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BASIC POSTULATES OF GROUNDWATER OCCURRENCE AND MOVEMENT 

TN. Narasimhan 
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Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory 

University of California at Berkeley 
467 Evans Hall, University of California at Berkeley, Berkeley, Ca 94720-1760 

"May the well-disposed reader receive the performance with the same love for the object as that 
with which it is sent forth" 

G.S. Ohm, Berlin, 1827. 

ABSTRACT 

For nearly two centuries, the partial differential equation of heat conduction has constituted 
the foundation for analyzing many physical systems, including those involving the flow of water in 
geologic media. Even as the differential equation continues to be a powerful tool for mathematical 
analysis in the earth sciences, it is useful to look at the groundwater flow process from other 
independent perspectives. The physical basis of the partial differential equation is the postulate of 
mass conservation. Alternatively, it is possible to understand groundwater movement in terms of 
energy and work because mechanical work has to be done in moving water against the resistance to 
flow offered by the solid material and to store water by opening up pore spaces. To this end, the 
behaviors of steady-state and transient groundwater systems are sought to be understood in terms of 
postulates concerning the state of a groundwater system, its tendency to optimally organize itself in 
response to impelling forces and its ability to store and release energy. This description of 
groundwater occurrence and flow, it is shown, is equivalent to the variational statement of the 
Laplace equation for the steady-state case and is similar to Gurtin's (1964) variational principle for 
the transient case. The approach followed here has logical similarities with Hamilton's principle for 
dynamical systems. Though the variational statement of the transient groundwater flow process is 
appealing in that it provides a rationale for deriving the parabolic equation, intriguing questions arise 
when one attempts to understand the physical significance of the variational statement. This work 
is motivated in part by a desire to develop a better understanding of the groundwater flow process 
from an intuitive base pertaining to discrete systems. Also, as we show an increasing preference to 
numerically solve groundwater flow problems on the basis of integro-differential equations, it is likely 
that the work presented here may contribute to improving such integral solution techniques. 
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INTRODUCTION 

In 1807 Fourier formally stated the transient process of heat conduction in solids in the form 
of a partial differential equation and showed a way of solving the equation in terms of his newly 
discovered Fourier series. Since then, Fourier's differential equation has formed the mathematical 
foundation for analyzing a wide array of problems in mathematical physics, including groundwater 
flow. Even as we continue to use the differential equation to great advantage, it is useful to look at 
the groundwater flow process from alternate perspectives so as to independently assert the veracity 
of the classical differential equation and perhaps, to develop new insights. 

The motivation for this work is two-fold. The first is one of curiosity. The simple experiment 
of Darcy and the infinitesimal calculus have led to such complex mathematical superstructures 
concerning flow and transport of fluids in porous media that one some times wishes to have' an 
independent way of evaluating the worth of these superstructures in providing answers for scientific 
questions. Second, numerical methods used for solving dynamic groundwater flow problems are 
moving away from differential equations to integro-differential equations and integral equations. The 
domains of the integrals involved are discrete in space and in time. As one attempts to integrate the 
differential, one is confronted with issues of weighting functions and averaging rules. It stands to 
reason that such functions and averages should properly stem from physical postulates which govern 
the dynamical system. Thus, this work is also motivated in part by a desire to identify a 
comprehensible basis that is independent of the differential equation for formulating numerical models 
of groundwater flow and transport. 

This work is restricted to isothermal groundwater flow systems in which compressible water 
moves through a deformable medium under conditions of laminar flow. 

OCCURRENCE OF GROUNDWATER 

WATER AS A HOST FOR MECHANICAL ENERGY 

In its natural state, groundwater stores mechanical energy. The energy so stored comprises 
two components: one arises from its location in the earth's gravity field and the other arises from its 
ability to change geometry (that is, its ability to deform) in response to forces acting on it. The 
''pressure'' of water is a manifestation arising from the interrelations between the geometry of a water 
packet and the forces that act on it. 
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POSTULATE 1: Equation of State for water 

Given sufficient time, the volume (geometry) of a packet of water will attain a unique 

equilibrium with its pressure. The relationship between pressure and volume is an "equation of state". 

Volume and pressure are understood to be "state variables". 

