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Abstract 

I introduce a reality structure on the Heisenberg double of Funq(SL(N, C)) for 

q phase, which for N = 2 can be interpreted as the quantum phase space of the 

particle on the q-deformed mass-hyperboloid. This construction is closely related 

to the q-deformation of the symmetric top. Finally, I conjecture that the above 

real form describes zero modes of certain non-compact WZNZ-models. 
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1 Introduction 

Monodromy matrices representing the braid group [1], appearing in the WZNZ-model, 

suggested that hidden quantum groups exist in these theories. Various approaches 

were used in an attempt to elucidate the origin of these hidden quantum groups. 

In [2, 3, 4, 5] using a Minkowski space-time lattice regularization, it was shown by 

explicit construction that the monodromies of the chiral components of the WZNW

model with Lie group G and the local field satisfy the commutation relations of the 

q-deformed cotangent bundle T*Gq. 

However an apparent contradiction existed [3, 5], since the deformation parameter 

in the WZNW-model must be root of unity q = exp(i1rjk +h), where k is the level of 

the affine-Lie algebra and his the dual Coxeter number, and this is incompatible with 

the compact form of the quantum group. 

A solution to this problem was proposed in [6]. The main idea is to drop the strong 

requirement that the reality structure be compatible with quantum group comultipi

cation and only impose this requirement in the classical limit. Then a reality structure 

can be introduced, but not on the quantum group itself, but rather on the quantum 

cotangent bundle. 

However once the requirement of the compatibility of the reality structure with 

the comultiplication is dropped, one can introduce more than one reality structure. In 

this paper I will introduce one such reality structure inspired by a particular type of 

non-compact WZNW-model. See for example [7] for a list of various circumstances 

under which this non-compact form occurs and also [8] where the non-compact form 

of appears as the Euclidean section of the model. These WZNW-models have the 

important property that the local field has the chiral decomposition g = hh t where h 

is the chiral field valued in G. Thus g is a Hermitian positive defined matrix of unit 

determinant. I will show that 

is compatible with the algebra T*Gq and extend the above anti-involution to the whole 

algebra. I emphasize that the reality structure introduced here is similar to the one dis

cussed in [6] and is not related to the standard non-compact reality structure appearing 

in quantum groups for q phase, and which is compatible with comultiplication. 

For simplicity here I will not apply the reality structure directly in the WZNW

model, leaving this for a forthcoming paper, and instead I will just use it for the toy 
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model of (5, 6], which essentially contains all the relevant degrees of freedom. These 

degrees of freedom are described by the same algebra as in the compact case but with 

a different reality structure. 

In Section 2, I give a short review of the quantum algebra T*Gq. I discuss the com

mutation relations for operators generating both left and right translations, since both 

forms are necessary to define or to check the involutions presented in the next sections. 

Section 3 briefly covers the reality structure of (6]. In section 4, I present the main re

sult of the paper, a reality structure corresponding to a generalized mass-hyperboloid 

configuration space and its associated q-deformed phase space. In Section 5, I con

sider the simple quantum mechanical system of (6] and show its compatibility with 

the *-structure introduced in the previous section. In the last Section I present some 

evidence for the relevance of this reality structure to the non-compact WZNW-model. 

2 Review of the Algebra on T*Gq 

In this section I present a brief review of the defining relations of the q-deformed 

cotangent bundle (5] also known as the Heisenberg double or as the smash product (9, 

10]. The main purpose of this section is to fix the notation. I will follow closely the 

presentation in [6] where a more detailed exposition can be found. 

Let G be the Lie group SL(N, C), and sometimes for simplicity I will take G = 

SL(2, C). Most of the content of the paper can be easily extended to arbitrary classical 

groups. Now consider the quantum R+ matrix associated to the Lie group G. This is a 

matrix depending on a parameter q and acting in the tensor product of two fundamental 

representations. For example the R+ of SL(2, C) is the following 4 x 4 matrix 

q 0 0 0 

R+ = q-1/2 
0 1 q- q-1 0 

0 0 1 0 

0 0 0 q 

It is convenient to also use the R_ matrix defined as 

(1) 

where P is the permutation operator in the tensor space of the two fundamental rep

resentations 

P(a ®b) = b ®a. 
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Next I will define the quantum algebra T*Gq, the quantum deformation of the cotan

gent bundle. Let g and n± be matrices acting in the fundamental representation of G. 

The !1± matrices are upper and lower triangular matrices. In addition the diagonal 

elements of 0+ equal those of n:1
. T*Gq is the algebra generated by g and !1± and 

satisfying the following set of relations divided for convenience into three groups 

R±n~nt = ntn~R± 
R n1 n2 = n2 n1 R ±-- --± 

R+n:_n:_ = n:_n~R+ 
R_n:_nt = ntn:R_ 

R+n~l =g20~ 
R_n:l =ln:. 

(2) 

(3) 

(4) 

All the above relations are operator matrices acting in the tensor product of two 

fundamentals, and the superscript indicates on which factor the respective matrix 

acts. The R matrices without any superscript act in both spaces. One can show that 

the quantum determinant of the matrices g and !1± is central and can be set equal to 

one 

For the SL(N, C) groups these are all the relations, while for the other classical groups 

additional relations, for example orthogonality relations, have to be imposed. Noto also 

that, unlike (2)(3), the relation (4) is not homogeneous in R± thus the normalization 

of R± is important. 

The above relations are not independent. For example the R_ relations can be 

obtained from the R+ relations using (1) and 

(5) 

The subalgebra generated by the matrix elements of g with relations {2) is in fact 

a Hopf algebra denoted Funq (G) and represents a deformation of the Hopf algebra 

of function on the G Lie group [11]. Also, the subalgebra generated by !1± with 
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relations (3) is a quasitriangular Hop£ algebra called the quantum universal enveloping 

algebra [12, 13, 11], and is denoted Uq(g) where the gin the brackets is the Lie algebra 

of the Lie group G. For example the coproduct of Funq(G) on the matrix elements of 

g is given by 

~(g)= g@g, (6) 

where the dot means multiplication in matrix space. Similarly the coproduct in Uq(g) 

on the matrix elements n± reads 

(7) 

On the other hand T*Gq is not a Hop£ algebra. We emphasize this, since there is 

a related algebra, the Drinfeld double, which has the same generators but different 

mixed relations and is a Hop£ algebra. 

The mixed relations (4) describe how to combine the above subalgebras into the 

larger algebra T*Gq. They appear as commutation relations in [5, 9, 10] but in an 

abstract form as the pairing of dual Hopf algebras they were already present in [11]. 

One can relate the 0± with the more traditional Drinfeld-Jimbo generators. For 

example for the S£{2, C) group we can write the matrix elements of 0± as [11] 

= ( q-H/2 q-1/2 .XX+ ) = ( qH/2 0 ) 
n+ H/2 , 0 - 112 -H/2 · 0 q -q >.X_ q 

{8) 

Usinq the R+ matrix above it can be shown by direct computations that the generators 

H, X± satisfy the Jimbo-Drinfeld relations (12, 13] 

. qH -q-H 
[H,X±]=±2X±, [X+,X-]= q-q-1 (9) 

defining the universal enveloping algebra Uq(sl(2, C)). Similar relations also exist for 

higher rank groups [11] and can be thought of as connecting the Cartan-Weyl and 

Chevalley bases. 

It is also convenient to combine n± into a single matrix (14] 

In terms of these generators all the relations (3) and ( 4) collapse to 

n 1R:1n 2 R_ = R+1n 2 R+n1 

R_gln2 - n2 R+gl. 
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These forms of the commutation relations are especially useful when we deal with the 

commutation relations only, but the coproduct of n cannot in general be given in an 

explicit form. 

The commutation relations (2)(11) are exactly those satified by the local field and 

the monodromy of the left (or right) chiral component of the affine current [2, 3, 4]. 
Following [6] we also introduce an equivalent description of the quantum algebra 

using operators generating right translations. First let 

and then introduce a triangular decomposition of 'E into 'E± 

(12) 

similar to the decomposition of n into n±. One can check that the matrix elements of 

n and 'E commute. To make the picture more symmetric also introduce a new matrix 

h by 

h = E;±;I9- 1n±. (13) 

Now we can use either pair (g, n) or (h, E) to describe the algebraT*Gq. 

The defining relations satisfied by h and 'E are [6] 

R±h1h2 - h2h1 R± " 

EtE!R± R±E!Et (14) 

'El 'E2 R - - ± - R 'E2 'El ± - -

'El 'E2 R - + + - R 'E2 'El + - -

'Et'E:_R_ - R_E:_Et 

hl'E2 
+ - E!R-h1 

hl 'E:_ = 'E:_R+h1
. 

One can check directly the consistency of (14) with the original relations. 

3 Real Form for the q-Deformed Symmetric Top 

For a large number of applications the variable q is a phase. In this case the % 
matrices satisfy 

(15) 
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If we require a reality structure for g compatible with the Hopf algebra structure i.e. 

6.o*=(*®*)o6. 

and use (15) we obtain a non-compact quantum group. For example if G = SL(N, C) 

we obtain Funq(SL(N, R)). 
However sometimes in the same application we are interested in the compact form 

of the group. This apparent contradiction can be resolved [6] by dropping the above 

requirement for a Hopf *-structure. Instead one defines an anti-involution on the larger 

algebra T*Gq 

(16) 

(17) 

It is straightforward [6] to check the compatibility of this anti-involution with the 

quantum algebra (2)(3)(4)(14). Note that {16) does not define a Hopf *-structure on 

Uq(g), and (17) does not close on Funq(G) since the definition of h includes generators 

of Uq(g). In the classical limit (17) reduces to gt = g-1 and {16) becomes compatible 

with the coproduct. This is due to the fact that the coproduct is cocommutative 

atq = 1. 

4 Real Form for the q-Deformed Hyperboloid 

This section contains the main result of the paper, an anti-involution on the deformed 

cotangent bundle when q is a phase. Like the anti-involution of the previous section, 

it does not originate from a Hopf *-structure on one of the Hopf subalgebras. The 

defining relations of the anti-involution are 

g 

"'-1 
LJ'f • 

Alternatively the second relation can be written as 

(18) 

(19) 

(20) 

It is quite obvious that (18) is not compatible with the coproduct, i.e. g should not 

be considered a "group element". I will not give a complete proof of the consistency 
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of the anti-involution with the algebra relations (2)(3)(4). Instead I will just give a 

sample computation leaving the rest for the interested reader. 

Applying the involution on the R+ relation (2) and using (15) we have 

Moving the R_ matrices to the other side and using (1) we obtain 

thus it is consistent with the algebra relations (2) to impose gt =g. 

As another example, take the hermitian conjugate of the following relation 

(21) 

Using (19) we obtain 

which can be rewritten after multiplication by some inverse matrices as 

This is just one of the equations in (14). 

Similarly applying the above involution on the first relation in ( 4) we obtain 

L:~g2 = l R=IL:~. 
This is equivalent using (1) and U?) to 

and after eliminating g using (13) we get 

Furthermore using (14) to commute the L: matrices we have 
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and since n and :E commute with each other we finally obtain 

which is again one of the relations in (14). All the other relations can be checked in a 

similar fashion. 

Finally I will explain the terminology used in the title of this section. Consider first 

for simplicity the S£(2, C) case. In the undeformed case a 2 x 2 hermitian matrix of 

unit determinant defines the unit mass hyperboloid in Minkowski space. For simplicity 

I will only consider one connected component of the manifold, for example the future 

mass hyperboloid. For a general group G this can be achieved by restricting to positive 

definite matrices. In the deformed case we consider Hermitians g matrices of unit 

quantum determinant. 

5 Quantum Mechanics on the q-Deformed Hyperboloid 

In [5] Alekseev and Faddeev showed that the T*Gq quantum algebra is a q-deformation 

of the algebra of functions on the cotangent bundle of the Lie group G. In [6] they 

considered the following simple Lagrangian written in first order formalism 

(22) 

Here G is considered without specifying its real form. The Lagrangian has a chiral 

symmetry G x G 

The second order form of the Lagrangian has the form of a non-linear sigma model in 

(0, 1) dimensions 

The equations of motion 

I' lTr(. -1 . -1) 
J.., = 2 gg gg . 

g = wg, w = 0 

. can be integrated to give the time evolution 

w(t) - w(O) 

g(t) - exp(wt) g(O). 

8 

(23) 



The real form corresponding to the compact group discussed in [6] is 

gt = g-1, wt = -w. (24} 

For G = 8L(2, C), g becomes unitary and the Lagrangian (22) describes the classical 

dynamics of the symmetric top. Equivalently, it describes the motion on a constant 

curvature 8 3 . This can be seen using the chiral symmetry (5) of the Lagrangian, which 

under the conditions (24} is restricted to the 8U(2) x 8U(2) "'80(4) subgroup, or by 

direct computation of the metric in the kinetic term of (23}. 

Instead, we consider the following reality structure 

_(25) 

which, following the discussion at the end of the previous section, defines the phase 

space of a particle moving on the mass-hyperboloid. The reality structure (25) requires 

ut = v-1 thus restricting the chiral symmetry of the Lagrangian to one independent 

8L(2, C) subgroup which is simply the Lorentz group that leaves the mass hyperboloid 

invariant. The metric on the hyperboloid is just the induced metric from Minkowski 

space, and again this can be obtained by direct computation or using the above invari

ance under the Lorentz group. 

One can check that the equations of motion preserve both reality structures (24) 

and (25). What we learn from this simple example is that one can find rather different 

physical systems that will have the same Poisson brackets and thus quantum algebras 

if their respective Lagrangians have the same form, differing only through their reality 

structures. 

In [6] a q-deformation of the above system was introduced. The model has a 

discrete time dynamics, with the time labelled by an integer n. The following evolution 

equations 

O(n) 0(0) (26) 

were shown in [6] to preserve the quantum algebra (2)(3)(4) and in addition, the reality 

structure discussed in Section 3. 

I will now show that they also preserve the reality structure introduced in Section 4. 

Assuming that for n = 0 the reality structure is given by (18) and (20) 
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for arbitrary n we have 

Similarly we have for O(n) 

Thus the equations of motion (26) and the reality structure of the previous Section 

define the q-deformation of the dynamics of a particle on the unit mass hyperboloid. 

6 Concluding Remarks 

I conclude by briefly applying the reality structure to the lattice regularized WZNW

model and checking its compatibility with periodic boundary conditions. Using the 

notation in [2] let the lattice have N points, and denote the local fields by gi, i = 

1 ... N. For periodic boundary conditions we identify i and i + N. Let ML and MR 

be the monodromies of the left and right affine currents. The algebra satisfied by 

(g, ML, MR) is exactly the algebra of T*Gq for the generators (g, 0, E). Here I used 

the remark of the previous Section that the compact and non-compact WZNW-models 

have the same algebra since their respective Lagrangians coincide. The monodromies 

can be used to relate the fields go and g N 

9N = MLgoMii.1 

If we require gb =go, M1 = MR, which is just the reality structure of Section 4, we 

have 

gJv = (Mii.1)tgoM1 = M£ 1goMR = 9-N = 9N· 

In the last step I used the lattice periodicity. Thus we see that the reality structure 

is compatible with periodic boundary conditions. A more detailed investigation of the 

implications of this reality structure for the WZNW-model will be presented in an 

upcoming paper. 
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