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Abstract 

We study dynamical supersymmetry breaking in four dimensions using 

the fivebrane of M theory, in particular for the Izawa~ Yanagida-Intriligator­

Thomas (IYIT) model, which we realize as the world volume theory of a certain 

M-theory fivebrane configuration. From the brane point of view, supersym­

metry is broken when a holomorphic configuration with the proper boundary 

conditions does not exist. We discuss the difference between explicit and spon­

taneous supersymmetry breaking and between runaway behavior and having 

a stable vacuum. As a preparation for the study of the IYIT model, we exam­

ine a realization of the orientifold four-plane in M theory. We derive known 

as well as new results on the moduli spaces of N = 2 and N = 1 theories 

with symplectic gauge groups. These results are based on a hypothesis that a 

certain intersection of the fivebrane and the z2 fixed plane breaks supersym­

metry. In the IYIT model, we show that the brane exhibits runaway behavior 

when the flavor group is gauged. On the other hand, if the flavor group is not 

gauged, we find that the brane does not run away. We suggest that a stable 

supersymmetry-breaking vacuum is realized in the region beyond the reach of 

the supergravity approximation. 



1 Introduction 

One of the most important and interesting issues in supersymmetric gauge theories is 

the dynamical breaking of supersymmetry. Under what conditions and by what mech­

anisms is supersymmetry dynamically broken? If supersymmetry is broken, is there a 

non-supersymmetric stable vacuum? If there is, what is the vacuum energy? There have 

been a lot of important works from various point of view concerning such questions but 

they still remain as difficult and fascinating as before. 

If there is a new method for analyzing field theory, it is worth examining whether 

it sheds a new light on the issue of dynamical supersymmetry breaking. The study 

of the worldvolume dynamics of branes in string theory and M theory has given a new 

perspective on the study of the strong coupling dynamics of supersymmetric gauge theories 

in various dimensions [1-48]. The worldvolume theory depends on parameters such as the 

string coupling constant which are absent in the ordinary gauge theory. For generic values 

of such parameters, it is different from the gauge theory since it interacts with the bulk 

degrees of freedom in the ten or eleven-dimensional space-time. In addition, it contains 

Kaluza-Klein modes associated with the compactification of the worldvolume theory to 

lower dimensions. However, there are certain quantities which are independent of such 

differences, and one can obtain exact results by going to the region of the parameter space 

where the world volume dynamics simplifies, e.g., the eleven-dimensional supergravity limit 

of M theory. Examples of such quantities are holomorphic or BPS objects such as the 

effective holomorphic gauge coupling constant [6, 15, 16], vev~ of some chiral operators 

[18, 19, 21, 30, 36], and the mass or tension of BPS states [19, 26, 32, 41, 39]. Furthermore, 

when the universality class is expected to remain the same, we can make predictions about 

qualitative features of the theory which might be harder to obtain from conventional field 

theory methods [19]. Therefore, it is interesting to see whether branes can provide a new 

point of view on dynamical supersymmetry breaking. 

In this paper, we construct M theory fivebrane realizations of four-dimensional gauge 

theories that exhibit dynamical supersymmetry breaking. Some of them are expected 

to have a stable non-supersymmetric vacuum, the others are not. We study how the 

existence or absence of a stable vacuum is realized in the fivebrane picture. A field theory 

model of dynamical supersymmetry breaking without chiral matter and with a stable non­

supersymmetric vacuum was constructed recently by Izawa-Yanagida [49] and Intriligator­

Thomas [50] using knowledge of the strong coupling dynamics of supersymmetric gauge 

theory with symplectic gauge group [51, 52]. Their model (which we shall call the IYIT 

model) exhibits dynamical supersymmetry breaking and can be argued to have a stable 
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non-supersymmetric vacuum by computing the one-loop correction to the scalar potential. 

If we gauge the orthogonal flavor group, supersymmetry is still broken but the same one­

loop computation exhibits runaway behavior and does not show the existence of a stable 

vacuum. Using the brane picture, we will present evidence that such a vacuum does in 

fact not exist. On the other hand, if the flavor group is not gauged, we find that the 

brane does not run away. We suggest that a stable vacuum without supersymmetry, if 

it exists, is realized in the region beyond the reach of the supergravity approximation. 

The situation is very similar to what happens in the field theory analysis of dynamical 

supersymmetry breaking of this type. There, one has to make an assumption about the 

behavior of the Kahler potential in the strong coupling region of the gauge theory in order 

to prove the existence of a stable vacuum which does break supersymmetry. 

Supersymmetric gauge theories with symplectic gauge group can be realized as the 

worldvolume dynamics of Type IIA branes by introducing an orientifold. To realize the 

theories mentioned above, we chose to introduce an orientifold four-plane. Although we do 

not have a good understanding of the dynamics of fivebranes in M theory in the presence 

of a Type IIA orientifold four-plane, we can show that the brane reproduces information 

on the moduli space of supersymmetric vacua by introducing a simple hypothesis con­

cerning the intersection of the fivebrane and the Z2 fixed plane. The hypothesis indicates 

the presence of a force (which can be either finite or infinite) between the points of in­

tersection, which plays a crucial role when we discuss the issue of existence of a stable 

non-supersymmetric vacuum. 

The paper is organized as follows. In section 2, we present the general idea on spon­

taneous supersymmetry breaking in terms of branes. In particular, we clarify the distinc­

tion between spontaneous and explicit breaking and demonstrate the concepts using a toy 

model. 

In section 3, we examine the simple hypothesis mentioned above by studying the 

brane configurations corresponding to N = 2 and N = 1 supersymmetric QCD with 

symplectic gauge group. We find that the brane picture together with the hypothesis 

correctly reproduce the known results of N = 2 and N = 1 field theories and yield a new 

result about the total moduli space of vacua of N = 2 theories. Part of the results of this 

section were recently obtained in [44, 35]. 

In section 4, we study the IYIT model in the brane framework. We first determine the 

structure of supersymmetric vacua of the model with some perturbations using ordinary 

field theory methods. Next, we realize the perturbed system via branes, using the electric­

magnetic duality as a guide. Then, we consider the system with supersymmetry breaking 
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and discuss the existence of a stable non-supersymmetric vacuum. Under the plausible 

assumption that the potential energy between a fivebrane and the orientifold is negligible 

when the distance between the fivebrane and the orientifold is much larger than the eleven 

dimensional Planck length, we show that the brane does not run away. 

In section 5, we study the IYIT model with the orthogonal flavor group gauged. We 

examine the space of supersymmetric vacua for general numbers of colors and flavors 

using the brane based on the basic hypothesis, and find that the brane reproduces the 

correct field theory results. For the number of colors and flavors corresponding to the 

IYIT model, we will present evidence that there is runaway behavior. 

2 Branes and Supersymmetry Breaking 

In this section we will discuss the general aspects of supersymmetry breaking in the 

brane framework, and present a simple two dimensional model as an illustration. 

2.1 General Idea 

Supersymmetric gauge theories can be studied in various dimensions by realizing them 

as theories on the world volume of branes. Of particular importance to us in the study 

of supersymmetry breaking 'Yill be N = 1 supersymmetric gauge theories in four di­

mensions. These are constructed using configurations of intersecting branes in Type IIA 

string theory which capture the semiclassical features of the gauge theories. In order to 

study the quantum properties we have to lift the brane configuration to M theory (6]. 

It is described by a fivebrane wrapping a Riemann surface holomorphically embedded 

in the space-time (or more precisely, in a Calabi-Yau three-fold which is a part of the 

eleven-dimensional space-time). The Riemann surface encodes information about the 

supersymmetric ground states of the theory; For example, the effective gauge coupling 

constant in an abelian Coulomb phase (6, 15, 16, 43], chiral symmetry breaking, and gaug­

ino or monopole condensation in a confining phase (18, 19, 21, 30], vevs of some chiral 

operators such as mesons and baryons in a Higgs phase (18, 21, 36, 38, 44, 35], and the 

mass or tension of BPS states (26, 32, 41, 39]. 

The Riemann surface is a supersymmetric cycle (62-64] and the fivebrane wrapping the 

Riemann surface is a supersymmetric configuration, namely a BPS object. The amount 

of supersymmetry preserved by the fivebrane configuration depends on the details of the 

Riemann surface. The signal for supersymmetry breaking is that the fivebrane is no longer 

wrapping a holomorphic curve but rather a nonholomorphic real two dimensional surface. 
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Such a fivebrane configuration is not a BPS object because it breaks all supersymmetry 

completely. Therefore the issue of the stability of the configuration arises. 

Generically we can have a stable configuration if the two dimensional surface is of 

minimal area with respect to the space-time metric. There are however some subtleties 

that will arise. The first subtlety is associated with the fact that the brane configuration 

can be a factorized surface. In such a case the disconnected components affect each other 

via the gravitational force which has to be taken into account when analyzing the stability 

of the configuration. This effect was crucial for instance in deriving Higgs branch metrics 

in [43). The second subtlety is associated with the orientifold four-plane which will be 

used in this paper in order to get symplectic gauge groups. The orientifold creates a force 

that acts on the fivebrane intersecting with the Z2 fixed plane. Taking such an effect into 

account was actually necessary in order to obtain the hyperelliptic curves describing the 

N = 2 Coulomb branches of gauge theories based on symplectic and orthogonal gauge 

groups [15). We will see in section 3 that this is also required in order for N = 1 fivebrane 

configurations to correctly describe the supersymmetric ground states of the gauge field 

theories. Clearly this effect should also be taken into account when studying the stability 

of the non-supersymmetric fivebrane configurations. 

The holomorphic fivebrane configurations are of minimal volume in their homology 

class. They correspond to zero energy vacua of the field theory. The non-holomorphic 

configurations have a larger ~olume. In the absence of the forces that we discussed above 

the difference between the volumes of the non-holomorphic ·and holomorphic configura­

tions corresponds to the non-zero energy of the non-supersymmetric vacuum. When the 

above forces are relevant their contribution to the potential energy has to be taken into 

account. 

There is a difference between explicit and spontaneous supersymmetry breaking. Al­

though in both cases the two dimensional surface is not holomorphic there is a difference 

between the asymptotic boundary conditions at infinity of the surface. 

The fivebrane we are considering is wrapped on a two-dimensional surface which is 

non-compact in one direction. In order to realize a four-dimensional gauge theory from 

the six-dimensional world volume theory, we must restrict the allowed motion of the brane 

by specifying a set of boundary conditions at infinity. In general, a symmetry of the 

original theory is also a symmetry of the restricted system when it preserves the boundary 

condition at infinity, whereas it is explicitly or anomalously broken when it breaks the 

boundary condition. When a symmetry remains, it is unbroken by a choice of vacuum if 

it completely preserves the corresponding fivebrane configuration, but it is spontaneously 
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broken otherwise. For an example of spontaneous breaking, consider the breaking Z2n --+ 

Z2 of the discrete chiral symmetry of N = 1 supersymmetric Yang-Mills theory by a choice 

of vacuum configuration [18, 19], or of the N = 2 supersymmetric cpn-l sigma model in 

two dimensions [65]. When a symmetry is spontaneously broken there is a degeneracy of 

vacuum configurations, as the example of Z2n--+ Z2 exhibits (there are n distinct vacuum 

configurations). 

As is well-known, the system of a flat and unrestricted fivebrane has the six-dimensional 

(2,0) supersymmetry. If the action of any of the supersymmetry generators changes 

the boundary condition at infinity, the restricted system corresponding to the four­

dimensional theory no longer has that particular supersymmetry, namely, that super­

symmetry is absent from the start. This is the case when the asymptotic boundary 

condition is not holomorphic, and corresponds to an explicit supersymmetry breaking. 

Examples of this kind were given in the last section of [19]. If the action of some of 

the supersymmetry generators preserves the boundary condition at infinity, the restricted 

system is supersymmetric under the corresponding subalgebra. Th!s is the case when the 

asymptotic boundary condition is holomorphic, and the supersymmetric four-dimensional 

theory may or may not have a supersymmetric ground state depending on whether or not 

there is an everywhere holomorphic curve obeying the boundary condition. If the super­

symmetry is spontaneously broken, there must be massless fermions (Goldstone fermions). 

The action of the supercharges on a non-holomorphic minimal surface generates fermionic 

zero modes on the brane. When the asymptotic boundary con_dition is holomorphic, these 

decay at infinity of the surface and therefore correspond to fields in the four-dimensional 

theory. These can be identified with the Goldstone fermions associated with the sponta­

neous supersymmetry breaking. 

To summarize the main points of the above discussion: A supersymmetric vacuum 

corresponds to a fivebrane wrapping a holomorphic complex curve. Breaking the super­

symmetry of the gauge theory corresponds in the brane picture to the non-existence of a 

holomorphic curve describing the brane configuration. A non-supersymmetric stable vac­

uum corresponds to a fivebrane wrapping a nonholomorphic real two dimensional surface 

with minimal area, taking into account the force between the surface and the orientifold 

and the gravitational force between the possible different components of the surface. If 

supersymmetry is broken spontaneously the real two dimensional surface has asymptotic 

boundary conditions which are holomorphic. 
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2.2 Example: A Two-Dimensional Toy Model 

In the following we will present a two dimensional toy model for supersymmetry break­

ing that will illustrate some of the above discussion. We will consider a U(1) N = 2 

supersymmetric gauge theory in two dimensions (four supercharges) with one charged 

hypermultiplet. The theory can be obtained by dimensional reduction of an N = 1 super­

symmetric gauge theory in four dimensions. The vector multiplet of the theory contains 

as bosonic degrees of freedom the gauge field AJ.L and a complex scalar O" which arises from 

the x 2 , x3-components of the gauge field in the process of the dimensional reduction. The 

hypermultiplet contains as bosonic degrees of freedom two complex scalars that we will 

denote by Q, Q. 
We can introduce a Fayet-Iliopoulos (FI) D-term, -r J d2xd40 V, where r is a real FI 

parameter and Vis the U(1) vector superfield. In addition, we introduce a complex mass 

term J ~xd20mQQ + c.c .. The total scalar potential U of the theory reads 

where e is the two-dimensional gauge coupling constant. When r = Q = Q = 0 the poten­

tial energy is zero and there is a complex one dimensional moduli space of supersymmetric 

vacua parametrized by O". For m = 0, r =J. 0 there is a complex one dimensional Higgs 

branch. Finally, if both m and r are nonzero, the potential energy is always nonzero and 

supersymrnetry is spontaneously broken. If 2e2r ::; -lml 2
, the minimum of the potential 

is at (IQI 2
, IQI 2

) = (0, -e2r-lml 2/2), for -lml 2
::; 2e2r::; lml 2 it is at (IQI 2

, IQI 2
) = (0, 0), 

and for lml 2 
::; 2e2r it is at (IQI 2

, IQI 2
) = ( e2r- lml 2 /2, 0). In the second case there is a 

family of non-supersyrnmetric vacua parametrized by O". 

Brane configurations of N = 2 gauge theories in two dimensions have been studied 

in [65]. In order to realize the· above U(1) gauge theory we consider the following brane 

configuration in type IIA string theory. An NS fivebrane with worldvolume coordinates 

(x0
, x 1 , x2 , x 3

, x\ x5), a NS' fivebrane with worldvolume coordinates (x0
, x1 , x2 , x 3

, x 8
, x 9

), 

a D4 brane with worldvolume coordinates (x0 , x 1
, x 7

, x 8 , x 9 ).located between the two five­

branes, and a D2 brane with worldvolume coordinates (x0 , x1 , x6
) stretched between the 

NS and NS' branes in the x6 direction. The theory on the worldvolume of the D2 brane 

in (x 0 ,x1
) has N = 2 supersymmetry, gauge group U(1) and one hypermultiplet charged 

under the U(1). This configuration is T-dual to theN= 1 four dimensional configuration 

of [3]. 

The gauge coupling of the theory is related to the distance between the NS and NS' 
branes in the x 6 direction, 1/e2 = (fst/9st)f1x6

• The FI parameter of the theory is related 
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to the distance between the NS and NS' branes in the x7 direction, -r = (1/Rst9st).!J.x 7
• 

The value of the coordinates x2+ix3 of the D2 brane is related to u by x2 +ix3 = £5/u and 

the complex mass is related to the x\ x5 position of the D4 brane via mRs? = x4 + ix5
• 

When the distance between the NS and NS' branes in the x 7 direction is zero the brane 

configuration preserves four supercharges and for each value of the coordinates x2 + ix3 

of the D2 brane it corresponds to a supersymmetric vacuum. Similarly, by breaking the 

D2 brane on the D4 brane we see supersymmetric vacua for r =J 0, m = 0. 

Consider now the most general case r =J 0 and m =J 0. There are two possible 

configurations for the D2 brane. In what we will call configuration A, the D2 brane breaks 

on the D4 brane, while in what we will call configuration Bit connects directly the NS and 

NS' branes without intersecting the D4 brane. In either case the D2 brane no longer has 

its worldvolume in the (x0 , x1 , x6 ) direction and therefore the brane configuration breaks 

supersymmetry. The vacua correspond to the configurations of minimal length, which is 

the two dimensional analog of the minimal area condition that we discussed in the four 

dimensional context. For configuration A, the length of the D2 brane equals 

(2.2) 

while for configuration B it equals 

LB = (R~s~2 r + (r9stfst) 2
. . . (2.3) 

Here, we introduced:\= k(x6 (D4)-x6 (NS)) and:\= k(x6(NS')-x6 (D4)). For large 
e1 9st e2 9st 

m, the shortest brane configuration is configuration B, corresponding to the field theory 

vacua with JQJ = JQJ = 0. For larger, the shortest brane configuration is configuration A, 

corresponding to the field theory vacua with JQJ =J 0 or JQJ =J 0. There is qualitative but 

no quantitative agreement with field theory, but this is what we expect since the brane 

configurations are not BPS [43]. This is already obvious by noticing that LA depends 

on ei and e~ which do not correspond to parameters of field theory. Furthermore, we 

neglected the interaction between the two D2-brane components in configuration A. In 

general, for non-BPS configurations, there is no reason for this interaction to vanish. 

We expect that this additional interaction will lift the degeneracy of configuration A 

(corresponding to moving the component of the D2 brane between the D4 and NS' branes 

in the 8, 9-direction), which has no counterpart in field theory. 

On the other hand, LB does not depend on the parameters ei and e~ and one can indeed 

quantitatively compute the energy density of the vacua with JQJ = JQJ = 0 from the brane 
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configuration. The energy density of these vacua is given by the difference between LB and 

the length L 0 = 9st/fste2 of the the supersymmetric brane configuration, multiplied by 

the membrane tension 1/£11
3 = 1/gstfst

3
• This yields (e2r 2/2) (1 + o((e2rfst

2
)

2
)), which 

converges to the field theory result U = e2r 2 /2 in the limit fst --+ 0 where the the string 

oscillation modes decouple. 

In the non-supersymmetric brane configurations, the D2 brane is stretched between 

the NS, D4 and the NS' branes which by themselves preserve supersymmetry so that 

the boundary conditions on the minimal length line are supersymmetric. This is the 

geometrical manifestation of the fact that supersymmetry is broken spontaneously and 

not explicitly. 

In order to study the quantum properties of the system we have to lift the brane 

configuration~ to M theory. The ~~ brane becomes a membran_e_ of M theory stretch~?_ 

between pairs of fivebranes. In this framework, the theta angle () is seen as the distance 

between NS and NS' fivebrane in the x10 direction [65] and the vacuum energy for con­

figuration B becomes e2 jir + 2~ j2 /2 where 0 is the minimum among j..1x10 + 27Tnj, n E Z. 

In particular, there is a discontinuity in the B-derivative of the vacuum energy which is 

also what we know in field theory. 

3 M Theory Description of Orientifold via Sp(Nc) Gauge Dy­

namics 

In this section, we study properties of the fivebrane in M theory in a geometry which is 

(locally) of the type R 5 x 5 1 x R5 /Z2 . We construct fivebrane configurations whose world­

volume dynamics describes some supersymmetric Sp(Nc) gauge theories and study the 

properties of the fivebrap.e by comparing with the structure of vacua of the corresponding 

gauge theories. 1 

In subsection 3.1, we study the vacuum structure of supersymmetric Sp(Nc) gauge 

theories, including N = 2 SUSY QCD, N = 2 broken to N = 1 by a mass term for the 

adjoint, and N = 1 SUSY QCD. The analysis is almost the same as that for gauge group 

SU(Nc) gauge group given in [18], but there i's an important difference: In the N = 2 

Sp(Nc) theory, the way the Higgs branch emanates from the quantum Coulomb branch 

has not been determined by a field theory argument so far. There is a related puzzle in 

1This section is meant to be a preparation for the study of the brane realization of a model of 

supersymmetry breaking with a stable non-SUSY vacuum. Those who are mostly interested in the issue 

of dynamical supersymmetry breaking can skip this section except for the introductory part. 
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the theory with finite adjoint mass, where we find an apparent discrepancy between the 

dimensions of the Higgs branches found in the N = 2 and N = 1 descriptions of the 

theory. 

After reviewing some general properties of M theory on R 6 x R 5 /Z2 in subsection 

3.2, we construct in 3.3 fivebrane configurations whose worldvolume dynamics realizes 

the Sp( Nc) gauge theories based on the following hypothesis. 

Let us denote by " t-configuration " a configuration that looks locally like a single 

fivebrane transversely intersecting the Z2 fixed plane at one point. More precisely, the 

six-dimensional world volume of the fivebrane shares R 4 with the Z2 fixed plane R 6 but the 

remaining two-dimensional part intersects the z2 fixed plane transversally at one point. 

Then, the basic hypothesis is 

t-configuration is not supersymmetric. 

In particular, when there are (locally) two fivebranes intersecting the Z2 fixed plane at 

different points, the two points either attract or repel each other, corresponding to the two 

allowed choices of orientifold plane in the type IIA picture. When there is a Kaluza-Klein 

monopole, we will need a modified version of the hypothesis. 

Based on such a hypothesis, we will find that the brane gives the correct field theory 

results on the structure of the moduli space of supersymmetric vacua. Actually, this 

hypothesis was used in the cpnstruction [15] of the Seiberg-Witten curve for the N = 2 

theory with symplectic gauge group. Here, we will see that this hypothesis is also crucial 

for reproducing other aspects of N = 2 theories as well as properties of N = 1 theories. 

Among other things, the hypothesis plays an essential role in reproducing the quantum 

modification of the classical constraint on the meson matrix in N = 1 SQCD with N1 = 

Nc + 1. Moreover, based on this hypothesis, we can determine the way the Higgs branches 

are emanating from the quantum Coulomb branch in the N = 2 theory, solving the puzzle 

about the theory with finite adjoint mass mentioned above. 

3.1 Supersymmetric Sp(Nc) Gauge Theories 

N=2 SQCD 

We start with describing facts about N = 2 supersymmetric Sp(Nc) gauge theory 

with N1 fundamental hypermultiplets. In N = 1 language, it is an Sp(Nc) gauge theory 

with an adjoint chiral multiplet ~b and fundamental chiral multiplets Q~. Here a, b, ... = 

1, ... , 2Nc and i,j, ... = 1, ... , 2NJ are the color and flavor indices. The matrix ;ab~b is 
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symmetric with respect to a, c where Jab is the Sp( Nc) invariant skew-symmetric form. 1 

The superpotential of the theory is 

(3.1) 

We will consider the case N1 < 2( Nc + 1) where the theory is asymptotically free and 

generates a dynamical scale AN=2 . The classical U(1) R-symmetry group (under which~ 

carries charge 2) is broken by an anomaly to its discrete subgroup Z4(N,+I)- 2N
1 

while the 

SU(2) R-symmetry remains exact. The flavor symmetry group is S0(2N1 ). 

The moduli space of vacua consists of Coulomb and Higgs branches. The Coulomb 

branch, where the gauge group is broken (generically) to U(1)N', is parametrized by the 

Nc Casimirs of~ and is corrected by one-loop and instantons. The quantum Coulomb 

branch is described.by the Seiberg-Witten cu_rve of~~~ f<?r.m [~4] 

Nc 
2 _ rr ( _ ,1,.2)2 _ A4Nc+4-2Nt Nt-1 

y - X X '+'a N=2 X (3.2) 
a=l 

which determines the effective gauge coupling and the Kahler metric. In the semi-classical 

region II ~ II» AN=2, ±4>a are interpreted as the eigenvalues of~-

The (mixed Coulomb-)Higgs branches of the theory were analyzed in [55]. They 

are classified by an integer r = 1, ... , [N1j2]. The r-th Higgs branch has quaternionic 

dimension 2r N1- (2r2 + r) and emanates from a Nc-r dime:nsional complex subspace of 

the Coulomb branch where there is an unbroken gauge group Sp(r). The Higgs branches 

themselves are not corrected by quantum effects, but the way they emanate from the 

Coulomb branch is. Under the nai"ve interpretation of ±4>a as the eigenvalues of <I>, the 

r-th Higgs branch emanates from the locus where r of the 4>a vanish. This is true for the 

values of r where the Sp(r) gauge theory with N1 flavors is not asymptotic free, i.e., for 

r :'S [(NJ- 2)/2] (all but r = [N1j2]). For the case r = [Ni/2], however, since this low 

energy theory is asymptotically free and may be affected by strong dynamics, it is not 

clear whether the Higgs branch emanates from this locus. This problem was not solved 

in [55]. We will see that the brane gives the solution; it is true for r = (N1 - 1)/2 (NJ 

odd), but is modified for r = N1 j2 (N1 even). 

1 In the symplectic basis, it is represented as the matrix (Jab) = lN, 0 ( ~ ~ 1 
) where lNc is the 

unit matrix of size Nc. 
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N = 2 Broken to N = 1 

Let us give a bare mass fl to the adjoint chiral multiplet, ·breaking N = 2 to N = 1 

supersymmetry 

(3.3) 

The U(1) R-symmetry modified so that <I> and QQ both carry charge 1 is anomalously 

broken to Z2Nc+2-Nt. For small values of p, we can use the description in terms of the 

Seiberg-Witten curve to analyze the structure of vacua. Most of the Coulomb branch 

is lifted except the discrete set of points where all the a-cycles of the curve degenerate. 

As analyzed in [55], the remaining vacua are in the locus where r = [(NJ- 1)/2] of the 

parameters <f:>a in (3.2) vanish as well as in the locus where r = N1 - Nc - 2 of them 

vanish. We shall call the former the A branch root and the latter the B branch ·root, 2 and 

denote the corresponding Higgs branches by the A and B branch respectively. The B 
branch root is a single point which is invariant under z2Nc+2-Nt' whereas the A branch 

root consists of 2Nc + 2 - N1 points, namely, the A branch consists of 2Nc + 2 - Nf 

connected components; for N1 odd these are related by Z2Nc+ 2-N1 , but for N1 even they 

fall into two separate orbits of z2Nc+2-Nt' each having Nc + 1 - Nj /2 components. Pure 

Yang-Mills theory (NJ = 0) is an exceptional case where Nc + 1 points related by the 

discrete R-symmetry remain supersymmetric. 

For values of fl beyond AN=2 , the gauge coupling runs below the energy scale fl as in 

N = 1 supersymmetric QCD whose dynamical scale AN=l is .given by 

A
3(Nc+l)-Nt _ Nc+1A2(Nc+l)-Nt 
N=l - J1 N=2 · (3.4) 

If fl » AN=l, we can integrate out the heavy field <I>. Then, the theory at energies below 

fl can be considered as N = 1 SQCD with tree level superpotential 

1 2 
Ll W = -

2
1-l Tr( M ) , (3.5) 

where Mii = QiQi = JabQ~Qt is the meson matrix whose components form a basis of 

gauge invariant chiral superfields. The superpotential Ll W breaks the flavor symmetry 

SU(2N1) of N = 1 SQCD to S0(2Nf ). In the following, we describe the structure of 

vacua of this theory. 

2In [55], only the B branch (present only for NJ > Nc + 1) is identified. But this cannot be the whole 

thing, as is evident by considering the case Nc = 1 (Sp(1) = SU(2)), NJ = 2 where two points in the 

Coulomb branch remain. Actually, only degenerations of the form y2 = x[· · ·F are considered in [55]. 

The A branch root corresponds to degenerations of the form y2 = (x- a)[·· ·F, a =/ 0. We thank A. 

Shapere for a discussion on this point. This was also recently noticed in [44]. 
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The pure N = 1 super-Yang-Mills theory (NJ = 0) has Nc + 1 massive vacua with 

gaugino condensation which breaks the discrete chiral symmetry as Z2(Nc+l) -t z2. These 

correspond to the Nc + 1 completely degenerate curves found in the N = 2 analysis which 

are related by the R-symmetry action. 

For 0 < N1 < Nc + 1, an Affleck-Dine-Seiberg type superpotential is generated in the 

N = 1 Sp(Nc) SQCD [52]. By a holomorphy argument as in [56, 18], we can show that 

the exact effective superpotential is obtained by adding to ..d W the term 

AN=l 1 2) 
( 

3(Nc+I)-Nt) 1/(Nc+1-Nt) 

Weff = (Nc + 1- NJ) Pf M - 2f.l Tr(M . (3.6) 

For N1 = Nc + 1, the moduli space of vacua of N = 1 SQCD is modified by quantum 

correct_ions an_d J_s g~v~_ by. Pf .A! =_A~~~~~!- [52]. W:_t~e_:e!ore expect that t~~ :_~ec_ti~~--- _ 
superpotential of our model is given by 

W = X(Pf M - A 2Nc+2) - _I_ Tr(M2) 
eff N=l 2f.l ' (3.7) 

where X is a chiral superfield playing the role of a Lagrange multiplier. 

For Nf = Nc + 2, the exact superpotential of N = 1 SQCD is given by W 

- Pf M /A 2Nc+I [52]. The effective superpotential of our model is expected to be 

Pf M 1 2 Weff = - 2Nc+t - -
2 

Tr( M ) . (3.8) 
. AN=l f.l 

For Nf > Nc + 2, there is another theory whose low energy physics is equivalent to the 

one of the N = 1 SQCD. This dual magnetic theory is an Sp(Nc = Nf - Nc- 2) gauge 

theory with 2N1 fundamental chiral multiplets qf and a gauge singlet chiral multiplet M 

(which is identified with the meson field QQ of the electric theory) which has a tree level 

superpotential W mag = t Mii qf Jabqj. The scale .X is needed to match the dimensions of 

the fields and relates the scales AN=1 and A-N=1 of the electric and magnetic theories by 

A~~~+l)-Nt A~~~+I)-Nt = ( -1 )NrNc-1,XNt. In order to study the low energy behavior of 

our model, we may as well consider the magnetic theory with the tree level superpotential 

1 1 2 
Wtree = ;_Mqq-

2
f.l Tr(M ) . (3.9) 

If the rank of M is maximal, rank M = 2N1, all of the dual quarks are massive and the 

low energy physics is that of Sp(Nc) Yang-Mills theory with the dynamical scale AL given 

by Ai,(Nc+I) = Pf (M/ .X) A~~~+1)-Nt and an effective superpotential given by 

( ) 

1/(NrNc-1) 
PfM 1 2 Weff = (Nc + 1- Nj) 3(N +I) N - -Tr(M ) . 