POROUS MEDIUM AS A HOST FOR WATER AND ENERGY 

In groundwater systems water resides in porous rredia, which too, by virtue of their tendency 

to defonn and to interact with fluids, have the ability to store mechanical energy. Geologic porous 

media deform in response to a combination of "stresses" which act externally on their skeleton and 

the pressure of water which exists internally within the pore spaces. In the present work we make 

the tacit assumption that external stresses remain unchanged at all times. Thus, the porous medium 

too is characterized by two state variables, namely, geometry and fluid pressure. The mass of water 

contained in a chunk of geologic material is equal to the product of its pore volume, its saturation 

and the mass density of water. In a geologic medium, water saturation is governed by water pressure 

in its manifestation as capillary pressure. Thus the mass of water contained in a chunk of geologic 

material is a function of water pressure. 

Just as water, the porous medium too hosts energy, stemming from its ability change its 

geometry in response to pressure and its ability store energy at fluid-fluid interfaces. Therefore, the 

total energy stored in a geologic material by virtue of an increase in water pressure is a sum of the 

energy stored in water and that stored in the porous medium 

POSTULATE 2: Equation of State for the geologic medium containing water 

Given sufficient time, a geologic material will attain a unique eqUilibrium between the mass 

of water contained in it and the water pressure existing inside it. Mass of water and water pressure 

constitute state variables for the water-containing geologic material. Here "water pressure" is 

understood to be macroscopic and measurable using instruments of finite size. 

Two implications of this postulate are worth noting. 

1. If either of the state variable changes, the other will change as prescribed by the equation of state. 

2. It is assumed that. sufficient time .has -been available for pressure. and geometry to attain 

equilibrium In other words, equation of state has an appropriate macroscopic time scale 

associated with it. If sufficient time has not been available for such an equilibration, then, 

geometry and pressure are said to be "kinetically" related. 
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MOTION OF GROUNDWATER 

CAUSE OF MOTION 

As described by Hubbert (1940) in his classic work, groundwater moves in response to 

impelling forces which act on it. Groundwater flow is "laminar" and the direction of movement is the 

same as that of the impelling force. The impelling force acts in the direction of decreasing 

concentration of energy in groundwater. The term "energy potential" is used when this concentration 

is expressed as mechanical energy per unit mass of water [U rr2]. The impelling force is maximum 

in the direction of maximum descent of the energy potential. 

A groundwater system comprises a spatial region enclosed within well-defined boundaries. 

The interior of the system comprises porous geologic materials permitting storage and flow of water, 

while the boundary experiences forces external to the system which cause groundwater to move 

within the system. Subject to the overall direction Of movement dictated by the impelling forces 

acting on its external boundaries, the groundwater system responds by generating forces of reaction 

within the system. The forces of reaction are governed by a combination of the rate of mass flow 

(mass flux of water) occurring through the system as well as the ability of the geologic materials to 

offer mechanical resistance to the flow. Here, mass flux is defined as mass of water per unit time 

(dimensions, Mff) 

Empirical justification for our notions of fluid motion and energy motion stem from the 

seminal contributions of Ohm (1827) and Darcy (1856) who investigated the steady movement of 

energy and water in well-defined flow tubes. Therefore, it is useful to think of laminar water motion 

in terms of macroscopic flow tubes of finite dimensions. A flow tube has an inlet and an outlet. It 

comprises a collection of non-intersecting flow lines which commence at the inlet where the potential 

is high and end at the outlet where the potential is low. 

The effort involved in moving water through a flow tube is directly related to the magnitudes 

of the impelling force and the reactionary force. Whereas the impelling force is proportional to the 

potential drop, the reaction force is proportional to the mass flux. Thus, the potential drop is the 

"cause" and the mass flux is the "effect". The product of mass flux and potential at the inlet 

represents the rate at which energy is brought into the flow tube l
. So also, the product of mass flux 

and potential at the exit represents the energy that taken out of the flow tube. Under steady-state 

conditions, the product of mass flux and the difference in potential between inlet and outlet denotes 

1 Here we neglect kinetic energy because groundwater velocities are known to be very small. Furthermore, as 
pointed out by Hubbert (1940). kine"tic energy needs to be neglected if microscopic flow and macroscopic flow "are to be 
kinematically similar. an assumption necessary to derive Darcy's Law 
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the rate at which energy is expended as work in moving water through the flow tube. 

