nearly optimal subsitute should do almost as well 

(Section 2.5.2). 

This situation is somewhat analogous to that of Weinberg's quasiparticle 

approach to converging the Born series.18 Weinberg's approach allows us to define 

a quasiparticle however we like; and a physically intuitive choice is almost always 

beneficial even if the mathematically optimal solution is unattainable. In the Wein

berg formalism however, there is no analogue of Equation 2.17-and thus no way to 

determine whether or not a given choice is close to optimal. 

2.3.3 Existence, Uniqueness, and Infinities 

It is important to note that Equation 2.17 is in principle applicable even to 

non-square-integrable Hamiltonians-i.e., to systems for which the Frobenius norm of 

fi is infinite. In numerical applications, for which the matrix representations must be 

finite, these infinities do not arise of course. However, if one is interested in an exact 

mathematical analysis of the true Hilbert space operators, this fact is very significant 

because almost all Hamiltonians of physical interest are infinite! 
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Note that the divergence of IHI does not imply that !AI is also infinite

indeed, !AI is finite for all systems that conform to the standard scattering criteria.6 

This is easily shown using the optimal strongly separable basis, and the fact that said 

basis is necessarily weakly separable. For standard T+V Hamiltonians (Section 2.5), 

the optimal strongly separable H0 has the form T + ~n + Vout, so that the residual 

(V-~n-Vcut) is a simple function of position. IAI2 is therefore just the integral of the 

square of this function over configuration space. But this quantity is finite by virtue 

of the asymptotic restrictions imposed upon the potential by standard scattering 

theory.6 

Nevertheless, there are undoubtedly certain physically interesting cases for 

which IAI is infinite in all representations (Section 2.6), as a result of which it may not 

be intuitively obvious which representation is the best. Even in such cases however, 

the stationarity condition is still meaningful because Equation 2.17 relies only on the 

orthogonality of the Hmm'' and not on their normalizability. 

Normalizability in and of itself is therefore not the principal concern. Of 

greater importance is whether or not an optimal solution actually exists for a given 

system. Equation 2.17 is silent on this subject-it merely reflects the conditions that 

would have to be satisfied, should a solution exist. There might be no stationary 

solutions, or several. In the latter event, one would like to be able to distinguish the 

true minimal solutions from the maxima and saddle points. Although we do not at 

present know how to resolve these questions for a completely arbitrary system, we can 

nevertheless prove that at least one stationary minimum exists if certain reasonable 

conditions are maintained. 

Consider a parametrized, outer coordinate unitary transformation operator 

(2.18) 

such that (J is periodic in each of the parameters (Pi, and such that any arbitrary 

unitary operator can be obtained by plugging in an appropriate set of parameter 

values. This could be constructed from a (possibly infinite) product of successive 

elementary unitary transformations between different ( m, m') pairs. Each elementary 

operator, being a 2 x 2 (unimodular) unitary matrix, is parametrized by three angles, 
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and is periodic in those angles. The collection of all such angles can thus be taken 

to be the (/>i above; and by incorporating an arbitrarily large number and variety of 

elementary operators, we can generate any desired U. (It does not matter if the set 

of all U's is overspecified). 

By incorporating the parametrized (J above, the residual norm in any rep

resentation is conveniently expressed as a real-valued function of the parameters; i.e. 

J6.J 2 = F( ¢>1, ¢>2 , ••• ). A stationary outer basis is therefore presented to us whenever 

the first partial derivatives of F with respect to the </:>i are all zero. If F is con

tinuous and differentiable everywhere, then at least one stationary minimum exists. 

This is true because the parameter space, being a product of compact spaces, is itself 

compact by virtue of Tychonoff's theorem.191f 

The above result can be extended to non-continuous F's by requiring only 

that continuous first partial derivatives 

&F( ¢>1, </>2, ... ) _ !·(,~... ,~... ) 
&¢>i - l 'f'b '+'2' .•. (2.19) 

exist everywhere, and by invoking the finite intersection property for the family of 

contour sheets defined by (/i = 0).19 This enables us to prove the existence of a 

stationary point even when F is non-finite. II However, the partial derivative condition 

is still more restrictive than is necessary. Section 2.6 for example, presents a system 

for which the partial derivatives can be infinite even though a stationary point exists. 

Consequently, we suspect that a more comprehensive existence proof can be obtained; 

and this possibility will be a subject for future investigation. 

2.3.4 Self-Consistent Field Interpretation 

We conclude this section with a brief comparison between the optimal sep

arable basis approach and the Hartree-Fock or self-consistent field theories. In the 

latter, one considers separable approximations of the form 

(2.20) 

~This even holds for a non-countably infinite product of compact spaces. 
II An example of a non-finite function with well-defined first partial derivatives everywhere is 

F(¢1,</>2, .. . ) =cos(¢!)+ cos(¢2) + ... 
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The optimal ~Lm's are usually defined as those for which the expectation value of the 

energy is stationary. Since both inner and outer functions depend on all the quantum 

numbers, the ~lm are not generally orthogonal and do not form a basis. 

In contrast, the optimal separable basis consists of ~lm wave-functions which 

are mutually orthogonal. Moreover, the stationarity criterion is identical to that of 

the self-consistent field. The comparison is most easily made by representing iJ in 

the optimal separable basis itself. H0 now comprises the diagonal matrix elements of 

iJ, which are nothing more than the energy expectation values of the ~lm· Because 

IHI2 = IH012 + 1.6.12 is representation-independent, we have a stationarity condition 

on the sum of the energy expectation value square moduli, rather than on the indi

vidual expectation values themselves. Our approach can therefore be considered a 

self-consistent field approximation of the complete energy basis, rather than of the 

individual energy eigenfunctions. 

In numerical applications, which are of necessity finite, it is not the entire 

Hilbert space basis that is optimized, but only some finite subset. This fact can ac

tually be used to advantage--for example, to optimize a separable basis for a specific 

energy range. In comparison, Hartree-Fock theory offers two standard possibilities, 

each with certain drawbacks. If Equation 2.20 is applied to each state in the given 

energy range, the non-orthogonality of the resulting wavefunctions implies, for ex

ample, a non-trivial multi-configuration expansion. Alternatively, one can use the 

Hartree-Fock ground state potential to obtain all of the states in a specified range, 

not just the ground state. The resultant wavefunctions are now orthogonal, but are 

no longer optimized for the excited states. 

It is also interesting to ask, in light of Section 2.3.3, whether the existence of 

Hartree-Fock solutions are in general guaranteed. Curiously, despite the long-standing 

use of self-consistent methods, this question has only been addressed in comparatively 

recent history. Indeed, the general question still remains unanswered; although for 

atomic and molecular systems, Lieb proved the interesting result that a minimizing 

solution is not guaranteed when the system has more electrons than protons. 20 
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2.4 Series Expansions 

A separable .basis approximation of the eigenstates of a multi-dimensional 

Hamiltonian is certainly desirable in its own right-particularly one that is "best" in 

the self-consistent field sense. It is also of interest, however, to obtain more accurate 

results via series expansions that use the optimal H0 as a starting point. When 

actually performing such expansions, whether analytically or numerically, the issue 

of series convergence always arises. Intuitively, we expect convergence to improve as 

the residual A is diminished. Thus the optimal H0 suggested above should result, 

heuristically speaking, in the fastest convergence. Rigorously speaking however, it is 

not always clear what constitutes "optimal convergence" for an operator series, as the 

situation is less straightforward than in the usual real or complex number case. 

2.4.1 Time-independent Perturbation Theory 

We shall first consider a time-independent perturbation expansion for the 

eigenvalues and eigenfunctions of H. We designate the optimal separable H0 of Sec

tion 2.3 as the zeroth-order approximation to the full Hamiltonian. Thus, the optimal 

separable basis itself comprises the zeroth-order eigenfunction approximations. The 

zeroth-order energies Ej~, due to the definition of H0 (Section 2.3.1), are conve

niently expressed as the diagonal matrix elements of ii when the latter is represented 

in the optimal separable basis. Note that once the cpm are known, one can get H0 

directly in the partially diagonal basis without obtaining the </>~m). In a perturbation 

treatment however, we must solve for the </>~m) explicitly by diagonalizing H0 . In the 

partially diagonal representation, this is a comparatively simple task, in light of H0's 

block-diagonal structure. The diagonalization problem-now separable--reduces to 

a k-dimensional eigenproblem parametrized by the outer index m. 

It can be shown that our choice for H0 is always sufficiently close to ii that 

the first order perturbation theory corrections to the eigenenergies are all zero. These 

are given by standard time-independent perturbation theory as follows: 

(2.21) 
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In the partially diagonal basis, the block-diagonal nature of H0 implies outer coordi

nate wavefunctions that are delta functions. On the other hand, the matrix elements 

of Limm' = (1- 8mm' )Hmm' are by definition zero form equal to m'. Thus, the first 

order energy corrections in Equation 2.21 above must be zero. 

The first-order corrections to the eigenfunctions are as follows: 

jg?nl)(l) = jg?nl) + L Cr.t,n'l'lq?n'l') (2.22) 
nl:f.n'l' 

C (g?n'l'j,ilg?nt) 
nl,n'l' = (O) (O) 

Ene - En'l' 
where (2.23) 

Equation 2.23 informs us that the optimal basis is the one which minimizes, in 

the usual least-squares sense, the collection of first-order eigenfunction corrections 

weighted by the energy differences. This interpretation cannot be extended beyond 

the first order. \Vhen higher orders are considered however, it is not at all clear that 

"optimal convergence" is even well-defined; since the minimization condition varies 

with the order of expansion (Chapter 3 appendix, page 85). Nevertheless, corrections 

of any given order involve as many factors of the .& matrix elements; and it is clear 

that convergence will improve, generally speaking, as i.&i is diminished. 

2.4.2 Born Series Expansion 

In microcanonical scattering applications (Chapter 3), the main object of 

interest is the energy Green's operator 

G(E) = lim(E + iE- fl)- 1
• 

e-+0 
(2.24) 

Although G(E) is actually a (non-Hermitian) operator, the position representation 

is often referred to as the "Green's function." 21- 23 The diagonal representation, also 

known as the "Lehmann representation" 24--26 is closely related to the spectral density · 

function. 

In evaluating Equation 2.24, we shall find it useful to divide the Hamiltonian 

fi into two pieces so that 

(2.25) 
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where for the moment, flo is arbitrary. It is assumed only that flo is invertible 

{non-singular), so that the corresponding G0(E) = lime-+o(E + iE- flo)- 1 is well

defined. In the standard approach, flo is the asymptotic form of the Hamiltonian, 

whose characteristic functions are the asymptotic scattering states most frequently 

associated with the S-matrix. 6•27--29 

However, it is often more convenient to use so-called "distorted waves," 

corresponding to a more general fl0 . In the usual distorted wave methodology, the 

residual A.' has the form of a potential {i.e. it depends on the iii only); and G0 is called 

the "distorted wave Green's function." 6•30 However, we find it appropriate to make 

use of the same terminology even when A and flo may take the completely general 

form of Equation 2.25. 

In any event, the full Green's function G can be expressed in terms of the 

distorted wave Green's function G0 via the following "distorted wave Born expansion:" 

(2.26) 

In principle, one attempts to partition as much of fi into flo as possible, so that 

the resultant expansion converges quickly. Thus, whereas in elastic scattering H0 is 

typically just the kinetic energy, the usual distorted flo includes some of the potential 

as well. On the other hand, Go must be known explicitly; so that nothing is gained 

unless inverting ( E + iE-H0 ) is significantly more tractable than the original problem, 

1.e. inverting ( E + iE - H) itself. 

The optimal separable basis methodology provides us with a different kind 

of candidate for fl0 . Note that this choice satisfies both of our criteria for a good 

distorted wave Green's function. Specifically, block-diagonality can be exploited so 

as to render the inversion a parametrized k-dimensional problem rather than an 

n-dimensional one; yet at the same time, the minimization of IAI is expected to 

improve the convergence of Equation 2.26. The optimal separable basis functions 

themselves therefore constitute an optimized set of distorted waves. 

Note that the optimal separable flo is not constrained to yield a potential

like residual; consequently Equation 2.26 will converge faster than for any conven

tional choice of distorted wave. However, there is one other unconventional dis-
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torted wave method-to our knowledge the only other one-which does not require a 

potential-like residual. This method is the S-matrix version of the Kohn variational 

principle.28- 35 It would be interesting to compare the present methodology versus an 

application of the S-matrix Kohn method for a particular molecular system, although 

this dissertation does not include such a direct comparison. 

In any event, insofar as a rigorous analysis of convergence is concerned, 

we can make some progress by acknowledging that Equation 2.26 is essentially a 

geometric series of the dimensionless kernel matrix A= G0li (Section 3.4). In fact, if 

Li satisfies certain conventional scattering criteria, then the convergence of the Born 

series is determined solely by the eigenvalues of A.18,36 In particular, Equation 2.26 

converges if and only if 

for all i, (2.27) 

where the Ai are the eigenvalues of A. 
One can derive, in terms of the >.i, an expression for the rate of conver

gence out to any finite-indexed term in the Equation 2.26 expansion-the details are 

worked out in the appendix of Chapter 3 (page 85). Unfortunately, the resulting 

minimization condition depends on the level of expansion, so that a general definition 

of "optimal" convergence for all orders of expansion is not in general possible. Nev

ertheless, it is clear from Equation 2.26 that convergence will-as a rule-improve as 

ilil is decreased, since both b.. and Go diminish with ib..i. 

2.5 Application to T+ V Hamiltonians 

2.5.1 Orthogonality Condition 

Although the method presented in Section 2.3 is certainly applicable to 

arbitrary quantum systems, we ask in this section whether the analysis can be at all 

simplified if the Hamiltonian is of the form T + V where T and V are kinetic and 

potential energies, respectively. Invariably, V is a function of the position coordinates 

only; i.e. V = V(q1 , .•. , t?n)· If the qi and ·A are standard rectilinear coordinates, 
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then the kinetic energy usually takes the strongly separable form 

n 

T = T(:fJI, ... ,fin)= 2:Ti(Pi)· (2.28) 
i=l 

If generalized coordinates are being used however, the kinetic energy will depend on 

the position coordinates (Chapter 4). The most general kinetic energy is an arbitrary 

position-dependent quadratic form in the Pi· In molecular applications however, one 

often encounters orthogonal kinetic energies; i.e. there are no cross terms in the Pi, 

so that T is a position-dependent version of Equation 2.28. 

As it happens, the optimal separable approach is greatly simplified if the 

kinetic energy can be expressed in the following form: 

(2.29) 

The kinetic energy thus separates into an inner term and an outer term, each of 

which may depend on -position. There is an asymmetry however, in that Tout may 

depend on the inner coordinates, but not vice-versa. Generally speaking, the class of 

Equation 2.29 kinetic energies is less restrictive than the class of orthogonal kinetic 

energies, although the two concepts are closely related. In fact, almost all orthogonal 

kinetic energies that are encountered in practice will conform to Equation 2.29 for 

at least one partitioning of the coordinates. However, it is mathematically possible 

to_ construct an orthogonal kinetic energy that does not conform to Equation 2.29; 

this will be the case if and only if every term in Equation 2.28 depends on all of the 

position coordinates. 

Hamiltonians of the Equation 2.29 form-i.e. if = V + Tin + Tout-exhibit 

a large amount of sparsity, in that each term is a tensor of reduced dimensionality. 

Specifically, V is a rank-n tensor, while Tin and Tout are tensors of rank 2k and 

(2n - k) respectively. What is important for our purposes is that the sparse form 

of Equation 2.29 is retained under a unitary transformation of the outer coordinates. 

The Tin component is, of course, completely unaltered because it is a function of the 

inner coordinates only. The flout= Tout+ V operator-treated as a single unit-is a 

sparse tensor of rank ( 2n - k) that is block diagonal in the ( q1 , ... , qk), both before 

and after the unitary transformation is applied. 
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These facts are very beneficial from the standpoint of trying to find the 

optimal outer basis. In particular, the preservation of sparsity ensures that the vast 

majority of the coupling constants will be zero. Moreover, tin can be completely 

ignored, as a result of which the orthogonality condition (Equation 2.17) reduces to 

a simple integral: 

for all { m, m'} (2.30) 

where q = ( q1, ... , qk)· 

Note that where the outer basis is concerned, flout has replaced if as the rel

evant operator. It is natural to view the former as a collection of ( n- k )-dimensional 

outer subsystems parametrized by the inner coordinates. By optimizing the outer 

basis, we are in effect trying to simultaneously diagonalize the entire collection collec

tion of ( n - k )-dimensional subsystems flout· In the general case, one cannot actually 

diagonalize all of the subsystems using a single basis; but the optimal choice is the 

best compromise in the least-squares sense. 

2.5.2 Partitioning of Coordinates 

For an n-dimensional problem, there are 2n distinct partitionings of coordi

nates into inner and outer categories, each of which can potentially lead to a different 

optimal fi0 • In deciding which particular partitioning should be adopted, the results 

of the previous subsection can serve as a useful guide. 

One should, if possible, choose a (nontrivial) partitioning which satisfies 

Equation 2.29; for in addition to simplifying the analysis, the majority of the coupling 

constants will be zero by virtue of the sparse form of flout· The availability of such 

choices is related to the separability of the kinetic energy. If Tis completely separable, 

as in the standard rectilinear case, then any partitioning will do. Only when the 

kinetic energy is completely non-separable can no such partitioning be found, m 

which case a change of coordinates might be employed to induce a separation. 

As is evident from Equation 2.29, the kinetic energy need not be strongly 

separable, as Tout may depend on all of the position coordinates. If T does happen to 
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be strongly separable however, then exchanging the inner for the outer coordinates 

also satisfies Equation 2.29. To determine which is the better choice, the simulta

neous diagonalization interpretation of Section 2.5.1 can be fruitfully called upon. 

If (Tout + V) were to vary only slightly with the inner coordinate parameters, then 

the various subsystems would be almost identical, and would therefore be almost 

entirely diagonalized by the best-fit outer basis. One is thus led to select-as inner 

coordinates-those Qi upon which the original Hamiltonian has the least dependence. 

As a special case, consider the completely separable position-independent ki

netic energy of Equation 2.28, for which the coordinates have been mass-weighted so 

that the Ti's are all of identical form. The subsystems of (Tout+ V) are now identical 

except for the potential energy V which depends on the positions only; thus, selecting 

inner coordinates involves nothing more than a straightforward analysis of the func

tion V(q11 ••• , qn)· A simple intuitive candidate for the optimal basis is suggested

namely, that basis which diagonalizes Tout+(V)q where (V)q is the collection-averaged 

potential energy function. While this choice is not generally the optimal one--indeed, 

the true optimum may not even be of the form Tout(Pk+b ... ,fin)+ V(qk+l, ... , qn)

it should nevertheless reduce the coupling significantly, and is in any case readily 

obtainable even when a determinination of the true optimum is intractible. 