A c - t 2f.l 
N=1 

(3.10) 
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Proceeding as in [18], we find that the extremum of Weff with !rank M = N1 is given 

by 

• N1 odd 
Nt 

M = diag( m, ... , m, m) 0 c, (3.11) 

• N1 even 

M = { d~ag(m, ... , m, m) 0 c, 
d1ag(m, ... , m, -m) 0 c, 

(3.12) 

where 
_ Nc+l-Nt 

m = 2 2Nc+2 Nt pAN=2' (3.13) 

or its rotation by the flavor and the R-symmetry group S0(2Nj) X z2Nc+2-Nt. For Nj 

odd, there are 2Nc + 2- N1 distinct flavor orbits which are related by the R-symmetry. 

For N1 even there are Nc + 1 - N1 /2 flavor orbits related by the R-symmetry from the 

first type of solutions of (3.12) and the same number of orbits related by Z 2Nc+ 2-N1 from 

the second type, and in total there are 2Nf + 2 - N1 distinct flavor orbits. Each of the 

flavor orbits is the homogeneous space S0(2Nf, C)/ He where He is the complexification 

of the unbroken subgroup of S0(2N1) at the diagonal solution (3.11), (3.12). For (3.11) 

and the first type of (:3.12), the unbroken subgroup isH= U(NJ ), whereas for the second 

type of (3.12) it is some other subgroup of the same dimension as U(NJ ). In any case, 

the homogeneous space has C<?mplex dimension N1(N1 - 1). 

For small values of p, this result must be consistent with the analysis based on the 

N = 2 description. From the z2Nc+2-Nt symmetry breaking' pattern, these are to be 

identified with the A branch in the N = 2 analysis. Recall that the A branch emanates 

from the locus where r = [( N1 -1 )/2] of <Pa 's are vanishing. At first sight this suggests that 

the A branch is the r = [(NJ-1)/2] Higgs branch. For odd N1 it is consistent because the 

dimension of the r = ( N1 -1) /2 Higgs branch has complex dimension 4r N1 - 2(2r2 + r) = 
NJ(NJ - 1). However, there is a puzzle for even N1: The complex dimension of the 

r = [(NJ -1)/2] = (NJ- 2)/2 Higgs branch is 4rN1 - 2(2r2 + r) = N1(N1 -1)- 2 which 

is smaller by 2 than the above result. We will solve this puzzle in the brane picture. 

These are the only supersymmetric vacua for N1 ~ Nc + 1. For N1 ~ Nc + 2, there is 

another branch with !rankM < N1. 

For N1 = Nc + 2, we can consider (3.8) to be the exact superpotential which is valid 

for all values of the ranks of M. There is a unique solution of lowest rank of the extremum 

equation. It is 

M=O. (3.14) 
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This new solution corresponds to the B branch of the N = 2 analysis since the B branch 

is expected to be the r = N1- Nc- 2 = 0 Higgs branch which has dimension zero. 

For N1 > Nc + 2, we cannot consider (3.10) 1as the exact superpotential for non­

maximal rankM. The classical flat direction, or the extremum locus of (3.9), is described 

as 

rankM ::::; 2Nc , M 2 = 0 , (3.15) 

and q · q = ('A/p)M. In this direction, at least 2Nj = 2Nf- 2Nc of the dual quarks are 

massless. Thus, the low energy theo;y is the Sp(Nc) gauge theory with massless quarks 

qfow' i = 1, ... , 2N/ (the flavor is larger for rankM < 2Nc)· Note that Nj - (Nc + 2) = 
2(Nc + 1)- Nf·is positive because our starting point was an asymptotically free N = 2 

theory. Thus, the origin qfow = 0 of the moduli space of the low energy theory is not 

lifted. This shows-that-the-quantum -moduli- space-contains the classical-flat -direction--­

(3.15) as one of its branches.3 One can show as in [68] that there are no other branches. 

We note that the constraint (3.15) is the same as the one defining the Higgs branch of 

N = 2 Sp(Nc) gauge theory with N1 flavors [55]. Thus, this branch is identified as the B 

branch of the N = 2 analysis which is expected to be the r = Nc Higgs branch because 

r = N1 - Nc- 2 = Nc of the <Pa are vanishing at the root. 

The J.l ---r oo Limit 

As J.l ---r oo keeping AN=l finite, because 

(3.16) 

the branch with maximal rank trankM = N1 runs away to infinity for N1 < Nc + 1, 

whereas for N1 2: Nc + 1 it remains finite and constitutes a submanifold of dimension 

NJ(NJ- 1) of the moduli space of SQCD. 

The lower rank branch which is present for N1 2:: Nc + 2 remains finite in the J.l ---r oo 

limit and constitutes a submanifold M 2 = 0, trankM ::::; Nc of dimension 2(2NcNf -

(2N; + Nc)) of the moduli space frankM::::; Nc of SQCD. 

3 This is in contrast with the case of SU(Nc) gauge theory with N1 > Nc + 1 flavors and a heavy 

adjoint in which the analogous branch is described at low energy by the SU(Nc) gauge theory with Nc 
massless quarks. The quantum modification of the moduli space of this low energy theory [51] induces a 

modification of this branch [68, 18]. 
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3.2 M Theory Realization of Orientifold Four-Plane 

In the next subsection, we will construct a M theory fivebrane configuration whose 

worldvolume dynamics describes at long distances the Sp(Nc) gauge theory with N = 2 or 

N = 1 supersymmetry. In the weakly coupled Type IIA regime, the configuration involves 

an orientifold four-plane (04-plane). Here, we briefly explain the M theory realization of 

an 04-plane in Type IIA string theory. 

In Type IIA string theory, there are two types of 04-plane which are classified by the 

RR charges [57). One type carries D4-brane charge -1 if it is counted before taking the Z2 

quotient (and therefore, -1/2 after the quotient), while the other carries D4-brane charge 

+ 1. When there are 2n D4-branes close to the Z 2 fixed plane of the former type there is 

a S0(2n) gauge symmetry in the common directions of the branes (which is generically 

broken to U(1)n spontaneously), while the gauge symmetry is Sp(n) for the latter type. 

For this reason, we shall call the former SO-type and the latter Sp-type. In other words, 

an open string ending on D4-branes at an SO-type 04-plane carries S0(2n) Chan-Paton 

factors while an open string ending on D4-branes at an Sp-type 04-plane carries Sp( n) 
Chan-Paton factors. 

An orientifold of Type IIA on R 5 x R 5 /Z2 is obtained from M theory on the orbifold 

R 5 x R 5 /Z2 x S 1 by taking the limit where the radius of S 1 is small. M theory on 

R6 x T 5 /Z 2 was studied in [58, 59) and it was concluded from the local cancellation of 

gravitational anomaly that each of the Z 2 fixed plane must carry fivebrane charge -1 (in 

the unit before quotient). Since a fivebrane wrapped on S1 becomes the D4 brane in the 

Type IIA limit, this shows that the 04-plane which is identified as the Z2 fixed plane 

compactified on S1 carries D4-brane charge -1. Namely, the 04-plane obtained in this 

way is of SO-type. 

Then, what is theM theory interpretation of the Sp-type 04-plane? Here we propose 

that it can be obtained by putting two fivebranes at the Z2 fixed point set R 5 x Sl, and 

then taking the Z2 quotient such that the degrees of freedom corresponding to the motion 

of the fivebranes away from the Z2 fixed points are frozen. The D4-brane charge of the 

Zz fixed plane in the Type IIA limit is now -1 + 2 = +1, which agrees with the Sp-type 

04-plane. For further test of the idea, let us put 2n additional D4-branes parallel and 

close to this Z2 fixed plane. Then, the light degrees of freedom on the worldvolume in 

the common 4+ 1 dimensions are created by open strings ending on the 2n + 2 D4-branes 

where +2 are the two D4-branes corresponding to the two fivebranes stuck at the Z 2 fixed 

point. Since the motion of the two D4-branes are frozen, degrees of freedom coming from 

the open strings with both ends at these two D4-branes are killed. Then, it is easy to 
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see that the remaining light degrees of freedom have the same mass spectrum as those 

associated with theN= 2 Sp(n) gauge theory in 4+1 dimensions. Note however that we 

do not see directly how the above proposed definition of Sp-type 04-plane indeed yields 

Sp gauge group. 

In general, we must assume the existence of such a Z2 quotient that freezes the motion 

of the two fivebranes. However, in what follows we consider a configuration with NS 5-

branes transversal to the 04-plane in the Type IIA regime. The presence of such NS 

5-branes naturally freezes the two D4 branes within the standard R5 /Z2 orbifold of M 

theory (which, in the absence of the fivebranes, would yield the SO-type 04-plane in 

the Type IIA limit). This follows from the basic hypothesis that a t-configuration is not 

supersymmetric, as we will now see. 

--- - ---~- ~ -------
3.3 The Fivebrane Configuration 

Type IIA Configuration 

We can realize the Sp(Nc) gauge theories as considered in the first subsection by 

configurations in a Type IIA orientifold on R 5 X R 5 /Z2 which involve (before the z2 
quotient) two NS 5-branes, 2Nc D4-branes parallel to the 04-plane, and 2NJ D6-branes. 

We denote the time and space coordinates by x 0 and x 1, ••• , x 9 , where the Z2 acts as the 

sign change of x 4
'
5

'
7

'
8

'
9 so that the 04-plane spans the 01236 directions. The NS 5-branes 

are separated in the x 6 direction, the D4-branes are stretched between them, and the D6-

branes, spanning the 0123789 directions, are located between them. In the configuration 

corresponding to theN= 2 theory, the two NS 5-branes are parallel and span the 012345 

directions. Giving a mass to the adjoint corresponds to rotating one of them in the 45-89 

direction [5], and sending the mass to infinity corresponds to taking the right angle limit, 

in which the rotated NS 5-brane spans the 012389 directions. See figure 1. 

In any case, the 04-plane is separated into three pieces by the two NS 5-branes. In 

order to obtain Sp(Nc) gauge theory on the worldvolume of the D4 branes, we want the 

04-plane to be of Sp-type (D4-brane charge+ 1) in the part between the two NS 5-branes. 

Since the flavor group of the N = 2 theory is S0(2N1 ), the other two parts of the 04-

plane should be of SO-type (D4-brane charge -1) in the N = 2 configuration [7]. This 

has been proven using a world-volume computation in [47]. The other two parts of the 

04-plane must then also be of SO-type for all other configurations that can be obtained 

by a rotation of theN-= 2 configuration (and possibly by other continuous deformations). 
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Figure 1: Type IIA Configuration 

M Theory Realization of 04-NS5 System 

We first give an M theory interpretation of the simplest configuration of two NS 5-

branes intersecting with the 04-plane of the type described right above. We consider 

the case of parallel NS5-branes spanning the 012345 directions. It is described by a 

configuration of a single fiveb~ane in M theory on the orbifold R 5 x R 5 /Z2 x S1 and it is 

located at the origin in the 789 directions. We denote by x10 the coordinate of the circle 

S1
, x10 = x10 + 21r. Let us introduce the complex coordinates 

t X · 10 
( 

6 ) exp - R- zx , 

v (x 4 + ix5
) x const, 

where R is the radius of S1 . The Z2 acts on these coordinates as t ---+ t, v ---+ -v. 

(3.17) 

(3.18) 

There are two regions of the fivebrane world volume with large values of v corresponding 

to the two NS 5-branes. Since the D4-brane charge jumps by +2 when crossing the left NS 

5-brane from left to right, the corresponding region of the fivebrane worldvolume behaves 

as t "" v2 at large v. Similarly, the charge jumps by -2 for the right NS5-brane and 

therefore the corresponding region behaves as t "" v-2 at large v. A general fivebrane 

invariant under the Z2 action v ---+ -v which satisfies these boundary conditions is given 

by 

t 2 
- ( v 2 + c )t + ( = 0 , (3.19) 

where c and ( are parameters with ( =f. 0. The coefficient of the v2 term can be taken to 

17 



be 1 by a rescaling oft which is a shift of the origin of the x6
•
10 directions. At first sight, 

there are two light degrees of freedom corresponding to the two moduli. Obviously, ( is 

related to the distance between the two NS 5-branes and therefore can be considered as 

frozen (the kinetic energy for the variation of ( diverges because of the infinite volume 

of the fivebrane). However, we still have one parameter c which does not appear in the 

Type IIA configuration we want. Without the Z 2 quotient this modulus would have a 

finite kinetic energy, as it is equivalent with the modulus of the Coulomb branch of N = 2 

super-Yang-Mills theory with gauge group SU(2). 

Now, this is the time where we can use the basic hypothesis to eliminate thi.s degree 

of freedom. For generic values of c, the fivebrane (3.19) and the 04-plane v = 0 intersect 

transversely at two points, each of which is a t-configuration. In the case 

(3.20) 

(3.19) looks (t-v'()2 ""' v 2 and we see that the two intersection points collide. If we accept 

the hypothesis that a t-configuration is not supersymmetric and two such intersection 

points attract each other, then the configuration is stable only in the case c = 2-J(. In 

this way, we can eliminate the degrees of freedom corresponding to varying c. + From 

now on we will always assume that the intersection points attract each other for an 

SO - S P - SO-type 04-plane. 

3.3.1 N = 2 Configurations 

Coulomb Branch 

We next review the M theory fivebrane configuration describing the Coulomb branch 

of N = 2 Sp(Nc) SQCD with N1 massless :flavors following [15]. In the Type IIA picture 

where all the 2N1 D6-branes are sent to x6 = +oo, there are 2NJ semi-infinite D4-

branes ending on the right NS5-brane from the right. The Z2 invariant curve satisfying a 

suitable boundary condition is of the form t 2 - ( v2Nc+ 2 + u1 v2Nc + · · · )t + ( v 2Nt = 0. The 

requirement of absence of a t-configuration fixes one of the coefficients Ui of the polynomial 

v 2Nc+ 2 + u1v2Nc + · · ·, and it is easy to see that the curve for N1 =f. 0 is of the form 

t 2 _ 2B ( 2)t + A4Nc+4-2Nt 2N1 = 0 
V Nc V N=2 V ' (3.21) 

fThere are actually two choices of the sign of V(. They are related by a coordinate change and therefore 

are equivalent. We will see some related phenomena in the following as we shall note in footnotes with 

the same symbol :j:. 
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where BNc = v2Nc + '2:~1 Uiv2Nc- 2i. For N1 = 0, in order to avoid the t-configuration, 

v2BNc(v2) must be replaced by v2BNc(v2) +2A~i2 • t If we identify AN=2 and the ui's 

with the dynamical scale and Casimirs of~' this is the same as the Seiberg-Witten curve 

(3.2) describing the Coulomb branch of the N = 2 gauge theory. 

Higgs Branch 

We next present a description of the N = 2 Higgs branch in the brane picture. Because 

of our insufficient understanding of the strong coupling dynamics of Type IIA string theory 

in the presence of an orientifold four-plane and D6-branes, the description will be far from 

complete. 1 However, by imposing some rule which generalizes our basic hypothesis, we can 

give a fairly reasonable description in terms of the fivebranes in M theory on a certain 

orbifold. In particular, we can find a location of the r = [N1/2] Higgs branch on the 

quantum Coulomb branch. 

We consider taking the Z2 orbifold projection of M theory on a Taub-NUT geometry 

which represents the 2Nf D6-branes. In the case when all the D6-branes are at v = 0, 

with a particular choice of complex structure the Taub-NUT space is described by 

A4Nc+4-2Nt 2Nt 
xy = N=2 v (3.22) 

where x and y are complex <;oordinates. We can resolve the A2N,-I singularity at x -

y = v = 0 by a complex surface covered by 2NJ patches with coordinates (yi, xi) (i 

1, ... ,2NJ) that are glued by (Yi-I,Xi-d = (yfxi,yi 1) and are mapped to (y,x,v) as 
y = A2Nc+2-Ntyfx~-I, x = A2Nc+2-Nty:N,-ix~N,+I-\ and v = YiXi· The singular point 

X= y = v = 0 has been blown up to 2Nj- 1 CP1 cycles ci defined by Yi = Xi+I = 0 for 

i = 1, ... ,2Nf -1. The Z2 group acts on (x,y,v) as-+ (x,y,-v) or on the coordinates 

of the i-th patch as Yi -+ ( -1)i-lyi, Xi -+ ( -1)ixi (see figure 2). We see that the z2 
fixed plane has split into two infinite and N1 - 1 CP1 cycles, namely, the infinite cigar at 

XI = 0, the cycles ci for even i, and another infinite cigar at Y2Nt = 0. 

tNote that 2A~i2 here can be replaced by -2A~i2 • This means that the moduli space of holo­

morphic curves obeying the required condition splits into two disconnected components. However, the 

change of the sign of A~i2 can be absorbed by a coordinate change, and the two connected components 

are actually equivalent. Thus, we can choose only one component as far as we consider small excitations 

around the supersymmetric vacua. 
1This is in contrast with the case of an 06-plane and D6-branes where there is a complete geometric 

description in M theory [60]. This leads to a nice description of theN= 2 Coulomb and Higgs branches 

in terms of the fivebrane [61] (see also [31]). The results obtained for N = 2 theories can actually be 

more straightforwardly obtained using an 06-plane. 
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Figure 2: The Z2 action for N1 = 2'case 

The configuration of the fivebrane is given by 

Nc 
X+ y = v2 BNc(v2) = v2 IT (v2 - ¢~). (3.23) 

a=l 

This is obviously the same as (3.21) under the identification y = t. 

Let us first look at a generic point of the Coulomb br_anch where BNc(v2) is not zero at 

v = 0. As in [18), we see that the fivebrane wraps the CP1 cycles cl' Cz, ... 'CzNr2, CzNrl 

with multiplicity 1, 2, ... , 2, 1. Also, an infinite component intersects Cz at one point and 

c2Nr2 at one point (see figure 3). Recall that the Zz acts on w ~ (x7 ,x8 ,x9
) as w-+ -w 

at the same time. Only from the requirement of the Z2 invariance of the configuration, 

there is nothing to prevent the two components wrapped on Ci, 2 :::; i :::; 2N1 - 2, to be 

separated in the opposite direction of w, which would correspond to some modulus of the 

worldvolume theory; from the transformation property unde_r the SU(2) R-symmetry it 

would be a hypermodulus. But this does not agree with the field theory knowledge; In 

N = 2 Sp(Nc) SQCD, no Higgs branch emanates from a generic point of the Coulomb 

branch. Therefore, these degrees of freedom must be eliminated by some mechanism if the 

worldvolume theory is close to the Sp(Nc) gauge theory at all. We remark that the infi-

Figure 3: A Generic Point on the Coulomb Branch; The number above the CP1 compo­

nents stands for the multiplicity. 

nite component intersects C2 and C2Nrz at one point each. An obvious way to eliminate 

these extra moduli is to generalize our basic hypothesis as follows. 
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Suppose that the jivebrane intersects one or two different CP1 cycles of the Z 2 fixed 

plane at two distinct points. Then, the configuration is supersymmetric only if the two 

distinct intersection points are connected by one or more CP1 components of the fivebrane. 

Indeed, under the constraint that the intersection points at c2 and c2Nr2 be connected 

by a series of CP1 components, there is no Z2 invariant way to move the components 

wrapped on ci away from w = 0. 

Let us next consider the case where BNc(v2
) has a zero at v = 0 of order 2r, 

(3.24) 

where c is a non-zero constant. We first consider the range r < [NJ/2]. Then, there 

are CP1 components wrapped on C1 , ... , C2Nri with multiplicity 1, 2, 3, ... , 2r + 1, 2r + 

2, ... , 2r+2, 2r+ 1, ... , 3, 2, 1 (there are 2N1 -4r-3 CP1 cycles wrapped with multiplicity 

2r+2), and also there is an infinite curve intersecting the first and last CP 1 of multiplicity 

2r+2. If we impose the generalized basic hypothesis, from each of the CP1 's of multiplicity 

2r + 2 only r pairs of components can be separated in the w direction. Thus, the number 

of separable pairs of CP1 components are 

1 + 1 + 2 + 2 + · · · + r + r + (2NJ - 4r - :3) x r + r + r + · · · + 1 + 1 
r(r + 1) 

= 4 
2 

+ (2N1 - 4r- 3)r = 2rN1 - (2r2 + r), (3.25) 

which agrees with the dimension of the r-th Higgs branch. 

For the case r = (N1-1)/2 (N1 odd), the multiplicities of CP1 cycles are 1, 2, ... , 2r, 2r+ 

1, 2r, ... , 2, 1 (there is no cycle with multiplicity 2r + 2) and the infinite curve intersects 

the CP1 of multiplicity 2r + 1. The number of separable pairs of CP1 components are 

4r(r- 1)/2 + 3r = NJ(NJ- 1)/2 which is the dimension of the r = (NJ - 1)/2 Higgs 

branch. 

For higher r, the pattern of degeneration of the curve is the same as in the case of 

r = (NJ- 1)/2 (for Nf odd) orr= (NJ- 2)/2 (for Nf even). 

So far, we have identified the r = 1, 2, ... , [(N1 - 1)/2] Higgs branches. Then where 

is the r = N1 j2 Higgs branch (in the case N1 even)? Does it disappear in the quantum 

theory? 

There is actually a subtlety in the case r = (N1 - 2)/2 (N1 even). In this case the 

number of CP1 's with multiplicity 2r + 2 is 2N1 - 4r- 3 = 1. Thus, there is a possibility 

that the two intersection points of the infinite curve with the CP1 's coincide. In that would 

happen, there would be no restriction from the generalized basic hypothesis concerning 
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the separation of pairs of the CP1 components of the fivebrane. In order to see whether 

this is indeed what happens, let us look at the Nrth patch with coordinate (YN,, XN1 ). 

Equation (3.23) looks near x = y = v = 0 as 

Nt Nt-1 ( 2 c ) - 0 (3 26) 
YN,xN, xN, - A~-;-2-Nt XN, + 1 - . . 

This shows in particular that the CP1 of multiplicity 2r + 2 = N1 is the locus YNt = 0. 

For generic values of c the infinite component (described by x'Jv
1 

- 2Nc~2 Nt XN1 + 1 = 0) 
AN=2 

intersects the CP1 of multiplicity 2r + 2 at two different points, and therefore at least one 

CP1 component of the fivebrane must be at w = 0 by the basic hypothesis. However, for 

_ ±2A2Nc+2-Nt 
c- N=2 ' (3.27) 

the two intersection points collide. Then the basic hypothesis imposes no restrictions, 

and we have one additional pair of CP1 components that can be separated, and the total 

number of movable pairs becomes 

N (N 1) 
2rNJ-(2r2 +r)+1= 1 f-. 

2 
(3.28) 

which is the dimension of the r' = N1 /2 Higgs branch. We conclude that we have indeed 

found the r = NJ/2 Higgs branch. Namely, the r = N1 j2 Higgs branch, which emanates 

classically from the locus where N1 /2 of the <Pa 's vanish, emanates in the quantum theory 

from the locus where only (NJ- 2)/2 of them vanish and the product of non-zero <P~ 's is 

±2A 2Nc+2-Nt. This generalizes the quantum splitting of the Higgs branch root u = 0 -+ 
±2A2 in the SU(2) gauge theory with N1 = 2 flavors. 

There remains a question of understanding the theory at the root of the r = N1 /2 Higgs 

branch. As noted before, an Sp( N1 /2) gauge theory with N1 flavors is asymptotically 

free and becomes strongly coupled at the scale AN=2. Is the theory at the root a new 

non-trivial fixed point? At least for the Nc = 1 case, we know another description of the 

theory (as an SU(2) gauge theory) and we know that the theory at the root is just an 

N = 2 free QED with two electrons. This may suggest that in general the gauge group 

splits into U(1) and Sp(N1 j2 -1) and the theory flows to a direct product of a free QED 

and the conformal field theory of Sp(N1 j2- 1) with N1 flavors. 

3.3.2 N = 1 Configurations 

Rotation by Finite Angles 

Next, we construct the fivebrane configuration for the theory with an adjoint mass J.l· 

This corresponds to rotating, say, the left NS 5-brane in the 45-89 plane while keeping 
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fixed the right NS 5-brane [5]. The left (right) NS 5-brane corresponds to the asymptotic 

region with large v where the curve behaves as t ""' v 2Nc+ 2 (t ""'v 2Nr2Nc- 2 ). In terms of 

the complex coordinate 

w = (x8 + ix9
) x const, 

the boundary condition at the left infinity t ""' v2Nc+ 2 reads 

W '"'-' f.l,V, 

(3.29) 

(3.30) 

while it is w ""' 0 at the right infinity t "' v2Nr 2Nc- 2 . We require that the configuration 

is invariant under the rotations U(1)45 and U(1)89 in the 45 and 89 planes which are 

identified with U(1) R-symmetries under which ~ carries charge 2 and 0 respectively. 

Under the group U(1)45 x U(1)89 , the coordinates and parameters are charged as v : 

(2, 0), W : (0, 2), f1 : ( -2, 2), t : ( 4Nc + 4, 0), X : ( 4Nc + 4, 0), and A~;2-N1 : ( 4Nc + 

4- 2Nh 0). The combination tU(1)4s + tU(1)sg makes J1 invariant, and its Z2Nc+2-Nt 

subgroup makes A~;2-N1 invariant. The latter is interpreted as the non-anomalous 

z2Nc+2-Nt R-symmetry of the field theory. As in [18], from the invariance under the U(1) 
symmetries, we can conclude that the projection of the rotated curve is the same as the 

curve before rotation. Then, the w values of the rotated curve can be considered as a 

function on a original, fixed curve. 

Let us first consider the case where the curve has a single infinite component. When 

the curve is compactified at .the two points with v = oo, w has a simple pole at one 

infinity by (3.30) and hence the compactified curve is necessarily (birational to) CP1
, and 

the rotated curve is a cylinder which is globally parametrized by w. Proceeding as in [18], 
we can determine the allowed form oft and v as functions of w. The only difference from 

[18] is that here we require the curve to be invariant under the Z2 : (t, v, w)-+ (t, -v, -w), 
and we find 

v 

t 

f.l,-lw-1 ( w2 _ M2), 

J1-2Nc-2w2Nc+2-2Nt ( w2- M2)Nt. 

(3.31) 

(3.32) 

By requiring that this projects to a curve in the t-v plane of the form (3.21 ), we find that 

for N1 > 0 M must satisfy the equation 

(3.33) 

There are 2Nc+2- N1 solutions for M 2. The Z2Nc+2-Nt rotational symmetry is completely 

broken by any of such M 2 's for N1 odd while it is broken to Z2 for N1 even, since its 

generator acts on M 2 as 

(3.34) 
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For N1 = 0, we find M2Nc+2 = (J.L 2 A~=2 )Nc+l and there are Nc + 1 solutions for M2 related 

by the z2Nc+2 R-symmetry. 

These properties are the same as the structure of vacua with maximal rank solutions 

for the meson vev in the N = 1 superpotential analysis, which are identified as the A 

branch of the N = 2 analysis. Indeed, one can show that the function BNc(v2) defining 

the projected curve in the t-v plane is of the form BNc(v2) = cv2r +···(higher order 

terms), c # 0, where r 2: (NJ- 1)/2 for N1 odd and r = (NJ- 2)/2 for Nf even which is 

the property of the A branch. This can be seen as follows: Note that as w -t ±M, both 

v-+ 0 and t-+ 0, because t "'vNt as can be seen from (3.31)-(3.32). On the other hand, 

equation (3.21) implies 

(3.35) 

The two statements are consistent only when r 2: (NJ- 2)/2. If N1 is even, equations 

(3.31)-(3.32) show that t is a single valued function of v near v "' 0 (for odd Nf, it is 

two-valued because the choice of w = +M or -M affects the sign oft). This is possible 

only if the two terms in the square root of (3.35) cancel, namely, when r = (NJ- 2)/2 

d _ ±2A2Nc+2-Nt an c- N=2 . 

Recall now that there was a puzzle in the field theory analysis for even N1 concerning 

the dimension of the moduli space: The A branch emanates from the locus of the Coulomb 

branch where r = (N1 - 2)/2 of the cPa vanish, and from this we expected that this branch 

is the r = (N1-2)/2 Higgs branch which has complex dimension N1(NJ-1)-2. However, 

N = 1 analysis shows that the dimension is N1(N1 - 1). The solution of the puzzle is 

that the A branch is actually the r = N1 /2 Higgs branch which, in the N = 2 theory, 

emanates from the locus where r = (NJ- 2)/2 of the cPa are vanishing and the product 

of the non-zero¢~ is ±2A2Nc+2-Nt, as we have seen. 

To summarize, the branch of vacua that remain after turning on a mass for the adjoint 

that we considered so far is identified with the branch in the N = 1 superpotential analysis 

where the meson has maximal rank, and with the A branch of the N = 2 analysis. In the 

N = 2 limit, the A branch is the r = [N1j2] Higgs branch. 

Next, we consider the case where the curve is factorized so that the two infinities 

are separated. When such a factorization occurs, we just have to rotate the component 

including the left infinity by w = J.LV. It is easy to see that ~he factorization of (3.21) is 

unique and is given by 

(3.36) 
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By expanding this in t, we see that v 2 BNJ v2 ) = v 2Nc+ 2 + A~t-2N1 v 2Nr 2Nc- 2• In 

particular, this factorization is possible only for N1 2: Nc + 2. Also, this shows that the 

curve belongs to the r = Nc- N1 - 2 Higgs branch root. Therefore, we can identify this 

as the B branch of the N = 2 analysis which is identified with the branch in the N = 1 

analysis with non-maximal rank meson vev's. 

The Limit J-L -+ oo 

We consider taking the J-L -+ oo limit. As in the case of SU(Nc) gauge group [18], we 

need to rescale the coordinate as y( = t) = J1 2Nc+ 2t in order to not let the configuration 

run away. The complex structure of the space-time (before the Z2 quotient) is described 
by yx = AS:..:i6

-
2
N 1 v 2Nt, where A~i3-N1 = J-LNc+l A~i2-N1 . A~i3-N1 is invariant 

under the z2Nc+2-2Nj (ZzNc+2) subgroup of U(1)45 (U(1)sg). 

For N1 = 0, the limit of one of the Nc + 1 curves is given by 

vw = -A1=1 , 

(3.37) 

(3.38) 

and the limits of the other Nc curves are given by the action of the Z 2Nc+ 2 symmetry. 

This in particular exhibits the chiral symmetry breaking z2Nc+2 -+ z2. 
For 0 < N1 < Nc + 1, the curve becomes infinitely elon~ated because M 2 -+ oo in 

the limit. This is consistent with the absence of supersymmetric vacua for this number 

of flavors in the field theory. 

For N1 2: Nc + 1, the limit exists. It contains two infinite components and several 

CP1 components. The infinite components- CL and CR- are given by 

(3.39) 

where (M2 )Nc+l = ( -Aj..=1)Nc+I for Nj = Nc + 1 while M 2 = 0 for Nf > Nc + 1. The 

CP1 components are of multiplicity 2Nc + 2, ... , 2Nc + 2, 2Nc + 1, 2Nc, ... , 3, 2, 1 from left 

to right (the number of 2Nc + 2's is 2Nf - 2Nc- 2). For Nf 2: Nc + 2, the component 

CL intersects the left-most CP1 at w = 0 and the component CR intersects the last CP1 

transversely with multiplicity 2Nc + 2. For N1 = Nc + 1, both do not intersect any of the 

CP1 's at w = 0. 
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Configuration for N = 1 SQCD 

After the limit 1-l -+ oo, the curve acquires new deformation directions for N f ~ Nc + 1. 

The component CR is still rigid but CL can be deformed as y = (w2 -Mi) · · · (w2 -M~c+1 ), 

v = 0. However, there is a constraint for the allowed values of Ml which is required by , 

the basic hypothesis. 

Let us first consider the case of N1 = Nc + 1. In this case, the component CR can be 

described as y = A~i4 , w = 0, and hence it intersects the Z2 fixed point set at one point 

(x, y, v, w) = (0, A~i4 , 0, 0). This is a t-configuration and it is not supersymmetric by 

itself according to the basic hypothesis. The intersection point attracts the other infinite 

component CL so that CL intersects the Z2 fixed point set at the same point. This is 

equivalent to requiring 

(3.40) 

This corresponds to the quantum modified constraint Pf M = A~i2 on the meson ma­

trix. 

In the case Nf ~ Nc + 2, the component CR intersects transversely with the 2Nc +2nd 

CP1 from the right. From the generalized basic hypothesis, there must be a chain of CP1 

components that connects CR with C£. Since CR is at w = 0, all such CP1 components 

should also be at w = 0 and in particular CL must intersect the left-most CP1 at w = 
0. This means that some of the Ml's must be zero. This corresponds to the classical 

constraint rankM ::; 2Nc which is also the full constraint in the quantum theory. 

One can also see the agreement in the dimension of the moduli space. For Nf ~ Nc + 2 

there is a constraint for the motion of CP1 's due to the generalized basic hypothesis, while 

there is no constraint on the CP1 motion for N1 = Nc + 1. In either case the dimension is 

the sum of Nc from the variation of the Mi and 2( 1 + 1 + · · · + Nc + Nc + ( 2N f- 2Nc-2) X Nc) 

from the CP1 motion, and is in total 

(3.41) 

which agrees with what we know from field theory. 
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4 Izawa-Yanagida-Intriligator-Thomas Model 

4.1 Field Theory Analysis 

The Model 

In [49, 50], a non-chiral model of dynamical supersymmetry breaking with stable 

non-supersymmetric vacua was given. Classically it is defined as an N = 1 supersym­

metric Sp(Nc) gauge theory with 2Nf = 2(Nc + 1) fundamental chiral multiplets Q~ 

(a= 1, ... , 2Nc, i = 1, ... , 2N1) and a gauge singlet chiral multiplet Sij which is an anti­

symmetric tensor with respect to the flavor indices i, j. The tree level superpotential is 

given by 

( 4.1) 

where QiQj = JabQ~ Q~ form the basis of gauge invariant chiral superfields, 1 and A is 

the Yukawa coupling constant. The coupling (4.1) is chosen so that the SU(2NJ) flavor 

symmetry is preserved. In this paper, we will consider a deformation of this modeL by a 

linear term in S in the superpotential 

W - \S· ·QiQj - mJijS· · tree - A tJ tJ , (4.2) 

which breaks the flavor symmetry to Sp(NJ ). We shall denote this theory also by the"IYIT 

model [49, 50], although the deformation by the linear term 'Yas not considered there. 

The exact effective superpotential of the theory is given by 

(4.3) 

where Mij = -Mji is the meson matrix corresponding to QiQj and A is the dynamical 

scale of the Sp( Nc) gauge interaction. X in the first term is a chiral superneld which 

plays the role of a Lagrange multiplier. The variation of Weff with respect to X, Sand 

M yields 

PfM -

M 

s ex: 

A2Nc+2 

m 
>:J' 
M-1 . 

' 
(4.4) 

( 4.5) 

(4.6) 

1rb is the skew-symmetric matrix of size 2Nc x 2Nc which is preserved by the group Sp(Nc)· Likewise, 

we will use Jii to denote the Sp(N1 ) invariant matrix of size 2N1 x 2N1 . In a symplectic basis, the matrix 

J = (Jii) is given by J = 1N1 0 € where 1N1 is the identity matrix of size NJ and € = ( ~ ~l ) . 
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The first equation is the quantum modified constraint which represents the Sp(Nc) gauge 

dynamics in the case of Nf = Nc + 1 [52]. The first two conditions (4.4) and (4.5) are 

consistently satisfied only if Pf ( mJ j A) = A 2Nc+2 , namely 

(
m)Nc+l ");- = A2Nc+2. (4.7) 

Therefore, if the condition ( 4. 7) is not satisfied, the supersymmetry is spontaneously 

broken [49, 50]. 

If ( 4. 7) is satisfied, the supersymmetry is not broken. Indeed, the meson matrix has 

a fixed vev M = mJ /A satisfying the quantum modified constraint ( 4.4), and there is 

a complex one-dimensional fiat direction for the values of S because the condition ( 4.6) 

implies sij <X Jij. 

Existence Of Non-supersymmetric Stable Vacuum 

Let us analyze the model with (m/A)Nc+l =/= A2Nc+2 where the supersymmetry is 

dynamically broken. For simplicity, we consider the original model of [49, 50] where m = 0, 

but the same analysis applies also to the case m =/= 0. 

For large values of S, the fundamental chiral multiplets are heavy and the theory at 

energies below AS is the pure.N = 1 super-Yang-Mills theory whose dynamical scale AL is 

given by Af'c+3 = Pf (2AS)_A 2Nc+2 • The superpoten~ial of the low energy theory is given 

by 

(4.8) 

Around the locus Sij = CJ]ij, all the components of Sij other than OCJ]ij are massive, and 

the effective superpotential with respect to CJ is given by 

(4.9) 

We see that the supersymmetry is indeed broken in this direction oWL/ OCJ I"V AA 2 =/= 0. 

The scalar potential is thus given by 

(4.10) 

where guu is the inverse of the. Kahler metric 9uu with respect to CJ. At large values of CJ, 

we can evaluate the metric 9uu by perturbation theory. The dominant correction is due 

28 



to the one loop of the Sp(Nc) fundamental chiral multiplets, and the corrected metric is 

given by 
1 I Nc 2 A~ 

g0'7t oop = 1- 47r21AI log Muv ' ( 4.11) 

where Muv is the ultra-violet cut off. As we increase ~, g~7YJoop decreases, and hence the 

scalar potential (4.10) grows. 2 Since the scalar potential grows at large values of 1~1, 

there must be a minimum at some smaller values of ~. This ensures the existence of a 

stable vacuum. 3 If there is no singularity in the Kahler metric, the vacuum has finite 

energy and breaks supersymmetry. 

The sign - (minus) of the one-loop correction ( 4.11) is essential for the potential 

growth at large~. This would not have been the case if, say, we had gauged the S0(2Nf) 

subgroup of the flavor group as we will do in the next section. 

Perturbation By Quadratic Term 

For later use, we also consider a deformation of the superpotential ( 4.2) by a quadratic 

term inS: 

( 4.12) 

where the flavor indices are raised and lowered by the Kronecker delta Jii which is an 

S0(2N1 ) invariant. This breaks the flavor symmetry further down to Sp(NJ )nS0(2NJ) = 

U(NJ ). The effective superpotential of the deformed theory is given by 

( 4.13) 

2Strictly speaking, the one-loop correction (4.11) is reliable for large u such that jAuj is almost close 

to the cut off Muv. However, a simple renormalization group argument [53] shows that this potential 

rise persists for much smaller values of u. 
3 M ore rigorously, we must show that the potential grows in all possible directions in the S;j space (at 

large values). This seems also to be true. Consider for example the case where (Sij) = diag(u1, ... , uN1 )® 
f in which first r u;'s are much smaller than the last Nf - r: u1 ......, u2 ......, · · · ......, Ur ......, Usmall << Utarge "" 

Ur+l ......, · · ·""' uN,· Then, the superpotential of the effective theory at energies below AUtarge is given by 

It gives the run-away potential with respect to Usmall since fJWL/OUsmall......, (usmautf(Nc+l)-l is a negative 

power of Usmall and the potential cannot be made to grow by a perturbative correction. Thus, Usmall 

runs away to larger values until it becomes comparable to Uzarge· We thank H. Murayama for explaining 

us this argument. 
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The extremum condition reads as 

0. 

The last two equations yield 4 

M -· 7 J <X M-1 . 

( 4.14) 

( 4.15) 

( 4.16) 

( 4.17) 

This in particular implies that the anti-symmetric matrix M commutes with J, which 

shows that it can be expressed as 

M= A®t:+B®lz ( 4.18) 

where 12 is the 2 x 2 identity matrix and A and B are N1 x Nf symmetric and antisym­

metric matrices respectively, t A = A, t B = -B. In other words, M can be mapped to an 

Nf x Nf matrix M = A-iB which transforms in the (complexified) adjoint representation 

of the flavor group U(NJ)· The equations (4.14) and (4.17) then yield 

det M = A2Nc+2 

• 

( 4.19) 

( 4.20) 

As in [18], we can show that ·M is diagonalizable for generic values of m,5 and there are 

at most two kinds of eigenvalues. Proceeding as in [18], we see that there are solutions 

parametrized by r = 0, 1, ... , [NJ/2], where the solution of the type r is such that r of 

the eigenvalues of Mare M+ and N1- r of them are M_ where 

m 
M++M- = ~· ( 4.21) 

A general solution can be obtained from the complexified flavor rotation of a diago­

nal solution, and hence the moduli space of type r solutions is the homogeneous space 

GL(NJ, C)f(GL(r, C) x GL(N1 - r, C)) which is of complex dimension 2r(N1 - r). 

The vev of Sii is determined by M through (4.15), S = >..p,(M- mJf>..): 

r N1-r 

S = diag(~, a_, ... , a_) ® t: ( 4.22) 

4 Here and in what follows, the obvious multiplication by a Kronecker delta is abbreviated. For 

example, the matrix symbol M means Mii as well as Mii (or Mij) and what it means should be clear 

from the context. 
5Non-diagonalizable solutions are possible only for ( m/2.A)Nc+I = A 2Nc+ 2 where there are solutions 

with Jordan blocks of size two. 
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where O"± = >-.p(M±- ml>-.) = ->-.pM'T and thus 

( 4.23) 

As we take the limit f-l--+ oo, either a+ or a_ diverges, and hence S runs away to infinity 

unless r = 0 and a_ = finite. This is possible if and only if the parameter m satisfies 

the constraint ( m I).. )Nc+l = A 2Nc+2• This is consistent with the constraint ( 4. 7) for the 

existence of supersymmetric vacuum for the theory without the quadratic term ( 4.12). 

The vacuum obtained in this way has the vevs M = mJ I>-., S = 0. Other vacua with 

general S can be obtained by tuning m to approach A 2 as m = )..A 2 
- O" I f-l· Then the 

r = 0 solution converges in the limit f-l --+ oo to M = mJ I).., S = a J. 

Let us consider the case ( ml >-.)Nc+l =/= A 2(Nc+l) where the supersymmetric vacua run 

away to infinity S -+ oo as f-l -+ oo. We have seen in the f-l = oo case that there is a 

(presumably non-supersymmetric) vacuum at a small value of S. Is there a local minimum 

for finite f-l which approaches this vacuum in the f-l --+ oo limit? Let us again look at the 

region of large S with Sij = aJij· The effective superpotential is given by 

( 4.24) 

By taking into account the one-loop correction to the Kahler metric of Sij for large values 

of a so that J>-.aJ is almost close to the ultra-violet cut off ·Muv, the effective scalar 

potential is given by 

( 4.25) 

In the direction of the a-plane where a has the same phase as p( )..A 2 -m), the first factor 

has a negative slope in the region a< p(>-.A2 - m) while the second factor has a positive 

slope around J>-.aJ ;S Muv. Therefore, whether U is rising or not is a consequence of the 

conflict of the two factors. It turns out that it is rising near J>-.aJ ;S Muv (and hence there 

is a local minimum at smaller values) when fJ is large enough so that 

(4.26) 

For illustration, we present in figure 4 the graph of the scalar potential U ( 4.25), up 

to an overall normalization, for the case Muv = 1, AfJ(>-.A2
- m) = 10, NcJ>-.J 214rr2 = 113, 

where the horizontal axis parametrizes s =>-.a. Note that the function (4.25) makes sense 

as scalar potential only in the region below the cut-off >-.a :::; Muv, and hence only the 

region s :S 1 is important although we continued it to larger values. 
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Figure 4: Graph of (10- s )2 /(1 - ~logs) 

4.2 Brane Realization of the Model 

We construct a brane configuration corresponding to the IYIT model. We first con­

struct the configuration for the model perturbed by the quadratic term Ll W = S2 
/ J.l 

which contains supersymmetric vacua, and then consider the limit J.l --+ oo. 

Configuration for Finite f-l 

We first note that the tree-level superpotential of the theory 

. . .. 1 .. 
W - 'S··QlQJ mJlJS·· + -S··SlJ tree· - A lJ - lJ 2 lJ ' 

f-l . 
( 4.27) 

is the same as the tree-level superpotential of the magnetic dual" of the Sp(Nc) gauge theory 

(which we shall call the electric dual) with 2Nj quarks qi of bare mass m with a quartic 

superpotential ( qq )2 /2J.L. Although Nc = N1 - Nc - 2 = -1, we can still make use of this 

fact as a guide to construct the brane configuration corresponding to the perturbed IYIT 

modeP. Namely, we first consider Nh Nc to be in the region where the electric-magnetic 

duality holds and then take the limit Nc --+ -1 after construction of the configuration. 

We then read off the boundary condition satisfied by the curves obtained in this way, and 

identify all the curves with the same boundary condition. As evidence we will show how 

to reproduce some of the results of section 4.1 from these brane configurations. 

The meson field qiqj of the electric dual is identified with Sij· '_fhe tree-level superpo­

tential-mqq+(qq)2/2J-L shows that this theory is obtained from theN= 2 Sp(Nc) SQCD 

with N1 flavors by giving a bare mass J.l to the adjoint chiral multiplet. Note that the 

dynamical scale A of the electric dual is given by A 3(Nc+l)-Nt A 3(Nc+l)-Nt = ( -1 )Nc+1 A-Nt 

1 Recently, this procedure was justified in [68) by showing that the configuration constructed in this 

way correctly reproduces the IYIT model in the type IIA limit. 
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and it is related to the dynamical scale AN=2 of the high energy N 

A
-3(Nc+l)-Nt _ Nc+lA-2(Nc+l)-N, 

- J-l N=2 · 

The configuration for J-l = 0 is given by 

t2 _ ( v2 B;vc ( v2) + 2x_;.f:;-2-Nt mNt) t + x_~;-4-2Nt ( v2 + m2)Nt = O. 

In the standard way, we can find the configuration for finite J-l· The result is 

vw 

t 

where r = 0, 1, ... , [N1j2] and w+, w_ are solutions of 

w+ + w_ = ipm, 
N,-r-(Nc+l) r-(Nc+l) w+ w_ 

2 theory by 

( 4.28) 

( 4.29) 

( 4.30) 

( 4.31) 

( 4.32) 

At this stage, we put Nc = -1. Then the relation among the dynamical scales is 

AN=2 = A = )..A 2 , and the configuration is given by 

vw 

t 

where r = 0, 1, ... , [N1j2] and 

Note that 

p-1 (w2 + w+w-), 

w-2Nt(w2 _ w!t(w2 _ w:_)N,-r, 

( 4.3:3) 

( 4.34) 

( 4.35) 

( 4.36) 

From this and the equation (4.34), we see that the curve passes through the AN,-l sin­

gularity at v = ±im, t = x = 0 in such a way that there are CP1 components with 

multiplicity 1, 2, ... , r -1, r, ... , r, r -1, ... ,2, 1 (the number of r's is N1 - 2r + 1) in the 

resolved surface. 

As far as W± =/= 0, these curves satisfy the following boundary conditions. The curve 

extends to infinity in two directions: 

v"' p-1w, t,...., 1, w,....., oo, 

and W "' 0, t "' ()..A 2)-2NFv2Nt' V "' 00. 

Also 

t = 0 implies v = ±im. 

33 

( 4.37) 

( 4.38) 

( 4.39) 



It is easy to identify all holomorphic curves satisfying this boundary condition. Those 

with a single infinite component are the curves given above and similar ones but with the 

second equation of (4.35) replaced by w~,-r w:. = -(i>.f-lA2)Nt. t 

In addition to these, there is a solution consisting of two infinite components. It is 

given by 

CR { t = (>.A2)-2Nt(v2 + m2)Nt' 

w=O. 
( 4.40) 

It is easy to see that this curve does satisfy the boundary condition given above. However, 

for generic values of m, the two components intersect the z2 fixed plane v = w = 0 at 

different points, CL at t = 1 while CR at t = (mj >.A2)2Nt (see figure 5), and therefore the 

v --

k:: t 
----

Figure 5: The configuration (4.40) near the Z2 fixed plane for mNJ =J. (>.A2)Nt (left) and 

mNt = (>.A2)Nt (right). Note that the left one is a t-configur.ation. 

configuration is riot supersymmetric by the basic hypothesis. The two intersection points 

coincide only when mNt = (>.A2)Nt, and only then can the configuration be considered 

as defining a supersymmetric vacuum. Actually, in the case mNt = (>.A2)Nt, one of the 

r = 0 solutions of ( 4.33)-( 4.34) has w_ = 0 and factorizes into two components, and is 

identical to the above solution. 

As in [18], we can interpret W± as the eigenvalues of the matrix sij by the R-symmetry 

and the flavor symmetry breaking pattern. Indeed, there is a precise correspondence of 

the values for each r (compare (4.34) with (4.22) and (4.35) with (4.23)): 

( 4.41) 

fThe two types of solutions are related by a change of the sign of A2Nt. Thus, the presence of such 

copies is related to the doubling phenomena which we encountered before. In the present case, there 

is no obvious way to relate these curves by a coordinate change and it is not clear whether they can 

be considered as equivalent. However, as the presence of such copies does not make any change in the 

discussion of dynamical supersymmetry breaking, we simply ignore this doubling, by assuming that there 

is a way to show the equivalence to the curves ( 4.33)-( 4.35). 
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We also note that there are r(N1-r) CP1 components at v = im together with their mirror 

images at v = -im and this is consistent with the fact that the complex dimension of the 

r-th branch is equal to 2r(N1 - r). The extra solution present in the case mNt = (AA2)Nt 

can be identified with the supersymmetric vacuum with S = 0. 

The Supersymmetric Configurations for p = oo 

Let us take the p -+ oo limit by keeping fixed A, A and m. The configuration with 

a single infinite component goes away from the region with finite vw and becomes in­

finitely elongated in the x 6 direction since w+ and w_ diverge as "' f.1 in the limit. The 

configuration with two infinite components present for mNt = (AA2)Nt has a limit given 

by 

CL {· t = 1, 
v = 0, 

CR { t = (AA2)-2Nt(v2 + m2)Nt' 

w= 0. 
( 4.42) 

If we tune the parameter m so that it approaches AA2 (or its zN, phase rotation) as 

m = AA 2 
- <7 / p, one of the r = 0 solutions is given by w+ = ipAA 2 , w_ = -i<7 and the 

p -+ oo limit is a curve with a single component given by 

{ 
vw = AA2

<7, 

t = ( AA 2)-2N1 ( v2 + m2)Nt. 
( 4.43) 

We note that ( 4.42) can be ·obtained from ( 4.43) by taking the limit <7 -+ 0. These 

supersymmetric configurations correspond to the supersymmetric vacua S = <7 J of the 

IYIT model with mNt = (AA2)Nt. 

The Type IIA Limit 

We have proposed a realization of the (perturbed) IYIT model on the worldvolume of 

the fivebrane in M theory. In the construction, we used a fictitious duality between Sp(Nc) 
and Sp( -1) "gauge" theories as a guide to read off the boundary condition. Although we 

have observed some quantitative and qualitative agreement with field theory about the 

supersymmetric ground states, it would be better to have more evidence for the proposal. 

One obvious thing to check is whether we can see the elementary fields of the gauge 

theory by considering the weak coupling Type IIA limit. In Type IIA string theory, the 

IYIT model (e.g. for m = 0) may be realized as the worldvolume theory of the brane 

configuration as depicted in Figure 6. We can see the Sp(Nc) gauge symmetry on the D4-

branes stretched between the NS and NS' 5-branes, and the fundamental chiral multiplets 

are created by open strings ending on these D4-branes and the 2N1 D4-branes ending; on 
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Figure 6: Type IIA Configuration for IYIT Model 

the NS' brane from the right. The fluctuations of the singlet Sij correspond to the motion 

in the x(7
)·8 •

9 directions of the D4-branes on the right of the NS' 5-brane. By taking a 

suitable Type IIA limit of the above factorized configuration (which is a t-configuration 

for m = 0), we can actually see this kind of intersecting brane configuration. See (68] for 

details. 

4.3 Non-supersymmetric Stable Vacuum 

Let us study the case with mNJ # (>..A2)Nt in detail. As we have seen above, in the 

J1 -t oo limit all supersymmetric configurations go away from the region with finite vw and 

become infinitely elongated in more than four directions. We have already seen a similar 

phenomenon in the study of fivebrane configurations corresponding to SU(Nc) SQCD 

with N1 < Nc flavors in which there is no stable vacuum (18]. However, there is a clear 

difference that distinguishes the present case from such examples: The holomorphic curve 

( 4.40) remains in the finite region and does not become infinitely elongated, although 

it does not define a supersymmetric vacuum because it contains a t-configuration. We 

discuss what this fact implies for the issue of existence of stable vacua. 

As the classical Nambu-Goto action of the fivebrane shows, the area of the real two­

dimensional surface :Eon which the fivebrane wraps plays the role of the potential energy. 

As far as the characteristic length scale of the brane is much larger than the eleven­

dimensional Planck length, the classical supergravity is a good description and an area-
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minimizing surface can be considered as defining a stable vacuum as stated in section 

2. Therefore one is tempted to look for an area-minimizing surface which satisfies the 

boundary condition given by ( 4.37)-( 4.39) or its f.l ---7 oo limit. Of course, when the 

fivebrane approaches the z2 fixed plane one has to take the effects of the fixed plane into 

account. The hypothesis that a t-configuration is not supersymmetric suggests that there 

is an extra potential energy for a t-configuration in addition to the energy associated with 

the area of the surface. In this paper, we assume that this energy is negligible compared 

to the energy coming from the area as long as the fivebrane is separated from the Z2 fixed 

plane by a distance much larger than the eleven-dimensional Planck length. 

Although the surface we are considering is non-compact, one can define a regularized 

area as far as the surfaces obey a certain boundary condition at infinity. A formal expres­

sion of the area of a surface .E embedded in the seven-dimensional part of the space-time 

(transverse to the R 4 direction which the four-dimensional part of the fivebrane spans) is 

given by 

( 4.44) 

where ygd2x is the area element of the metric 9J.Lv on the surface induced from the seven­

manifold. In the present case, the seven manifold is the product of the Taub-NUT space 

parametrized by (t, v) and R 3 parametrized by (w 7
, w = w8 +iw9

). Since we are interested 

in area-minimizing surfaces under the condition that w 7 ---7 0 in each asymptotic region, 

we may as well consider onlY. the surfaces with w 7 = 0. Namely, we consider .E to be 

a surface embedded in the direct product of the Taub-NUT·space and the fiat w-plane 

which is a manifold with a Kahler metric Gi1 where we use i, j (z, J) to denote the indices of 

local (anti-)holomorphic coordinates. The induced metric 9J.Lv defines a complex structure 

on .E. Then, the area element can be expressed as 

y/gd2x - 9z.zd2z = Gi1 ( 8zXia.zX1 + a.zXiozXI) d2z 

2GiJO.zXiazXI d2 z + ~GiJdXi A dXJ, ( 4.45) 

where z is a local complex coordinate of .E. The integral of the first term is finite if 

the boundary condition at infinity is holomorphic and if the deviation a.zXi from the 

holomorphic embedding falls off sufficiently fast. To put it more appropriately, we include 

the finiteness of the integral of this term as one of the boundary conditions. The second 

term of ( 4.45) is the Kahler form of the space-time restricted to the surface .E. Since the 

Kahler form is a closed two-form, its integral does not change for a continuous variation 

of the surface and we may consider it as a constant. Thus, we may as well take 

( 4.46) 
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as the definition of the area as long as we are considering surfaces in a given homology 

class. 

Actually, the integral of the second term of ( 4.45) is divergent and needs some special 

care in order to show that it can really be considered as a constant. We first regularize 

the integral by cutting off some part of the surface at infinity. In general, a variation 

of the surface induces a change in the boundary of the cut-off surface, and the integral 

might change by a boundary term. The integral can be considered as a constant only 

when the boundary term vanishes as we take the limit where the cut-off is removed. 

For the configurations we are studying there is a certain regularization such that the 

boundary term does vanish as we remove the cut-off, as we now show in the 11 = oo 

case (the generalization to the case with finite 11 is obvious). In the asymptotic region 

( 4.37) where the surface is parametrized by w, we cut off the part with lwl > W for 

some large W. Similarly we cut off I vi > V in the other asymptotic region ( 4.38) for 

some large V. It is easy to see that the boundary term vanishes in the V, W -+ oo limit. 

For example, let us consider the boundary term in the asymptotic region ( 4.37). In the 

region with large w, the surface is considered as a graph of the functions v(w), t(w), and 

the variation 2:0 -+ 2:1 of the surface is represented by the variation of such functions 

v0(w),t 0(w)-+ v1(w),t 1(w). The boundary term is the integral of the Kahler form on 

the boundary surface at lwl = W. As the boundary surface, one can take for example 

w = Weiu, v = v0 (w) + T(v1(w)- v0 (w)), t = t0 (w) + T(t 1(w)- t0(w)) parametrized by 

0 :::; u < 21r, 0 :::; T :::; 1. Since the Kahler form is the sum of idw 1\ dw and the Kahler form 

of the Taub-NUT space which is well-parametrized by v and t near t = 1 and v = 0, the 

boundary term vanishes in the limit W -+ oo as long as lv1 ( w)- vo( w) I, lt1 ( w)- to( w) I -+ 0 

which hold under the boundary conditions ( 4.37). Thus, one can really take ( 4.46) as the 

definition of the regularized area. 

The basic property of the regularized area ( 4.46) is that it vanishes only for holomor­

phic curves. Therefore, if there is a holomorphic curve satisfying the boundary condition, 

an area minimizing surface 2: in the -same homology class must be holomorphic since the 

holomorphic curve has Area' = 0 and hence an area minimizing surface must also have 

Area' = 0 which implies that it is holomorphic. 

For finite 11, there are various holomorphic curves satisfying the boundary condition. 

All these including the factorized one ( 4.40) are connected by a continuous deformation, 

as can be seen as follows. Since the space-time is topologically trivial in the w direction, 

we only have to show that their projections to the Taub-NUT space are connected by a 

deformation. The projection of the curve (4.33)-(4.34) at the r-th branch, including the 
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CP1 components, is described by the equation 

( 4.47) 

for certain Ui 's, while the factorized curve ( 4.40) projects to 

( 4.48) 

It is evident that these are connected by a continuous deformation that does not change 

the asymptotic behavior. It is not clear whether this implies that we should only take into 

account the surfaces in the same homology class, but we shall assume this to be the case. 

Then, all the holomorphic curves have the same minimum area Area' = 0 and all other 

surfaces have Area' > 0. The graph of the area functional is thus schematically given by 

figure 7. 

Area' 

t-conf. non-factorized 

Figure 7: The Graph of Area' 

The horizontal axis parametrizes the space of surfaces. In the region called "t-conf.", the 

surface contains a t-configuration while the surface does not intersect the Z 2 fixed plane 

in the region called "non-factorized". In the transition region between them, two parts 

of the surface intersect the fixed plane at the same point. The minima correspond to the 

holomorphic curves. The minima with non-factorized curves run away to infinity in the 

f.1 --+ oo limit, but the minimum in the "t-conf." region is the factorized curve ( 4.40) and 

does not go away. 

Our basic hypothesis that a t-configuration is not supersymmetric means that the 

configuration with factorized holomorphic curve has positive energy compared to the 

non-factorized holomorphic curves, although it minimizes the area. More generally, such 

an extra energy should be positive in the whole "t-conf." region, fall down toward the 

transition region, and be negligible in the part of the "non-factorized" region in which 
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the curve is separated from the Z2 fixed plane by a distance much larger than the eleven­

dimensional Planck scale. The competition between the force from this extra energy and 

the force from the gradient of Area' determine the location of a possible stable configura­

tion. 

Therefore, it is important to know how fast the area grows as the factorized curve 

( 4.40) is deformed so that the two intersection points approach each other. Namely, we 

want to find an area minimizing surface with a given distance between the two components 

and compute the area as a function of the distance. For simplicity let us consider the 

J..l = oo case. The component CL is at t = 1, v = 0 and intersects the Z2 fixed plane 

v = w = 0 at t = 1 while the component CR is at t = (AA2)-2Nt(v 2 + m2)Nt, w = 0 

and intersects the Z2 fixed plane at t = (mjAA2?Nt. We want for example to deform 

C L by replacing t = 1 by t = t ( w), a function of w, so that the area is minimized under 

the condition t( w) --+ 1 as w --+ oo and t(O) = 1 + D. for a fixed b.. One can consider 

an analogous problem in the simplified one-dimensional analog where the parameters t, w 

are considered as real numbers and minimum area is replaced by minimum length. In 

this one-dimensional analog, for the configuration given by t( w) = 1 for lwl ;:::: c, and 

t(w) = 1 + .D.(1 -lwl/c) for iwi :::; c (see figure 8), the length decreases as cis increased 

and does not attain a minimum as the c --+ oo limit no longer satisfies the required 

asymptotic behavior. 

t 
1+~ 

w 

Figure 8: A One-Dimensional Analog 

One may wonder whether our two-dimensional model exhibits this "run-away" behav­

ior. To examine this, we compute the area of the surface in the Euclidean space C 2 given 

by the same function t( w) as above where now we consider t, w to be complex variables. 

One may be worried by the fact that the surface is not smooth at lwl = 0 and c because 

a singularity might suggest an instability of the configuration, but such a singularity can 

be smoothed out without change of the area. The difference of the area from the one of 

the flat surface is given by 

( 4.49). 
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This is positive and is monotonically increasing as a function of L Therefore, in the two-­

dimensional case, we may not have to worry about such a run-away behavior for E -+ oo 

as in the case of one-dimensional analog. 

However, there is another problem. The difference L\Area ( 4.49) decreases as we 

decrease E and approaches zero as E-+ 0 but theE= 0 surface has a spike singularity which 

cannot be smoothed out without increasing the area. Namely, for any fixed .6., the area 

can be made arbitrarily small but no smooth surface can attain Area'= 0. In particular, 

this is also true for the case .6. = ( m/ >..A 2 ) 2Nt - 1 := .6.* in which the two intersection 

points coincide. However, we cannot conclude from this that there is no local minimum of 

the energy. This is because a surface with sufficiently small Area' has characteristic length 

E smaller than the eleven-dimensional Planck length, and our argument (based on the low 

energy action) does not apply to such surfaces. Precisely because of this reason, we cannot 

make a decisive statement concerning the stable vacuum within the eleven-dimensional· 

supergravity approximation of M theory. 

We have found that the slope of Area' is almost zero as a function of the distance 

between the two intersection points. On the other hand, we expect a rapid growth of 

the extra energy as the two intersection points are separated: Otherwise, there would be 

an extra light mode in the examples we have considered in the previous section which 

is absent in the corresponding Sp( Nc) gauge theories. Therefore, it is unlikely that the 

potential minimum is in the ."t-conf." region, although we need a more careful estimate 

of the growth of the extra energy in order to completely exclude this possibility. 

The fact that LlArea ( 4.49) approaches zero when approaching the surface with a spike 

singularity shows that Area' in the "non-factorized" region also falls off when approaching 

the spike surface with .6. = .6.*. In other words, Area' grows when going away from the 

spike surface in the direction to the "non-factorized" region. In order to illustrate this, 

we consider a family of configurations parametrized by s in the J.t = oo case as depicted 

in figure 9. 1 As s -+ 0, the configurations approach the surface with the spike singularity. 

To be more precise, we construct the configurations from the factorized curve ( 4.40) by 

cutting off the two discs- iwi :::; s of CL and lvl :::; s of CR- and connect the boundary 

circles by a cylinder (for simplicity of the discussion, we assume that v, w and t are 

coordinates of the flat Euclidean space C 3 with the metric given by ldvl2 + ldwl2 + ldti2
). 

As the cylinder, we can choose t = 1 + .6.*r, v = sf(r)eiB and w = sg(r)e-i8, where 

0 :::; T :::; 1, 0 :::; () :::; 27r are the coordin~tes of the cylinder, and f( T) (resp. g( T)) is some 

non-negative function starting from f(O) = 0 and ending at f(1) = 1 (resp. from g(O) = 1 

1 We thank Michael Peskin for asking a question which lead to this computation. 
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Figure 9: A Deformation From The Spike Surface 

to g(l) = 0) such that j2 + g2 is always positive. Then the Area' is given by 

Area'= 27rs 2 fo1 

Jtl;js 2 + (!')2 + (g')2Jp + g2dr- 21rs2
• (4.50) 

. One can show by using the inequality j(J')2 + (g') 2y' p + g2 2: f f' - gg' that this is 

indeed non-negative. Since it is zero at s = 0, it can never decrease as s is increased. 

One can actually show using the same inequality that it is monotonically increasing as a 

function of s at all values of s 2: 0 for an arbitrary choice of the differentiable functions 

f( T), g( T). The parameter s ~an be considered as a counterpart of the eigenvalue cr of the 

singlet Sij, as the supersymmetric configuration ( 4.43) in the !l* = 0 case suggests. The 

monotonic growth of Area' as s -+ large may be considered as· an analog of the potential 

growth as cr -+ large in the field theory which can be shown near the ultra-violet cut-off 

>.cr .:S Muv by the one loop computation (and can be continued to smaller values of cr · 

to some extent by a renormalization group argument). In the brane picture the Area' 

itself continues to fall off as s -+ small up until s = 0. Of course, Area' can really be 

considered as the potential energy only if the length scale set by s is much larger than 

the eleven-dimensional Planck length. 

For finite p,, Area' also decreases when approaching any of the non-factorized holomor­

phic curves, but these go away to infinity in the p, -+ oo limit, while the fall-off toward 

the spike surface remains as we have illustrated above. In addition, there are no other 

obvious directions in which the potential decreases. This may suggest that, in the limit 

p, -+ oo, there is a minimum of the potential energy in a region near the singular surface. 

In field theory, it was difficult to obtain definite information about the stable vacuum, 

such as its location or vacuum energy, because of the difficulty in analyzing the Kahler 

potential of cr in the region where cr is small. In the brane picture, the difficulty is in 
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dealing with the fivebrane which has a characteristic length scale smaller than the Planck 

length, for which we need information about the fivebrane dynamics in M theory beyond 

the eleven-dimensional supergravity approximation. 

Remark 

In (69], the IYIT model was realized in 50(32) heterotic string theory compactified on 

a K3-fibred Calabi-Yau three-fold by encoding the SU(2) gauge symmetry in a singularity 

of the gauge bundle along a section (a Riemann surface) of the K3-fibration. It would 

be interesting to find a relation with our construction of the model. However, there is 

a clear difference from ours .. The parameter corresponding to the dynamical scale A is 

related by yC;i A = e-R2 
fer' to the size R of the Riemann surface, which is one of the 

moduli of string theory. Since the vacuum energy would be A 4 times some dimensionless 

quantity, this may cause a problem of vacuum instability. In our case, it takes an infinite 

amount of energy to vary the parameter A because a change of A causes a change of the 

asymptotic boundary condition. Therefore, a map between our model and that of [69], if 

exists, would be realized in some limit which freezes the degrees of freedom corresponding 

to the variation of the size of the Riemann surface on the heterotic side. 

5 Sp x SO - Run away Behavior 

In this section we will study the IYIT model with a gauged flavor group. This theory 

has several features in common with the original IYIT model, but there is one crucial 

difference. In the case where N1 = Nc + 1, supersymmetry is still broken, but there 

no longer exists a stable non-supersymmetric vacuum. It is therefore very interesting to 

compare the brane geometry for the gauged model to the one for the original IYIT model 

discussed in the previous section. It may provide us with a general rule how to distinguish 

between runaway behavior and the existence of stable non-supersymmetric vacua, given 

some brane configuration for a theory with dynamical supersymmetry braking. 

5.1 Field Theory 

One way to construct a brane configuration for an N = 1 theory is to start with an 

N = 2 theory and to introduce suitable mass terms so that when we send the masses 

to infinity we recover the N = 1 theory. We used this in the previous sections to study 

N = 2 QCD with gauge group Sp(Nc) as well as the IYIT model. The advantage of 
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this method is that one can see which N = 1 theories have a supersymmetric vacuum 

and which ones do not. If the brane configuration has a well-defined limit when we send 

the masses to infinity, then this is the brane configuration for the corresponding N = 1 

theory. If no such well-defined limit exists, supersymmetry is generically broken in the 

N = 1 theory. Clearly, this argument is only valid if supersymmetry is unbroken for finite 

values of the masses. To facilitate comparison with the brane geomet.ry, we will therefore 

discuss an N = 2 version of the gauged IYIT model, broken to N = 1 by mass terms. 

We thus consider anN= 2 gauge theory with gauge group Sp(Nc) x S0(2N1 ), and one 

hypermultiplet Qai transforming in the 'bifundamental' representation (2Nc, 2Nr ). From 

the N = 1 point of view there are two chiral superfields ( <Psp)ab, ( <Pso )ij transforming 

in the adjoint representations of Sp( Nc) and S0(2Nf) respectively. The superpotential, 

including a mass term for <Psp, reads 

(5.1) 

Under gauge transformations Q -+ gQht, <Pso -+ h<Psoht and <Psp -+ g<Pspgt, where 

g E Sp(Nc) and h E S0(2Nf ). For large J.l we can integrate out <Psp· Introducing the 

meson field M = Qt J Q, the resulting superpotential after integration reads 

1 
W =-

4
J.l Tr(M M) + Tr(M<Pso). (5.2) 

To analyze what happens in the quantum theory it is convenient to know the charges of 

the various fields and parameters under the global U(1)A x U(1)R symmetry. They are 

given by 

U(1)A 

U(1)R 

Q A
3(Nc+l)-N1 ;r,.

50
. A 

N=l,Sp J.l '*' N=2,SO 

1 2N1 4 -2 -2 
1 _ Nc+l 0 2 _ 4Nc+l 2Nc+l 2Nc+l 

Nt Nt Nt Nt 

(5.3) 

The U(1)R charges have been chosen so that they yield the usual U(1)R charge assignments 

for the Sp( Nc) theory. 

We now discuss the four different cases N1 < Nc, N1 = Nc + 1, N1 = Nc + 2 and 

N1 > Nc + 2. 

N1 ::; Nc· The classical moduli space is given by M = 0 while <Pso takes values in the 

Cartan subalgebra. In other words, it is just the moduli space of the N = 2 S0(2n 1) 

theory. In the quantum theory, strong coupling dynamics can generate corrections to the 

superpotential. The global symmetry restricts the form of such a correction to a flavor 

invariant combination of the form 

W I'V -a N=l,Sp A -y Ml-{3+a<Pl-a-{3--y 
(

A 3(Nc+l)-Nt) {3/(Nc+l-Nt) 

J.l MNt N=2,SO so . (5.4) 
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If all the nonperturbative dynamics is due to instanton effects then (3 and 1 must be 

nonnegative integers. Because of holomorphy, a must also be a nonnegative integer. The 

dynamics of the S0(2N1 ) gauge group does not generate any non-perturbative super­

potential because from that point of view the theory looks like an N = 2 theory. The 

dynamics of the SP(Nc) theory is that of an N = 1 theory with massive quarks. In such 

a theory a non-perturbative superpotential is generated, which is given by [52], 

W. N=l,Sp 

(

A 3(Nc+l)-Nj) 1/(Nc+l-Nt) 

dyn rv Pf M (5.5) 

The full superpotential W is the sum of (5.2) and (5.5). 

An alternative derivation of the superpotential is obtained by putting a coefficient A 

in front of the second term in ( 5.2). For A -+ 0 the theory is well-behaved and the full 

superpotential should therefore be analytic in A. This imposes the restriction a+f3+1 ::S: 1 

in (5.4). The term with 1 = 1, a = (3 = 0 cannot be present as it cannot be made 

invariant under S0(2N1 ). The remaining possibilities correspond to the three terms in 

w =(5.2)+(5.5). 

The full superpotential implies that supersymmetry is dynamically broken, as the 

8Wj8cJ>so = M = 0 equation is incompatible with the equation 8Wj8M = 0 due to 

(5.5). We will later see a confirmation of this in the brane analysis. A similar situation 

appears in the case of SU gauge groups, see [36]. 

Nf = Nc + 1. For this value of Nh global symmetries restrict a contribution to the 

superpotential to be of the form 

(5.6) 

By going to large ci>so we can see that none of the possible terms will be generated, as the 

only dynamics is that of a massive N = 1 SP(Nc), plus that of some U(1) N = 2 vector 

multiplets. The only nontrivial dynamics comes from the Sp(Nc) gauge group, which gen­

erates the quantum constraint Pf M = A~l,Sp· This is incompatible with the equation 

M = 0 obtained from the tree level superpotential (5.2), and supersymmetry is dynami­

cally broken. To analyze whether there is a stable vacuum or not, we focus in analogy to 

section four on the region where <I>so is large. In that region the quarks acquire a large 

mass and can therefore be integrated out. What remains is a pure Sp(Nc) gauge theory 

with a scale AN=l, together with an S0(2NJ) gauge theory with the adjoint matter field 

<I>so. Gaugino condensation in the pure Sp(Nc) gauge theory generates a superpotential 

W rv Arv=I· Using the scale matching relation A~~i+l) = Pf(<I>so)A~~~~~-N, we can 
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write this as 

(5.7) 

The scalar potential is given by V "' j 8~~0 j
2 g~soiflso, where g~soiflso is the inverse of the 

metric appearing in the kinetic term for q,SO· Since oW/ fJq,so is roughly of order one, the 

behavior of the scalar potential for large q,so is determined by the behavior of g~soiflso 

for large q,SO·· This can be estimated using a one-loop calculation. The result of the 

one-loop calculation reads 

1 I q,so I g~soiflso "' 1 + Srr2 (2(2Nf - 2) - 2Nc) log Muv (5.8) 

with Muv the ultra-violet cut off. For large lq,so I we see that the metric becomes very 

large, and therefore the scalar potential has a runaway behavior and approaches zero at 

infinity (a similar behavior also occurs for N1 < Nc + 1). This fact shows that the true 

minimum of the scalar potential is at infinity, and that there is no stable vacuum for large 

lq,sol- This argument does not exclude the possibility of a local minimum in the scalar 

potential, but so far no evidence for the existence of such local minima has been found. 

The brane analysis will in fact provide evidence to the contrary. 

Nf = Nc + 2. The full superpotential is given by W =(5.2)+(5.5). In the quantum 

theory M is an unconstrained field that can take on any value [52]. The tree-level super­

potential enforces M = 0. Now, this point is compatible with (5.5) and part of the moduli 

space, it is the special point ·for the SP(Nc) theory where there is confinement without 

chiral symmetry breaking. From the point of view of the SO gauge theory, both q, and M 

are massive, because the tree-level superpotential equals - 4~ Tr( M - 211q, so )2 + 11Tr q,~o. 

Integrating them out leaves us with a pure S0(2NJ) gauge theory which has 2Nf - 2 

discrete vacua. Thus, the total number of discrete vacua is also 2NJ- 2 =c2(Nc + 1). 