POSTULATE 3: Self-organization Tendency 

A steady-state groundwater system is one in which the fluid potentials and the amounts of 
mass and energy stored remain unchanged in time. In such a system, the maximum and minimum 

potentials occur on the boundaries and the distribution of potentials on the boundaries define a set 

of inlets and outlets for water to enter or leave the system Constrained by these inlets and outlets, 

the interior of the system will organize itself into a collection of flow tubes in such a manner that the 

rate at which work is done in moving water through the system is an extremum 

The above postulate implies that for prescribed impelling forces·on the boundary, the system 

will maximize the throughput of water. Equivalently, for achieving a given throughput of water, the 

system will minimize the impelling forces. 

HYDRAULIC RESISTANCE 

Empirically (Ohm, 1827; Darcy, 1856) it was found that the laminar flux of water through a 

flow tube is directly proportional to the potential drop over the tube and the reciprocal of the constant 
of proportionality is the "hydraulic resistance" of the flow tube. Hydraulic resistance has the 
following properties: (a) it is additive along the flow path, (b) it increases with increasing flow length 

and, (c) it decreases with increasing area of cross section perpendicular to the flow path. 

Thus, if the area of cross section over a small distance ilx of the flow tube is A(x) and if r is 

the resistivity (dimensions, L3 / [MTD of the geologic material occupying the segment, then the 

hydraulic resistance (dimension, U /[MT]) of the segment is given by, 

(1) R = rilx 
A(x) 

Given this, the additive property of hydraulic resistance enables us to write the hydraulic 

resistance of a flow tube in the form of a definite integral evaluated along a properly chosen flow path 

extending from the inlet to the outlet. Thus, if we choose the flow path as a general curvilinear x­

axis, then, 

R = 
Xoulk:t d 

f 
r x 

A(x) 
Xinlet 

(2) 
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In view of these, we may express the mass flux of water through a flow tube i in the form of Ohm's 

Law, 

(3) 

Behavior of a Steady-state Flow System 
The self-organization tendency (Postulate 3) merits attention. Consider a steady-state 

groundwater flow system of arbitrary shape with potentials prescribed on several segments of the 

boundary. An example is shown in Figure 1 in which the flow region is subject to prescribed 

boundary potentials on five segments.· Given sufficient time, the system can organize itself into an 

infinite number flow configurations; four of these are schematically shown in Figures 2a through 2d. 

In Figure 2a water enters the flow region through one inlet and leaves the flow region at four outlets. 

In Figure 2d, on the contrary, water enters the flow region across four different boundary segments 

and exits at one outlet. The particular flow geometry preferred by the system will be dictated by the 

self-organization postulate. Note, in figures 2a through 2d, that the flow system comprises three or 

four subsystems, each being a large flow tube of arbitrary shape. Recall that the rate of work done 

in a flow tube is equal to the product of the mass flux through the tube and the potential drop over 

the tube. Therefore, the self organization postulate requires that, 

(4) 

be a maximum, given that the potential, <1>, has been prescribed on the boundary. Note that the 

magnitude of hydraulic resistance depends on the geometry of a flow tube as well as the physical 

nature of the materials occupying the flow tube. Thus, given a certain material distribution within the 

flow region, the system has the freedom to adjust the geometry of the flow tubes in such a way that 

the self-organization postulate is satisfied. It follows therefore that the particular flow geometry 

preferred by the system (figures 2a through 2d) will depend on the spatial distribution of materials 

of varying hydraulic resistivity (heterogeneity) occupying the flow region. In heterogeneous media, 

flow lines will refract at the interface between materials of contrasting hydraulic resistivity according 

to a law of tangents (Hubbert, ·1940). 
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It is worth drawing attention here to an analogy with Joule's Law, which expresses the 

equivalence between electric current flowing through a resistive circuit and mechanical work 

expended as heat. Thus, (Maxwell, 1888), 

(5) Heat generated measured in dynamical units = 

Square of current X Resistance X Time. 

Now, in (4) if we consider a single flow tube and recognize that Q = dcI>/R, we see that the work 

done during a time interval is, 

(6) 
Work Done = Q d cI> t = QdcI> