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Abstract 

The construction of four dimensional supersymmetric gauge theories via 

the fivebrane of M theory wrapped around a Riemann surface has been success

fully applied to the computatioil of hololilorphic quantities of field theory. In 

this paper we compute non-holomorphic quantities in the eleven dimensional 

supergravity limit of M theory. While the Kahler potential on the Coulomb of 

N = 2 theories is correctly reproduced, higher derivative terms in the N = 2 

effective action differ from what is expected for the four dimensional gauge 

theory. For the Kahler potential of N = 1 theories at an abelian Coulomb 

phase, the result again differs from what is expected for the four-dimensional 

gauge theory. Using a gravitational back reaction method for the fivebrane 

we compute the metric on the Higgs branch of N = 2 gauge theories. Here 

we find an agreement with the results expected for the gauge theories. A sim

ilar computation of the metric on N = 1 Higgs branches yields information 

on the complex structure associated with the flavor rotation in one case and 

the classical metric in another. We discuss what four-dimensional field theory 

quantities can be computed via the fivebrane in the supergravity limit of M 

theory. 



1 Introd uction 

Many gauge field theory results in various dimensions have been obtained in the last 

year by realizing them on the world volume of branes. Another method applied to the 

study of gauge theories is geometric engineering [1-3]. In this paper we will be interested 

in studying four dimensional gauge theories using the first method. 

Webs of intersecting branes as a tool for studying gauge theories with reduced number 

of supersymmetries have been introduced in [4]. Such a web of intersecting branes of Type 

IIA string theory describing N = 2 gauge theories in four dimensions can be realized by 

a single fivebrane of M theory wrapping a Riemann surface [3,5]. The Riemann surface 

is the Seiberg-Witten curve [6] and therefore the fivebrane configuration encodes the 

structure of the moduli space of vacua. ,Similar webs of intersecting branes of Type IIA 

string theory describing N = 1 gauge theories in four dimensions [7,8] can be realized by 

a single fivebrane of M theory wrapping a Riemann surface. The fivebrane configurations 

corresponding to these N = 1 supersymmetric gauge theories encode the information 

about the N = 1 moduli spaces of vacua [9-20] 

So far the fivebrane construction has been successfully applied to the computation of 

holomorphic (or rather BPS) quantities of the four dimensional supersymmetric gauge the

ory. Of particular importance are the non-holomorphic quantities such as higher derivative 

terms in N = 2 theories and the Kahler potential of N = 1 supersymmetric gauge theo

ries. It is very difficult to compute these objects by field theory techniques in particular 

in regions of strong coupling. 

There are two questions to be asked: Can we compute these non holomorphic quan

tities using the fivebrane and do the results agree with what we expect for the gauge 

theories in four dimensions? As is well known, the theory on the M theory fivebrane is a 

(0,2) theory in six dimensions. When wrapping a Riemann surface ~ the four dimensional 

theory on R4 has two scales: The radius of the eleventh dimension R and the typical scale 

of the brane configuration Lbrane. There are two corresponding Kaluza-Klein modes with 

masses 1/ Rand 1/ Lbrane. The four dimensional gauge field theories that we are interested 

in have one scale A. In order to correctly obtain these four dimensional theories we have to 

find the region of values of the parameters R, Lbrane where the wrapped fivebrane theory 

and the gauge theory agree. This in particular requires a decoupling of the Kaluza-Klein 

modes. 

Holomorphic quantities of field theory are not sensitive to the region of parameters, 

R, Lbrane where they are computed. In particular they can also be computed in the eleven 
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dimensional supergravity limit of M theory even though the 1/ R Kaluza-Klein modes are 

light. It is not clear whether this holds also for the computation of the non-holomorphic 

quantities. The aim of this paper is to answer this question. We will use the fivebrane 

of eleven dimensional supergravity in order to compute non holomorphic quantities and 

compare with what we expect from field theory. 

The paper is organized as follows: 

Section 2 includes a brief discussion of the eleven dimensional supergravity fivebrane 

action which will be needed for the computations. It also contains a derivation of the 

formula for the Kahler potential of the four dimensional theory obtained via wrapping 

the fivebrane on a Riemann surface. In section 3 we use this formula to show that the 

Kahler potential on the Coulomb branch of N = 2 theories is correctly reproduced. In 

section 4 we compute the four derivative term in the N = 2 effective action which is 

a non holomorphic quantity. We find an explicit dependence on the radius R of the 

eleventh dimension. We compare the result with what we expect for the four dimensional 

gauge field theory and show that the results disagree for any value of R. In section 5 

we use the fivebrane to compute the Kahler potential of N = 1 gauge theories in an 

abelian Coulomb phase. We compare the brane result with what we expect for the four 

dimensional gauge field theory. Although the effective coupling is correctly reproduced the 

Kahler potential again disagrees with what we expect for the field theory. In section 6 we 

study the Higgs branch of N = 2 theories. In this case the fivebrane worldvolume consists 

of several disjoint components whose motions parametrize the Higgs branch. We compute 

the effect of the gravitational force on each component due to the other components and 

obtain correctly the metric of the N = 2 Higgs branch, up to possible corrections due to 

membranes wrapping supersymmetric 3-cycles. In section 7 we study the metric on the 

N = 1 Higgs branch using the same method. We consider N j = Nc = 2 SQCD with 

and without a heavy adjoint chiral multiplet. In the case with heavy adjoint, we find 

an indication that the complex structure is correctly reproduced and the result leads to 

a proposal on the precise relation between the flavor rotation and the motion of a finite 

component of the fivebrane. In the case without adjoint, the computation only captures 

classical features of the metric on the Higgs branch. Section 8 is devoted to a discussion 

of the results. 

2 Preliminaries 

At low energies, M theory is described by eleven dimensional supergravity, and the 

classical action describing the M theory fivebrane has been determined in [21-23]. We 
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will only consider the bosonic part of the fivebrane action, the rest of the fivebrane action 

is determined by supersymmetry. The world-volume fields of the fivebrane consist of 

fields XJL(x a
), where f-l = 0, ... ,10 and a = 0, ... ,5, describing the embedding of the six

dimensional world-volume in eleven-dimensional spacetime, and of a self-dual two-form 

Bab. In addition, the fivebrane action will depend on the eleven-dimensional background 

fields, which are the metric GJLl' and the three-form C~~~. The bosonic part of the action 

expanded up to second order in Bab reads, up to a Wess-Zumino term, 

(2.1 ) 

where 9 = det(gab) and gab is the induced metric 

(2.2) 

The self-duality constraint for the two-form is that dB - C(3) should be a self-dual three

form with respect to the induced metric gab. In fact, (2.1) does not completely define the 

theory of a self-dual three-form. For that, one has to add an additional term involving 

an auxiliary scalar as in [21] which yields in a specific gauge the formulation of [22]. 

Alternatively, one can extract from the partition function of (2.1) the piece relevant for 

the self-dual three form as in [24]. 

The theories that we consider in this paper are obtained from fivebranes of the form 

R4 x ~ embedded into a spacetime of the form R4 X M7. Here, the two R4'S are to be 

identified with each other, and I; is a Riemann surface embedded in J'vF. By performing 

a Kaluza-Klein reduction of the fivebrane theory on the Riemann surface ~ we obtain a 

four-dimensional theory. As we discuss later, tllis reduction can be quite subtle, especially 

in the case where the Riemann surface is non-compact. The various bosonic fields in the 

four-dimensional theory arise as follows. First, in general there will be family of Riemann 

surfaces ~(uQ) depending on moduli UQ. These moduli become scalar fields in the four

dimensional theory. Second, if the Riemann surface has components of finite volume, 

additional scalar fields arise by taking Bab proportional to the volume form of one of 

these components. Finally, if the Riemann surface has genus 9 greater than zero there 

will be 9 U(l) vector fields coming from the decomposition of Bab in terms of the harmonic 

one-forms on ~. Although the full fivebrane action is rather complicated, the two terms 

given in (2.1) will be sufficient for our purposes, as these are the only ones contributing 

to the terms involving two derivatives in the four dimensional theory. In the cases where 

we consider higher derivative termsB and C(3) do not contribute, and (2.1) will again be 

all we need. 
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To determine the action of the four-dimensional theory, we need to consider fivebranes 

of the form R4 x ~ where ~ is allowed to vary over R4. More precisely, we assume that 

the metric on spacetime R4 x M7 is of the form 

(2.3) 

with m = 0, ... ,3 and i = 4, ... , 10, and consider fivebranes with world-volume coordi

nates xm, z, z whose embeddings are of the form 

m = 0, ... ,3 

i = 4, ... ,10. (2.4) 

Here, z, z are arbitrary coordinates on the Riemann surface ~(un,). As the fivebrane action 

is invariant under world-volume diffeomorphisms, we can always ch60se z and z in such a 

way that the induced metric on the Riemann surface is conformal, i.e. gzz = gzz = o. As 

this will simplify things considerably, we will from now on always assume this to be the 

case. 

The first term in the fivebrane action (2.1), when evaluated for (2.4), yields 

5 = e! f d4
x d2 

Z gzz J - det(J(Xi)TJmn + Lmn) 
11 . 

where 
OUa OUf3 ( l' 1) Lmn = ~ m ~ n ga{3 - gaz -g{3z - g{3z -gaz 
uX uX gzz gzz 

and 
oXi oxj 

ga{3 = ~Gij--;:;--, 
UUa uUf3 

In particular, the kinetic term for the scalars U a reads 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

A simplification arises when spacetime is of the form R4 x NIs x R, where M6 is a Kahler 

manifold, and when ~ is holomorphically embedded in M6 and depends holomorphically 

on the moduli U a (which should therefore be complex). We also take f(X i
) = 1, so that 

the metric reads 

(2.9) 

In this case the fivebrane configuration preserves N = 1 supersymmetry in four dimensions 

and the kinetic term for the scalars should be given by a Kahler metric. The kinetic term 

is given by 

(2.10) 
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with 

(2.11) 

This metric is indeed a Kahler metric. In fact, it is easy to give an expression for the corre

sponding Kahler potential. If [{spacetime(X i , Xi) is the Kahler potential for the spacetime 

metric Gil, i.e. _ Gi ] = a/i] [{spacetime, then 

[{fieldtheory = ~6 r d2z gzz [{spacetime(Xi(z, un), X\z, U&)). 
2.(11 fr-

(2.12) 

In words, the Kahler potential of the N = 1 field theory in four dimensions is the integral 

of the spacetime Kahler potential over 'E with its induced metric. 

The second term in (2.1) can also contribute to the kinetic terms for the scalars and 

gauge fields in four dimensions. If the Riemann surface has genus g, the decomposition 

of Bab in terms of the harmonic one-forms on the Riemann surface yields 9 U(l) vector 

fields in four dimensions. The gauge coupling for these vector fields is given by the 

imaginary part of the period matrix of the Riemann surface, S rv J(Im( Tij )Fi /\ *F)) 

[5]. The contribution of the second term in (2.1) to the kinetic term of the scalars is 

more complicated and depends on the precise situation. We will only make a few general 

remarks and postpone a more detailed discussion until we meet concrete examples where 

this second term is relevant. 

The second term in (2.1) is invariant under oB = C(2), OC(3) = dC(2). The two

form B can give rise to additional scalar and vector fields in four dimensions. Given 

some background three-from C(3), we should according to the principle of Kaluza-Klein 

reduction choose B in such a way that J IdB - C(3) 12 gives rise to kinetic terms for the 

four-dimensional fields only, without a mass term, as we are only interested in the four

dimensional fields that are massless. In addition, we have to worry about the gauge 

invariance and the self-duality condition. Thus, in determining B we should impose two 

additional constraints. First, dB - C(3) should be a self-dual three-form, and second, 

certain gauge fixing conditions should be satisfied. As gauge fixing conditions we will use 

the Lorentz gauges d * (B - Bo) and d * (C(3) - C~3)) = 0, for some fixed Bo and C~3). 

A special situation is when the pull-back of dC(3) to the fivebrane world-volume 

vanishes, in which case there exists a two-form C(2) on the world-volume such that 

C(3) = dC(2), and we can take B = C(2) + B'. The second term in (2.1) then simply 

reads J IdB'12. The only cases we will encounter where the pull-back of dC(3) is non

vanishing is when we consider one fivebrane in the background of another five-brane. 

A five-brane induces a background geometry with a non-trivial dC(3) which is, roughly 

speaking, the unit volume form on the four-spheres surrounding the five-brane in the five 
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dimensions transversal to it [25]. When this happens, the kinetic terms for the scalars U a 

will also be modified because c~lz contains terms [)mUa[)aXi[)zXj[)zXkC~r 

A final observation is one regarding the additional scalar fields coming from B. As we 

mentioned previously, if the Riemann surface ~ has a component ~o of finite volume we 

get an additional scalar a by taking Bzz = a(xm)wzz , with W zz the volume form on ~o. It 

turns out that a is a compact scalar. To see this, we replace R4 by R3. X Sl. According 

to [24], in order to be able to define the five-brane partition function, we do not only have 

to mod out by the gauge transformations 8B = C(2), 8C(3) = dC(2), but also by 'large' 

gauge transformations where we add an element of H 3(R3 x Sl X ~,Z) to both dB and 

C(3). These large gauge transformations show that we should identify a with a + const. 

3 N = 2 Coulomb Branch 

In [5], Witten constructed configurations of the M theory fivebrane starting from the 

configurations of D4, NS5 and D6 branes in Type IIA string theory that describe at 

long distances the dynamics of N = 2 supersymmetric gauge theories in four dimensions. 

The Type IIA configuration is in a flat ten-dimensional space-time with time and space 

coordinates X
O and Xl, ... ,x9

, and the D4, NS5 and D6 branes span the directions 01236, 

012345 and 0123789 respectively. 

The M theory configuration for the SU(Nc) gauge theory with N j fundamental hyper

Illultiplets (JV = '2 SQCD) is a fivebralle embedded in the eleven-dimensional space-time 

R7 x 5 where 5 is the ANr1-type Taub-NUT space which is a four-dimensional non

compact hyper-Kahler manifold. The R7 spans the 0123789 directions, while 5 spans the 

456 directions in the Type IIA limit and wraps on the circle in the eleventh direction. 

Choosing one of its complex structures, S is described by a resolution of the complex 

surface 
N f 

xy = A.2Nc-N
f II(v + mi), (3.1 ) 

i=l 

and is provided with the nowhere vanishing holomorphic two-form 

3 dy n =.ell dv 1\ - . 
y 

(3.2) 

The parameters mi and the parameters of the resolution (the size of the resulting two

spheres) determine the location of the D6 branes in the 45 and 6 directions respectively, 

where mi's correspond to the quark bare mass but the parameters of the resolution have 

no counterpart in the standard gauge theory. A is a parameter corresponding to the 

dynamical scale. 
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The fivebrane for a theory at a point in the Coulomb branch is R4 x ~ where R4 spans 

the first four directions 0123 while ~ is at a point in the last three directions 789 of R7 

and is embedded as a holomorphic curve in 5. The embedding is given by 

x + y = 2CNc ( v, Ua,) := 2 (v Nc + E UOIvNc-OI) . 
01=2 

(3.3) 

This is the same as the Seiberg-Witten curve [6,26-29] of N = 2 SQCD and, therefore, the 

worldvolume theory has the same effective gauge coupling as N = 2 SQCD [32]. A BPS 

state is ,a supersymmetric membrane ending on the fivebrane worldvolume [3,5] whose 

mass is given by the membrane tension Cll -3 times the area of the spacial part D of its 

world volume. By the condition of the supersymmetric cycle, the area is the same as the 

integration of the holomorphic two-form n and the mass is given by 

- n = dv /\ - = v-1 I f I ·1 f dy Iii dy 1 C1l
3 D DyaD y , 

(3.4) 

which agrees with the BPS mass formula for the N = 2 SQCD, as shown in [33,34,30] 

for the N j = 0 cases. 

From the fact that the worldvolume theory has the same effective gauge coupling as 

N = 2 SQCD, it follows that they have the same Kahler metric on the Coulomb branch as 

well because of the N = 2 supersymmetry in four dimensions which both theories possess. 

We now explicitly check this. 1 

Since we are considering a variation of the holomorphic curve I; with a single non

compact component, the Kahler metric is simply read off from the second order variation 

of the term ell -6 I yl=9d6 x of the fivebrane lagrangian. Recalling that ~ is at a point in 

the 789 directions and is embedded in the complex surface 5, we find that it is given by 

formula (2.11). Namely 

y - - 1 h d2 (G -G - G -G -) ~ Xi ~ Xl aX
k 

aXT 
101(3 - D6 <;' Z ij kl - it kj U z U z ~ ~ __ ' 

1::-11 .~ UU OI UU(3 
(3.5) 

where Gil denotes the Kahler metric of 5. Note that Gi)Gkz-GirGkl is the i]kl component 

of the square of the Kahler form w of 5. In the present case where 5 is a Ricci-flat Kahler 

manifold of dimension two, the square of the Kahler form is given by 

(3.6) 

We now fix the coordinates of the space-time 5 and the worldvolume~. As the coordinates 

of 5 we can use v and y which are good in the neighborhood of ~ except at a subset of 

1 Essentially the same computation was recently done independently in [30,31]. 

7 



measure zero. As the worldvolume coordinate, we choose v. This choice of coordinates 

corresponds to considering the curve 2.: as the two-sheeted cover of the v-plane given by 

Nt 

y2 _ 2CNc (v, uo:)y + A2Nc-N
f II(v + mi) = O. (3.7) 

i=l 

Then, there is only one non-trivial component of DXk / Duo: which is 

Dy vNc-o: 
--y 
Duo: - y - CNJV) . 

(3.8) 

Note that 

a = 2, ... , Nc (3.9) 

form a base of the holomorphic differentials of the ~curve 2.: of genus Nc - 1. The Kahler 

metric is then expressed as 

(3.10) 

This is nothing but the Kahler metric of the special geometry which agrees with the field 

theory knowledge. In order to see this in the standard notation, let us choose a symplectic 

basis of the first homology class of 2.:; Ai, BJ· (i,j = 1, ... , Nc - 1). Then, the a and aD 

fields are given by oa;jouo: = :fAi Wo: and oab/fJ.u{3 = :fB) w{3. Using the Riemann bilinear 

identity, (3.10) is expressed as 

(3.11) 

In this way, we have obtained the standard form of the scalar kinetic term of the effective 

lagrangian 
Nc- 1 

Skin = 1m f d4 x "lmn :L omaJ}nab· 
i=l 

(3.12) 

Note that the essential point for· obtaining the special geometry is the holomorphic -

anti-holomorphic factorization (3.6) of the square of the Kahler form. This would not be 

the case if 2.: were embedded in a Calabi-Yau three-fold (as in the case of N = 1 SQCD) 

nor in a Ricci-non-flat complex surface in the space-time (as in the case we will consider 

in section 5). 
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4 N = 2 Higher Derivative Terms 

In this section we will consider the four-derivative terms for the scalar fields in N = 2 

SYM theory, both from the field theory point of view and from the brane point of view, 

and compare the results. 

4.1 Field Theory 

The low-energy effective action of N = 2 SYM theory can in N = 2 superspace be 

written as 

where F is a holomorphic function and Ai (Ai')'are abelian N = 2 chiral (antichiral) vector 

superfields. The real function H(A i , A7) is the one that gives rise to four derivative terms 

for the scalars in the low-energy effective action. We denote by <I>i and W~ the N = 1 

chiral superfield and N = 1 field strength that are contained in Ai, and by <pi the complex 

scalar in <I>i. The kinetic term for the <pi is 

(4.2) 

where [{ij ,....., Im(Fij(4>i)) (subscripts on F and H denote derivatives with respect to 4>i). 

The function H been studied in [36-43]. Some general facts such as its behavior under 

SL(2, Z) were discussed in [36], and its asymptotic behavior was discussed in [40,41]. 
Several contributions to H are known explicitly, such as the one-loop contribution [39], 
the two-loop contribution [43] (which vanishes), the one-instanton contribution [38J and 

the two-instanton contribution [42]. An exact form for H in the case of SU(2) was 

conjectured in [37]. In terms of the gauge invariant coordinate u on the Coulomb branch 

of the SU(2) gauge theory it states that 

(4.3) 

where c is some constant. H( u, u) should really be seen as a function of A, A rather than 

u, u, because a holomorphic function of an N = 2 vector superfield is in general no longer 

an N = 2 vector superfield. Such a function is still chiral, but no longer satisfies the 

Bianchi identity. The one-loop results for SU(2) are 

T/ _ log(16uu/ A'N=2) 
Ll.uu rv .;uu u = A 2 /2, H(A, A) ,....., 10g(A/ AN=2) 10g(A/ AN=2)' 

( 4.4) 
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In addition, there are instariton correction that are typically weighted with factors (Afv=2/U 2 ), 

but we will not consider those here. 

As the brane will not give us an answer in superspace but in components, in order to 

be able to compare we need to work out what (4.1) looks like in components. Using the 

N = 1 expansion of (4.1) in e.g. [36] or [40], we find the following four-derivative terms 

for the scalars ¢/ 

54 = ! d4 x(2Hi] (from4}) (frOncPJ) + Hijk(OmcPi)(OmcPj)(ononl') 

+ H-zJk ( OmcP1) ( OmcPJ) ( onOncPk ) + Hijk/( omcPi)( om~)( onl')( onl)). (4.5) 

In deriving this result we used several partial integrations, and put the auxiliary fields 

equal to zero. If the fermions are equal to zero that is allowed because there are no 

terms linear in the auxiliary fields that couple only to the scalar fields cPi . This can easily 

be understood from the fact that the scalars cP i are invariant under the global 5U(2)R 
transformations, whereas the three auxiliary fields form a triplet. We can simplify the 

structure of the four-derivative term even further by making some field redefinitions of 

the cPi
. The field equation for cPi reads 

(4.6) 

and using field redefinitions we can replace omOmcPi in (4.5) by the right hand side of (4.6). 

This then finally leads to the following expression for the four-derivative term 

(4.7) 

where 

It is quite interesting that the four-derivative terms can be brought in the simple form 

(4.7:), a fact that the brane knows about as we will see in the next section. For 5U(2), 
we find that the semi-classical four-derivative term reads 

5=!d4 (>:1m a )(;::}n-a _)8+410gy +(logy)2 
x U U m U U U n U 2-2( )2 ' 

U U logy 

4.2 Fivebrane 

16uu 
y=-A4 • 

N=2 
(4.9) 

Let us now compute the higher derivative terms using the fivebrane 1
. They can be 

extracted by expanding (2.5) in powers of L. We will concentrate on the case of a pure 

IThese terms were also recently computed in [31] c 

10 



gauge theory without matter, with target space metric as given in (A. 1). Recall that 2; 

is described by 

t 2 
- 2tC(v, ua ) + A~2 = 0, 

Nc 

C(v,ua) = vNc + L uavNc
-
a. 

a=2 
( 4.10) 

We identify the complex coordinate z on 2; with v and find (where C = C(v, ua) and 

C' = fJC(v,ua)/fJv) 

gzz 

From this we obtain 

f!tlt - CI 2 + R2 1C'I2 

It - CI2 
R2vNc-a fj Nc-i3 

It - CI2 
R2C'zNc-i3 

It - CI2 
R2(;'zNc-a 

It - CI2 . (4.11 ) 

( 4.12) 

The five-brane action (2.5) can now be rewritten in the following convenient form: intro

duce I, d defined by 

I 

d ( 4.13) 

then 

( 4.14) 

This expression makes it clear what kind of higher derivative terms can appear in the 

fivebrane action, and what their relative coefficients are. In particular, the four-derivative 

term comes only from the If term in (4.14), and it is therefore precisely ofthe same form 

as (4.7), namely 

(4.15 ) 

with 

( 4.16) 
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We see that the fivebrane provides a form of the four-derivative term that is consistent 

with the general form of a four-derivative term in an N = 2 field theory, provided we make 

certain field redefinitions. In itself this is not surprising, as the fivebrane theory does have 

N = 2 supersymmetry in four dimensions, and should therefore be consistent with the 

most general supersymmetric field theory. The fact that we have to perform certain field 

redefinitions is presumably related to the fact that the N = 2 supersymmetry in field 

theory is realized differently than it is in the fivebrane theory. The latter is known to be 

realized in a highly non-linear way [44]. The fact that in the fivebrane theory fewer higher 

derivative terms appear than in the field theory, suggests that the non-linear realization 

of supersymmetry on the fivebrane is a very efficient way to organize the higher derivative 

terms, and perhaps also the fermionic terms, in N = 2 effective actions. 

4.3 Comparison 

The first thing that one notices in the brane result (4.16) is the fact that it depends 

non-trivially on R and ell, and that it therefore cannot be equivalent to the field theory 

answer. This is the first time in this paper that we compare a field theory quantity that 

is not protected by holomorphy or global symmetries to the same quantity obtained from 

the brane. The brane result depends explicitly on Rand e11 and there is no obvious limit 

for these quantities that yields a sensible result. The four-derivative term is ill-defined 

both in the limit that R goes to zero and that R goes to infinity. Therefore, the brane 

and field theory l'esults agree only for processes involving very low energies and momenta. 

Certain qualitative features of the higher derivative terms do agree. Consider for instance 

the points in moduli space where (4.16) becomes singular. This can only happen when 

the denominator in the integrand behaves like Iv - vol k near some point v = Vo and k ::::; 2. 

There are two possibilities, either (t - C)2 has a double zero or (t - C)2 and C' have 

a common zero. The second condition implies the first one, and (t - C)2 has a double 

zero only at the singularities in the moduli space where a dyon becomes massless. This 

is consistent with' what one expects from field theory. It is in this sense that one might 

consider the theories to be in the same universality class. To get an idea to what extent 

the results are quantitatively different, we compare the semiclassical field theory result 

(4.9) with the brane result for 5U(2), which reads (see (4.16)) 

( 4.17) 
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The semiclassical region corresponds to large u. If lui » R2£~4 and lui » A~=2' then 

one can easily show that 

I - I 11 2 R2 8 - 121 1-6 Huuuu 2:: - d V-I 18 rv R est u . 
4 Ivl;::f;tR-llul v 

( 4.18) 

For these values of lui the integral over the disc Ivl ~ R£~2 contributes something of 

the order R4£~4Iul-4 to IHuuuul. Altogether it is not clear whether (4.16) does have the 

right lul-4 behavior, but if it does, the coefficient in front of lul-4 will almost certainly 

depend on Rj £st. Thus, even in the semiclassical regime, the field and brane theories are 

quantitatively quite different. 

4.4 SU(Ne ) with Nj > 0 

In the presence of matter fields, field theory makes a few interesting non-trivial predic

tions. The one-loop contribution to H(Ai, Ai) has a coefficient proportional to 2Nj - Ne. 

In addition, there are indications [35,43] that H(Ai, Ai) receives no perturbative cor

rections beyond one-loop at all. Therefore, in the case where Ne = 2Nj, the function 

H(Ai, Ai) should receive contributions only from instantons. 

Another prediction form field theory is that in the finite, scale invariant case N j = 2Nc, 

the one-loop result for H(Ai, Ai) is exact [45]. 

To see whether we can reproduce these results from the fivebrane, we have to work out 

thc four-dcrivati\!c tcrm in the prcsence of matter. Matter is included in the M theory 

framework by modifying space-time to include a multi-Taub-NUT space. The Taub-NUT 

space depends on several parameters (x1, xf, xY), corresponding to the locations of the D6 

branes in the Type IIA picture (see Appendix B). Two of the three parameters, x1 and 

xl, correspond to the mass of a quark and should be taken equal to zero, but the other , 
parameters xy are free. They do not correspond to parameters in field theory. If we work 

out the four-derivative term using the Taub-NUT background we find that the result does 

depend on xy. This illustrates once more the difference between the brane results and 

field theory. A limit that is particularly easy to analyze is to send all xy ~ 00. From 

the Type IIA point of view, this corresponds to using semi-infinite four-branes to realize 

the matter. The result one obtains is given by (4.15) and (4.16), where in (4.16) IC'I2 

should be replaced by I t~C :~ 12. This result deviates considerably from the field theory 

predictions. For Nc = 2Nj there are still one-loop contributions to H(A i
, At and for 

Nj = 2Nc the one-loop result is not exact. In the latter case, the field theory result that 

the one-loop result is exact was obtained in [45] using global symmetries and a scaling 

argument. The reason that the same argument does not apply to the brane calculation 
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is that the fivebrane depends on two additional parameters, Rand ist. To have the same 

scale invariance as in [45] we should assign weight -1 to both -Rand i st , and there are 

many new scale invariant four-derivative terms that one can write down that do depend 

on Rand i st . 

5 N.-:.- 1 Coulomb Branch 

In this section, we consider an example of a worldvolume theory with N = 1 super

symmetry in four-dimensions where we can obtain the Kahler metric of the moduli space 

exactly within the eleven-dimensional supergravity approximation of M theory. 

The example we consider corresponds to the N = 1 supersymmetric gauge theory with 

gauge group SU(Nc) with a massless adjoint chiral multiplet <I> and N f quark multiplets 

Qi, Qi (fundamental and anti-fundamental chiral multiplets) with bare mass m. The 

classical Lagrangian of the theory is the standard D-term plus the F-term given by the 

superpotential 

(5.1) 
i=l 

We do not turn on the Yukawa coupling Q<I>Q which makes the system N = 2 supersym

metric. The classical moduli space of vacua consists of a single Coulomb branch where 

the quark VEVs are zero Q = Q = 0 and <I> is diagonal. At energies below m the field 

content of the theorv is the scme as that of N = 2 SllDel'-Yang-Mills theorv with gall
0
0'e 

"" .1 V .1 

group SU(Nc), but the quark multiplets introduce N = 2 breaking interactions and we 

do not expect to obtain the special geometry as the quantum moduli space of vacua. If 

the bare mass m is very large, however, the N = 2 breaking interactions are suppressed 

as inverse powers of m, and we do expect the moduli space to be a small deformation of 

the special geometry for the N = 2 super-Yang-Mills theory with gauge group SU(Nc). 

We compute the corresponding deformation in the worldvolume theory, and compare with 

what we expect from field theory. 

Thei'e is no a priori reason to expect that these two agree because the supergravity 

computation is valid when all the characteristic lengths of the space-time and the brane 

are much larger than the Planck length while the worldvolume theory becomes close to' 

the four-dimensional gauge theory only in the Type IIA limit where the radius of the circle 

in the eleventh direction is much smaller than ill' As in the N = 2 Couiomb branch, the 

effective gauge coup1in~ constant will be correctly reproduced because abelian gauge fields 

are obtained by the chiral two form on the fivebrane whose lagrangian is scale invariant 

and the result will persist to be true even if we scale the system down to the Type IIA 
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region R «.ell. However, because of the lack of N = 2 supersymmetry it does not mean 

in the present case that the Kahler metric is also correctly reproduced. 

As we will see, there is indeed a clear discrepancy between the two. The reason we 

dare to carry out this computation is that the result might be useful for the following two 

purposes. In the region R «.ell the discrepancy would mainly be due to the correction to 

the supergravity approximation of M theory which is still in rather mysterious, and it can 

be used to learn about M theory itself. In the region R » .ell, the discrepancy originates 

in the effects of the degrees of freedom which are not part of the four-dimensional gauge 

theory. If we want to learn something about field theory from the world volume theory of 

the brane in general, it would be very useful to estimate the effects of such extra degrees 

of freedom as accurately as possible. The present computation may be considered as the 

first step towards obtaining some quantitative information about them. 

5.1 Brane Construction 

We start by constructing a Type IIA brane configuration whose worldvolume dynamics 

describes at long distances the N = 1 gauge theory given above. It involves Nc D4 branes 

stretched between two NS 5-branes with N f D6 branes located away from them. The 

world volume of D4, NS5 and D6 branes span the directions 01236, 012389 and 0123789 

respectively, where the two NS 5-branes are at a point v = 0, x 7 = 0 in the 457 directions 

and are separated in the x 6 direction, the D4 branes stretched between them are at points 

in the 89 directIons, and the D6 branes are at v = -nt, x G = O. Note that the D4 and 

NS5 branes are separated from the D6 branes in the 45 directions by ~v = nt. This 

configuration is obtained from that of N = 2 SQCD with Nf massive quarks by a 90 

degree rotation of the D4/NS5 system in the 45-89 directions while keeping the D6 branes 

intact. The configuration is invariant under the groups U(1)45 and U(I)89 of rotations in 

NS NS 

06 

Figure 1: The Type IIA Configuration 

the 45 and 89 directions provided we assign a suitable U(1 )45 charge to nt. The coordinates 
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v and x 8 + ix9 carry charge (2,0) and (0,2) respectively under U(1)45 x U(1)89, and m 

must be assigned a charge (2,0). 

The open strings stretched between the D4 branes create a U(Nc) vector multiplet in 

five dimensions with sixteen supersymmetry, but the boundary condition at the ends on 

the NS 5-branes projects this to an N = 2 SU(Nc) vector multiplet in four dimensions 

which contains in N = 1 language the vector multiplet Wa and the adjoint chiral multiplet 

<I>. The rotation symmetry U (1 )45 X U (1 )89 is identified with the R-symmetry under which 

<I> carries charge (0, 2) and gl uino carries charge (1, 1). Open strings stretched between 

D4 and D6 branes create N j fundamental and anti-fundamental chiral multiplets which 

carry U(1)45 x U(1)s9 R-charge (0,1). As in the three-dimensional analog [57], one can 

show that the superpotential invariant under the R-symmetry is W = mOQ. 

It is easy to lift this to an M theory configuration. It is a configuration of a single 

fivebrane in the space-time R7 x S where S is a Taub-NUT space which has a complex 

structure (among others) described by the equation xy = A~;Nf (v + m )Nf • We have 

introduced in advance a parameter AN=l that characterize the distance between the two 

NS5-brane. The fivebrane is of the form R4 x ~ where ~ is located at x 7 = 0 and is 

embedded as a holomorphic curve in the space Slv=o x R2. Here, Slv=o is the v = 0 locus 

of S which is the cylinder described by 

(5.2) 

while R 2 is the 89 directions of the space-time in which Vie introduce a complex coordinate1 

o -z( 8 . 9) 
W = t-st X + zx . (5.3) 

The curve has two regions with large w corresponding to the two NS 5-branes, and these 

obey the boundary condition x rv w Nc in one region of large w a!ld y rv w Nc in the other. 

The embedding satisfying this condition is given by 

(5.4) 

where ua's are parameters characterizing the distance between the Nc D4-branes. 

The configuration is invariant under U(1 )45 x U(1)s9 if we assign charge (0,2Nc) to x 

and y, (-2Nj, 4Nc ) to A~;Nf, and (0,20:) to U a • From this we can identify AN=l and 

IThis should not be confused with the coordinate w = £11 -3(x8 + ix9) which is used in other parts 

of this paper. The difference in the prefactor is because of the difference in the identification of the 

parameters of branes and fields. 
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the Uc< 's as the dynamical scale of the gauge theory and the color Casimirs det( w + ~) = 

CNc (w, uC<) at some cut-off scale. The effective gauge coupling constant of the abelian 

gauge theory on the brane is given by the period matrix of the curve. The curve we have 

obtained reproduces the effective coupling of the gauge theory of interest given by [46]. 

For large values of m, the theory at energies below m is approximately the N = 2 

pure Yang-Mills theory. The dynamical scale of the low energy theory AN =2 is related to 

the high energy theory by 

A2Nc _ 

N=2 - (5.5) 

where gL and gH are the gauge coupling constants of the low and high energy theories at 

the cut-off scale. The factor (gIlg1)Nc appears [47] since the kinetic term for ~ is given 

by 

(5.6) 

because the W-boson mass is given by the separation of the eigenvalues of~, not multiplied 

by g. Likewise, the field ~ gets renormalized as we flow down the energy below m, and 

the low energy field ~(2) is related to the high energy field by ~(2) = (gLlgH)~. In terms 

of these variables, the curve is given by 

- - 2C (- (2») x + y = Nc w, Uc< , - - _ A2Nc xy - N=2, (5.7) 

where U~2) = (gL/ gH )C<uc< and X, y, ware suitably rescaled coordinates. This is nothing 

but the curve of N = 2 super-YM theory, and hence we have shown that the effective 

gauge coupling constant is the same as the one in the N = 2 super-Yang-Mills theory. 

However, due to the absence of N = 2 supersymmetry, the scalar kinetic term (and hence 

the Kahler metric on the moduli space) is different as we now see. 

5.2 Kahler Metric on the Moduli Space 

As in the case of the N = 2 Coulomb branch, the Kahler metric on the moduli space is 

simply read off from the second order variation of the term £11 -6 f y'=gd6 x of the fivebrane 

Lagrangian. It is given by the formula (2.11) or (3.5) where Gi;GkT - GirGk; is the i]kl 
component of the square of the Kahler form of Slv=o x R2. By using the expres'sion of the 

Taub-NUT metric given in Appendix B, Equation (B.5), the Kahler form of Slv=o x R2 

is given by 
d d-

w = R2 U- 1 ...!!... 1\ '! + £st 4 dw 1\ dw 
y y 

(5.8) 
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where 

(5.9) 

The square of w is thus 

(5.10) 

Proceeding as in the computation of N = 2 Coulomb branch, we find that the Kahler 

metric is given by 

I(~i) = h U-1wo 1\ wi), (5.11) 

where Wo are the holomorphic differentials Wo = wNc-odw/(y - CNc(w)). This is in:. 

deed different from the one of special geometry. However, the prefactor U-1 in the in

tegrand is nowhere vanishing nor divergent and is bounded from below and above as 

(1 + Nj RMs? /2Iml)-1 ::::; U- 1 ::::; 1, and hence the moduli space has the same type of 

singularity as in the N = 2 theory. In particular, the same type of massless particles 

appear as in the N = 2 theory. This is what is expected in field theory. Therefore, the 

brane captures the correct qualitative feature of the field theory of interest. 

Let us take a closer look at this metric. The coordinates y and x are related to x 6 and 

x lO by the formulae (B.4) and (B.7). As in section 4.4, the metric depends on the overall 

constants in these formulae which is a parameter with no counterpart in field theory. This 

already shows a discrepancy between the brane and field theory results. We will only 

examine the metric for one particular value that puts the D6 branes exactly in the middle 

between the two NS 5-branes in the x 6 direction. Since all the D6 branes are at .1;6 = 0, 

the requirement is Ixl = Iyl at x6 = o. This yields at v = 0 that y = mNJl2 A~,,=-tJl2t, 
x = mNtl2A~C;;tf/2t-l where It I = 1 at x6 = O. By introducing the rescaled variable 

x = x6 /lf st 2ml, t is given by 

(5.12) 

where 
Iml 

m= 2. 
RMst 

(5.13) 

In terms of the new variables, the curve ~ is given by 

(5.14) 

and the function U is expressed as 

(5.15) 
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Then, we see that the Kahler metric (5.11) depends only on mNfA~;Nf, U a , and the 

combination in (5.13). 

In the limit m -+ 00, the Kahler metric converges to that of the N = 2 Coulomb 

branch as is also the case for the gauge theory of interest. However, the precise value of 

m above which the metric becomes close to the one of the N = 2 theory is different from 

the one in the gauge theory. In the gauge theory, provided m » AN=2, the metric is close 

to the N = 2 metric in the region in which (<"P) « m. In the worldvolume theory of the 

brane, however, the metric is close to the N = 2 metric if in» 1, namely, 

m» RMs?, (5.16) 

irrespective of the values of ua . 

The structure of deviation from the N = 2 metric looks also different. In general jt 

is not easy to carry out the integral (5.11). However, for large enough m (5.16), in the 

region of the moduli space where 

(5.17) 

Wa AW/3 is large only for x « 1. Then, we can approximate U by its value at x = 0 and the 

Kahler metric (5.11) differs from the N = 2 metric simply by a constant multiplication: 

r -- (1' iYfRMs?)-l.g'fI .yN_=2 
'af) - \ T 21ml g't "-af3 . 

(5.18) 

On the gauge theory side, the deviation is suppressed as powers of (<"P) / m in the region 

where AN =2 « (<"P) « m. In particular, it is not so simple as (5.18). 

Notice that both in section 4 and here the scale RMs? appears. In 'particular, it is a 

natural unit in the brane construction to measure the mass of the quark in, see (5.13). We 

briefly indicate the origin of this scale. In the fivebrane of M theory, part of the fivebrane 

corresponds to the D4 brane of Type IIA, and part corresponds to the NS5 brane of Type 

IIA. The transition region between the two parts is characterized by a( f;t v) I ax6 
rv 1. 

There are two such transition regions, separated by a distance 6x6
, which for pure gauge 

theory can be estimated to be 6x6 = -2NcRlog(AN=2/NcRMi). This distance 6x6 is 

in the Type IIA picture to be identified with Lbrane, the distance between the two NS 

branes. The coupling in the Type IIA picture was given by 11g2 = Lbranel R, and using 

the above results for 6x6 we see that exp( -II g2) = (AN=21 NcRMs?)2Nc. Thus, NcRMi 

is the scale at which the bare coupling 1 I g2 is defined. 
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6 N = 2 Higgs Branch 

In sections 4 and 5, we saw that the fivebrane theory on R4 x E and the four

dimensional gauge theory give quantitatively different results for the Kahler metric of 

N = 1 theories and higher derivative terms of N = 2 theory. The possible sources of 

such differences are the Kaluza-Klein modes on the non-compact surface E, which do not 

have counterparts in the four-dimensional gauge theory, and the issue of the decoupling 

of the bulk physics. The effect of such extra modes becomes small in the region of the 

parameter space where there is a large correction to the eleven-dimensional supergravity . 

approximation. However, the computation in the eleven-dimensional supergravity ap

proximation gave a correct answer for the N = 2 Coulomb branch metric and also for the 

. effective gauge coupling of the N = 2 and N = 1 theories in the Coulomb phase. In all 

these cases, directly or indirectly via supersymmetry, the computation involved the chiral 

two form of the fivebrane theory which has the Lagrangian given by the .second term of 

(2.1). This suggests that this part of the fivebrane theory is remarkably rigid as we move 

around in parameter space. In this section, we perform a further test of this observation 

by studying the Higgs branches of the N = 2 theory. The metric on these Higgs branches 

is also related to the chiral two form, and indeed in several cases we can recover the exact 

field theory metric using a fivebrane calculation. 

6.1 Field Theory 

We will consider four dimensional N = 2 supersymmetric gauge theory with gauge 

group SU(Nc ) and N j hypermultiplets in the fundamental representation (quarks). The 

Higgs branch (baryonic branch) of the theory has complex dimension 2Nc N j - 2(N; -:-1). 

There are also mixed branches (non baryonic branches) labeled by an integer r [48] with 

complex dimension 2r(Nj - r). The metrics on the Higgs branches of the N = 2 theory 

are hyper-Kahler. The classical metric is not corrected by quantum effects. Therefore the 

exact Higgs branch metric is obtained by the hyper-Kahler quotient construction. 

In order to compare to the metric that we will compute using the fivebrane of M 

theory we have to express the metric in the coordinates of the brane construction. In 

order to do that we will use the following strategy. First we will consider the dimensional 

reduction of the N = 2 theory to an N = 4 theory in three dimensions. The metric on the 

Higgs branch is not modified under the reduction. In three dimensions there is a mirror 

symmetry [50] relating two different N = 4 theories in the infrared, namely in the limit 

1/e2 ----+ 0 where e is the three dimensional gauge coupling. Under this mirror symmetry 
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the Higgs and Coulomb branches of the mirror theories are exchanged. It turns out that 

the Higgs branch metric expressed in terms of the Coulomb branch metric of the mirror 

in three dimensions is naturally related to the one computed using the fivebrane. While 

the Higgs branch is not corrected quantum mechanically the Coulomb branch is. The 

metric on the Coulomb branch receives both loop and instanton corrections. In the next 

subsection, we will see that these have natural interpretations from the fivebrane point of 

VIew. 

We will start by considering the gauge group SU(Nc) with N j = Nc hypermultiplets in 

the fundamental representation. The baryonic branch of this theory has complex dimen

sion two. The effective .field theory at the baryonic branch root (the point of intersection 

with the Coulomb branch) is a U(1)Nc- 1 gauge theory with 2Nc - N j massless electrons 

with charges (-1,0, ... ,0), (1,-1, ... ,0), ... ,(0, ... ,1,-1), (0, ... ,0,1) [48]. 

The mirror theory is a U(1) gauge theory with Nc hypermultiplets (electrons) [50]. 

The exact Coulomb branch metric of this theory is determined at one loop. Higher loop 

corrections are absent [49], while instanton corrections are absent since the gauge group 

is abelian. The exact metric on the Coulomb branch of the mirror theory takes in the 

infrared limit the form 

(6.1 ) 

where 

( _) Nc - - -
V w = Iwl' 'VV = 'V x A . (6.2) 

The computation leading to (6.2) is one-loop with gauge fields on the external legs and 

hypermultiplets running in the loop. This is the metric of an ALE space with ANc-1 

singularity. 

Consider next the gauge group SU(Nc) with N j = Nc + 1 hypermultiplets in the 

fundamental representation. The baryonic branch of this theory has complex dimension 

2Nc + 2. The effective field theory at the baryonic branch root is a U(1 )Nc-l gauge theory 
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with 2Nc electrons charged as [48] 

U(lh U(l)z U(l)Nc-I 

qI 1 1 1 

q2 1 1 1 

qNc+1 1 1 1 (6.3) 

qNc+2 -1 0 0 

qNc+3 0 -1 0 

q2Nc 0 0 -1 

The mirror theory is a U(l )NrNc = U(l)Nc+I gauge theory with 2Nc el~ctrons and charges 

(after a change of basis) as follows [51] 

U(1h U(l)z U(1h U(l)Nc+I 

qI 1 0 0 0 

q2 1 0 0 0 

qNc- I 1 0 0 0 
(6.4) 

qNc 1 -1 0 0 

qNc+I 0 1 -1 0 

q2Nc-I 0 0 0 -1 

q2Nc 0 0 0 1 

As in the case Nj = N c , the exact coulomb branch metric of this theory is determined 

at one loop. The metric takes the form [51] 

where 

-+ 

\7 kgij 

a An a Am 
-a J'k--a ik w'l!' W"!-

t J 

(6.5) 

(6.6) 

gij has been computed in [51] (see eq. 4.10 there). For instance the diagonal components 

gii take the form 
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1 1 
gii I.... .... 1 + I.... ....1 Wi - Wi-l Wi+l - Wi 

i = 2, ... , Nc (6.7) 

1 1 
gNc+l,Nc+l = I.... .... 1 + -I.... 1 WNc - WNc+l WNc 

As in the previous case, there are no higher loop or instanton corrections to the metric. 

The same analysis as above can be repeated for the r = 1 non-baryonic branch for 

general N f and Nc • In this case the effective gauge theory at the root is abelian and the 

exact metric can be determined by one loop computation of the Coulomb branch of the 

mirror theory. (The theory at the root is actually the mirror of the theory at the baryonic 

branch root of the N f = Nc theory considered above.) 

For other cases, the story is much more involved. Consider the r > 1 non baryonic 

branch. The effective theory at a generic point of the root is U(r) with N f hypermultiplets 

in the fundamental representation (plus a free Maxwell theory). The mirror gauge theory 

has gauge group U(I) x U(2) x ... x U(r -1) x U(r)Nr2r+l x U(r -1) x ... x U(I), with 

hypermultiplets in the bi-fundamentals of each two adjacent groups and a hypermultiplet 

in the fundamental representation of each of the first and the last U(r) [4,52]. 

Since the theory is non abelian, the one-loop metric receives contributions both from 

hypermultiplets and vector multiplets running in the loop. Let us label the unitary 

groups by i,j, ... = 1, ... , N f - 1 and by ai, bi, ... = 1, ... , ki the color indices of the i

th group U(ki ). The Coulomb branch of the mirror theory is parametrized by Wia; and 

O'iai· While the' hypermultiplet in the (i.1) bi-fundamental contributes 1/lwia; - Wjb
J 

1 to 

the gia;,ia; component of the metric, a vector multiplet contributes -2/lwia; - Wib; 1 [53], 

which becomes large negative in the limit Wia; -+ Wib;. However, there are also instanton 

corrections relevant in this region coming from the 't Hooft-Polyakov monopole, which 

are typically of order 
1Wiai -Wibi I 

e e 2 (6.8) 

These render the full metric positive definite. 

6.2 Fivebrane Back Reaction 

In the Higgs branch, the fivebrane world volume has several disjoint components. In 

the IIA pictures, they are segments of D4 branes stretched between D6 branes and their 

positions parametrize the Higgs branches. of the N = 2 theory. In the M theory picture, 

these are fivebranes wrapping the pI cycles on the Taub-NUT space [5,9]. The Higgs 

branch coordinates are then the locations (labeled by w) of the pl parts of the fivebrane 

transverse to the Taub-NUT geometry and vevs (labeled by 0') of the self-dual two-form B 
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on the pI,S. They combine to make hyper-Kahler coordinates appropriate for the N = 2 

Higgs branch. 

Let us pay attention to one of such pI parts of the fivebrane and define 

( 
7 8 9) 03 -+ B W zz 

x , x , x = {.l1W' zz = (J' vol(P1) (6.9) 

To do the Kaluza-Klein reduction on the fivebrane worldvolume, we regard 10 and (J' 

as functions of xO, ... ,3 and set Wzz to be the volume form on pl. We have chosen the 

normalization of (J' so that its periodicity is 1. If we use the flat metric for the spacetime, 

the fivebrane effective action for wand (J' would simply be 

! d4
x (vol(P1 )amwam1O + voltp1) am (J'am 0" ), (6.10) 

and does not correctly reproduce the Higgs branch metric expected from the field the

ory analysis. In the low energy approximation of M the~ry, the only way that other 

components of the fivebrane affect the kinetic term for the pI is through the graviton 

exchange. 

As a warm-up exercise, let us compute the back reaction effect when the size of pI is 

larger than the distance between the hranes. In this limit, the fivebrane configuration is 

almost flat. If a fivebrane is stretched in the xO, ... ,3, X 4 ,5 directions, the metric induced by 

it is 

(6.11) 

where 

(6.12) 
i=6 

and the horizon of the fivebrane is located at r = o. We then consider another fivebrane 

located at (X 7,X8 ,X9 ) = £11w and stretched in the xO, ... ,3,X6,1O directions. To derive the 

kinetic term for w, we take w to be a function of (XO, ..• , x 3
) and substitute it into the 

fivebrane action: 
3 

Sill = ! dxo ... dx3 f dx6dx lO y'detG L L Gmngabamwaanwb, 
m,n=O a,b=7,8,9 

(6.13) 

where gab is the spacetime metric given by (6.11) and Gmn is the induced metric on the 

fivebrane. This integral can be evaluated explicitly and one finds, 

5, - - ! d4 ! d 6d 10 ( £11) am -+ a -+ 

w - X X x 1 + (LI~6(xi)2)3/2 W· mW 
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(6.14) 

Note that the.e11 dependence disappears from the final expression. 

The kinetic term for (J comes from 

(6.15) 

of the fivebrane action, so we have to evaluate the 3-form potential C(3) induced by the 

fivebrane at r = 0, i.e. 

1 10 
dC(3) = 5" L xi dx j A dx k A dx l A dxm 

r ijklm=6 

Up to a suitable gauge choice, we can solve this as 

C(3) .. 
a=7,8,9;tJ=6,IO 

C(3) . 
a,b=7,8,9;t=6,IO 

C (3) 
789 0, 

where Ai is the magnetic monopole vector potential in the X 7 ,8,9 space, 

(6.16) 

(6.17) 

(6.18) 

and y = VLa=7,8,9( X a )2. On pI where the fivebrane is wrapped, Aa is constant and y3 1r5 

is proportional to the volume form W zz up to a cohomologically trivial form. Thus, with 

a suitable shift of the 2-form B in the definition of (J in (6.9), we find 

(6.19) 

Notice that when we consider dB - C(3) on R4 x pI, there are also terms coming from 

the second line in (6.17), but these give rise to higher derivative terms in the action and 

have been dropped in (6.19). The three-form in (6.19) is not yet self-dual. To make it 

self-dual, we add to B the two-form 

(6.20) 

where m, n, p, q E {O, 1,2, 3}. Again dropping higher derivative terms, dBo contains two 

pieces. One of them is the dual of (6.19), the other is a self-dual three-form. Thus, 

d( B + Bo) - C(3) is a self-dual three-form. In addition, the gauge fixing conditions d* B = ° 
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and d*C(3) = 0 are satisfied. This is precisely the situation as described in section 2, 

showing that we should do our computations with the three-form d(B + Bo) - C(3). 

Luckily, f Id(B + Bo) - C(3)1 2 = 2 f IdB - C(3)1 2 , so we do not make an error is we work 

with just the three-form (6.19). 

The action is then evaluated as 

(6.21) 

(6.22) 

Combining this with (6.14), we find that the metric on the moduli space of the fivebrane 

wrapping on pi is given by 

with 

and 

1f/2 
V(w) = VOl(pi) + ruT 

\7V = \7 x A. 

(6.23) 

(6.24) 

(6.25) 

Although we have obtained (6.23) by computing each term explicitly, we could have 

gotten it faster ·by using the following argument. It is known that (6.23) with V and 

A obeying (6.25) is the most general hyper-Kahler metric for (0", w) with the rotational 

symmetry for wand the translational symmetry for 0". The condition (6.25) requires 

~ V = 0 almost everywhere except for singularities in V. In the present case, a singularity 

comes only from w = O. The vector potential A is then uniquely determined by the 

intersection of the two components of the fivebranes, one stretching in the X
4

,5 directions 

and the other stretching in the x 6 ,lO directions. This in turn fixes V up to an additive 

constant. 

This argument is also applicable when the size of pi is comparable to x 7,8,9 or smaller. 

In this case, we can no longer ignore the effect of the background Taub-NUT geometry. 

The metric induced by the fivebrane wrapping on cycles on the Taub-NUT space is not 

known explicitly. Nevertheless it is still true that the resulting moduli space metric in 

the supergravity limit should be of the form (6.23) with V and A obeying (6.25). This 

is because the rotational symmetry in the X 7,8,9 plane is unaffected by the Taub-NUT 

geometry and the translational invariance in CI is unbroken in the supergravity limit. It . 

is then sufficient to determine A, which can be found as follows. 
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Suppose the fivebrane is wrapped on a surface R4 x E at the origin of the X 7,8,9 plane, 

where E is a cycle on the Taub-NUT space. Let C(3) be the 3-form potential induced by 

such a fivebrane. Then for any other cycle E' on the Taub-NUT space, 

(6.26) 

where 52 surround the origin in the X 7,8,9 plane and #(E n E') is the intersection number 

of the two surfaces. This means 

(3) _ #(E n E') . i _ ... 
C - vol(E') Atdx 1\ W zz + (6.27) 

where A is the vector potential for the monopole at the origin of the X 7,8,9 plane and W zz 

is the volume form on E'. This then determines A for the moduli space metric. 

It is straightforward to generalize this construction when there are several disjoint 

pI'S. In this case, the metric takes the form (cf. (6.5) and (6.6)) 

(6.28) 

where 

(6.29) 

Here Wi specifies the location of the i-th pI and O"i is the vev of the self-dual B-field on 

it. By generalizing the above argument, one can show that Aj is uniquely determined 

by the intersection of the i-th and the j-th pl. In the Taub-NUT space of AN type, 

the intersection number of neighboring cycles on the Taub-NUT space is + 1 while the 

self-intersection number of each cycle is -2. Thus, with the identification 1/e2 = vol(PI), 

one can easily see that the metric computed in this way agrees with the field theory result 

in the previous subsection, up to the instanton corrections. 

To obtain the four-dimensional gauge theory from the fivebrane, we should be able to 

neglect the Kaluza-Klein modes. Since the typical energy scale of the gauge theory is Iwl, 
we need 

1 
Iwl « vol(PI)" (6.30) 

This is the same as taking the infrared limit 1/ e2 -7 0 in the field theory analysis in the 

previous subsection. This is also the limit where the NJ D6-branes, separated in the x 6 

direction, become close to one another and the 5U(NJ ) symmetry is restored. This is 
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indeed the limit where the worldvolume theory becomes close to the gauge theory since 

the latter has the SU(NJ) flavor symmetry. In the spacetime coordinates related to w by 

(6.9), (6.30) means 

(6.31 ) 

One can expect that quantum corrections, to the supergravity description become strong 

in such a situation. l To see this more explicitly, let us consider the case when there 

are two components of the fivebrane wrapping on two copies of a pI of the Taub

NUT space separated in the x 7,8,9 directions. As a membrane can end on the five

brane, a membrane stretched between the two pI may cause instanton effects. The 

membrane action measured with respect to the metric (6.11) would be proportional to 

vol(PI)I~x7,8,91/Rrl = vol(PI)I~wl and thus the instanton effects are typically 

(6.32) 

which become large in the limit (6.30) or (6.31). The instanton would break the transla

tional invariance in a, and thus the statement in the above paragraph does not hold in 

such a case. By following a chain of duality arguments, one can show that these mem

brane instantons are in one-to-one correspondence to the field theory instantons discussed 

in the previous subsection and have the same effect on the metric (compare (6.32) with 

(6.8)). 

So far we have been consi dering . the variation of the x 7 ,8,9 position and the chiral 

two form of the' finite pI components. \Ve have shown that the brane computation 

correctly reproduces the field theory result for non-baryonic branches (up to the membrane 

instanton correction). However, for :the baryonic branches, there is one quaternionic 

modulus in addition to such pI motions. As discussed in [9], this is identified with the 
/ 

one modulus associated with the charged massless particles which appear when the infinite 

component factorizes into two components. It is natural to guess that this is related to the 

relative separation of the two components. However, since both components are of infinite 

volume, a naIve computation shows that it costs an infinite energy to separate them and 

also it is not clear whether there is a zero mode for the chiral two form. Nevertheless, 

if we assume that there is one zero mode for the chiral two form and there is a way to 

make the kinetic energy finite, the back reaction method again gives us the correct field 

theory result. Note that the two infinite components intersect at 2Nc - NJ points [9]. In 

1 It was shown in [54] that the fivebrane metri~ (6,11) is smooth across the horizon at r = O. This 

however is not the case when the fivebrane is wrapped on a compact surface such as pI and the curvature 

is expected to diverge near the horizon. We thank G. Horowitz and J. Maldacena for discussion on this 

Issue. 
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the case Nf = Nc, this yields the equ~tion V = Nc/lwl in (6.2). In the case Nf = Nc + 1, 

WI is interpreted as the location of one of the infinite components and the other is fixed 

at w = O. Then, th~ first and the last equation in (6.7) follow from the fact that the two 

infinite components intersect at Nc - 1 points, and that one of them intersects the first 

pI at one point whereas the other intersects the last pI at on~ point. 

Remarks. 

(1) The Higgs branch metric has also been discussed in the framework of geometric engi

neering in [55] where the Higgs branch of an U(l) theory was considered. 

(2) We also note that the above computation can be extended to Sp(Nc ) gauge theories 

and compactified 6d tensionless string theory by using the configuration constructed in 

[52]. In these cases, open membrane instantons always contribute. 

7 N = 1 Higgs Branch 

We consider four-dimensional N = 1 supersymmetric gauge theory in the phase where 

the gauge group is broken by the Higgs mechanism. We consider two kinds of theories. 

One is obtained from N = 2 SQCD with SU(Nc) group and Nf flavors by giving mass f1 

to the adjoint chiral multiplet. The other is N = 1 supersymmetric QCD. The fivebrane 

configuration in M theory corresponding to these theories has been obtained in [9]. We 

consider the simplest example Nc = Nf = 2 in some detail. 

In both cases, we use the back-reaction method to compute the metric on the moduli 

space as in the computation of the metric of the N = 2 Higgs branch. In the case of 

Nf = Nc = 2, there are no complications associated with open membrane instantons. 

7.1 N = 2 Broken to N = 1 by Adjoint Mass 

Field Theory 

N = 2 gauge theory with SU(2) gauge group and Nf = 2 fundamental hypermultiplets 

has been studied in detail in [6]. The moduli space consists of a complex one-dimensional 

Coulomb branch and two Higgs branches emanating from different points on the Coulomb 

branch. One of the Higgs branches is of baryonic type and the other is of non-baryonic 

type. These are both isomorphic to an Eguchi-Hanson space with an Al singularity at 

the point of intersection with the Coulomb branch. 

If we give a bare mass f1 to the adjoint chiral multiplet, N 2 supersymmetry is 
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broken to N = 1 and all but the two Higgs branches are lifted. The Higgs branch is 

Kahler but no longer a hyper-Kahler manifold, and it is difficult to compute the Kahler 

metric because it received both loop and instanton corrections. However, it is easy to see 

how the complex structure of these Higgs branches is deformed as a function of f-l. Here 

we only consider the non-baryonic branch. The non-baryonic branch is parametrized by 

the meson vev M = QQ which is a 2 x 2 complex matrix. As analyzed in [9], a general 

meson vev can be made by a flavor rotation into a diagonal matrix with eigenvalues 

(if-lA, -if-lA) where A is the dynamical scale of the N = 2 theory (therefore the moduli 

space is set-theoretically the homogeneous space S £(2, C)jC*). Thus, at a general point 

of the moduli space, the meson matrix is expressed as 

M = g ( if-lOA 0 ) g-l = if-lA ( ad + be 2ab ) 
-if-lA 2ed -ad - be 

ad - be = 1. (7.1) 

In terms of the variables Mu = W, Ml2 = X, M21 = Y, the moduli space is described as 

a complex manifold by 

(7.2) 

Namely, the Al singularity of the f-l = 0 Higgs branch has split into two Ao "singularities" 

and is smoothed out. Although this complex manifold admits a hyper-Kahler metric, we 

do not expect the metric of the moduli space to be hyper-Kahler. 

Fivebrane Baek Reaction 

In [9], we have seen that the fivebrane correctly reproduces the relation of the flavor in-

variants of supersymmetric QeD with and without heavy adjoint. There we also proposed 

. that the flavor rotation is related to the position of the Cpl components by counting the 

number of degrees of freedom. However, the precise map between the position of the Cpl 

components and the points in the flavor orbit has not been given. Here we compute the 

metric of the non-baryonic branch by the back-reaction method and read off its complex 

structure to compare with (7.2). 

As shown in [5,9], the fivebrane at this non-baryonic branch consists of two compo

nents - an infinite component C and a finite component pl. The position w of the pI 

component in the 789 directions and the integral (j of the chiral two form on pl corre

spond to the real four dimensions of this branch. For f-l = 0, the pI component intersects 

the infinite component C at two points at the origin w = ° of the 789 direction [5]. For 

p #- 0, the infinite component C is rotated in the 45-8~ plane, and the pI component 

intersects C at one point at one value of w, (w7
, W = w8 + iw9

) = (0, ipA), and at one 

point at another value (w7 ,w) = (O,-ipA) [9] (see Figure 2). 

30 



w=o w= - jJ..l.t\ 

Figure 2: Splitting Al Singularity to Ao x Ao by Adjoint Mass 

The motion of the pI component is affected by the infinite component C and the effect 

on the metric is localized at these intersection points when all characteristic scales are 

much larger than the eleven-dimensional Planck scale. As shown in the previous section, 

the metric for f..L = 0 is given by 

where 

curl A = grad U 

1 2 
U = vol(P ) + Iwl 

(7.3) 

(7.4) 

(7.5) 

The numerator "2" in the expression for U shows that the pI component intersects C at 

two points at the same time, and indicates the Al singularity. 

In the case of f..L # 0, the two intersection points split into one intersection point at 

w = if..LA and one intersection point at w = -if..LA (both at w7 = 0). Moreover, the infinite 

component C is sloped in the v-w directions as: 

f..L w rv ±-v 
2 

(7.6) 

at the intersection point w = ±if..LA. Then, a naIve back-reaction method would show 

that the metric of this branch is given by (7.3) in which curl A = grad U and U is given 

by 
1 1 

U = vol(pl) + + (7.7) 
Jc21w - if..LA12 + (w7 )2 JC21w + if..LA12 + (w 7 )2 

where c2 is a constant of order f"V 1/(1 + IRf..L/212). This is only an approximation since 

there is no reason ,why the coefficients of (dw)2 and (dO" + ... )2 should be the same in the 

case where N = 2 supersymmetry is broken to N = 1. However, not knowing the correct 

way to carry out the computation, we examine this nai've approximation of the metric. 
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There is a complex structure with respect to which this metric is hermitian. One of 

the complex coordinates is w. Another coordinate is given by 

y = e-(vol(Pl)w
7
+iu) II JJc2 Jw - £j.LAJ2 + (w7 )2 - w7 • const. (7.8) 

~=±i 

Then, the metric is expressed as 

(7.9) 

where 

8=~L 1 (1+ w
7 

). 

2 ~=±i w - EpA Jc2 Jw - EpAJ2 + (w7 )2 
(7.10) 

Thus, the metric is indeed hermitian. There is yet another complex coordinate 

x = evol(Pl)w7+iu II / Jc2 Jw - EpAJ2 + (w7 )2 + w7 w - EpA . const. 
~=±i Jw - EpAJ 

(7.11) 

Then, x, y and w satisfy the relation 

xy = const . (w - ipA)( w + ipA) , (7.12) 

and this describes the complex structure of the moduli space with respect to which the 

metric is hermitian. This agrees with the field theory result (7.2). Thus, we propose that 

the pI motion is mapped to the flavor rotation by x = X, Y = Y, and w = w. 
However, there is a serious problem. Since the theory is N = 1 supersymmetric, the 

moduli space of vacua must be Kahler. Although the above metric is hermitian, it is 

not Kahler with'respect to the above chosen complex structure. It is not clear whether' 

this is because of the too naIve approximation or because of the wrong choice of the 

complex structure. We leave it as an open problem. If we can show that the reason is the 

former but not the latter, it would support the above refinement of the proposal about 

the relation of the flavor rotation and the pI motion. 

In principle, the correct complex structure could be identified by looking at the action 

of the supersymmetry on the worldvolume fields or on the parameters (iV, (J'). Although it 

is not clear whether it is practical, it is important to show that the complex structure of 

the moduli space is independent of the extra parameter R. It is clear that the part of the 

complex structure which is directly induced from the complex structure of the space-time 

(such as w = w8 + iw9
) does not depend on the extra parameter R, but it is less clear 

whether it is true for the part related to parameters such as (w 7 , (J').1 

1 It is interesting to note that the pair (w 7 ) (J') looks very much like the scalar fields one gets after 

dualizing the linear multiplet of N = 2 theory in three dimensions. The expression (7.8) or (7.11) is 

almost the same as the expression for the silperpotential (which is a holomorphic function) that appeared 

in the study of three-dimensional N = 2 gauge theory (see (3.11) in [56]). 
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7.2 N = 1 SQCD 

We will consider four dimensional N = 1 supersymmetric gauge theory with gauge 

group 5U(2) and N j = 2 pairs of chiral multiplets in the fundamental and anti-fundamental 

representations. The moduli space of vacua is a Kahler manifold whose complex structure 

is corrected by a non-perturbative effect. The classical metric is corrected by quantum 

effects both perturbatively and non-perturbatively. As in the N = 2 case, the compar

ison to the brane computation becomes more transparent if we express the metric by 

compactifying on a circle to three dimensions and go to the mirror gauge theory. The 

compactification on a circle of an N = 1 theory in four dimensions is a three-dimensional 

N = 2 theory. The classical metric on the Higgs branch of the four dimensional N = 1 

theory is identical to the classical metric of the three dimensional N = 2 theory. In a 

certain class of three-dimensional N = 2 theories, there is a mirror symmetry relating 

two different theories in the infrared [57], namely in the limit 1/e2 -+ a. where e is the 

three dimensional gauge coupling. Under this mirror symmetry the Higgs and Coulomb 

branches of the mirror theories are exchanged. Although both the Higgs and Coulomb 

branches get corrected quantum mechanically, the one loop correction to the Coulomb 

branch metric is seen classically on the Higgs branch of the mirror. We will show that 

the metric obtained using the back reaction method in the previous section is close to 

the one loop metric on the Coulomb branch of the mirror theory. Instanton corrections 

to the Coulomb branch metric correspond to the membranes wrapping the three cycles 

which we discussed i in the previous section. 

The Higgs branch of this theory has complex dimension five. The M theory description 

of the Higgs branch was studied in [9]. There are two complex moduli (tV, (J") associated 

with the motion of the pI in (x 7 , x 8 , x 9 ) and the integral of the chiral 2-form on the pl. 

This corresponds to the motion of a D4 brane broken between two D6 branes and the A6 

gauge field component on the D4 brane in the Type I1A picture. Two complex moduli 

ml, m2 are associated with the deformation of an infinite component CL of the curve in 

(x 8
, x9

). These correspond to the motion of two D4 branes broken between a D6 brane 

and the NS' brane in the Type IIA picture. One complex modulus n has its real part 

associated with the relative motion in x 7 of the infinite components of the curve CL and 

CR, and its imaginary part is associated to the integral of the chiral 2-form on CL and CR. 

The real part of n corresponds in the Type IIA description to a relative motion of the NS 

and NS' branes in x 7
• A computation as in [5] implies that an infinite energy is needed 

for the motions nand ml + m2. By considering them as moduli we are assuming that a 

more elaborate computation will show that only finite energies are needed for them. 
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The mirror theory is a U(1) gauge theory with matter content of N = 4 gauge theory 

with two charged hypermultiplets and a meson M that couples to the charged matter as 

M i qiQi. 1 (w, a) are the vev's for the three real scalars in the vector multiplet and the dual 

to the gauge field respectively. In the three dimensional gauge theory n is a parameter 

rather than a modulus, its real part is the FI parameter. Following [57] the one loop 

metric on the Coulomb branch of the mirror theory takes the form 

(7.13) 

where mi = (0, md. The term Cw+\iid + IW+\n21) is a consequence of the fact that in 

the mirror theory the moduli m1, m2 correspond to a meson that couples to the charged 

hypermultiplet as miqiqi. The " ... " part depends on dw, dml, dm2 and is, determined by 

the duality transformation of the vector to a scalar in the presence of the meson, such 

that the metric (7.13) is Kahler. As we noted previously, the four dimensional modulus 

n is a parameter in three dimensions. 

The metric (7.13) is obtained via an approximate back reaction, where the infinite 

component CL is approximated by a straight brane and the back reaction of the infinite 

component CR is neglected. Therefore this classical supergravity approximate back reac

tion reproduces the one loop metric of the Coulomb branch of the mirror theory. This 

however only captures classical features of the metric on the Higgs branch of the original 

theory. We expect that the classical metric will be corrected by loops. These higher 

loops cannot be seen in the appproximate back reaction that we used. It is probable that 

an improved back reaction method that takes into account the structure of the infinite 

component CL as well as CR will capture the higher loops. 

The example above can be generalized in a straightforward way to general Nj, Nc . The 

modifications compared to the N = 2 case are the meson moduli that add mass terms for 

some of the quarks [57]. However,' in this case we also expect instanton corrections and 

we have to compute the membrane instanton contribution. 

lThis mirror symmetry is approximate and it only captures a tree level coupling of the meson to the 

quarks and therefore cannot be used to get an exact metric on the moduli space of vacua. 
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8 Discussion 

The worldvolume theory on the M theory fivebrane wrapped on a non-compact Rie

mann surface depends on a scale, the radius R of the circle in the eleventh direction, in 

addition to the parameters that can be identified with the parameters or the moduli of 

the four-dimensional gauge theory. It is the presence of this additional parameter that 

simplifies the analysis. 

In general, the worldvolume theory becomes close to a standard four-dimensional 

gauge theory in the region where R « .e11 and some of the characteristic lengths of the 

brane become small compared to.e11 because the degrees of freedom absent in the four

dimensional theory becomes heavy. On the other hand, M theory is well-approximated 

by the eleven-dimensional supergravity in the opposite region where R » .e11 and all the 

characteristic lengths of the brane becomes much larger than .e11 • 

However, some quantities do not depend on the additional scale R and can be com

puted by going to the region of the parameter space where the eleven-dimensional super

gravity approximation is valid. As has been shown already, examples of such quantities 

are some flavor invariant combination of the vev of gauge invariant chiral operators, the 

mass of BPS particles and the tension of BPS domain walls. It seems that all the BPS 

or holomorphic quantities fall into this class. It is important to understand whether and 

why this assertion holds, and whether any exceptions can be found. 

Tn this papeJ', we have computp-d the low energy effective action of t.he world volume 

theory in the region of the parameter space where the supergravity approximat.ion is valid. 