Nf > Nc + 2. At low energies the dynamics in the Sp gauge group is described by the 

dual magnetic theory with gauge group Sp(N1 - Nc- 2) [66]. Using the dual description 

the tree-level superpotential reads 

Wtr = _!_Tr(M M) + ~Tr(JqMqt) + Tr(Mq,so ), 
4/1 A 

(5.9) 

where q are the dual magnetic quarks and A is an extra scale that appears for dimensional 

reasons. The S P( N1 - Nc - 2) gauge group generates a nonperturbative superpotential 

Wdy which is again given by (5.5). The tree-level superpotential forces the theory in 

the non-abelian Coulomb point M = 0. At this point, the SO part of the theory is an 

N = 1 S0(2NJ) gauge theory with 2(NJ- Nc- 2) massless flavors, because q,so and 

M are massive, but the magnetic quarks q are massless. This S0(2Nf) theory generates 
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a non-perturbative superpotential due to gaugmo condensation [67], and we see that 

supersymmetry is dynamically broken. 

5.2 Branes 

To construct a brane configuration for the gauge theory with gauge group Sp(Nc) x 

S0(2NJ) and superpotential (5.1), we first construct the brane configuration for the 

N = 2 gauge theory with f-l = 0 and then try to introduce a mass term as in [18] by 

rotating one of the branes. The type IIA and M-theory brane construction for theN= 2 

gauge theory were discussed in [15]. The type IIA construction consists of 3 NS 5-branes, 

with 2Nc D4 branes stretched between the first and second fivebrane, and 2NJ D4 branes 

stretched between the second and the third. In addition, there is an 04 orientifold plane 

parallel to the D4 branes. With a suitable choice of sign for the orientifold projection this 

describes precisely the N = 2 gauge theory of interest. After lifting the description to 

M-theory, the corresponding fivebrane configuration is given by the equation 

F(t ) = A2(2Nc+2-Nt)t3 _ ( 2p ( 2) + )t2 + Q ( 2)t _ 2A2(2Nr·2-Nc) = O 
'V - N=2,Sp V Nc V C Nt V . V N=2,SO ' (5.10) 

where c is a constant (which can be determined by requiring that (5.10) is not a t­

configuration) given by 

(5.11) 

and PNc and Q N, are polyno~ials of order Nc and N1 in v2
• In the limit where AN=2,SO -t 

0, the curve becomes a double cover of the curve for Sp( Nc) gauge groups with matter 

given in [54], and similarly for AN=2,sp -t 0 we recover the curve for S0(2NJ ). 

Recall that v = x4 + ix5 and that rotation of a curve means that we rotate one of the 

NS fivebranes in thew= x8 +ix9 direction. The curve (5.10) has three asymptotic regions 
where v -t oo and t ,....., v2Nc+ 2, t ,....., v2Nr 2Nc- 2 and t ,.__ v2- 2Nt respectively, corresponding 

to the three NS fivebranes. To give a mass to the adjoint Sp(Nc) superfield as in (5.1), 

we have to rotate the leftmost NS fivebrane (i.e. the one where t ,....., v2Nc+2). Rotating the 

middle NS fivebrane corresponds to giving masses to both <Psp and <Pso, and rotating the 

rightmost NS fivebrane corresponds to giving a mass to <Pso only. 

Because wand f-l are the only objects that transform nontrivial under U(1) rotations 

in the 8, 9 plane, we know that the projection of the rotated curve in the t, v plane must be 

given by the original curve itself. Therefore, the rotated curve is given by the two equations 

F(t,v) = 0 and w = w(t,v), and the goal is to determine w(t,v). If we compactify the 

original curve then w would seem to be a meromorphic function on this compactified 

curve with a double pole the location of the leftmost NS fivebrane. However, we have 
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to be more careful, because the space-time geometry is non-trivial due to the presence 

of the 04 plane. The Z2 action induced by the 04 plane maps v -+ -v and w -+ -w. 

Modding out by this Z2 creates an A1 singularity in the v, w space, and v, ware not good 

coordinates on the quotient. Therefore, we introduce the Z2 invariant coordinates 

2 
q=w' r = vw (5.12) 

subject to the relation pq = r 2
• The original curve is given by an equation F(p, t) -:-- 0 and 

we are really looking for is functions q(p, t) and r(p, t) subject to the relation pq(p, t) = 
r(p,t)2. In addition, ifp-+ oo and t "'pNc+I, then r(p,t) "'pp, q(p,t) "'""p2p, whereas in 

the other two asymptotic regions asp-+ oo we require q(p, t) to remain finite. Thus, we 

see that q(p, t) is a function on the compactified curve with a single pole. The existence 

of such a function requires that the compactified curve is a CP1
. More precisely, there 

are two possibilities. Either the compactified curve is a CP 1
, or the compactified curve 

consists of several components, and the component containing the point corresponding to 

the leftmost NS fivebrane is a CP1 . We call these two possibilities the non-factorized and 

factorized cases respectively, and discuss them separately. 

non-factorized curve. In this case, the entire curve must be a CP1 , and the fact that 

q(p, t) is a function with a single pole on this CP1 implies that q is a good global coordinate 

on the entire curve. We should therefore be able to express p and t in terms of q. At 

three points on the CP1 p becomes infinite and is a good local coordinate there; one of 

these three points is q = oo, the other correspond to finite values of q, and p is therefore 

given by 

(5.13) 

Because {q1,q2,q3 } n {q4 ,q5 } = 0, r(q) = yfp(q)q always has a branch cut and is never 

globally well-defined. We conclude that the rotation is impossible. 

factorized curve. It is straightforward to see that F( t, v) can be factored in terms of 

two polynomials in at most two ways. Taking AN=2,sp = AN=2,SO = 1 for simplicity these 

are 

(5.14) 

The firstrcase requires QN,( v2) = -d-1v2- d(v2 PNc(v2) + c+ d), so that N1 = Nc + 1. In 

addition, according to (5.11), c2 = 4Q(O) = -4d(c +d), so that c = -2d. The first factor 

in F( t, v) corresponds to the middle NS fivebrane, which we do not want to change1
. 

1 From the type IIA point of view, this factorization corresponds to sticking 2 of the 2NJ D4 branes 
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The second factor in F(t, v) can not be further factorized and must therefore be a CP1
. 

Applying the same logic as in the non-factorized case to this piece of the curve we find 

that p = v 2 must be of the form (q- qi)(q- q2 )/J.t2(q- q3 ). In order for r = -jp(q)q to 

be well-defined we need q1 = q2 and q3 = 0. But this implies that there is only one value 

of q for which p = 0, which contradicts the fact that there are two distinct values oft for 

p = 0, namely t = 0 and t = -d (d = 0 is clearly impossible). Hence, the curve cannot 

be rotated. 

It remains to analyze the second possibility in (5.14). That one requires QN1 (v 2
) = 

-d-1 -dv2 (v 2 PNc(v2 )+c+dv2
), fixing N1 = Nc+2. Furthermore, c2 = 4Q(O) = -4d-1

. 

Again, the first factor in (5.14) corresponds to the middle NS fivebrane, so that we have 

to require that the second factor corresponds to a CP1
. The second factor describes the. 

curve of a pure Sp(Nc) gauge theory, and we already know from section 3 when this curve 

can be rotated. There are precisely Nc + 1 discrete possibilities for the parameters in 

PNc(v2
), corresponding to the Nc + 1 discrete vacua of pure Sp(Nc) gauge theory. In 

addition there are two choices for c, so that the total number of vacua that survives the 

mass perturbation is 2(Nc + 1). 

Comparing the results of the field theory with those of the brane analysis, we see that 

there is a complete agreement. 

5.3 Runaway Behavior . 

We have seen that the structure of the spaces of supersymmetric vacua obtained 

from the brane and from field theory agree. It is an interesting question whether the 

runaway behavior of the scalar potential that we discussed for N1 = Nc + 1 can be 

seen in the brane language as well. A priori this is a more difficult question. In field 

theory, it involves knowledge of the Kahler potential. As was demonstrated in [43), it is 

very difficult to obtain quantitative information about the Kahler potential using the M­

theory fivebrane in the eleven dimensional supergravity limit of M theory. In the present 

case we do not need to know the detailed quantitative structure of the Kahler potential, 

we are only interested in some qualitative features, and one may hope that the brane will 

still reproduce these qualitative features. 

Let us first try to rephrase runaway behavior in the brane language. To find a brane 

configuration for a given theory we first need to specify some boundary conditions. In the 

in the 04 plane so that the charge of the 04 plane to the left and right of the middle NS fivebrane is 

equal. The remaining D4 branes to the left and right of the middle NS fivebrane can then be connected 

and subsequently one can move the middle NS fivebrane away from the configuration. 
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case we have been considering so far, namely an N = 2 gauge theory with gauge group 

Sp(Nc) x S0(2N1) broken toN= 1 by a mass term for <Psp, these boundary conditions 

are that as v -+ oo, there are three distinct asymptotic regions: (i) t ""' v2Nc+ 2 , w ""' pv, 

(ii) t f"V v 2Nr2Nc- 2, w -+ 0 and (iii) t f"V v 2- 2Nt, w -+ 0. In addition there are certain 

conditions that have to do with theM-theory 05 plane. As we discussed previously, there 

should be no t-configuration, i.e. there should be no transversal intersection of a single 

fivebrane with the orientifold plane, the orientifold plane should have the right fivebrane 

charge and the brane configuration should be Z2 invariant. We will ignore the subtleties 

associated to the orientifold plane for the time being and first consider the case without an 

orientifold plane. Consider a given brane configuration that satisfies the right boundary 

conditions and which has four trivial directions corresponding to the four dimensions 

where the field theory lives. Such a brane configuration corresponds to a particular field 

configuration in the field theory. If the brane corresponds to a supersymmetric cycle, it 

describes a supersymmetric field configuration. From the fivebrane action it is clear that 

the area of the fivebrane corresponds to the scalar potential of the field theory, and a 

minimal area fivebrane configuration corresponds to a minimum of the scalar potential. 

Therefore runaway behavior should manifest itself in the brane picture in the following 

way: given a brane configuration that satisfies the right boundary conditions one should 

always be able to deform it so as to reduce its area, without ever reaching a limiting 

configuration. If one keeps on reducing its area some of the parameters describing the 

brane configuration will runaway to infinity. 

Let us now try to apply this picture to the case with N1 -:- Nc + 1, where we expect 

such runaway behavior from field theory. 

We first consider some general features of minimal surfaces in Kahler manifolds with 

metric Gii, where Xi are the holomorphic coordinates in target space. A surface is locally 

given by some functions Xi(z, z) depending on the complex coordinates z, z. The area of 

a surface is reparametrization invariant and we will fix this reparametrization invariance 

by the Virasoro conditions 

(5.15) 

This has the advantage, familiar from string theory, that the area of the surface is given 

by the simple expression 

S = h d2z Gii(&XitJXI + tJXi&XI). (5.16) 

As shown in section 4.3, this can be rewritten as 

S = 2 h d2 z GiitJXi&XI + h X*w (5.17) 
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where w is the Kahler form of target space. We also showed that in order to find a 

minimal surface in a given homology class and with certain given boundary conditions, 

we can consider the second term in (5.17) to be constant and drop it. We are thus left 

with the task of minimizing the regularized volume 

(5.18) 

As we explained, an advantage of this expression is that in the case where we are dealing 

with holomorphic boundary conditions this expression is finite (which is in some sense the 

definition of holomorphic boundary conditions). It also clearly shows that any holomor­

phic surface is automatically minimal. The variation of Xi in (5.18) leads to the minimal 

surface equation 

(5.19) 

Let us now discuss two specific situations. First consider the case where Gii is con­

stant. The minimal surface equation reads [)[)Xi = f)[JX'~ = 0. This implies that 

Xi = Xi(z) + Xi(z), where Xi(z) is a possibly multi-valued holomorphic function. Be­

cause (5.18) is finite, Xi(z) must be bounded as one approaches infinity. There are no 

bounded non-trivial anti-holomorphic functions on a Riemann surface, even if one allows 

for multi-valuedness. Therefore Xi(z) must be identically zero and the minimal surface 

must necessarily be holomorphic. An alternative way to see this is to partially integrate 

(5.18) and then to use the mi:nimal surface condition to show it vanishes. Because (5.18) 

is positive definite and vanishes only for holomorphic curves, the minimal surface must 

be holomorphic. 

The second situation we want to consider is what happens when we have a holomorphic 

surface with given boundary conditions and then we change the holomorphic boundary 

conditions, like turning on a mass J.l for cl>sp· At infinity, the change in the boundary 

conditions is very large. However, this is a change of holomorphic boundary conditions 

only, so that we expect a large change in the holomorphic part of Xi and the anti­

holomorphic part of XI, but only a very small change in the anti-holomorphic part of Xi 

and the holomorphic part of XI. Since (5.18) only involves the latter, we can construct a 

minimal surface for small J.l as a small perturbation of the one for J.l = 0. Indeed, if we 

substitute Xi --1- Xi+ ~i' XI --1- XI+ e in (5.19) and expand to first order in~ using the 

fact that xi is holomorphic and XI is anti-holomorphic we get 

(5.20) 

which is only an equation for the very small quantity ae. We can rewrite (5.20) as 
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8( Gi58(i) = 0 which implies that 

(5.21) 

and therefore ~i has to be holomorphic. We conclude that for sufficiently small f-l any 

minimal surface must necessarily be holomorphic. 

This statement could in principle get modified in the presence of an orientifold, due 

to the additional potential energy it creates. However, as long as there are no holo­

morpic t-configurations after the perturbation, we believe we can restrict our attention 

to non-t-configurations only. The discussion above then still applies in the presence of 

an orientifold, as long as the distance between the fivebrane and the Z2 fixed plane is 

much larger than the eleven-dimensional Planck length. In particular, in the presence of 

an orientifold we cannot exclude the existence of a local nonzero minimum of the scalar 

potential in the region where the eleven dimensional supergravity approximation breaks 

down. This is similar to the situation in field theory, where one cannot say anything 

about the behavior of the scalar potential at strong coupling due to lack of knowledge of 

the Kahler potential in that region. 

We therefore see that for Nf = Nc + 1 that for small enough f-l (i) there is no holomor­

phic surface satisfying the right boundary conditions and (ii) that any minimal surface 

has to be holomorphic. The only way to match these two observations is if (5.18) can 

be made arbitrarily small, but cannot be made equal to zer9. A simple analogy of this 

situation is the problem to find the shortest real curve in the x, y-plane that approaches 

y = a as x --1- -oo, and approaches y = b as x --1- +oo. Any curve that satisfies the 

right boundary conditions is clearly not the straight line. We can always make the curve 

straighter and straighter, thereby reducing its length, but we never reach the point where 

it becomes a straight line. 

Exactly the same situation appears in the case at hand. Given some surface, we can 

always reduce its area, for instance by replacing the surface inside a large sphere by the 

minimal surface inside the sphere, keeping the boundary conditi~ns on the sphere fixed. 

We can make the sphere arbitrarily large, but never reach an exact minimal surface. 

It is now clear that this behavior is precisely the manifestation of runaway behavior in 

the brane picture. It also shows that under quite general circumstances (e.g. in the case 

of the product group for all N1 =J:. Nc + 2) where supersymmetry is dynamically broken, 

we do expect runaway behavior in the scalar potential. Our discussion of the case where 

GiJ is constant implies that similar things happen in the case of products of SU gauge 

groups. Thus, runaway behavior in the presence of holomorphic boundary conditions 
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seems to be a quite general phenomenon, except in situations with additional interactions 

as discussed in section 4. Finding counterexamples where a non-holomorphic minimal 

surface satisfies holomorphic boundary conditions is obviously an important problem, for 

which something quite non-trivial in the brane picture must happen. 
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