2.5.3 Inelastic Scattering 

In inelastic scattering applications, the above Tout+ (V)q candidate is closely 

related to the coupled channel approximation, for which one uses the asymptotic, 

rather than the average potential. In fact if we were to generate our outer basis 

from Tout+ Vas(Qk+b ... qn), and restrict ourselves to the energetically accessible bound 

states only (the open channels), then exactly the coupled channel approximation 

would result. In such inelastic applications, a natural separation between internal 

(intrafragment) and translational (interfragment) coordinates arises. The potential 

usually varies less with the latter, which is why the internal coordinates are chosen 

(perhaps counterintuitively) to be the outer coordinates. The asymptotic potential 

is then defined as the limit of V as q approaches infinity. 
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A primary advantage of the coupled channel approach is that G(E) can be 

accurately determined using a small and finite outer basis, provided the energy E 

is sufficiently lower than some cutoff value used to truncate the basis set. Although 

finite, the various channels are still coupled together. An uncoupled approximation 

can be obtained by ignoring the off-block-diagonal matrix elements of H. This is, in 

fact, a standard way to define distorted waves in the multi-channel case. 

It is clear that the uncoupled channel approximation above constitutes; in 

our language, a choice of fl0 • We can therefore think of the optimal flo as the 

choice which redefines the channels in the best possible way, vis-a-vis minimizing the 

interchannel coupling. This should generally improve the convergence of the resultant 

multichannel distorted wave Born expansion, although very little is rigorously known 

about this subject.6 

2.6 Results-Shifted Harmonic Oscillator 

As an analytical benchmark system, we consider the two-dimensional shifted 

harmonic oscillator Hamiltonian, i.e. 
A 2 A 2 2 

il = ~ + Py + mw (il _ f(x))2 
2m 2m 2 

(2.31) 

where f(x) is the shifting function. Physically, this Hamiltonian might describe a 

particle in a surface channel etched along the curve y = f(x), or perhaps a simple 

harmonic oscillator whose equilibrium position was somehow constrained to lie on the 

curve (Figure 2.1). For the first part of our analysis we can allow the shifting function 

to be arbitrary; although later a specific form will be provided. For now, it should 

simply be mentioned that in the limit f(x) --t 0, H approaches the separable system 

consisting of a free particle in x and a harmonic oscillator in y. 

If /' ( x) approaches zero in the infinite limits, then separable asymptotic 

states exist in those limits, and we can think of this as a scattering system with 

channels defined along y. As a scattering system it is somewhat unusual however; for 

although there is a clearly defined reaction path along y = f ( x), there is no transition 

state or equilibrium geometry per se, as the potential is constant along the reaction 
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f(x) 

X 

Figure 2.1: Physical schematic of the shifted harmonic oscillator. 

path. Adopting the reaction path perspective, any scattering that may arise is thus 

solely attributable to the curvature of the path itself rather than the potential along 

the path. Although the dynamical effects of curvature may be just as significant as 

those of the potential itself in many real systems, the contribution of the former is 

generally less well understood. The shifted harmonic oscillator system can therefore 

serve as a useful benchmark application because it isolates the effects of curvature. 

Since the kinetic energy is completely separable and position-independent, 

Equation 2.29 is satisfied by any partitioning into inner and outer coordinates. The 

only nontrivial value for k is unity; so we are left with deciding whether x or y is 

the inner coordinate. We expect V(x, y) to vary less with x than with y, which is 

particularly valid as f(x) becomes small. In light of Section 2.5.2, The natural choice 

for the inner coordinate is thus x. 

The first task is to optimize the outer basis via a unitary transformation 

in f; and Py· As we have seen (Section 2.5.1), this is equivalent to finding the basis 

which best diagonalizes the following x-parametrized collection of one-dimensional 
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Hamiltonians: 
A 2 2 

A Py mw A 2 
Hout(x) = 

2
m+ -

2
-(y- f(x)) (2.32) 

In light of Section 2.5.3, we choose the eigenfunctions of Py 2 /2m + ~mw2 (y - (!) )2 

as our initial guess, where (!) is the mean value of f(x ). For convenience, we force 

(!) = 0 by constraining f(x) to be an odd function. This results in V(y) = ky2 /2 

which, as it happens, is also equal to (V(y)) apart from an immaterial constant. 

Our candidate outer basis functions then, are the well-known harmonic os

cillator eigenstates. We have not yet proven that this is an optimal choice; but we will 

soon do so-even for f(x) not small-by demonstrating that Equation 2.30 is satis

fied. When expressed in the partially diagonal basis, flout takes on a block-tridiagonal 

form, where the off-block-diagonal terms arise from the yf(x) cross terms in the 

potential. Specifically, we have 

ll' ( Hout x) 

(2l + 1)1iw + mw2 f 2(x) 
2 

0 

max(l, l')fiw3m f(x) 
2 

for l -l' = 0 

for ll - l'l = 1 

otherwise 

(2.33) 

(2.34) 

(2.35) 

where land l' index they-oscillator states. Clearly, Equation 2.30 is zero for ll-l'l # 1. 

When ll -l'l = 1, the result is proportional to f f ( x) dx, which is also zero by virtue of 

f ( x) being odd. The candidate outer basis is therefore optimal! The coupling-which 

in the general two-dimensional case would be a tensor of rank four-is seen above to 

be a rank-2 function of l and x only. Note also that H!~;=1 is proportional to f( x )-i.e., 

the inherent coupling vanishes as the shifting approaches zero, as expected. 

Having obtained the best outer basis functions, we now examine the inner 

coordinate problem; i.e. the diagonalization of the diagonal blocks 'fin+ fi~~t that 

comprise fl0 . Note that even though the original potential involved cross terms, the 

new potential fi~~t(x) is completely additive in x and l. Consequently, all blocks of 

flo are diagonalized by the same inner basis. Thus, although the inner eigenstates are 

formally parametrized by l; for this particular system the [-dependence happens to 

disappear-i.e. the optimal weakly separable basis happens to be strongly separable. 
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Apart from an l-dependent constant, all H0 blocks are equivalent to the 

following one-dimensional Hamiltonian in x: 

~ 2 2 
ir = Px + mw f2(x) 

m 2m 2 (2.36) 

Since f ( x) is odd, we have an even potential well that is concave and centered at the 

origin. Such a well may admit bound state solutions. 

To proceed any further however, we must specify a particular form of the 

shifting function f ( x). The .choice f ( x) = T0 tanh( ax) is a useful one in that it 

represents a smooth, sigmoid progression from a ( -T0)-centered oscillator to a To

centered one. The amount of coupling can be adjusted by varying the parameter 

T0 , whereas the rate of change is determined by a. Moreover, the resultant inner 

Hamiltonian 
~ 2 2'7"2 

~ ~ mw1 0 2 ~ 
Hin =- + tanh (ax) 

2m 2 
(2.37) 

can be diagonalized analytically. 

In the appendix of this chapter (page 39), the (normalized) bound state 

eigenfunctions of Equation 2.37 are shown to be 

(v) .j(v-n)r(2v-n+1) 2 -(v-n)(d)n 2 v 

4>n ("7) = n!~2vr(v + 1) (1 -1} ) 
2 

dry (1 -ry ) (2.38) 

where 1} = tanh(o:x), .jv(v+ 1) = mwT0jafi, and n = {0,1, ... ,int(v)}. Curiously, 

a bound state always exists even in the limit T0a-+ 0 (page 43). 

This fact reveals an interesting feature of H. If there is no shifting, there are 

no bound states; however, any amount of shifting, no matter how small, necessarily 

induces at least one bound state in H0 • In the small coupling limit, H0 becomes a 

valid replacement for ii. However, since the latter has no actual bound states, the 

bound states of H0 must correspond to long-lived resonances of H. This qualitative 

result can be used as a benchmark for comparisons with other separable or adiabatic 

approximation methods, such as those based on the "reaction path" .37- 39 

The most rigorous adiabatic version of the reaction path Hamiltonian is 

probably that of Miller.40 In this formalism, the reaction coordinate s is defined by 

the reaction path together with nearby paths that are locally parallel to it. In two 
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dimensions, the reaction coordinate contours are straight lines normal to the reaction 

path, which also serve to define the perpendicular coordinate Q. The approximate 

Hamiltonian of Miller is adiabatic in that the Q portion of the Hamiltonian (incor

porating quadratic terms only) is parametrized by s. 

Upon solving the quadratic problem at each point along the reaction path, 

one is left with an effective one-dimensional Hamiltonian in s 

HRP = p; (1- (2n + 1)K2(s)) -3/2 + Veff(s), 
n 2m w(s) 

(2.39) 

where n and w( s) are respectively the vibrational quantum number and frequency 

associated with the Q oscillator at each point s, and K( s) is the curvature of the 

reaction path y = f(x). 

For the shifted harmonic oscillator system, the effective potential in the 

small shifting (T0a --+ 0) limit becomes 

1 1i 
'Vcff = (n+ 2)1iw(s) = 2wsec(B) (2.40) 

where tan(B) is the magnitude of the slope of f(x). Note that the effective potential 

that results is actually a barrier, rather than a well. This is in stark qualitative 

contrast to the effective potential of Equation 2.37, and a somewhat surprising result. 

In particular, the reaction path approximation does not predict any resonances, even 

in the small coupling limit. Even if one were to change to the coordinate e(x ), defined 

so as to render the kinetic energy of Equation 2.39 equivalent to that of Equation 2.37, 

the resultant potential would still be a barrier due to the monotonicity of "Veff with 

respect to jxj. 

We now consider a perturbation theory expansion of the bound states of H. 
The optimal H0 leads to the following zeroth-order eigenfunctions and eigenvalues: 

- <Pn(TJ)'Pz(Y) 
mw

2T.2 
[ (v- n)2

] 0 
1- ( ) + (l + 1/2)1iw 2 vv+1 

(2.41) 

(2.42) 

where the <pz(y) are the harmonic oscillator eigenstates. Since the first-order energy 

corrections are all zero, the additive Equation 2.42 result is correct to first order. 
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Moreover, the first-order eigenfunction corrections Cnl,n'l' are all zero except when 

ll-l'l = 1 and ln-n'l is odd. We choose l = l'+l, 

which are given by 

n > n' and define Cz n'n = Cnz n'l' , , 

Jt!iwm/2 To J~n',n) 
Cln'n = [ ] ' 1i + mwT(f (n2 - n'2 )fv- 2(n- n') f(v + 1). 

(2.43) 

The first-order corrections specified in Equation 2.43 are obtained from the 

one-dimensional integrals 

(2.44) 

whose closed-form expressions for the bound states are derived in the appendix. Gen

erally speaking, the magnitudes of these integrals are much less than unity (Fig

ure 2.2). The curves all reach an extremum at some Vmax on the order of n, and then 

approach zero monotonically as v is increased. The largest magnitudes are of order 

unity only when n ~ n' ~ v, and in general diminish as In- n'l or v is increased. 

Thus, for a particular v, the most significant contributions to Equation 2.22 will be 

from the n, n' ~ v terms. 

The limits T0a ~ 0 and T0a ~ oo are of interest. The former limit is that in 

which the shifting function and coupling-and thus, the first-order corrections-are 

expected to approach zero. Indeed, we find that 

(2.45) 

Thus, it is possible to have a large number of bound states v, even as the Cl,n'n 

approach zero. If we also impose a large v limit, we find that the highly excited 

and continuum corrections to the low-lying eigenstates become negligible even in a 

relative sense. The corresponding resonances of if are therefore expected to be very 

long-lived indeed. 

The second case of T0a ~ oo represents the other extreme, in which f ( x) 

approaches. a step function. In this limit we have 

c/ I ~ ~ l [ V + 1 l J(n',n) 
,n n 2T0a n2 - n'2 - 2(n- n')v v 

for v(Toa) >> 1. (2.46) 
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Figure 2.2: J~n',n) as a function of the action parameter v, for several values of (n',n): 
-- (0,1); ----- (0,5); ---- (2,5); --- (4,5); ----- (20,21). The 
curves all reach an extremum at some llmax on the order of n, and then approach zero 
monotonically as v is increased. 

Curiously, the first-order corrections approach zero in this limit also. This is true 

despite the fact that the A coupling terms are comparatively large, because in this 

limit the energy separations between the bound states are even larger. 

Our final task is to evaluate the kernel matrix A pertaining to the generalized 

Born expansion of Equation 2.26. Because fi is block-tridiagonal, and also because 

the H0 blocks can all be simultaneously diagonalized, it turns out to be convenient 

to use the <I>nz basis. In this representation, 

1 n'n ( · ) Ho' = E- Enz + 'LE 8n'n (2.47) 
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. is diagonal-even with the addition of the E + ie terms appropriate for a Green's 

function analysis (Chapter 3). The coupling constants, as determined previously, are 

all zero except for ll- l'l = 1; i.e. 

A - -Jlfiw3m,..,., j(n',n) 
L..l.l,n1n -

2 
.LQ v · (2.48) 

Thus, in the corresponding representation of A, only the ll- l'l = 1 blocks are non

zero, as follows: 

Jlnw3m/2 To J~n',n) 
Az,n'n = mw2T6 [1- (v- n)2 jv(v + 1)] /2 + (l + 1/2)fiw- E- ie · 

(2.49) 

In the limits T0a --+ 0 and T0a --+ oo, Equation 2.49 reduces to the following: 

Aln'n ~ 
' (l + ~) - (E + ie)/fiw 

(2.50) 

Jr-l1:_o_a_/_2 J~ n' ,n) 

~ 

T0a [(n + ~)- (n + 1)2/2(v + 1)]- (E + ie)jvfiw 
(2.51) 

for v(T0a) » l 

In both limits, the matrix elements of A are small provided E is sufficiently far from 

a resonance. 

We shall not consider higher order terms in the present analysis, except 

insofar as to comment that a treatment of the continuum states should first be applied. 

2. 7 Conclusions 

The primary purpose of this chapter has been to demonstrate that an op

timal separable basis can be defined for an arbitrary quantum Hamiltonian in a 

mathematically rigorous fashion. Separable approximations are invaluable in physics 

and chemistry not only for their simplicity, but also for the intuitive insights they 

provide. One is especially interested in approximations that are not only separable, 

but also accurate; and what has been lacking thus far is a systematic way to obtain 

such operators. The mutual orthogonality criterion of Equations 2.17 and 2.30 goes a 
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long way towards this goal by providing the separable H0 which most closely approx

imates the true Hamiltonian, for a. given factorization of configuration space. Such 

an operator is clearly imbued with a physical significance; as is the residual A, which 

embodies the physically-relevant inherent coupling of the system. 

The optimal separable basis also provides an advantageous starting point 

for series expansions. The fact that this method is useful for both Green's function 

and eigenfunction expansions is not surprising; as both involve the same perturbation 

Li. Similarly, the applicability of the method to both analytical and computational 

pursuits is also to be expected; as in either case it is of great benefit to be able to 

lower the dimensionality. It is significant that in the latter case a computer algorithm 

can be developed to perform the optimization automatically17 (Chapter 3). The cor

responding analytical problem may in individual cases prove to be intractible, albeit 

dimensionally-reduced; but even then the physical picture developed in Sections 2.3 

and 2.5 can be used to obtain a worthy substitute. It is also significant that the 

method-though applicable to arbitrary multi-dimensional operators-is particularly 

suited to sparse Hamiltonians, in that sparsity is maintained throughout. 

The results for the shifted harmonic oscillator system of Section 2.6 are quite 

encouraging. Not only were we able to obtain the analytically optimal outer basis for 

any shifting function f ( x), our physical intuition led us immediately to the correct 

answer. All that was required was a simple integral verification of Equation 2.30. 

Although this situation is to some extent fortuitous, it nevertheless indicates that the 

average potential candidate probably does lead to an excellent, if not optimal, outer 

basis in the general case. 

Having obtained the optimal outer basis for the generic shifted oscillator 

system, the inner problem was also reduced to a particularly simple form. The strong 

separability of the new potential allowed us to solve the full H0 problem by simply 

diagonalizing a single one-dimensional system, rather than a collection of systems. 

In addition, the inherent residual coupling was found to be of rank two only. Thus, 

with comparatively little effort we were able to obtain the most accurate zeroth- and 

first-order approximations for this non-trivial two-dimensional system, and to prove 



38 CHAPTER 2. OPTIMAL SEPARABLE BASIS THEORY 

the existence of resonances even in the limit of infinitesimal shifting. 

Although the results were encouragin~ for the two-dimensional system dis

cussed in this chapter, the method is expected to be even more effective for higher 

dimensionalities-at least for numerical applications. One reason is that there is 

generally more freedom of choice with respect to coordinate partitionings as the di

mensionality is increased. Another reason is that the sparsity usually increases with 

dimensionality; so that a greater percentage of the matrix elements of 6. will be zero. 

We will investigate a non-trivial three-dimensional system in Chapter 4. 

If the kinetic energy is more separable than indicated in Equation 2.29, one 

might wonder whether the present approach could be modified to exploit this ad

ditional sparsity. Instead of just two tiers of coordinates, one could define three or 

more layers. Under the most favorable scenario of Equation 2.28, each coordinate 

would constitute a separate layer, to be "peeled off" one at a time. The tremendous 

initial sparsity of such a system would be preserved throughout; moreover, the con

vergence at the top-most level should be very good, since the preconditioner involves 

all but one of the coordinates. This recursive possibility is discussed in more detail 

in Chapter 5. 

Although a recursive approach may be beneficial in some cases, a straight

forward application as presented in this chapter should be suitable for just about 

any reasonably small system of interest. Moreover, there are plenty of applications 

for which a two-tiered approach is most natural. In molecular systems for example, 

there is an obvious distinction between electronic and· nuclear degrees of freedom. 

In non-rigid rotors, three global rotational degrees of freedom are naturally distin

guished from the others. This partitioning results in the so-called "Coriolis" coupling, 

whose minimization via the optimal separable basis we shall consider in Chapter 4. 

Scattering Hamiltonians also exhibit a separation between internal and translational 

coordinates, by virtue of the asymptotic form of the potential. Numerical results for 

a simple molecular reactive scattering system17 are obtained in Chapter 3, wherein 

we also present an efficient algorithm for obtaining the optimal outer basis. 
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2.8 Appendix: The tanh2 Potential Hamiltonian 

The tanh2 potential is equivalent to a -sech2 potential, apart from a con

stant of unity. The latter potential, also known as the "Eckart well" or the "symmetric 

Poschl-Teller hole," 41 was introduced by Rosen and Morse42 who first solved the quan

tum problem in an analysis of polyatomic molecular vibration energies. It has since 

been reconsidered in various other fields, including soliton research.43 

Traditionally, the eigenproblem is solved by transforming Schrodinger's dif

ferential equation in x to an equivalent differential equation in the variable sinh2
( ax). 

If W is divided by certain powers of cosh(ax) and sinh(ax), then this equation be

comes consistent with the generic hypergeometric differential equation. Unnormalized 

solutions are therefore obtainable in terms of hypergeometric functions;44 although 

the parameter values do not satisfy any special properties, and even and odd func

tions must be handled separately. Analytic normalization constants are also highly 

nontrivial, as they involve integrations of hypergeometric and hyberbolic sinusoidal 

functions. Indeed, these constants were not obtained for some time after the un

normalized solutions were first discovered-and even then, only as very complicated 

expressions involving sums of products of eleven gamma functions.45 

Our approach to the problem is much more straightforward, and involves 

the substitution of tanh( ax) rather than sinh2 (ax). With no further massaging, we 

are led directly to Legendre's differential equation, whose solutions for our particular 

problem are simple algebraic expressions. Moreover, the normalization constants can 

be obtained from algebraic integrals that are comparatively simple. 

2.8.1 Solving the Eigenproblem 

We wish to find the eigenfunctions and discrete eigenvalues of the following 

one-dimensional differential equation: 

1i2 ~ mw2Tl: 
--d 

2
¢(x) + 0 tanh2 (ax) ¢(x) = E¢(x). 

2m x 2 
(2.52) 
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By transforming to the coordinate 7J =tanh( ax), we obtain (with 7]1 = 1- 7]2 ) 

(2.53) 

Dividing by -a27J'n2 /2m yields Legendre's differential equation46 

(2.54) 

provided v(v + 1) = (mwT0fan)2 and J-L2 = v(v + 1)[1- 2Ejmw2TJ]. 

If J-L and v are taken to be positive {imaginary) square roots, then the solu

tions to Equation 2.54 are the associated Legendre functions of the first and second 

kind, P;=ll and Q;ll. For energies E > !mw2TJ, the parameter J-L is pure imaginary 

as is appropriate for the continuum states. Bound states arise when E is less than 

!mw2TJ, in which case J-L is real, and taken to be positive. 

For integral v, the P/: are the standard Legendre polynomials, which are 

well known to be square-integrable if IJ-LI is an integer less than or equal to v. The 

generalization for non-integral values of v turns out to be that the difference between 

v and J-L must be integral. This condition can be determined by evaluating the asymp

totic convergence of the Legendre functions. The asymptotic expression for the P;;ll 

solutions, for example, is as follows:47•48 

lim p+ll(z) = 21l7rl/2(z2- 1)-p/2 
z~±l v 

( 
. r(~)r(J-L) 

x r2(~- ~- ~)r(-~ + ~)r(1 + ~- ~) 

=r= 2r(~)r(J-L) ) (2 55) 
r(I+~+~)r{I+~-~)r(I-~+~)r(-~-~) · 

Given that the poles of the r function occur only at non-negative integers, it is easy 

to show that convergence occurs only when both v and J-L are integers. 

This condition is clearly too restrictive, since v is an arbitrary action param

eter that can take any positive value. We must therefore consider the P;ll solutions. 

(Note that contrary to the special case of integral v, the P;P are not in general 
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proportional to the P;;~'-!) The corresponding asymptotic expressions are47 

/!;. 

lim P;;~'-(z) (z- 1
)

2 1 
z-++1 2 f(1 + p,) 

(2.56) 

lim P;;~'-(z) = ( -z ) ~ f(p,) 
z--+-1 z + 1 f(1 + p, + v)f(p,- v)' 

(2.57) 

from which it is easily established that the bound states occur whenever (v- p,) is a 

non-negative integer. 

Defining n = (v- p,), the bound state solutions ¢n(7J) are thus proportional 

to P;:-v ( 7J), where n ranges from zero to the largest integer less than v. These 

functions are simple polynomials in 7J and J7ii (closely related to the Gegenbauer or 

"ultraspherical" polynomials45 ) multiplied by 7J1vf2• The corresponding energy values 

are 
1 2 2 [ (v- n)

2
] En = -mw T0 1 - ( ) , 2 vv+1 

(2.58) 

from which the ground state energy is seen to be Eo= 1i2a.2v /2m. Figure 2.3 depicts 

the eigenenergies as a function of the action parameter v. 

The bound state solutions satisfy a somewhat unusual orthonormality con

dition. Because the coordinate 7J is used instead of x, we have 

[1 ,~..(v)( ) ,~,.(v)( ) 1 d - [> ' 
}_1 '+'n' 7] '+'n 7] (1- 7J2) 7]- nn 

(2.59) 

where a factor of fo is understood to be removed from the definition of ¢( 7J) to keep 

things dimensionless. (This factor must be resupplied when working with ¢(x).) In 

terms of the P;:-v, the above integral can be analytically evaluated to determine the 

proper normalization constants. 49 This yields 

(2.60) 

Alternatively, we can use the Leibnitz and Rodrigues formulas50 to derive the excited 

states by differentiating the following expression for the ground state:46 

(2.61) 

where 
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Figure 2.3: Eigenenergies of the tanh2 potential Hamiltonian (in units where 
a 21i2 /2m = 1) as a function of the action parameter v, for the ground and sev
eral excited states (n = 0-5). Zero energy is defined at the continuum threshold. 
Solid lines represent eigenenergies; the dashed line represents the well-depth. Note 
the existence of a ground state even for v « 1. 
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This results in the normalized formula of Equation 2.38. 

The limiting case behaviour of the bound state solutions is also quite inter

esting. Since v must be positive, there is always a bound stat~even in the limit 

as the well depth (To) or width (1/a) approaches zero, and the corresponding action 

becomes arbitrarily small in relation to Planck's constant. This egregious departure 

from WKB theory is in marked contrast to most other solved potentials. Only one 

bound state remains in these limits however, since v -t 0. According to Equation 2.61, 

it must be proportional to (1 -172)(v/2). Thus, the ground state is in essence simply a 

power of the original potential! As v approaches zero, ¢0 approaches a uniform distri

bution; moreover, the corresponding energy is seen from Equation 2.58 to approach 

the continuum threshold. These results are consistent with the limiting functional 

form of the potential itself, which approaches a constant in the small-v limit. 

2.8.2 Obtaining the J~n',n) 

We wish to evaluate the Jv integrals of Equation 2.44. Using a well-known 

recursion relation of the Pf: to expand ¢n' ,50 we can write 

J(n',n) 
v 

J(n1,n) 
v 

1 (2v-n')(n'+l) J(n'+l,n) _ ~ (2v-n1+l)n1 J(n'-l,n) 
2 (v-n'-l)(v-n') v 2 (v-n'+l)(v-n') v ' 

j_ll ¢!:;)(17) ¢t>(17) (1-172tl/2 d17. 

(2.62) 

(2.63) 

The quantity lv is non-zero only when n,n';::: 0 and n-n' is even. Using the Leibnitz 

formula, the ( unnormalized) eigenfunctions can be expressed as a sum of algebraic 

functions of 17: 

- {1 - 172) -(v2-n) (.!!._) n {1 - 172t 
d17 . 

~(-1)i(n) ~ v! . {1- )I+[~-i](1 + )I-[~-i] L...J i (v-t)! (v-n+t)! 17 17 
i=O 

(2.64) 

The integral in Equation 2.63 can be analytically evaluated by expanding both ¢n 

and ¢n' using Equation 2.64 above. The result is the following: 

(2.65) 
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The R.H.S. of Equation 2.65 is a somewhat unwieldy double summation 

involving (n+ 1)(n' + 1) terms. A simpler expression involving a sum of only (!n' + 1) 

terms can be obtained by deriving a recursion relation for the lv. It turns out to 

be more convenient to derive the relation for the lv, defined via Equation 2.63 with 

respect to the ¢n rather than the ¢n· Using integration by parts and Equation 2.62, 

the following recursion relation is easily derived: 

( ')f-(n'+l,n) _ '(2 '+l)(2 1 )f-(n
1
-l,n) 2( ')f-(n',n+l) n-n v - n v-n v-n -n v - v-n v (2.66) 

Thus, an arbitrary L can always be expressed in terms of the L for which n' = 0. 

These are analytically obtained via direct integration of Equation 2.63, resulting in51 

j(O,n) = (- 1)~7rl/2[(n _ 1)11]2 (v- ~- !)! 
v ·· (v- ~ )! (2.67) 

for n even. 

By combining t.he results of the last paragraph, any particular lv value can 

be determined. The first few are as follows: 

j~O,O) = ;;-II2(v _ !)!jv! 

j~0,2) = _,II2(v _ ~)!/(v _ 1)! 

nl,l) = 2vi. 112 (v- ~)!j(v- 1)! 

j~0,4) = 9r.l/2(v- ~)!/(v- 2)! 

n1,3) = -6V1rlf2(v- ~)!/(v- 2)! 

nz,z) = 12v(v- 1) [ 1- ~ (v;~(2) 2] 7r112(v- ~)!/(v- 2)! 

} (n + n') = 0 

} (n+ n') = 2 

) (n+~) = 4 

(2.68) 

(2.69) 

(2.70) 

In general, the factor in brackets is .a sum over int(!n') + 1 terms. The properly 

normalized formula for an arbitrary lv is 

J~n',n) = ( -1) n-;n' 1r1/2 (n-n'-l)!!..J(2v-n)!(2v-n')!..J(v-n)(~;;~')(n'!/n!) X 
v. 

(2.71) 
int(n' /2) 

1 "'(-1)i2(n'-i) (v-(n+n')/2+i-~) (n+n'-2i-1)!! (v-(n+n')/2+i-2 )! 
L...J k (v-n' +i)!(n'-2i)! (v-(n+n')/2+i)! · 
i=O 
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Chapter 3 

Reaction Probabilities and 

Opti~ized Preconditioning 

3.1 Introduction 

In this chapter, we discuss how the optimal separable basis approach of 

Chapter 2.3 can be usefully applied to actual numerical calculations for real molecu

lar systems. Although the method is certainly applicable to bound state calculations 

(Chapter 2), this chapter addresses scattering calculations only-especially of chem

ical systems that undergo reactive scattering. W~ also limit the discussion to the 

microcanonical scattering quantities described in Chapter 1. 

The evaluation of the energy Green's operator G(E) is paramount in the 

calculation of microcanonical quantum scattering quantities of all kinds, including 

those pertinent to inelastic and reactive scattering systems. Using the discrete vari

able representation (DVR) grid methodology developed by Light and others,52-62 the 

Hamiltonian operator and associated scattering states are represented as finite ma

trices and vectors, respectively. These are defined with respect to a grid of discrete 

points over configuration space. Since scattering systems are by definition of infinite 

extent, some method most be adopted for keeping the effective configuration space 

finite in the asymptotic regions. A simple truncation of the grid will not do, as it will 

introduce spurious reflections of outgoing waves that are obviously not physical. 
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One solution is to introduce complex optical potentials into the Hamiltonian, 

which have the effect of absorbing the outgoing flux before it reaches the end of 

the grid. This kind of approach has a very well established history in physics and 

chemistry. 6•63- 68 Seideman and Miller developed a version for time-independent DVR 

scattering applications, for which the i€ term in Equation 2.24 is replaced with the 

(pure imaginary) absorbing potential.6g-71 A matrix representation of the Green's 

operator G( E) can then be obtained numerically using straightforward linear algebra 

techniques to perform the matrix inversion of Equation 2.24. 

To obtain accurate results the absorbing potential must be positive and 

"small," yet large enough that the flux is almost all absorbed before reaching the end 

of the grid. The proper values for the parameters describing € and other aspects of 

the DVR grid-such as the spacing between adjacent grid points, and the potential 

cutoff used to truncate energetically inaccessible regions of the grid-are not known 

a priori. In practice, these must be obtained empirically by sequentially varying the 

parameters until "convergence" is attained-i.e. until a significant variation of any 

of the parameters does not affect the final numerical results appreciably. 

Proper convergence of the DVR parameters is a significant, but not insur

mountable, hurdle impeding accurate numerical determination of the microcanonical 

scattering quantities. A far more significant difficulty however, is the fact that the 

numerical burden of the DVR approach scales very unfavourably with energy and 

dimensionality-primarily because the matrix sizes becomes inordinately large, even 

to be handled by modern computers. This problem has been ameliorated somewhat 

through the use of certain specialized linear algebra techniques, e.g. Krylov and other 

sparse matrix methods.7•8•72-74 Nevertheless, scattering calculations to date have been 

for the most part limited to small systems at relatively low energies.34•75- 79 

In recent years however, a technique known as "numerical preconditioning" 

has been explored in conjunction with DVR Green's function calculations.9•73•80•81 

The use of preconditioners in chemical reactive scattering applications has thus far 

exhibited significant promise.82•83 Unfortunately, selecting a good preconditioner for a 

given system a priori has proven to be something of a "black art;" as it is numerically 

unclear how to predict the quantitative effect of a particular choice of preconditioner, 
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short of actually applying it and performing the calculation. 

A major motivation of this work has been the desire to develop some quan

titative means of evaluating different preconditioning schemes, so that an optimally 

efficient preconditioner can be systematically tailored for a given physical system. 

This can be achieved by taking the view that the DVR Hamiltonian is a physical ob

ject rather than simply a numerical object. We should therefore look for something 

physical that corresponds to the numerical process of preconditioning. 

Such a correspondence can in fact be obtained;84 in Section 3.4 it will be 

shown that numerical preconditioning is physically equivalent to the propagation 

of distorted waves, as per the distorted wave Born expansion (Equation 2.26). In 

particular, the preconditioner matrix represents the zeroth-order Green's operator G0 , 

defined in terms of the approximate H0 of Equation 2.25 whose stationary scattering 

states are the distorted waves. 6 

By exploiting this correspondence, we can estimate the performance of a 

numerical preconditioner by analyzing the convergence of the corresponding distorted 

wave Born expansion. Physical intuition can then be brought to bear on the problem 

of developing an efficient preconditioner. In particular, an optimal preconditioning 

scheme84 is suggested by Chapter 2: namely, that H0 be chosen to be the optimal 

weakly separable approximation to the true H<'!.miltonian. 

Obtaining the optimized preconditioner numerically is a two-stage process. 

First, the optimal H0 is determined; then, the preconditioner G0 is obtained via 

a matrix inversion. The crucial point is that both of these are reduced-dimensional, 

well-defined algorithmic operations (Section 3.5). Thus, the optimized preconditioner 

can be systematically computed using only a fraction of the CPU time and memory 

required by the full problem. 

Section 3.2 relates the fundamentals of the DVR formalism, together with 

the modifications required for using absorbing potentials. Section 3.3 describes certain 

unique aspects of reactive scattering, and also presents explicit DVR formulas for the 

quantities of interest. Section 3.4 examines. the use of preconditioned sparse matrix 

methods in DVR scattering calculations, and also explores the connection with the 

distorted wave methodology of Section 2.4.2. The optimized preconditioning scheme 
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is considered in Section 3.5 wherein a numerical algorithm is developed in some detail. 

Section 3.6 presents results for the benchmark collinear H + H2 -+ H2 + H 

chemical reaction. Converged cumulative and state-to-state reaction probabilities 

were computationally much more easily achieved when the optimized preconditioner 

was employed. Moreover, the preconditioner enabled exact quantum results to be 

calculated for energies as high as 6 eV, which is significantly higher than what has 

thus far been reported in the literature. 

3.2 DVR-ABC Formalism 

3.2.1 Discrete Variable Representations 

In the DVR formalism, a finite grid of points is laid out over the region of 

interest in configuration space; and the density and extent of the points are presumed 

sufficient to adequately represent the underlying continuous coordinates for a given 

application. This DVR grid can then be used to obtain approximate, position-like 

representations of quantum mechanical operators and wavefunctions. An operator is 

represented in the DVR as an N x N matrix, where N is the total number of grid 

points. Similarly, a wavefunction is represented by a vector of length N.56•57•85 

Although there are numerically many ways that one could obtain such an 

approximate representation, the DVR for~alism is appealing in that it uses physical 

arguments as much as possible. One starts with the eigenstates of some soluble op

erator, usually the kinetic energy. These are then truncated in some fashion, usually 

via energy considerations. The resultant collection of basis functions spans a finite 

subspace of the true Hilbert space. By projecting an operator onto this subspace, 

one obtains the so-called "finite basis representation" or FBR.57 The FBR projec

tion can not possibly represent the corresponding operator in its entirety, but may 

adequately capture all features relevant to a particular application. For example, all 

kinetic energy eigenstates above a certain energy can be ignored if one is interested in 

calculating the spectrum of some Hamiltonian operator for some finite energy range 

only. 
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The FBR is not the same as the DVR, for the explicit matrix form of the 

former is not position-like. To obtain the DVR from the FBR, one applies a finite 

unitary transformation, defined as the transformation which diagonalizes the FBR 

projection of the position operator(s) q. The new basis functions are thus position

like, i.e. approximately equal to Dirac delta functions. Moreover, the corresponding 

eigenvalues of the q FBR specify the discrete values of the DVR grid. 

In the one-dimensional rectilinear case where T = p2 /2m for example, the 

restriction to particle-in-a-box eigenstates results in a uniformly-spaced DVR grid 

with sine function DVR basis functions. Specifically, if Qi is the location of the i'th 

grid point, then the corresponding basis function lqi) is 

(3.1) 

where D.q is the spacing between successive grid points.34 Note that in the D.q --+ 0 

limit, (qlqi) approaches the Dirac delta function, as expected. 

The sine-function DVR representation of the one-dimensional rectilinear ki

netic energy34 is given .by 

n?( -1)i-i' { 1r
2 /3 i = i' 

Iii'= 2mb.q2 2/(i- i')2 i =/; i' 
(3.2) 

In general, a discrete representation of an arbitrary operator is obtained using the 

DVR basis functions such as in Equation 3.1. When representing T + V Hamiltonians 

however, an additional approximation is usually made: one uses actual Dirac delta 

functions for the potential rather than DVR functions, to ensure that the matrix 

representation of Vis diagonal. As a result, more DVR points are usually required 

than would otherwise be necessary; but the advantage is that the resultant repre

sentation of the Hamiltonian is sparse, if there is more than one degree of freedom 

(Section 3.5.1). 

3.2.2 Absorbing Boundary Conditions 

The DVR formalism as described in the last subsection is perfectly suited to 

bound state calculations. The general procedure is to use a kinetic energy cutoff in 
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the FBR to limit the density of grid points, as well as a potential energy cutoff in the 

DVR to limit the extent of the grid. Bound state problems are really "bound" in that 

one can define a finite region of configuration space outside of which the probability 

is arbitrarily small (for any finite energy). 

Consequently, a finite DVR can be obtained for the Hamiltonian which is 

adequate for say, calculating the bound state energies up to some point. One does 

not know ahead of time exactly which grid spacing and potential cutoff values are 

appropriate; but by decreasing the former and increasing the latter one will eventually 

reach the point where the calculated eigenenergies remain essentially constant, to 

within some predetermined tolerance. ·At this point the calculations are said to be 

"converged." In practice, one should not push these parameters far beyond the point 

of convergence, as the commensurate increase in grid size will result in a more difficult 

linear algebra problem. 

Although these comments apply equally well to scattering calculations, in 

the latter case there is a more fundamental problem: namely, that the configuration 

space regions are unbounded in the asymptotic channels (corresponding to reactants 

and products in reactive scattering). As per Section 3.1, this situation is dealt with by 

introducing a negative imaginary absorbing potential iE(q). This can be thought of as 

a generalization of the constant parameter iE in the Green's function as expressed in 

Equation 2.24. Indeed, our naive numerical procedure for obtaining G( E) is simply to 

invert the complex symmetric DVR matrix for the inverse Green's function, with the 

absorbing potential substituted for iE. Moreover, the restriction to negative imaginary 

potentials will automatically provide the correct (retarded) boundary conditions for 

a a+( E) Green's function. However, this procedure will only yield meaningful results 

if the energy is suitably restricted and E( q) is sufficiently "small" in some sense. 

On the other hand, iE(q) is solely responsible for the absorption of outgoing 

flux, and must therefore be sufficiently large as to absorb the vast majority of the flux 

before it can be reflected back at the edge of the grid. To see that this is the case, it 

is helpful to use a different interpretation, wherein the Hamiltonian is conceptually 
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replaced with an effective Hamiltonian86- 88 

Hef£ = if - i€ (3.3) 

governing the evolution of a fictitious dynamical system. Note that Heff is no longer 

Hermitian, so that probability is not conserved; and this is of course what accounts 

for the absorption of flux. The degree to which flux is absorbed is thus depep.dent on 

the size of the absorbing potential. 

Armed with these perspectives, we can address the issue of selecting an 

appropriate absorbing potential function E( q). In light of Equation 3.3, the absorbing 

potential should clearly be zero or negligible in the interaction region, as the true and 

fictitious dynamics should differ only in the asymptotic channel regions. Assuming 

that the absorbing potentials are "turned on" as soon as one has comfortably entered 

the asymptotic regions, and "turned off" again as soon as the flux has been adequately 

absorbed (at which point the DVR grid can be truncated), how far out must one go? 

Clearly, if E is increased-whatever the specific functional form-the absorb

ing boundary will be narrower, and vice-versa. A narrower boundary is desired from 

the perspective of reducing the grid size. However, in light of Equation 2.24 we expect 

that E should not be too big. In fact, one finds in practice that the abrupt changes 

in the potential implied by a large E and narrow boundary induce a certain amount 

of artificial reflection.67,69 

In practical applications therefore, one finds it necessary to converge the 

calculations with respect to the absorbing boundary width and heighth, as well as 

grid spacing and potential energy cutoff. One could also vary the functional form of 

E(q), in order to minimize reflection and maximize absorption for a given boundary 

width. In the one-dimensional case, semiclassical arguments have been made in fa

vor of ql.5 potentials69 and other arguments support quadratic potentials,89 although 

these do not extend readily to the multi-dimensional case. Numerical experiments 

performed previously for power law and Woods-Saxon potentials seem to indicate 

that the particular choice does not matter very much. 69 In any event, we have found 

quartic potentials to be quite satisfactory; these are used throughout this work except 

where explicitly stated otherwise. 
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3.3 Quantum Reactive Scattering Calculations 

Having established the form of the DVR for the inverse Green's operator, 

including absorbing boundary conditions, we are ready to calculate microcanonical 

state-to-state and cumulative reaction probabilities. As discussed in Chapter 1, all 

relevant microcanonical scattering quantities can be obtained from the energy Green's 

operator G(E), which itself could be obtained directly by inverting the (E +if.- H) 

DVR matrix. However, there are many practical reasons why such an approach is 

not recommended for large systems. Apart from the poor scaling of a direct matrix 

inversion (N3 where N is the number of grid points), the resultant Green's function 

matrix is decidedly not sparse, and may thus require far more storage than its inverse. 

From a computational standpoint, it is therefore more convenient to make 

use of more specialized techniques that are specifically designed to elicit a particular 

type of information. These techniques are based on corresponding analytical expres

sions which have been derived using scattering theory. In particular, we shall focus 

on just two scattering quantities-reactive state-to-state probabilities, and cumula

tive reaction probabilities-as these are the only quantities that we have actually 

calculated explicitly within the scope of this dissertation. Moreover, as these pertain 

specifically to reactive scattering, the following discussion may be beneficial for the 

general reader who may be more familiar with elastic or inelastic scattering. 

3.3.1 Asymptotic States 

As per Chapter 1, the elements of the scattering or S-matrix Snn'(E) repre

sent the transition amplitudes between asymptotic states, where the indices nand n' 

label initial and final states, respectively. However, the quantity Snn' is only mean

ingful once the asymptotic states themselves have been suitably defined. In elastic or 

inelastic scattering, defining appropriate asymptotic states is fairly 'straightforward: 

one solves the asymptotic potential problem to obtain a mutually orthogonal set of 

states. 

In reactive scattering, however, where the initial and final states must cor-
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respond respectively to reactants and products, the situation is a little more com

plicated. The reason is that if the asymptotic scattering states are defined in the 

usual way-i.e. as separable products of internal fragment bound states times plane 

waves in the translationai coordinates between fragments-then the set of asymptotic 

reactant states is not orthogonal to that of products. 

To be more specific, let r and R symbolically represent the internal and 

translational coordinates, respectively corresponding to a pair of reactants A and 

B. In the large R limit, the potential approaches an asymptotic form Vas ( r) that is 

independent of R. The asymptotic scattering states 

cf>n(r, R) <X {lf:,_e-iknR'Pn(r) (3.4) 

are therefore solutions to an approximate Hamiltonian H0 = if- V +Vas which gives 

rise to an interaction potential A = (V- Vas) in the notation of Equation 2.25. 

The description thus far would be completely adequate for inelastic scat

tering (Section 2.5.3). In reactive scattering however, A and B are transformed into 

products C and D which are characterized by a completely different set of coordinates 
~ I 

r' and R'. These give rise to primed quantities such as V:S(r'), cf>n'(r', R'), and Ho 

which are incompatible with those corresponding to reactants. In particular, 

(</>n' I </>n) "# 0. (3.5) 

One solution is to divide configuration space into two regions using some 

"dividing surface," where one region corresponds to products and the other to re

actants. The asymptotic states described above are then modified by introducing a 

step function centered along the dividing surface to ensure that reactant states have 

zero probability in the product region, and vice-versa. In other words, we make the 

substitution 

cf>n(q,Q) -+ h(q,Q)</>n(q,Q) 

cf>n'(q, Q) -+ (1- h(q, Q)) </>n1 (q, Q) (3.6) 

where h(q, Q) represents a step function centered at the dividing surface which is zero 

in the products region and unity in the reactant region. The coordinates (q, Q) are 
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arbitrary, and are introduced simply to demonstrate that products and reactants are 

treated on an equal footing. The resultant asymptotic states are now orthogonal, but 

no longer separable except in the corresponding asymptotic limits. Nevertheless, we 

shall find them to be well-suited to reactive scattering applications. 

Using the orthogonal asymptotic states as described above, we can now 

proceed to obtain the S-matrix in a manner exactly analagous to that of elastic or 

inelastic scattering. Note that since we are considering reactive transitions-i.e. in 

Snn', n refers only to reactant states and n' only to products-the diagonal elements of 

the S-matrix can be ignored. This means for example, that the S-matrix is effectively 

proportional to the T -matrix, in that the additional o function term that appears in 

the usual expression6 can be ignored.* 

3.3.2 State-to-State Reaction Probabilities 

As per Chapter 1, the state-to-state reaction probabilities are given by 

(3.7) 

Using the well-known relation6 

T(E) = Li + LiG(E)Li (3.8) 

(where T(E) is the transition operator, not the kinetic energy), the reactive S-matrix 

can be expressed in terms of the energy Green's operator as follows: 

(3.9) 

At this point we must contend with a certain ambiguity, sometimes ignored, as to 

whether Li = ('V- Vas) refers to reactants or products-it cannot be both! Moreover, 

the use of one or the other introduces an undesirable reactant or product bias. 

*Technically, the orthogonalizing modification discussed above requires the distorted wave 
methodology, for which the 8-function term is replaced with the zeroth-orderS-matrix S~n'· How
ever, the distorted Hamiltonian H0 is specifically designed to preclude transitions between reactants 
and products-hence s~n' = 0. 
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This dilemma, which is peculiar to reactive scattering, can be resolved in 

various ways. One approach which we shall find useful is to use the reactant asymp

totic potential on the reactant side of the dividing surface, and similarly for products. 

In particular, we make the substitution 

~(q, Q) ~ h(q, Q)~(q, Q) + (1- h(q, Q)) ~'(q, Q)- Vos(q, Q), (3.10) 

which is manifestly "covariant" with respect to exchanging reactants with products. 

Note in particular the addition of a Vos term, which represents an infinite, or very 

large potential barrier in the neighborhood of the dividing surface. By including such 

a term in..&., the corresponding H0 automatically provides both reactant and product 

states that satisfy Equation 3.6. 

The Equation 3.10 choice of..&. is particular helpful with respect to evualating 

Equation 3.9 above. The first term vanishes, because ..&. is a potential, and because at 

every point of configuration space either cPn(q, Q) or cPn'(q, Q) is zero. We also have 

(3.11) 

by construction, where H0 now corresponds to the symmetric..&. of Equation 3.10. 

We can therefore replace the..&. operator to the right of G(E) in Equation 3.9 

above with the operator 

(if- E)= (i€- c-1
). (3.12) 

We can also do the same for the ..&. to the left of G(E) however, since the product 

states lc/Jn') are also characteristic functions of H0 . 

Using the above substitutions, Equation 3.9 becomes 

(3.13) 

where the first two terms above both vanish, again due to the fact that l¢n) and 1¢~) 

never share a common region of configuration space. In matrix form, we are thus left 

with the elegant expression70 

(3.14) 
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Here, Er and Ep are the absorbing potential functions in the reactant and product 

regions, respectively. Similarly, in and in' are DVR vector representations of the 

asymptotic scattering states (including weight factors). 70 These can refer to either 

Equation 3.4 or Equation 3.6, since Er and Ep already incorporate the appropriate 

h(q, Q) factors. 

Equation 3.14 is very convenient from a DVR perspective. In order to calcu

late a particular state-to-state transition probability, it is only necessary to compute 

the action of the Green's operator on a a single vector, rather than computing the 

entire Green's function. This is equivalent to solving the standard linear algebra 

problem of Equation 2.9-an operation which is, moreover, amenable to the sparse 

numerical methods to be discussed in Section 3.4. 

3.3.3 Cumulative Reaction Probabilities 

Our next task is to develop a similar expression for a direct calculation of 

the cumulative reaction probability 

N(E) = L Pnn', (3.15) 
nn1 

I.e., an expression that does not involve the explicit summation above. A suitable 

starting point is the following expression in terms of tpe flux operator75
•90 

(3.16) 

where F is the flux operator. The Green's function enters in via the identity 

A 1 A 

8(E- H)= --ImG(E). 
7r 

(3.17) 

The flux operator F can be expressed in many ways. Seideman and Miller 

found the form 
A t[Al A] F = "i, G- (E)- i€, h(q, Q) . (3.18) 

where [ , ] denotes commutation, to be particularly useful.69 Indeed, when Equa

tions 3.18 and 3.17 are substituted into Equation 3.16, simplifications of the type 
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encountered in Equation 3.9 are possible, giving rise to the following expression 

which is well-suited to a DVR analysis. 

In explicit matrix form, Equation 3.19 becomes 

.. , 
t,t 

(3.19) 

(3.20) 

where i and i' index the DVR grid points that lie in the reactant and product regions, 

respectively. Note that although we are no longer acting G on a single vector, the 

calculation is nevertheless simplified in that only a small portion of the G matrix 

needs to be calculated. In particular, we only need the block of G corresponding to 

reactant absorbing boundary rows and product absorbing boundary columns. 

3.4 Numerical Preconditioning and the Distorted 

Wave Born Expansion 

3.4.1 Sparse Matrix Methods 

For the DVR Hamiltonians considered in this dissertation, the matrix rep

resentations are all sparse. One obvious advantage is that less computer memory is 

required to store the Hamiltonian than would be required by a full matrix of the 

same size. Another advantage--less obvious, but equally important-is that the time 

required for a Hamiltonian multiply is also greatly reduced. By "Hamiltonian multi

ply" we refer to the multiplication of a vector by the matrix representation for fi or 

(;-1. 

It may not be clear why this is helpful, as Equations 3.14 and 3.20 re

quire multiplications by G rather than 6-1. However, there is a class of numerical 

methods loosely based on the conjugate gradient method91-e.g. GMRES,92 CGS,93 

and QMR94-that accomplish a G multiply through an iterative sequence of multi

plications by 6- 1 . The linear subspace spanned by the sequence of vectors that is 

generated by this process is known as the "Krylov space." 7•8 
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The first step is to rewrite the G multiply as a standard linear algebra 

problem in the form of Equation 2.9. We have 

ax g 

(3.21) 

where 6-1 and x are known explicitly, whereas y is the unknown vector that we 

seek to obtain. One starts with a random initial guess y0, and calculates the error, 

or length of the residual vector IG-1y0 - xl 2
. To obtain a better approximation, a 

correction ~~ is added, in the direction of steepest descent with respect to minimizing 

the residual. This turns out to be just the "direction" of 6-1 multiplied by the 

residual vector. The process can be repeated iteratively to obtain successively better 

approximations iii until convergence is achieved. 

The success of the conjugate gradient algorithms depends on the 6-1 mul

tiply being a comparatively fast operation, which is why these methods are ideal for 

sparse matrices. However, they also demand that the total number of iterations re

quired for convergence be comparatively small with regard to the matrix size N; and 

this is a more subtle issue. It is well-known91 that the convergence rate is generally 

related to the condition number of the matrix. Thus, for ill-conditioned matrices con

vergence is usually slow and ineffectual. Unfortunately, for most molecular systems 

the conditioning of 6-1(E) tends to deteriorate as the energy is increased, due to a 

higher density of states. 

3.4.2 Preconditioning and Distorted Waves 

Fortunately, the convergence can be improved using a numerical technique 

known as preconditioning. This consists of multiplying both sides of Equation 3.21 

with the same matrix-the preconditioner-prior to obtaining the iterative conjugate 

gradient solution. The basic strategy is to reduce the condition number of the new 

matrix by as much as possible, so as to improve convergence. Apart from an imma

terial scaling factor, this is equivalent to minimizing the difference between the new 

matrix and the identity matrix. The procedure is therefore most effective when the 
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preconditioner matrix is closest to G. 
Multiplying both sides of Equation 3.21 on the left by the preconditioner 

results in the new linear equation 

(3.22) 

where f is the identity, and A is the difference which is to be minimized by the choice 

of preconditioner. If we now multiply both sides of Equation 3.22 by the expanded 

inverse of (i- A), we obtain 

(3.23) 

Clearly, there is a close association between the convergence of the inverse 

expansion in Equation 3.23 and the convergence of the conjugate gradient methods, 

as both are improved by minimizing A. The advantage of Equation 3.23 however, is 

that it corresponds directly to something physical: namely, the distorted wave Born 

expansion of Equation 2.26. 

It is worth taking a detailed look at this correspondence. The precondi

tioner matrix itself corresponds to the distorted wave Green's operator G0 , defined 

in terms of some approximate Hamiltonian H0 (Section 2.4.2). The matrix A corre

sponds to the dimensionless kernel matrix G0A, whose eigenvalues alone determine 

the convergence of the Born expansion. Finally, we note that Equation 3.23 above is 

transformed into Equation 2.26 by simply making the substitution b = G0x. 
The correlation between the convergence of the Krylov-based conjugate gra

dient methods and the convergence of the distorted wave Born expansion provides us 

with an analytic means of evaluating different numerical preconditioning schemes a 

priori, wherein we can bring physical intuition to bear on the problem of obtaining a 

good preconditioner for a given system. For example, the discussion in Section 2.4.2 

vis-a-vis convergence is also completely relevant to this section. Generally speak

ing, the strategy is to incorporate as much of fi into H0 as possible, so that the 

corresponding Born expansion converges quickly. 

For example, for Hamiltonians of the standard T + V form, the Born series 

proper22 is generated by choosing A= V. The corresponding preconditioner, known 
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as the "kinetic energy preconditioner," 83 is effective when Vis much smaller than T, as 

would be predicted on physical grounds. In contrast the "diagonal preconditioner," 83 

for which H0 consists of the diagonal matrix elements of ii in the DVR representation, 
A A 

is effective when V is much larger than T. The "optimized preconditioner" derived 

from the optimal separable H0 (to be introduced in the next section), is more efficient 

than either of these; although it can be shown to subsume the other two in the 

appropriate limits. 

It should be mentioned that although the correspondence described herein is 

very close, it is not exact. For instance, the analytic expansion of Equation 2.26 may 

or may not converge; yet in DVR applications, the conjugate gradient methods are 

guaranteed to converge to numerical precision after a known number of iterations-

usually the matrix size N. Usually, one expects convergence to acceptable limits with 

far fewer than N iterations however. Given that Equation 3.23 is a geometric series, 

the convergence properties of the Born series are fairly straighforward, albeit there 

are some complications that arise due to the operator nature of A, as discussed in the 

appendix (page 85). In contrast the various Krylov algorithms can display somewhat 

erratic convergence behavior, depending on the specifics of how they are implemented. 

Nevertheless, these methods share more similarities than differences-being 

all variations of the iterative conjugate gradient approach. Moreover, we anticipate 

that a good preconditioner will have a drastic effect on reducing the calculational 

effort, that will far outweigh the differences associated with which particular algo

rithm is being used. This has certainly been observed in our calculations to date 

(Section 3.6). 

Note that since the convergence of Equation 2.26 is related to the norm of the 

kernel, we can use the latter as a heuristic indicator of preconditioner performance. 

The numerical value determined for IAI will depend on the various DVR parameters 

such as grid density. On physical grounds however, IAI should not change very much 

as these parameters are varied. This suggests that the convergence of the linear 

algebra calculation should not vary significantly with the size of the matrix, as has 

previously been thought to be the case. These assumptions are tested numerically in 
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Section 3.6. 

3.5 Optimized Preconditioning via Jacobi Block 

Diagonalization 

In this section, we are concerned with one particular choice of precondi

tioner: namely, the optimized preconditioner corresponding to the optimal separable 

H0 of Section 2.3. Simply put, this preconditioning scheme is generally expected to 

outperform all others of comparable separability, because the interaction .& has been 

reduced by as much as possible. To obtain G0 explicitly, it is not necessary to diago

nalize H0 ; however, we do need to obtain the inverse of (E+iE-H0 ). Once again, it is 

convenient to perform the inversion in the partially diagonal representation wherein 

H0 is block-diagonal. Consequently, the problem reduces to a k-dimensional one 

parametrized by the outer index m. 

Obtaining G0 is thus considerably easier than solving for G, as expected. 

However, it is first necessary to find the optimal outer basis. A reduced-dimensional 

algorithm for this procedure is presented in Section 3.5.2. Before getting into the 

details of the algorithm however, we first present a brief but necessary discussion of 

multi-dimensional DVR's. 

3.5.1 Multi-dimensional Discrete Variable Representations 

Consider a DVR representation of a multi-dimensional Hamiltonian of the 

(T + V) form of Section 2.5. For multi-dimensional systems, a different DVR must be 

constructed for each degree of freedom. The DVR basis functions are just products 

of the individual functions for each degree of freedom. Thus, instead of being labelled 

by a single index i, the multi-dimensional grid points are labelled by the collection 

{ i~, ... , in}· 

Since V = V(q~, ... , qn), the DVR matrix representation of Vis still diago

nal. In contrast, the representation ofT necessarily involves off-diagonal elements, as 

per Section 3.2. Although the one-dimensional kinetic energies such as the rectilin-
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ear case of Equation 3.2 are usually represented by full matrices, higher-dimensional 

representations of the kinetic energy are usually sparse. This is particular true if the 

kinetic energy is orthogonal, in which case each component T1 includes delta function 

factors for all but the l'th degree of freedom. 

Any explicit representation must depend, however, on a convention for rep

resenting rank-2n tensors as matrices-i.e. tensors of rank 2. We imagine the simplest 

scenario for our DVR grid; i.e. an n-cubic lattice with d points per degree of freedom, 

where N = dn. Each row index k of the N x N matrix representation must correspond 

to a complete set of n indices (i1, ... , in) where each i ranges from 0 to (d- 1) and 

labels a different degree of freedom. Similarly, each column index k' corresponds to 

the set (i~, ... ,i~). 

A convenient way to explicitly associate the ( i~, ... , in) with the composite 

index k is to define 

k . d" d2· ..m-1· = 't1 + 't2 + · 'l3 + · · · u 'tn (3.24) 

which has the effect, as k is incremented, of traversing the lower-numbered indices 

most quickly. In light of our prior distinction between inner and outer coordinates, 

the matrix representation as defined by Equation 3.24 acquires a natural block struc

ture. Variation of the inner coordinates corresponds to motion within a single block; 

whereas the outer coordinates are represented by the blocks themselves. Thus is the 

use of the terms "inner" and "outer" justified. 

Using Equation 3.24, the explicit matrix representation of tin takes on the 

following block-diagonal form: 



3.5. OPTIMIZED PRECONDITIONING 

1in= 

T~i 112 
TJi TJ2 

• 

63 

(3.25) 

• 
• 

Thus, the off-diagonal blocks-corresponding to m # m'-are all zero. The diag

onal blocks are all the same, since 'fin by presumption is independent of the outer 

coordinates. 

The explicit matrix form of 'fin above is to be contrasted with that of Tout 

Tn 
1 

T12 
1 • 

r,n 
2 

T,12 
2 • 

• 
'T?-1 

1 
r22 

1 • 

Tout= T,21 
2 

r,22 
2 • (3.26) 

• 

• • • 

• • • 
• • • 

which can aptly be termed a "diagonal-blo.ck" matrix. Note that in both cases the 

majority of the matrix elements are indeed zero; in fact the memory storage require

ments are proportional to cJ?k and cJ?n-k respectively. 

The representation of the full Hamiltonian is just the matrix sum of 'iin, Tout, 
and V. The inverse Green's function is obtained by subtracting the Hamiltonian from 



64 CHAPTER 3. REACTION PROBABILITIES 

the diagonal matrix Ei + i€, where the absorbing potential € is a function of the qi.69 

Note that the explicit matrix representations of both the Hamiltonian itself and the 

inverse Green's function share the same sparse form. As discussed in Section 2.5, this 

form is preserved under a change of basis involving the outer coordinates only. Thus, 

when fi is represented in the new basis, the off-diagonal blocks remain diagonal. 

If the new basis is chosen so as to minimize the off-diagonal block elements, 

then the basis functions are the optimal f.Pm, and the new representation of the in

verse Green's function is the partially diagonal representation of Section 2.3.1. The 

transformed diagonal blocks meanwhile, constitute the inverse of the preconditioner 

G0 . The inversion is readily accomplished by inverting each of the diagonal blocks 

separately. Since the CPU time required for numerical matrix inversion scales as the 

linear dimension cubed, we have a dn-k X (dk) 3 = dn+2k dependence for obtaining the 

full preconditioner. Note however that these blocks are complex symmetric rather 

than Hermitian, as will be shown in the next subsection, wherein we also present a 

reduced-dimensional algorithm for obtaining the optimal outer basis. 

3.5.2 Block Jacobi Algorithm for Minimizing the Residual 

The heart of optimized preconditioning-indeed, the heart of the success of 

the optimal separable basis approach as a practical and widely-applicable numerical. 

technique-lies in the fact that the optimal outer basis can be systematically obtained 

using a simple algorithm whose operation is far less costly than a direct ·numerical 

solution for G(E). As will be shown shortly, this "outer diagonalization" procedure is 

a kind of reduced-dimensional diagonalization that is similar to solving a parametrized 

collection of subsystem eigenproblems (Section 2.2.2), though not quite the same 

thing. 

We now present the details of the procedure. In essence, the algorithm is a 

block version of the well-known iterative Jacobi method for diagonalizing a symmet

ric matrix.95 Fundamental to the latter is the "Jacobi rotation"-a one-parameter 

orthogonal transformation involving just a single pair of indices (k, k'). The rotation 

angle is chosen so as to zero the off-diagonal matrix elements H'kk' and H~'k in the 
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transformed representation. By applying N(N- 1)/2 separate Jacobi rotations, one 

could zero all of the off-diagonal elements in succession. 

The resulting matrix would still not be diagonal because a given Jacobi ro

tation may "unzero" elements that were previously zeroed. The off-diagonal elements 

would be collectively smaller, however; and in fact, the Jacobi rotation angle is op

timal in precisely the Frobenius norm sense of Equation 2.11! Thus, by iteratively 

applying successive sweeps of N(N- 1)/2 Jacobi rotations, one would obtain a ma

trix that is diagonal to arbitrary numerical precision. Furthermore, the product of 

all of the successive Jacobi rotation matrices that define the diagonalizing unitary 

transformation would also define the eigenvectors of the original matrix. 

In our case however, the final transformation matrix is constrained in that it 

can only involve the outer coordinates. Consequently, every block must be a multiple 

of the inner coordinate identity matrix. This is required if the inner coordinates are 

to be unaffected by the transformation; and it is clear that the corresponding Jacobi 

rotations must operate at the block level. When the corresponding block Jacobi or 

"outer diagonalization" procedure is applied, however, the transformed Hamiltonian 

does not generally approach even block-diagonality-let alone diagonality-owing to 

the fact that H is not generally weakly separable. What is approached to arbitrary 

precision however, is the orthogonality condition of Equations 2.17 and 2.30, which 

can be considered the proper generalization of the standard diagonality condition. 

We are interested in applying Jacobi rotations that involve the outer coordi

nates only. Let i aild j represent the inner and outer coordinate indices respectively, 

so that a single k is now associated with a pair of indices (i,j). Thus, if k and k' 

specify a particular matrix element, then j and j' specify a particular block within 

the full matrix, whereas i and i' locate a specific element within a block. A "block 

rotation" can be defined as an orthogonal transformation involving a single pair of 

outer indices (jb h) which is independent of the inner indices. We can write, in 

explicit block form, 
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I 

I cosO i sinO 

i (3.27) 

-I sinO i cosO 

i 

where the use of the tilde signifies that each entry above is an entire inner-coordinate 

block; and the blocks that involve 0 correspond to j 1 and h· 
A block rotation thus transforms ii on a block-by-block basis. Only those 

blocks in the same row or column as Hili2 or Hizil are affected. Specifically, 

Hjj1 = Hj
1
i = Hjj1 cos 0- Hii2 sin 0 

Hjj
2 

= Hj
2
j = Hjj1 sin B + Hii2 cos 0 

Hjziz 

iij1i2 (3.28) 

Note that the block rotation-like the conventional Jacobi rotation-depends on a 

single parameter 0. In the block case however, we cannot in general zero the entire 

Hj1 ,iz block with some choice of B. Instead, 0 is chosen so as to minimize the compo

nents of Hit,i2 in the least squares sense84-a choice which also turns out. to minimize 

the Frobenius norm of the entire residual. 

It can be shown from Equation 3.28 that the minimizing choice of 0 satisfies 

tan 40 = ( _. Tiliz . (~2 - ~1) ) 
1Tilizl2 

- IVi2 - Vi1l 2 /4 
(3.29) 

where the notation ~ = Hii and iji' = Hii' reflects the diagonal-block form of 

(Tout+ V) which is preserved under R. Note that the present formulation assumes a 
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symmetric-rather than Hermitian-DVR matrix H in Equation 3.28. If if refers to 

the Hamiltonian itself (as might be the case for bound state applications), then the 

distinction is usually unimportant because most DVR Hamiltonians are real symmet

ric. However, in scattering calculations the if of Equation 3.28 should be replaced 

with the inverse Green's function of Equation 2.24, which is actually complex sym

metric because of the i€ absorbing potential term. 

The mathematically appropriate transformation is therefore a complex or

thogonal transformation defined by analytically continuing fJ. However, the transfor

mation must be unitary on physical grounds; and by imposing both of these conditions 

we are left once again with real orthogonal rotations. The minimizing real angle fJ 

turns out to be just the real component of the corresponding complex 8, as deter

mined by Equation 3.29 (with non-complex-conjugated dot products). Equivalently, 

the real () can also be obtained by simply using (symmetrized) complex-conjuguted 

dot products in Equation 3.29, which is the procedure that is actually adopted in 

practice. In any event, the ratio of imaginary to real components of the complex 

angle is generally small, because i€ is generally small in comparison with the rest of 

H. 

Having thus defined the Jacobi block rotation R, we proceed in a manner 

analogous to the conventional Jacobi method. Every off-diagonal block is minimized 

in a succession of dn-k(dn-k- 1)/2 block rotations. The process is repeated until 

convergence is reached, signalled by fJ -+ 0 for all j 11 h· (Note that setting fJ = 0 

in Equation 3.29 above duplicates the orthogonality condition of Equation 2.30.) In 

practice, the convergence is quite fast-usually requiring no more than about three or 

four sweeps. Since the CPU time required per block rotation scales as dk x dn-k = dn, 

the full outer diagonalization scales as d3n-2k. In contrast, the CPU time and memory 

required for a direct numerical linear algebra assault would scale as N 3 = d3
n and 

N 2 = ~n respectively.96 Thus for reasonable d values, both the outer diagonalization 

and the block inversion are numerically quite easily achieved, in comparision with a 

brute force linear algebra calculation. 

Note that depending on the kinetic energy, one may be able to alter the 
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value of k, so as to minimize the total time required for obtaining the preconditioner 

and performing the subsequent Krylov expansion. Generally speaking, increasing k 

increases the CPU requirements of the inversion, but decreases those of the outer 

diagonalization. An intermediate value of k such as k = n/2 usually makes the 

fewest overall CPU demands with respect to obtaining the preconditioner; but the 

subsequent Krylov expansion is often less efficient than it would be for a more lopsided 

division of coordinates. The specific partitioning of coordinates into inner and outer 

categories will also make a difference (Section 2.5). 

3.6 Results-Collinear H + H2 ---+ H2 + H 

In chemical dynamics, the collinear H + H2 -t H2 + H system is a standard 

two-dimensional benchmark problem that is commonly used for evaluating theoret

ical reactive scattering methods. Within the Born-Oppenheimer approximation, an 

accurate ground state potential energy surface describing the nuclear dynamics is 

known,97•98 and has been used extensively. We have used all of the methods described 

thus far in this chapter to calculate scattering quantities for this system: namely the 

cumulative reaction probability N(E) and the state-to-state probabilities Pvvl, where 

v and v' label respectively the reactant and product H 2 vibrational quantum numbers. 

These reaction probabilities have previously been calculated for this system, 

and can be found in the literature.69•71•99-101 Exact quantum results have thus far 

been limited to relatively low energies however-typically less than about one e V

for which only one or two of the fifteen vibrational channels are energetically open. A 

more comprehensive treatment involving the higher channels thus requires analysis at 

higher energy. Unfortunately, the numerical difficulty of the linear algebra problem 

increases very rapidly with increasing energy. 

One reason is that a larger density of DVR points is required to obtain 

meaningful results; in the present two-dimensional case for instance, the minimum 

required grid density increases linearly with energy. Moreover, as the excited state 

channels become available, the effective interaction region itself is enlarged. Thus, 

whereas one or two hundred DVR points will suffice at low energies, :fifteen thousand 
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or so are required as the dissociation threshold is approached ( rv4. 7 4 e V). To make 

matters worse, the density of energetic states becomes significantly prominent near 

the threshold-a numerically "stiff" situation corresponding to ill-conditioned DVR 

matrices that can be devastating for Krylov convergence. Fortunately, all of the above 

complications have been mitigated by the use of the optimized preconditioner, which 

has enabled us to obtain results for energies near and above the dissociation threshold. 

In mass-weighted Jacobi coordinates2•102 (Chapter 4), the H + H2 Hamilto

nian has the simple form34 

A 2 A 2 

HA Px Py Vi (A A) 
= 2J-L + 21-L + LSTH X, Y (3.30) 

where V1 sTH is the LSTH potential energy surface,97•98 J-L is the reduced mass, and x 

and y are the Jacobi coordinates. Note that the form of Equation 3.30 is preserved 

under a rotation of coordinates. One might therefore consider applying such a rota

tion before laying down the DVR grid, as is done for instance, when using the normal 

mode coordinates of the transition state.34 As it happens however, the straightfor

ward Jacobi coordinates above yield the mQre efficient preconditioner. Note also that 

Equation 3.30 satisfies Equation 2.28, thus allowing for a direct comparison of the 

present method with other, less generally applicable methods that require the kinetic 

energy to be strongly separable and translationally-invariant.83 

The DVR grid is rectangular with approximately the same number of points 

in each direction. However, V varies somewhat less with the Jacobi translational co

ordinate than with the vibrational coordinate; consequently, theformer ( x) is chosen 

as the inner coordinate.84 A potential cutoff energy Vcut is assigned to those regions 

of the rectangular grid which are either unphysical or energetically improbable. The 

grid is truncated in the asymptotic reactant (product) regions using quartic absorbing 

potentials in the translational Jacobi coordinate x (x'). 

The use ·of a rectangular grid is not ideal from a DVR perspective, but 

constitutes-in the two-dimensional case only-a necessary limitation in the present 

state of affairs. Unfortunately, the outer diagonalization procedure in its current im

plementation requires the use of identically-sized blocks, necessitating a rectangular 

DVR grid. Consequently, extraneous DVR points are introduced which detract some-
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what from the overall computational efficiency. In the present case, these have been 

reduced by using unrotated Jacobi coordinates; and in any event the benefits of outer 

diagonalization far outweigh the computational burden resulting from the enlarged 

grid. Were this not the case, one could skip the outer diagonalization altogether and 

proceed directly to the H0 inversion; for the latter is completely independent of the 

former and can easily be performed on an arbitrarily-shaped grid. 

3.6.1 Reaction Probabilities 

Using the DVR as described in the preceding few paragraphs-in conjunc

tion with Equation 3.14 and the optimized preconditioner-we have obtained state-to

state reaction probabilities for energies ranging from 0-6 e V, and vibrationally excited 

channels up to v = 9. Cumulative reaction probabilities have also been obtained, us

ing Equations 3.19 and 3.14. The results-presented in Figures 3.1 to 3.10-are in 

qualitative agreement with other quantum-mechanical and quasi-classical calculations 

for H + H2 --+ H2 + H.99,103,104 

The data was obtained separately for each energy, in increments of .01 eV; 

however, as the primary emphasis is evaluation of the method, convergence with 

respect to the DVR parameters was only explicitly checked every .20 e V or so. Ev

idently, this led to satisfactory results for the most part. However, convergence is 

notoriously difficult in the region just above the energy at which a given channel be

comes accessible. The reason is that the low translational kinetic energy associated 

with the asymptotic states requires a very broad absorbing boundary region, and 

hence a considerably larger DVR grid. Moreover, these energies are often associated 

with resonant features. It was therefore necessary to reconverge the calculations near 

the threshold energies. 

Convergence is to within a few percent at all energies except near channel 

thresholds. Tables 3.1 and 3.2 relate typical convergence features with respect to 

various grid parameters. As has been observed previously,69 the grid spacing for a 

given energy was found to be about 3.5-4.0 points per deBroglie wavelength. Gen

erally speaking, "Vcut was about 3.0 e V higher than the energy in question, and the 
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Figure 3.1: State-to-state reaction probabilities for the collinear H + H2 -+ H2 + H 
system: ( 0-0) 
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Figure 3.2: State-to-state reaction probabilities for the collinear H + H2 -+ H2 + H 
system: (1-1); --- (1-0). 
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Figure 3.3: State-to-state reaction probabilities for the collinear H + H2 --7 H2 + H 
system: (2-2); --- (2-1); ---- (2-0). 
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Figure 3.4: State-to-state reaction probabilities for the collinear H + H2 -+ H2 + H 
system: (3-3); --- (3-2); ---- (3-1); ----- (3-0). 
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Figure 3.5: State-to-state reaction probabilities for the collinear H + H2 -t H2 + H 
system: (4-4); --- (4-3); ---- (4-2); ----- (4-1); ----
(4-0). 
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Figure 3.6: State-to-state reaction probabilities for the collinear H + H2 -7 H2 + H 
system: (5-5); --- (5-4); ---- (5-3); ----- (5-2); ----
(5-1). 
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Figure 3. 7: State-to-state reaction probabilities for the collinear H + H2 -+ H2 + H 
system (expanded graph): -----(5-1); (5-0); ----- (6-1); --
(6-0). 
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Figure 3.8: State-to-state reaction probabilities for the collinear H + H2 -+ H2 + H 
system: (6-6); --- (6-5); ---- (6-4); ----- (6-3); ----
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Figure 3.9: State-to-state reaction probabilities for the collinear H + H2 ---+ H2 + H 
system: (9-9); --- (9-8); ---- (9-7); ----- (9-6). 
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Figure 3.10: Cumulative reaction probabilities for the collinear H + H2 -t H2 + H 
system. 
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Grid Spacing Transition Probabilities 
(ao) 4-0 4-1 4-2 4-3 4-4 
.15 .0078 .0493 .0813 .1501 .4330 
.13 .0077 .0492 .0807 .1489 .4311 
.11 .0077 .0491 .0805 .1482 .4305 

Table 3.1: DVR convergence data for collinear H + H2 -+ H2 + H calculations: con
vergence of state-to-state reaction probabilities with respect to grid spacing for the 
4-v' transitions at 2.25 eV. 

Grid Extent Transition Probabilities 
{ao) 4-0 4-1 4-2 4-3 4-4 
9.5 .0080 .0510 .0830 .1508 .4330 

10.0 .0078 .0499 .0827 .1541 .4479 
10.5 .0078 .0503 .0843 .1593 .4596 
11.0 .0080 .0512 .0859 .1627 .4627 
11.5 .0080 .0519 .0867 .1633 .4597 

Table 3.2: DVR convergence data for collinear H + H2 -+ H2 + H calculations: con
vergence of state-to-state reaction probabilities, with respect to the maximum grid 
extent into the asymptotic region, for the 4-v' transitions at 2.25 eV. 

absorbing region extended out to 7-12 a0 , depending on the energy {for state-to-state 

calculations). 

Near the threshold energies however, a much larger grid was used-in some 

cases extended out to 20 ao. This was particularly true of the higher vibrational 

thresholds, for which the potential barrier is less significant, and the resultant step

function-like initial rise leads to non-negligible probabilities near the channel thresh

old energy. Despite the larger grid, convergence in these regions is somewhat less 

accurate; although this is mitigated somewhat by the use of Tukey nearest-neighbor 

smoothing. 91 
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3.6.2 Numerical Issues 

In obtaining these results, we have made use of certain numerical "tricks" 

to expedite the calculations. In Equation 3.14 for example, only a single action of 

the Green's function on ¢v need be calculated for a variety of different ¢v,'s; though 

in practice simultaneous convergence may be difficult if the range of v' values is too 

great. Another technique is to use the same grid over a range of energies-in this 

case spanning about one eV. We choose DVR parameters which are simultaneously 

converged at both energy endpoints and in the middle. One can then go back and 

attack the "trouble spots" with a more accurate, but computatationally expensive 

DVR grid. 

Using the same DVR grid for a range of energies also has positive ram

ifications for the preconditioner. Most notably, the outer diagonalization need be 

performed only once for the entire set of calculations; as the various inverse Green's 

functions differ only by a constant times the identity matrix. This represents a consid

erable computational reduction; for although both the outer diagonalization and the 

H0 inversion are N 2 processes, the prefactor of the former is considerably larger. It 

turns out however, that the H0 inversion can also be made much more efficient. This 

is accomplished by diagonalizing the block-diagonal H0 matrix for a single energy-a 

process that is also N 2• Then for any other energy, applying the inverse of H0 to a 

vector is easily effected via straightforward matrix-vector multiplications. Thus for a· 

particular energy calculation, preconditioning reduces to an N 312 process. 

These fine-tunings provide only marginal benefit, however if the processing 

time required by the subsequent, preconditioned Krylov routine is comparatively 

slow. In our case for example, where we perform the outer diagonalization only 

once but do not implement the H0 optimization, the Krylov step was consistently 

about three times slower than the preconditioning step over the full range of energies 

encountered. Nevertheless, Krylov convergence was still much faster than it would be 

without preconditioning, as is clear from Table 3.3. Although the precise dependence 

may vary somewhat with the particular algorithm, the CPU time required by most 

iterative Krylov methods scales more than linearly-typically quadratically-with the 
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Transition Energy DVR Krylov Iterations Residual 
v-v' (eV) Points precond none Tolerance 

0-0 0.0-1.0 430 rv40 rv 300 0.0001 
1-0,1 1.0-2.0 1128 rv 70 rv 450 0.0001 
2-0,1,2 1.3-2.1 1322 rv 85 rv 550 0.0001 
3-0,1,2,3 1.8-2.8 2554 rv 130 rv 900 0.0001 
6-5,6 4.0-6.0 5500 220-280 - 0.0001 
9-6,7,8,9 3.8-4.8 14000 440-470 - 0.00005 
9-6,7,8,9 4.8-6.0 12000 420-500 - 0.00005 

Table 3.3: Krylov convergence data for state-to-state collinear H + H2 -+ H2 + H 
calculations: optimized preconditioner vs. no preconditioner. 

number of iterations73,92 • Thus for intermediate grid sizes, Table 3.3 implies a CPU 

time reduction factor of about fifty. The reduction would probably be even greater for 

larger grids. Note that the Krylov approach is only computationally advantageous 

when the number of iterations required for convergence is much smaller than N. 

We can thus infer from Table 3.3 that without preconditioning, Krylov approach is 

effectively useless as the energy approaches the dissociation threshold-in fact it does 

no better than a direct N 3 inversion. 

The CPU memory requirements should also be addressed. Use of the present 

preconditioner requires storage of H0 and A, both of which scale as N 312 . This should 

be compared with the Krylov memory, which depends greatly on the particular algo

rithm being employed. Those that admit preconditioners ( GMRES) have historically 

scaled as K N, where K is the number of Krylov iterations. Recently, linear N al

gorithms such as CGS and QMR have been developed to work in conjunction with 

preconditioners; however the convergence properties do not yet seem as stable as for 

GMRES.92--94 

From Table 3.3, we see that the preconditioned Krylov iterations increase

roughly linearly-with energy. We are led by earlier considerations to attribute this 

to an increase in the density of available states rather than grid size; although the 

latter certainly affects the processing time per iteration. In any event, in order to 

determine whether this and the other assumptions of Section 3.4 are in fact justified, 

we have performed several numerical tests. 
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The simplest test is to increase the density of grid points while keeping 

all other factors including the energy constant, and to determine the effect on the 

number of Krylov iterations required to converge to a specified tolerance. This was 

done for the 0-0 transition for densities ranging by a factor of about twenty-five 

(N = rv900-22000). For a tolerance of 10-4, the number of iterations was almost 

constant-ranging from 42 to 44-suggesting that the convergence properties of the 

preconditioner are independent of grid size, provided the other DVR parameters are 

properly converged. 

We also expect the eigenvalue structure of the kernel matrix A to be fairly 

independent of grid density. As Figure 3.11 demonstrates, the largest eigenvalue is in

deed almost uniform for sufficiently converged grid densities. Figure 3.11 also presents 

results where the potential strength has been artificially increased or decreased. Note 

that in either limit the eigenvalues diminish. These are the limits in which the opti

mized preconditioner subsumes the diagonal and the kinetic energy preconditioners, 

respectively.83 Finally, as the energy and Krylov iterations increase, we anticipate a 

correlated increase in t'he eigenvalues and associated norm of A. Figure 3.12, which 

depicts !AI as a function of energy, shows that this is indeed the case. In order to 

obtain a fair comparison, the same DVR grid is used for all energies. 

We have also tested the assumption that the translational coordinate should 

be the more efficient choice of inner coordinate, by repeating the calculations with 

the coordinates transposed. This did in fact lead to a 5% increase in the number of 

Krylov iterations. In addition, we have also performed calculations using a normal 

mode coordinate DVR grid. This grid has a larger number of extraneous points, 

representing an increase in N of about 25%-but it also increases the number of 

iterations by about 15%, presumably because the potential is less separable in these 

coordinates. The net result is that the normal mode version is about 1.7 times slower. 

As a final test, we compared the rectangular DVR grid plus full preconditioner, versus 

the smaller, irregular DVR grid with H0 inversion only. Despite the slightly smaller 

number of points, the latter required more than three times as many iterations, and 

an even greater increase in CPU time. 
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3.7 Conclusions 

The primary purpose of this chapter has been to evaluate the effectiveness 

of the optimal separable basis approach as applied to a realistic reactive scattering 

calculation. In Section 3.4, a general quantitative method was suggested for evaluat

ing preconditioners; and based on that criteria, a particular optimized preconditioner 

was developed. In Section 3.6, we have put these ideas into practice for a specific 

chemical system, and tried to determine whether the theoretical arguments presented 

herein are valid in the domain of computational linear algebra. 

The results have been very reassuring. As indicated in Table 3.3, the op

timized preconditioner has been shown to improve performance dramatically in the 

computational H + H2 -+ H2 + H system. Moreover, the benefits seem to be most 

pronounced in precisely those situations which are numerically most challenging. In 

addition to obtaining new scattering data for previously prohibitive energy regimes, 

several important connections with theory have been validated. It is significant that 

the principal assumptions84 of Section 2.3 and of Chapter 2 are evidently borne out 

by our simple tests-even when sophisticated iterative algorithms are employed-for 

it strongly suggests that the general preconditioner optimization problem can in fact 

succumb to physical intuition. 

Although the results were encouraging for the two-dimensional system dis

cussed in this chapter, the preconditioning scheme presented here is expected to be 

even more useful for higher dimensionalities. In Chapter 4, we consider a more real

istic reactive three-body system, for which the optimized preconditioner is applied to 

an explicit three-dimensional calculation. 

3.8 Appendix: Convergence of a Geometric Oper

ator Series 

We are interested in evaluating the convergence of a geometric series expan

sion of an operator A, such as the kernel in Equation 3.23. We are also interested 
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in establishing which definition of !AI is most closely correlated with the rate of con

vergence. Unfortunately, unlike the corresponding complex number series case, the 

result depends on the level of expansion k. Consider the residual of the k'th-level 

expansion of Equation 3.23-i.e., the vector 

r = y- I+ A+ · · ·A b. (

A A Ak)-
(3.31) 

Regardless of how the norm !AI is defined, we view lf1 2 = r *. r as the quantity to be 

minimized. 

The residual can be rewritten as follows: 

... Ak+l(A A)-1-r=A I-A b (3.32) 

Strictly speaking, the quantity lf1-and hence the convergence properties of Equa

tion 3.23-depend on the vector b. We adopt the notion that nothing is known 

about b a priori, so that a given component is statistically equivalent to any other. 

In this sense, the residual magnitude depends on the matrix A only. Since IT! is 

a representation-independent quantity, by transforming to the basis in which A is 
diagonal it is easy to see that 

(3.33) 

where the { >.i} are the eigenvalues of A. 
At this point, we acknowledge a similarity with the Helber "p-norm" :15 

1 

normp(A) = (~ !>.i!P) P, 
• 

(3.34) 

although the form above is usually associated with vectors. In any event, for a k

level expansion, the definition !AI = norm2k+2 (A) is most closely correlated with the 

residual magnitude. The correspondence should be quite good particularly for larger 

k values, because (1- >.1)/(1- >.2) ~ 1 for two eigenvalues >. 1 and >.2 which contribute 

significantly to the sum in Equation 3.33. 

The various p-norm definitions depend on the eigenvalues only, and are there

fore independent of representation as desired. Quantitatively however, they differ 
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significantly. In the limit k -t oo for example, IAI = max(I.Ail) is the so-called "Eu

clidean Norm." 16 The other limit (k = 0) would reproduce Equation 2.11-i.e. the 

Frobenius norm14t _In any event, the most appropriate norm with which to minimize 

A would appear to depend on the level of expansion k, which is usually not known in 

advance. 

Despite quantitative differences, we are interested not in the value of IAI 

itself, but in minimizing IAI; and in this respect, the particular norm used may not 

matter very much. If the condition number is fairly small, for instance, then all 

p-norms will agree quite closely, apart from proportionality constants. Similarly, in 

the other extreme case of only one non-zero .Xi, all p-norms become equivalent to the 

Euclidean norm. Therefore, if A is optimized for the lowest level of expansion (i.e. 

by using the Frobenius norm), the result is usually expected to be near optimal at 

the higher expansion levels as well. 

The quantity that is actually minimized however, is not IAI but ILil; so the 

relevant question is, how good a measure is IAI of the convergence of Equation 2.26. 

Again, if the condition numbers are fairly small the matrix behavior is number-like; 

so the minimal norm representations for A and A = G0Li roughly coincide. But 

this is precisely the limit in which the optimal separable method is most effective. 

Even in the more general situation however, a strong correlation between IAI and IAI 

certainly persists. 

tTechnically, this requires that the matrix A be Hermitian, which it is not. However, the appro
priate modification via lAY = tr(A.TA) is straightforward. 
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Figure 3.11: Largest A eigenvalue magnitude as a function of DVR grid density, for 
various potential energy strengths: ·-·-· V = VLSTH; 6-6-6 V = lOVLsTH; 
/:j.-/:j.-/:j. v = lOOVLSTH; 'V-'V-'V v = VLSTH/5; \1-\1-\1 v = VLSTH/25; 
'V-'V-'V V = VLSTH/100. 
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Chapter 4 

Thermal Rate Constants and 

Coriolis Minimization 

4.1 Introduction 

In this chapter, we apply the optimal separable basis methods of the previous 

chapters to a realistic three-body system that is not artificially constrained to lie on 

a straight line.105 All of our explicit numerical calculations are for the microcanonical 

quantities of Chapter 3. In practice, the thermal quantities such as the rate constant 

k(T) are often more desirable; but these can be obtained via Boltzmann-averaging 

the microcanonical quantities. It should be mentioned that DVR methods have also 

been developed for obtaining the thermal quantities directly.106- 108 although we do 

not make use of such methods here. 

Although recent years have seen great strides in the use of computers to 

obtain accurate quantum scattering quantities, calculations for arbitrary chemical 

reactions have not yet progressed to the point of becoming routine. Using current 

numerical techniques as described in Chapter 3, exact quantum calculations for the 

full 3N -3 dimensional translationally-reduced Hamiltonian are still challenging for 

most chemical systems, even when N = 3. Consequently, explicit numerical calcula

tions are usually only performed for certain dimensionally-reduced special cases, such 

as the restriction to zero total angular momentum. 
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Once the reduced calculations have been obtained, results for the full prob

lem can be approximated using various adiabatic or "sudde~" methods, such as the 

helicity-conserving109•110 (HC), infinite order sudden109 (lOS), and J-shifting111 (JS) 

approximation schemes. Our interest lies in improving both the efficiency of the nu

merical calculations and the accuracy of the subsequent adiabatic approximations. 

We shall find that the optimal separable basis methods of Chapters 2 and 3 can be 

usefully applied in both cases. 

To boost the efficiency of the numerical calculations, we apply the optimized 

preconditioning scheme of Chapter 3. In the two-dimensional collinear H + H2 -+ 

H2 + H system, the total computational effort was reduced by a factor of about fifty. 

In the three-body case however, the method is expected to be even more effective 

because the dimensionality is greater. In this chapter, we shall present an efficient and 

widely applicable version of the preconditioner designed specifically for the reduced 

three-body Hamiltonian. 

Insofar as the adiabatic methods are concerned, we shall restrict attention 

to the HC and JS approximations only. Both of these are intimately related to the 

problem of disentangling rotational and vibrational degrees of freedom. Although this 

problem has been considered many times for particular coordinate systems such as the 

Eckart frame, 112 it has only recently enjoyed a proper mathematical treatment in the 

applied literature. In particular, a systematic and coordinate-independent analysis of 

the rotational gauge and associated "Berry's phase" was presented in a recent paper 

by Littlejohn.12 

To the author's best knowledge, the rotational gauge per se has not been pre

viously considered in the literature pertaining to quantum reactive scattering calcula

tions. This issue has been explored in some detail by the author, who has developed 

some improvements over the conventional HC and JS approximations for three-body 

reactions.13 Full derivations are not presented here due to space limitations; however, 

we shall make use of the suggested improvements, and evaluate their effectiveness 

with respect to the system at hand. 

In particular, the coriolis coupling is minimized by applying both rotational 

gauge theory12 and the optimal separable basis theory.84 When the Hamiltonian is 
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represented in the new rotational and vibrational coordinates, an "effective" potential 

emerges which corresponds physically to the two-body central force analogue. As is 

true in the two-body case, the form of the three-body Hamiltonian strongly suggests 

that a different equilibrium or transition state geometry be associated with each 

distinct set of rotational quantum numbers. 

All of the methods described in the preceding paragraphs are applied in 

this chapter to the 0 + HCl-+ OH + Cl reactive scattering system. This particular 

reaction, which is of interest to atmospheric and combustion chemists, is in many 

respects an ideal testing ground for the new methods. There is no symmetry in 

either the masses or the ground electronic potential energy surface. Moreover, the 

masses/actions are large in comparison with other systems for which exact quantum 

calculations have been performed,69•76 even though tunneling contributions may be 

important. We use the (3 A") analytical potential surface developed by Koizumi et 

al,113 for which there are multiple transition states, and whose reaction path has been 

described as "tortuous." These features all contribute to the formidable numerical 

difficulties associated with this system, although several other theoretical and exper

imental 0 + HCl-+ OH + Cl rate constant estimates are available from the literature 

for comparison with the present results.107,l08,113-n9 

The remainder of this chapter is organized as follows. In Section 4.2, we 

present the requisite theoretical background. Section 4.2.1 summarizes some perti

nent aspects of the rotation/vibration separation problem, and Section 4.2.2 describes 

the HC and JS approximations. The rest of Section 4.2 is concerned with the compu

tational techniques used in the explicit calculations, i.e. a DVR grid with absorbing 

boundary conditions and optimized preconditioning. Section 4.3 discusses certain 

numerical details, such as the choice of coordinates and DVR, grid parameter values, 

etc. Finally, Section 4.4 contains the results for the 0 + HCl -+ OH + Cl system. 

Cumulative reaction probabilities and thermal rate constants are presented, as well 

as a comparison between the standard and improved JS approximation methods. 
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4.2 Theory 

4.2.1 Separation of Rotation and Vibration 

The full three-body Hamiltonian is initially characterized by nine degrees 

of freedom. Translational invariance reduces the effective dimensionality by three, 

but rotational invariance generally yields a reduction of only two degrees of freedom. 

This discrepancy exists despite the fact that translations and rotations are both three

parameter groups that can be used to define three translational and three rotational 

coordinates, respectively. In the aforementioned paper,13 we discuss the reasons for 

this fundamental difference, which is related to the existence of a non-trivial rotational 

Berry's phase.12 

Here, we simply reiterate some points that are pertinent to the present dis

cussiOn. To begin with, there are many different ways to define three rotational 

coordinates, each of which is equivalent to specifying a set of body-fixed axes, or 

to selecting a particular gauge. Quantum-mechanically, each gauge gives rise to a 

different rotational basis set I J K M), defined (as for the symmetric top) as the si

multaneous eigenstates of the angular momentum operators { J2, Jz, J z}, where Jz 
and J z are the body-fixed and space-fixed z-axis components of angular momentum, 

respectively. 

In any gauge, J and M are conserved quantum numbers but K is not. 