In particular, we have comput.ed Kahler metric of some N = 2 and N = 1 theories and 

higher derivat.ive terms of N = 2 Coulomb branch. In the case of the N = 2 Coulomb 

branch metric, the effective gauge coupling of N = 1 and N = 2 abelian Coulomb phase, 

and the Higgs branch metric of some N = 2 theories, the supergravity computation has 

lead to a correct result of the corresponding four-dimensional gauge theory. In all these 

successful cases, the computation involves the chiral two form on the fivebrane, directly 

or indirectly via supersymmetry, where its lagrangian in the supergravity limit is given 

by the second term of (2.1). This indicates that this part of the worldvolume theory of 

fivebrane has a remarkable property that the supergravity approximation is valid in a 

wider region of the parameter space than naIvely expected. 

This does not apply to the calculation of non-holomorphic quantities such as the Kahler 

potential of N = 1 supersymmetric gauge theories or the higher derivative terms in the 

effective action of N = 2 theories, where the computation is disconnected from the chiral 
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two-form piece. We found that the results are quantitatively strikingly different than what 

we expect for the four dimensional gauge theories. They share however some qualitative 

features such as the fact that the four derivative terms in the N = 2 effective action 

derived from the fivebrane theory are singular precisely at the same points in the moduli 

space of vacua where the four derivative terms of the four dimensional gauge theories are. 

It seems therefore that although the eleven-dimensional supergravity limit cannot provide 

a quantitative agreement between the fivebrane theory and the gauge theory, it can still 

be useful to extract qualitative results. 

In order to use the fivebrane of M theory to study four-dimensional gauge theory in 

detail, it seems that we need to get a better understanding of the fivebrane theory when 

R is small and the Type IIA string theory is weakly coupled. Such an understanding 

might be provided by the matrix theory description of M theory. There are of course 

several difficulties in that direction. We are interested in theories with four and eight 

supercharges and the corresponding matrix descriptions have half of these amounts of 

supersymmetry. This will make the analysis of the quantum corrections difficult. Also, 

the rea.lization of the brane configurations in matrix theory is not straightforward since, 

for instance, we do not know how to describe a transversal fivebrane in matrix theory. 

Another curious point that demonstrates the need for a better understanding of the 

fivebrane theory is the decoupling argument. Generally in supersymmetric gauge theories 

we can think about parameters of the theory as vev's of background chiral superfields. 

This is useful in ,order to get a control on quantum corrections. For instance, consider a 

Type IIA string theory compactified on a Calabi-Yau 3-fold which leads to N = 2 theory 

in four dimensions. Using the way the dilaton enters the low-energy effective action and 

the decoupling between the N = 2 vector multiplet and hypermultiplets, one can show 

that the structure of the vector multiplet modull space does not receive stringy corrections 

and can be easily computed. On the other hand the hypermultiplet moduli space does 

receive stringy corrections. In our case we have one additional parameter R. However, 

it is not clear in which multiplet R sits. In particular, we were able to use the fivebrane 

theory to compute both the Coulomb and Higgs branch metric which implies that our 

understanding of the decoupling argument in the Type IIA compactification does not 

apply in an obvious way to the fivebrane theory. 
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Appendix 

A The Space-time Metric 

We identify parameters defining the branes with some physical quantities. Specifically, 

in the N = 2 configuration, we identify the position of the D4 branes in the 4,5 directions 

(parametrized by v) as the VEV of the scalar component of the vector multiplet <P, while 

the position in the 7,8,9 directions (parametrized by iii = (w7 ,w8 ,w9
)) as the meson 

VEVs IQI2 - IQI2, QQ. The purpose of this note is to write down the metric of the 

eleven-dimensional space-time in terms of these coordinates v, iii. In the flat back-ground, 

we claim that it is given by 

ds' = -( dxO)' + (dX')2 + (dx')' + (dx3
)' + 1£,.' dv I' + 1£11 3 

dtijj' + IR ~t I' , (A.I) 

where t is the complex coordinate for the 6,10 directions given by t = exp( _x6 j R - ix10
) 

(x lO has period 2rr). In the above expression, est is the string length, ell is the eleven

dimensional Planck length, and R is the radius of the circle in the eleventh direction which 

are related by e11
3 = Rest 2. In the presence of D6 branes at points in the 4,5,6 directions, 

the metric is obtained by replacing les?dvl2 + IRdtjtl2 in (A.l) by the multi-Taub-NUT 

metric dS?N which is exhibited i:Q. some detail in Appendix B. 

It is easy to ~ee that the length of an interval in the v direction is given by lest26vl. 
Look at two D4 branes at v = ai and v = aj which are stretched between NS 5-branes. 

The string stretched between these D4 branes creates the (i,j)th component of the W

boson. This W-boson has a mass lai - ajl, while the stretched string has a mass given by 

string tension est -2 times the length. Thus, the length of the string must be est21ai - ajl. 

Let us next look at the D4 branes which are sliding between D6 branes and are 

separated in the iii direction. It is not obvious with what to identify the states created 

by strings stretched between them and, therefore, the above argument does not apply to 

measure the length of the separation in the iii direction. However, we can compactify 

on a circle and T-dualize to go to Type IIB theory, and apply the S-duality .. Then, 

the NS 5-branes become D5 branes, D6 branes become NS 5-branes and the D4 branes 

sliding between D6 branes become D3 branes sliding between NS .5-branes, and we can 

identify the states created by the string stretched between such D3 branes as the W

bosons in the effective three dimensional gauge theory. This three-dimensional theory is 

the mirror of the theory obtained by compactification on the circle of the original four-

. dimensional theory, and the Higgs branch of the original theory is given by the quantum 
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Coulomb branch of this mirror theory. Since we know how the moduli parameters are 

mapped under the mirror symmetry, we can measure the length of the separation in ,the 

iV direction by expressing the same length in terms of the parameters of the mirror gauge 

theory. 

Let RA be the radius of the compactification circle. After T-duality and S-duality 

transformations, we obtain Type IIB theory with the string tension .est -2 = (gst.est 
3 

/ RA )-2. 

The squark Q3 of the compactified theory is related to the squark Q of the four-dimensional 

theory by Q3 = VJ[;.Q and, under the mirror symmetry, the bilinear IQ312 is mapped to 

the scalar component J of the vector multiplet of the mirror. Therefore the length of the 

separation t:.¢ = t:.IQ312 = RAt:.IQI2 = RA8..w is given by 

gst.est 
3 

/ RA . RA IdiVl 
.e1l3IdiVl· (A.2) 

There is another test of the metric (A.l) by comparing the brane computation with 

the field theory result concerning the domain wall of N = 1 super-Yang-Mills theory with 

gauge group SU(n). Since the domain wall is a BPS object, we expect that the brane 

computation will correctly reproduce its tension (For BPS mass formula, see [33,34,30] for 

N = 2 theory in four dimensions and [58] for N = 2 theory in two dimensions). In [9,10], 

the brane configuration corresponding to the N = 1 super-YM theory is constructed by 

rotating the configuration for the N = 2 super-YM theory. The configuration for the 

theory with the 'dynamical scale A is given by 

(A.3) 

The domain wall in the brane theory [10,59] is given by a configuration of the fivebrane 

which varies in the x 3 direction in such a way that it approaches the configuration (A.3) 

as x 3 ---+ -00 while as x 3 ---+ +00 it approaches the configuration (A.3) with A3 being 

replaced by A3e2rri/n. The tension is proportional to the regularized volume of the non

trivial part of the configuration, and is given by the integration of the holomorphic three 

form times the fivebrane tension .ell -6. The holomorphic three form associated with the 

metric (A.l) is given by 

. 2 3 dt 6 dt n = .est dv I\.ell dw 1\ R- =.ell dv 1\ dw 1\ -. 
t t 

(A.4) 

The computation by [10] leads to the tension formula 

(A.5) 
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which agrees with the field theory result [60]. 1 

B The Tauh-NUT Space 

In the presence of D6 branes at points in the 4,5,6 directions the space-time metric is 

obtained by replacing l.est
2dvl 2 + IRdtjtl 2 in (A.l) by the metric of the multi-Taub-NUT 

space. Here we collect some useful facts and formulae about this space (see [61, 62]). 

If the D6 branes are at x = (x 4
, x 5

, X6) = Xi, i = 1, ... , N f, the corresponding Taub

NUT metric is given by 

(B.l) 

where 
Nt R 2 

U = 1 + L 21 .... _ ..... 1' curl w = R grad U . 
i=l X Xl 

(B.2) 

Since x lO has period 2rr, it is a circle bundle over the x space at large Ixl whose asymptotic 

radius is R. The equation (B.2) shows that w has magnetic charge Nf and hence the circle 

bundle has first Chern class Nf on a two sphere at a fixed large Ixl. 
This is a hyper-Kahler space. Among the family of complex structures parametrized 

by a two-sphere, we choose the one such that X4 + ix5 is a complex coordinate. For reasons 

explained in Appendix A, we identify this with .est 2v: 

f -2( 4 . 5) 
V = -st X + zx . (B.3) 

Another complex coordinate has a more involved expression: 

Nt 

y = e-(x
6
/R+ix

10
) II v'l:r - xil- (x6 - X?) . const. (BA) 
i=l 

In terms of these coordinates, the metric (B. 1 ) is expressed as 

(B.5) 

where 

<> = ~ ~ _1_ (1 .. + xlx~ ~x~;fl) , 
2 i=l V + mi • 

(B.6) 

IThis refers to the computation in section 5 of [60] of the tension of the domain wall separating two 

chirally asymmetric vacua of the theory with massive quark multiplets where there is a good description 

of the low energy theory. 
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in which -mi are the locations of D6 branes in the v directions, that is, mi = -fst -
2(xt + 

ixf). If we introduce an another coordinate 

(B.7) 

we find the equation 

xy = const . II(v + mi). (B.8) 

If aJl mi are the same, it appears from this that there is a singularity at x = y = v+m = 0, 

but it is actually smooth as long as x~ are distinct.. This corresponds to the resolution 

of the ANrl singularity as described e.g. in [52,9]. 

Since it is a Ricci flat Kahler manifold with respect to the chosen complex structure, 

there is a nowhere vanishing holomorphic two-form n such that the square of the Kahler 

form w is given by w 2 = n 1\ n. It is 

3 dy n = f11 dv 1\ -. 
Y 

(B.9) 

The coefficient e 11
3 is because of the relation f 5t 2 . R = f 1/' That this is nowhere vanishing 

is obvious in the case where mi are distinct and (B.8) needs no resolution. When mi are 

coincident (e.g. all zero), that is most easily seen by expressing; this in each patch of the 

resolved surface. In the description of [9], n = dXi 1\ dYi up to a constant in the ith patch 

coordinatized by (Xi, Yi)' 
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