Consequently, the block form of the Hamiltonian ( J' K' M' Iii I J K M), although gauge

dependent, is always block-diagonal in J and M but not in K. Each block above 

operates on the three-dimensional configuration space of internal or "vibrational" 

coordinates. The diagonal blocks alone constitute the HC Hamiltonian 

(4.1) 

whereas the off-diagonal blocks comprise the coriolis coupling for the purposes of this 

chapter. The coriolis coupling can in principle be reduced via a gauge transformation, 

but can never be made to disappear altogether (excepting certain trivial special cases). 

We shall make use of some set of Jacobi-like coordinates13 on the six

dimensional translationally-reduced configuration space. These could be any of the 



4.2. THEORY 95 

Jacobi or Radau arrangements, or possibly some interpolation.12•13 In Jacobi-like coor

dinates, the translationally-reduced kinetic energy has the completely separable form 

of Equation 2.28. This comes about because these coordinates are in a certain sense 

"balanced" with respect to the mass distribution of the N bodies (Figure 4.1). For 

our purposes however, what is more useful is the fact that the fully-reduced kinetic 

energy is also completely orthogonal, albeit position-dependent. 

In Jacobi-like coordinates, the translationally-reduced three-body quantum 

Hamiltonian is 

(4.2) 

Equation 4.2 can be thought of as a pair of coupled two-body rotors with relative 

separations { r 1 , r 2 } and reduced masses { m1 , m2}. 

Each set of Jacobi-like coordinates induces a rotational gauge and a set of 

internal coordinates {rllr2 ,<p}, where <pis the angle between r 1 and r 2 (Figure 4.2).13 

In this representation, the Hamiltonian of Equation 4.2 becomes block-tridiagonal in 

K, and is given by 

(4.3) 

ii,K± - (J(K ± 1)MIHIJKM) 

_1i_
2

~2 .j J(J + 1)- K(K ± 1) (=Faa + K cot <p) , 
2m1~ <p 

(4.4) 

where 

(4.5) 

Equations 4.3 and 4.4 indicate that the coriolis coupling is small if the mass 

ratio mi/m2 is large. The problem of minimizing the coriolis coupling with respect 

to gauge transformations induced by all possible Jacobi-like coordinates has been 
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Figure 4.1: A particularly complicated arrangement of Jacobi coordinates, as ex
emplified by the Alexander Calder mobile entitled Dots and Dashes, 1959 (painted 
sheet metal, wire, 60") from the collection of Jean Lipman.120 A hierarchy of masses 
is established, with a node located at the center of mass for each subhierarchy. 
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z z 
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Jacobi Coordinates Radau Coordinates 

Figure 4.2: Two sets of Jacobi-like coordinates: on the left, the Jacobi coordinates 
for the OCI-H arrangement; on the right, Radau coordinates for 0 and Cl. The x 
and z axes refer to the body-fixed frame. 
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solved.13 For heavy-light-heavy systems such as 0 + HCl-+ OH + Cl, the most intu

itive choice is to use the Jacobi coordinates associated with the OCl-H arrangement 

(Figure 4.2). Although not quite optimal,13 this choice is very convenient, and is 

moreover required for comparison with other results. One might also apply the opti

mal separable basis methodology (Section 4.2.4) to reduce the coriolis coupling even 

further, by minimizing with respect to all unitary transformations of the rotational 

basis set. It has been shown however, that Equation 4.3 is already in optimal formP 

4.2.2 Helicity-conserving and J-shifting Approximations 

The HC approximation (also known as the "centrifugal sudden" or "coupled 

states" approximation) results by simply ignoring the coriolis coupling, and solving 

each of the HC Hamiltonian blocks independently. Note that the iiJK are equivalent 

to H00 , apart from the effective potential term of Equation 4.5. Since the diagonal 

blocks are treated independently in the HC picture, we should think of each iiJK as 

having its own "effective" transition state, defined as the saddle point of the effective 

potential for that block. 

For J =f:. 0, the effective transition state never corresponds to a linear geom

etry, because the effective potential diverges as cp approaches 0 or 1r. This is simply a 

straightforward generalization of the analogous two-body central force situation (as 

r -+ 0), and is by no means problematic for numerical applications; one simply uses 

Yeff to truncate the DVR grid in the usual fashion. Consequently, there is no need to 

resort to complicated, associated Legendre basis sets for the angular DVR that vary 

with the value of K. S9,61 

Using the numerical methods of Section 4.2.3, the cumulative reaction prob

abilities associated with each of the iiJK-i.e. the NJK(E)'s-are independently cal

culated and then summed to obtain the HC estimate of the total cumulative reaction 

probability: 

N(E) ~ I)2J + l)NJK(E). ( 4.6) 
J,K 

Since our ultimate goal is the thermal rate constant, however, it is more convenient 
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to define a block version of the rate constant 

(4.7) 

from which the HC estimate for k(T) is obtained as per Equation 4.6. 

In the JS approximation, only the N00 block is calculated explicitly. The 

N J K values are then estimated via 

NJK(E) ~ Noo (E- Erot(J, K)) (4.8) 

where the rotational shift energies Erot( J, K) must be specified somehow. The stan

dard JS method uses symmetric top kinetic energies; i.e. 

(4.9) 

where the rotor constants A and B usually correspond somehow to the transition 

state geometry. However, an improved JS method has also been developed, 13 for 

which Erot ( J, K) is defined as the value of ("Veff - V) at the effective transition state. 

The improved method exploits the fact that the effective transition state varies with 

J and K, and automatically incorporates centrifugal distortion effects and linear 

transition state geometries. 

4.2.3 Determination of the NJK(E)'s 

The HC partial cumulative reaction probabilities NJK(E) are computed nu

merically using the DVR-ABC method of Section 3.2. Each fiJK is represented as a 

matrix via a conventional sine-function DVR in the radial coordinates (rb r2), and a 

gauss-legendre DVR in the angular coordinate t.p. The same general DVR scheme is 

used for all J and K, although the grid parameters may vary slightly. Note, however, 

that the kinetic energy is the same for each of the fiJK blocks (Equation 4.3). 

To determine N1K(E), we make use of the reaction probability operator121 

( 4.10) 
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where Er and Ep are the reactant and product absorbing potentials, respectively. The 

cumulative reaction probability is then given by 

NJK(E) = tr [PJK(E)] = LPk(E), (4.11) 
k 

where the Pk (E) are the eigenvalues of P, which are obtained using a reorthogonalizing 

Lanczos iteration scheme.7•121 The advantage of this approach is that only a small 

number of eigenvalues are usually required. 

The Green's operator of Equation 2.24, or more accurately the action of 

G(E) on a vector, is obtained numerically using the GMRES algorithm (Section 3.4). 

This approach is efficient because the kinetic energy is completely orthogonal in the 

internal coordinates (r17 r 2 , <p), and therefore sparse in the DVR representation. We 

also make use of optimized preconditioning to reduce the number of Krylov iterations 

required for convergence. 

4.2.4 Optimized Preconditioning 

\\'e are interested in obtaining an optimized preconditioner, as described in 

Chapter 3, for explicit DVR calculations of NJK(E) for three-body systems. Since the 

calculation involves three degrees of freedom, the algorithm developed in Section 3.5 is 

expected to be very effective. However, the efficiency of the optimized preconditioning 

algorithm requires that the kinetic energy be of the form expressed in Equation 2.29. 

To determine whether flJK satisfies this form, we must first decide whice of the 

{ r 1 , r2 , <p) are the inner coordinates and which are the outer coordinates. 

A comparison between Equations 2.29 and 4.3 reveals that <p should defi

nitely be an outer coordinate. However, Equation 2.29 will be satisfied if either one 

or neither of {r17 r 2 } is also an outer coordinate. Symmetry considerations might 

persuade one to select (r17 r2 ; <p) as the most natural division. A good case could 

also be made for {r1 ; r2 , <p) however, corresponding to r 1 and r 2 in the body-fixed 

frame. In practice, the decision should also be based on numerical convenience. In 

the 0 + HCl-+ OH + Cl case for example, we adopt the symmetric (r17 r2 ; <p) choice 

because it results in the more efficient preconditioner. 
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4.3 Numerical Details and the 0 + HCl System 

4.3.1 Coordinates 

In Section 4.2.1, we argued in favor of the rotational gauge induced by the 

OCl-H Jacobi coordinates, and this is what we shall adopt from here on out. The 

corresponding masses m1 = momcz/(mo + mcz) and m2 = (mo + mcz)mH/(mo + 
mc1+mH) yield a mass ratio of about twelve. Thus, the HC approximation is expected 

to be quite accurate. To be consistent with previous theoretical results, 107•113 we use 

the following values for the atomic masses (in atomic units): mo = 32805; mH = 
1837; mcz = 64630. 

Note that all of our explicit calculations involve the internal coordinates 

only. Since these can be defined quite independently of the rotational gauge, 12•13 

we can in principle use a different set of internal coordinates than those induced by 

the OCl-H Jacobi arrangement. Indeed, for the 0 + HCl--+ OH + Cl system, the 

Jacobi (r1,r2 , so) are less than ideal from a DVR perspective, because the singularity 

in the kinetic energy as r2 --+ 0 is unfortunately not precluded by large values of the 

potential. 

As an alternate set of internal coordinates, it is natural to use the ( r~, r~, so') 

associated with a different set of Jacobi-like coordinates. Thus, we use one set of 

Jacobi-like coordinates to define the rotational gauge, and another to define the in

ternal coordinates. This approach is very advantageous, because the fiJK kinetic en

ergy is gauge-independent, and therefore equivalent to that of the H]K corresponding 

to the primed gauge. Thus, to obtain an expression for if JK in the primed coordi

nates, one simply adds the primed kinetic energy to the unprimed effective potential 

(rewriting the latter as a function of the primed coordinates). 

The new internal coordinates can be defined using any desired set of Jacobi

like coordinates. A natural choice for a reactive scattering problem such as O+HCl--+ 

OH + Cl is the set that lies "halfway" between the reactant Jacobi arrangement 

0-HCl and the product arrangement OH-Cl; it has been shown13 that these are 

just Radau coordinates in 0 and Cl (Figure 4.2). Indeed, we have found the Radau 
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coordinate DVR to be particularly effective. Not only is the kinetic energy singularity 

and other problems completely alleviated, but we also find the resultant NJK(E) 

calculations to be considerably more efficient. 

Radau coordinates are often considered useful in light-heavy-light reactions, 

where they are approximately equal to valence bond coordinates.122-124 In heavy

light-heavy applications, the light atom has to be fairly far away from the others to 

achieve a large bend in <p1
• Thus, we find ourselves restricted by the 0 + HCl -+ 

OH + Cl potential to a fairly narrow angular range between <p1 
::::::: 140° and <p' = 180°. 

This greatly reduces the number of angular points required by the DVR; however these 

gains are offset somewhat by the need for a larger density of points. All in all though, 

fewer points are required by the Radau DVR than the Jacobi DVR; consequently, the 

former has been employed for most of our numerical calculations (Section 4.4.1). 

4.3.2 DVR Grid Parameters 

Another advantage of using Rad~u coordinates is that ascertaining reactant 

and product regions is a fairly straightforward matter; these correspond to large values 

of ro and rc1 respectively. As in other DVR applications, we find that roughly four 

points per de Broglie wavelength are required for the radial degrees of freedom. This 

amounts to roughly 60 DVR points for each radial degree of freedom, corresponding 

to about 5a0 (in ro). The angular DVR points are truncated by the potential to 

about one-fourth of the total number lmax· Convergence with respect to lmax is a 

subtle issue; however, lmax ::::::: 50 is usually sufficient (Section 4.4.1). Roughly 9,000 

to 20,000 DVR points are required in all, depending on the energy. 

The reactant and product absorbing strips are laid out in r0 and rc1 re

spectively, and are typically about lao wide (in ro ). The dividing surface is defined 

VIa 

rcdro = 0.57 ( 4.12) 

which is appropriate throughout the allowed angular range. A quartic absorbing 

potential is employed,69 with a maximum value of about 1.0 eV. 

A potential cutoff energy Ycut is used to truncate the DVR grid. For the ener-
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gies appropriate to the temperatures under consideration (200-700°K), a Vc:ut value of 

1.40~1.85 eV is sufficient. Energies are taken with respect to the reactant asymptote 

minimum. Although the 0 + HCl-+ OH + Cl reaction is only slightly endothermic, 

the OCl-H arrangement energy is quite large (1.77 eV). This is considerably higher 

than our highest energy calculation, but lower than some of our cutoff energies. Con

sequently, DVR points are removed from the Vc:ut ~ 1. 77 e V grids if either the oxygen 

or the chlorine is further away from the hydrogen than some specified distance ( 4ao 

is virtually always sufficient). 

4.3.3 Preconditioner Details 

Of the two internal partitionings considered in Section 4.2.4, (rll r 2; <p) yields 

the more efficient preconditioner, because a much larger portion of the Hamiltonian 

is incorporated into H0 . This is particularly true for the 0 + HCl-+ OH + Cl Radau 

DVR, for which there are far fewer angular points than radial points. On the other 

hand G0 , although sparse by virtue of block-diagonality, is significantly less sparse 

than ii. CPU limitations may therefore be an issue for numerical calculations. 

Obtaining the above preconditioner for 0 + HCl-+ OH + Cl is considerably 

faster than the resultant Krylov calculations, even with preconditioning; thus, speed 

is not a major concern. However, the memory limitations of our platform (IBM 

RS6000) definitely are a concern. This is largely because optimized preconditioning 

constrains the DVR grid such that all inner coordinate "sheets" (outer coordinates 

fixed) must contain the same points. Consequently, extraneous DVR points must be 

included that would not occur with a straightforward potential cutoff. The three

dimensional constraint is a lot less severe than the rectangular grid requirement of 

the two-dimensional case.17 Nevertheless, we find that the number of DVR points for 

our application is increased by a factor of three or four-which unfortunately puts us 

over the memory limit of our CPU. 

In the future, we hope to develop an algorithm that avoids the grid constraint 

limitation. For now we must find some other solution. One approach would be to 

transform the internal coordinates yet again; another would be to use the less efficient 
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(r1 ; r2 , cp) preconditioner. Instead, we adopt an earlier suggestion17 to skip the outer 

diagonalization step altogether, and simply define H0 in the original representation. 

The resultant DVR grid is completely unconstrained. Moreover, the efficiency loss of 

the new preconditioner is fairly small in this case, as numerical tests reveal that outer 

diagonalization only reduces the residual norm by about 10%. 

4.3.4 Estimating the Thermal Rate Constant 

Although some of the N(J>O)K(E) are explicitly calculated, we are mainly 

interested in using a JS approximation to obtain the thermal rate constant. Con

sequently, our computational focus is primarily restricted to N00 (E). We use the 

standard JS method with rotor constants (in atomic units) 

A= 1.202 X 10-6 B = 2.929 X 10-4
' ( 4.13) 

rather than the improved JS version, so as to allow a direct comparison with other 

theoretical estimates of k(T) .107,113 

The essence of deriving a thermal rate constant from an explicit calculation 

of N00 (E) is described by Equation 4.13 and Section 4.2.2. However, there are a couple 

of additional modifications which must be implemented, once again to allow direct 

comparison with previous results. Following Koizumi et al,113 we replace the sum over 

J in Equation 4.6 with an integral, which is appropratefor O+HCl-+ OH+Cl because 

the effective potential varies only slightly with J. This results in the expression 

k(T) ~ koo~T) (1 + 2 f: e-f3n2(A+B)K2) (4.14) 
{31i A K=l 

which converges to reasonable accuracy with a small number of K values. 

An additional modification was also introduced to account for a second elec

tronic surface (3 A') that correlates between reactant and product ground states, and 

lies fairly close to the ground electronic surface. In fact the two surfaces are coincident 

for linear geometries.113 This surface clearly makes a significant contribution to the 

overall reaction rate and cannot be ignored. As per Koizumi et al, we multiply the 

above value for the rate constant by a statistical factor 

f(T) = 3/(5 + 3e-228/T + e-326/T) (4.15) 
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representing the fraction of collisions that wind up on the ground electronic surface 

e A"). 

4.4 Results 

We have used the methods described in the previous sections to calculate 

thermal rate constants and cumulative reaction probabilities for the 0 + HCl --+ 

OH + Cl reaction within the standard JS approximation. We have also compared 

the thermal rate constants with other theoretical and experimental results from the 

literature. In addition, we have used the HC approximation to calculate the N1K(E) 

explicitly for some relevant values of J and K. These latter results are used to 

evaluate the validity of the standard JS approximation, as well as the improved version 

discussed in Section 4.2.2. 

4.4.1 Cumulative Reaction Probabilities for J = 0 

Explicit N00 (E) calculations have been obtained for energies in the range 

0.30-0.60 eV, at 0.005 eV increments, and are depicted in Figure 4.3. The probability 

associated withE = 0.30 eV is around 10-5 , below which the DVR-ABC methods 

seem to be difficult to converge. By 0.60 e V, the cumulative reaction probability is 

on the order of unity; but the DVR grids become inordinately large. Despite the 

numerical difficulties associated with this particular reaction, we have been able to 

obtain fairly well-converged N00(E) values in the specified energy range. Indeed, 

these results are converged to within about 1-2% with respect to all grid parameters 

except lmax· 

The lmax convergence is quite unusual, and bears comment. For compara

tively small values of lmax (35-45), one typically finds the usual monotonic convergence 

to within a few percent. However, there tends to be a critical value of lmax at which 

N00(E) suddenly leaps up or down by as much 40%. This is not very desirable from a 

convergence standpoint; although we have observed similar behaviour in Jacobi DVR 

calculations for this reaction and others. In any event, we have extended lmax as far 
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Figure 4.3: Logarithmic plot of N00(E), the J = 0 cumulative reaction probability as 
a function of energy, for the 0 + HCl-+ OH + Cl system. 
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as 120 to ensure the convergence of our results for 0 + HCl -+ OH + Cl. For lower 

energies, N00(E) tends to remain fiat over the entire region except for a few isolated 

"spikes;" and we can probably safely claim convergence to within 10% or so. For large 

energies, N00 ( E) tends to alternate suddenly between two values whose mean varia

tion increases from about 10% near E = 0.45 eV to about 25% near E = 0.60 eV. 

Despite this variation, there is very little "mean drift" as lmax ranges from 50-120 

at fixed energy; and in this sense our results are converged. In any case, Figure 4.3 

incorporates the average of the two N00 (E) values for energies in the range E = 

0.45-0.60 eV. 

The above results were obtained with residual tolerances of about one part 

in 105 for both the Lanczos and GMRES components of the calculation. Around 5-10 

Lanczos iterations and 50-200 GMRES iterations were required, depending on the 

values of E and lmax· Given the number of grid points ( rv15000) the preconditioner 

is evidently very efficient. A detailed comparison versus no preconditioning was per

formed, albeit for a somewhat smaller grid ( 4856 points) due to CPU constraints. 

Preconditioning on the reduced grid was found to reduce the number of GMRES iter

ations from 575 to 10. The preconditioner is so efficient that the GMRES bottleneck 

is the linear Hamiltonian multiplication step, rather than the quadratic linear algebra 
.... 

step.92 The corresponding speed increase is a factor of rvl10. 

For comparison's sake, we have also obtained numerical N00(E) results using 

DVR grids other than the one presented in Section 4.3.2. For instance, the Radau 

DVR with Jacobi absorbing strips and a valence bond dividing surface 

THCl - TQH = 0.29 ( 4.16) 

yielded results that were within a per-cent or so of Figure 4.3, although CPU require

ments were somewhat higher. We also tried the OCl-H Jacobi DVR. This choice 

required almost double the number of grid points, primarily in the angular coordinate, 

resulting in i~creased CPU requirements and a comparatively less efficient precondi

tioner. Consequently, even the low energy results could only be converged to within 

rv25% or so; although to this level of accuracy they seem to match the Radau values. 
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4.4.2 Thermal Rate Constants 

The total cumulative reaction probabilities and thermal rate constants for 

0 + HCl --+ OH + Cl have been determined as per Sections 4.2.2 and 4.3.4. The 

former were derived from Equation 4.6, and are presented in Figure 4.4. The thermal 

rate constants were obtained for several temperatures in the range 200-700°K, and 

are presented in Figure 4.5. 

Within the JS approximation itself, we estimate an error of about 10% for 

our k(T) results, except at the highest temperatures for which the error may be as 

high as 25%. The most fundamental source of error arises from the N00 results. This 

appears to be random rather than systematic, and is therefore mitigated somewhat 

by the Boltzmann averaging of Equation 4.7. The integration itself introduces er

ror however, primarily due to the finite range of data available for the integrand. 

Figure 4.6 depicts the integrand for multiple temperatures. The gaussian-like pat

tern suggests a loss of about 5-25% of the integrand depending on the temperature. 

However, this error is significantly reduced by confining the integral of the reactant 

partition function Qr(T), in the denominator of Equation 4.7, to the same energy 

range as the numerator integral (0.3Q-0.60 eV) . 

..,.. Our thermal rate constants are compared with other theoretical108•113 and 

experimental116- 118 results in Figure 4.5. The theoretical values should in principle 

match exactly. Reasonable agreement with the revised values of Thompson, et al108 

has been observed; however, the discrepancy with Koizumi et al113 is not accounted 

for. Our results evidently match experiment fairly well. Given the accuracy of the 

JS and HC approximations for the present reaction (Section 4.4.3), this agreement 

is to be expected. On the other hand, it should be noted that the potential surface 

was empirically modified by Koizumi et al so as to force their results to agree with 

experiment at T = 295° KY3 

4.4.3 HC and Improved JS Results 

In addition to calculating N00 (E), we have obtained explicit NJK(E) results 

for some of the J # 0 H1K(E)'s (Figure 4.7). Specifically, we obtained fixed-K 
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Figure 4.4: Logarithmic plot of the total cumulative reaction probability as a function 
of energy, in the standard JS approximation, for the 0 + HCl-+ OH + Cl system. 
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Figure 4.5: Arrhenius plot of theoretical and experimental thermal rate constants for 
the 0 + HCl -+ OH + Cl reaction. Theoretical results: (present results); 
------ (Thompson et al108); --- (Koizumi et al113). Experimental results: 
filled circles (Brown et al116•117); open squares (Mahmud et al118). 
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(K = 0) results for various values of J, and fixed-J (J = 24 and J = 48) results for 

various values of K. Due to time constraints, we have not evaluated convergence as 

thoroughly as in the J = 0 case; however, the results are certainly accurate enough 

to test the validity of the standard and improved JS approximations. 

Note that qualitatively, the NJK(E) graphs really do resemble N00 (E) graphs 

that have been shifted in energy. Quantitatively, this means that the variation in the 

energy difference between points of comparable probability in N00 (E) and NJK(E) is 

small, over the probability (or energy) range of interest. Some kind of energy-shifting 

approach is therefore entirely justified; however, we must ensure that the shifting 

energies themselves are chosen appropriately. 

It is reasonable to associate the shift with rotational kinetic energy.13 In Fig

ure 4.8, we compare the fixed-K rotational shift energies obtained from the NJK(E) 

graphs of Figure 4. 7 with those predicted by the standard and improved JS methods. 

All three shift energies were found to agree fairly well. This indicates that there is 

not much centrifugal distortion when K = 0, and that the standard value of A in 

Equation 4.9 is comparable to that of the improved JS method. Both of these con

clusions are consistent with what one would expect for the large mass ratio of the 

0 + HCI-+ OH + Cl system. 

The situation is somewhat different for the fixed-J rotational shift energies, 

presented in Figure 4.9. Note that the shifting energy varies much more quickly 

with K than with J. This is again due to the large mass ratio of the system, which 

causes the rotor constant B to be much larger than A. Consequently, an accurate 

k(T) estimate requires about one hundred J's, but only six IKI's. Another important 

difference is that the plot of shift energy versus K 2 is considerably non-linear, with 

most of the curvature occuring for small values of K. This feature cannot be accounted 

for in the standard JS theory, which necessarily predicts a straight line. 

According to the improved JS theory however, the curvature is due to the 

centrifugal distortion of the effective transition state, which is large because the K 2 

term of the effective potential is large. Figure 4.10 depicts the effective transition 

state geometries for several values of J and K, and clearly illustrates that K has 

the larger effect on the distortion. In any event, Figure 4.9 demonstrates that the 
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improved JS method does an excellent job of predicting the actual energy shifts-at 

least in the most crucial region where K is small. The standard JS results are still 

fairly good though; we estimate that the JS and HC values for k(T) agree to within 

about 20%. 

4.5 Conclusions 

One of the principal goals of this chapter has been to evaluate the use of 

optimized preconditioning for generic three-body quantum calculations, with respect 

to both efficiency and practicality. By restricting consideration to Jacobi-like co

ordinates only, the Hamiltonian takes on the sparse, reduced-dimensional form of 

Equations 4.3 and 4.4 regardless of the particular coordinates used; yet the range 

of all possible Jacobi-like coordinates is quite broad.13 Moreover, the uniformity of 

the flJK allows us to adopt the internal coordinate DVR of Sections 4.2.3 and 4.3.1 

as a generic standard for the three-body case. From this standard, two candidate 

preconditioners naturally suggest themselves, corresponding to the two partitionings 

of Section 4.2.4. 

We therefore have an optimized preconditioning scheme for three-body sys

tems that is both practical and general. The next logical consideration is whether 

the method is also efficient. In general, one can always bolster efficiency by trans

forming from one set of Jacobi-like coordinates to another, as is done in Section 4.3.1. 

However, performance ultimately depends on the details of the particular system. 

Nevertheless, it is extremely encouraging to discover that even for a system such as 

0 + HCl -+ OH + Cl which has no special properties, the optimized preconditioner 

reduces the computational effort by two orders of magnitude. 

Another major objective of this chapter has been to exploit theoretical ad

vances pertaining to rotational gauges and optimal separable bases in a practicable 

manner. In particular, one of our ongoing concerns is the minimization of the off

diagonal coriolis coupling blocks (JK'M I fi I JKM). Once again, the restriction 

to Jacobi-like coordinates has proven to be beneficial, in that the coriolis coupling 

vanishes except when K- K' = ±1. Moreover, minimization with respect to either 
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rotational gauge or outer diagonalization is a tractable, even solved problem.13 The 

Jacobi-like restriction also gives rise to the effective potential picture of the HC ap

proximation, which in turn leads to the improved JS method and the notion of the 

effective transition state. 

The usefulness of the effective potential idea, apart from pedagogical value, 

is apparent in the predicted rotational shift energies of Figures 4.8 and 4.9. Although 

the improved JS predictions are accurate enough, it is perhaps even more relevant 

that one can actually assign a reasonably well-defined shifting energy to the NJK(E)'s 

in the first place. According to the effective potential picture, this is simply due to the 

dominant role played by the transition state. We therefore anticipate a correlation 

between the reliability of the improved JS. method and traditional transition state 

theory, and this may explain why the NJK(E) predictions of the former are less 

accurate for large K. In any event, the improved JS method is certainly much more 

feasible than a full HC calculation from a computational perspective. The bottleneck 

of the former lies in locating the saddle points of a three-dimensional potential surface, 

which is far less costly than the corresponding exact quantum calculation. 

In the future, we would like to apply the improved JS method as well as 

optimized preconditioning to other three-body reactions, in order to better ascertain 

the generality of the current results. It would be interesting to see whether the cur

vature of the rotational shift energies for fixed-] actually does increase in the small 

coriolis coupling limit, as claimed. It would also be interesting to apply the new 

JS approximation to a system with a linear transition state, for which the Equa

tion 4.9 dependences on J and K are no longer appropriate, and standard J-shifting 

is problematic. On the theoretical front, we would like to find the best Jacobi-like 

coordinates for more general mass distributions such as light-heavy-light, from the 

standpoint of minimizing the coriolis coupling. Finally,. we would like to develop a 

version of the optimized preconditioning algorithm that does not constrain the DVR 

grid. 
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Chapter 5 

Conclusions 

As quantum mechanics is applied to ever increasingly complicated systems, 

one fact becomes very clear: that some form of separable approximation is required, if 

one is to make any headway. The reason is quite simply that the calculational effort 

required for an exact treatment scales exponentially with the number of particles, 

whereas a separable problem scales linearly, or in the worst case as a power law. 

Even taking the current exponential growth of computer technology into account, we 

will only be able to handle perhaps ten or twelve-body systems by the time that the 

current trend levels off, due to the fact that computer technology itself is approaching 

the quantum limit. Paralleiization will certainly play an increasingly important role 

in bypassing this limitation. In parallel applications, however, separability is even 

more crucial, as it is imperative that the full problem can be divided into pieces that 

are as independent from one another as possible. 

The use of separable approximations in physics is certainly nothing new. In 

quantum mechanics, we are all familiar with the separable approximations that arise 

from the Born-Oppenheimer approximation, Hartree-Fock theory, molecular orbital 

theory, density functional theory, and the various quasiparticles used in countless ap

plications. These approximations have certainly enabled us to gain an understanding 

of a tremendous number of real physical systems. Yet, there are also many real sys

tems for which the picture presented to us by these methods seems to break down. 

Thus, whereas the distinction between charged particles and photons that occurs in 
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quantum electrodynamics seems entirely appropriate {due to the smallness of the fine 

structure constant a), in elementary particle physics where the interaction is often 

much greater, the separation between particles and fields is far less compelling. 

All of the separable approximation methods of the preceding paragraph rely 

upon one basic assumption for their success: that the interaction or coupling between 

separated pieces is small. If this is not the case, then the picture presented to us 

by these methods is inappropriate. But there are plenty of real systems for which 

the interaction is not small. However, there is a formal arbitrariness in the way 

one chooses to define the interaction. Therefore, if the the interaction is large for a 

particular system, one is naturally prompted to ask whether the definitions used by 

the methods above are really the most appropriate ones. 

The novel aspect of the optimal separable basis approach presented in this 

dissertation is that it offers a systematic means of determining the most natural 

definition of the interaction on a Hamiltonian-by-Hamiltonian basis. In particular, 

no special assumptions about the form of the approximation are assumed a priori, 

other than that of separability. Indeed, we have found that the most natural separable 

approximation for a T + V Hamiltonian need not even be of the T + V form itself. 

The optimal separable approximation thus obtained is useful in two distinct 

ways. First, the approximation itself has pedagogical value with respect to under

standing the nature of the actual system. Since the interaction has been minimized, 

the description is expected to be more accurate than for any other separable ap

proximation. For example, in Chapter 2, we found that the effective potential for 

the x coordinate of the shifted harmonic oscillator is best described by the well of 

Equation 2.37 rather than the barrier of Equation 2.39. 

Second, if one is interested in calculating exact quantities, the use of the 

optimal separable basis renders such calculations more efficient. In this dissertation, 

we have only explored this aspect in one very specific manner, i.e. with respect to 

calculating microcanonical scattering quantities for the molecular systems of Chap

ter 3 (H + H2 ) and Chapter 4 {0 + HCl). However, In Chapter 2, we showed how the 

optimal separable approximation could improve the convergence of both the time

independent perturbation expansion and the Born series. More generally, we antici-
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pate an improvement in computational efficiency regardless of the particular quantity 

being calculated or algorithm being used, due to the fact that the interaction has 

been minimized as much as possible. 

For example, the direct k(T) methods referenced in Chapter 4 are quite 

different from the microcanonical methods presented here, in that they make use of 

split operator propagations (to calculate the flux-flux autocorrelation function) rather 

than Green's function inversions. Nevertheless, the calculation could in principle be 

improved by splitting the Hamiltonian along flo I A lines, rather than T I V lines. 

The reason is that the commutator of the two pieces is reduced, as a result of which 

a larger time step can be used to obtain the same level of accuracy. 

As another example, bound state calculations are often obtained using the 

Lanczos algorithm mentioned in Chapter 2. As suggested in that chapter, the optimal 

separable flo could be used to obtain a starting vector which might reduce the number 

of iterations substantially. The idea would be to use a superposition of the first 

few states of flo as the starting vector in a conventional Lanczos scheme, or to use 

the whole collection in an iterative* block application. Convergence is improved 

because the initial Krylov space overlap with the subspace spanned by the lowest few 

eigenvectors is expected to be fairly high. 

Although both of these examples merit investigation, I have presented them 

here primarily to demonstrate the relative ease with which the optimal separable 

approach can be incorporated into current state-of-the-art numerical algorithms which 

were obviously not designed with our approach in mind. Clearly, the scope of the 

optimal separable basis methodology is much broader, however. In what follows, we 

present a more general but less detailed description of a few additional molecular 

applications which might benefit from an optimal separable treatment. 

Based on the comments in Section 2.5.3, we expect the method to be partic

ularly well-suited to inelastic scattering applications. This is because the potential is 

globally more separable than in reactive scattering, since there is only one asymptotic 

form to worry about. Even the translationally-averaged potential approximation of 

*this time, in the sense of Cullum and Willoughby.7 
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Section 2.5 would result in a potential-like interaction that is small; although the 

optimal separable residual would be even smaller, of course. In light of Section 2.4.2, 

it would also be interesting to compare our performance for reactive and inelastic 

scattering applications versus that of the Kohn variational principle. 

It might also be instructive to use the optimal separable theory to generate 

Hartree-Fock orbitals along the lines suggested in Section 2.3.4. By truncating the 

excitation numbers, one obtains a finite set of mutually orthogonal separable basis 

functions that is uniformly optimized over a range of energies. More accurate results 

can be obtained using a conventional perturbation approach, rather than the more 

complicated version required to handle non-orthogonal states. We have applied this 

idea to the six-dimensional helium atom, optimizing over all bound states (including 

doubly excited states). This work is still in progress; however, it is worth mentioning 

here that a strongly separable treatment results in a screened coulombic potential 

with Z* = 23/14. This should be contrasted with the variational minimal result 

Z* = 27/16 which in effect optimizes for the ground state only. 

One could also apply the optimal separable method to the separation of nu

clear and electronic motion in molecular systems-i.e. the Born-Oppenheimer prob

lem. In the standard approach, one starts with a weakly separable approximation 

wherein the nuclear positions yield outer basis functions 8(Q- Q0 ), and the inner 

coordinates are the electronic wavefunctions parametrized by Q. The "coupling" in 

this case is the nuclear kinetic energy, which is not small. However, a more refined 

approximation is obtained by solving the nuclear problem associated with each elec

tronic surface. The results are more accurate, but the wavefunctions are no longer 

separable. The optimal separable approach, on the other hand, yields a separable ap

proximation of intermediate accuracy, which might be useful in certain applications. 

Specifically, outer diagonalization of the nuclear coordinates yields compact Q eigen

functions which are more accurate than Dirac delta functions. The corresponding 

electronic potentials are then improved, resulting in more accurate electronic states. 

We conclude this chapter with a brief discussion of certain refinements of 

the optimal separable basis method itself, which might be considered in future work. 

It would certainly be useful to find a more general existence proof than the one 
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presented in Section 2.3.3; although a stationary point has been found to exist for 

all scattering potentials satisfying the appropriate asymptotic conditions. It would 

also be of interest to develop a version which takes a proper account of exchange and 

related symmetries. 

On a more practical note, it would be very beneficial to improve the outer 

diagonalization routine so that an arbitrarily-shaped grid can be dealt with. The 

present limitation as discussed in chapters 3 and 4, while not too severe, is nev

ertheless probably unnecessary. Since the diagonalization per se is not necessarily 

computationally expensive (particularly if k ~ n), one practical approach would be 

to apply an energy cutoff criterion to truncate the size of the basis after the outer di

agonalization has been performed. Such a procedure would be akin to the sequential 

diagonalization and truncation methods,85 although the cutoff criterion would have 

to be more complicated. Most likely, the truncation would have to occur at the block 

level only. 

Outer diagonalization is the one procedure which is common to all numerical 

applications that incorporate the optimal separable basis idea. Practical improve

ments for implementing this procedure are therefore desired. Although formally the 

off-diagonal blocks need not approach zero as a result of outer diagonalization, it is 

interesting to note how many of these elements actually do disappear in practice. 

It is hard to pin down precisely why this is the case, but it is clear that this must 

correspond to some sort of inherent symmetry, unknown ahead of time, which the 

outer diagonalization routine discovers automatically. 

As a final improvement, we consider the recursive modification described 

m Chapter 2. Instead of defining just two categories of coordinates, one could in 

principle extend the number of categories, even to the point where each category 

includes just a single degree of freedom. Both Equations 2.5 and 2.8 can be easily 

generalized to incorporate this possibility. In the weakly separable case, the entire 

set of categories becomes ordered; one must start from the outermost category first, 

and work inwards. 

Of course, the resultant approximation in and of itself is not as accurate as 

that of a two-tiered approach. Nevertheless this approach is computationally more 
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efficient if one also calculates the desired quantity itself recursively. In other words 

if X is the quantity, then one obtains X for each of the outermost diagonal blocks, 

after first minimizing the coupling via outer diagonalization. Since these outermost 

blocks include all degrees of freedom except those in the outermost category, this 

approximation is a very good one; and presumably convergence to the correct results 

is very fast. The method is recursive in that it is also applied to the X problem for 

each of the diagonal blocks. 

It is to be hoped that some recursive procedure along these lines may even

tually overcome the exponential scaling problem discussed at the beginning of this 

chapter, vis a vis exact quantum calculations. In any event, the optimal separa

ble basis approach has already demonstrated its value in the theory and application 

pertaining to molecular collisions. 
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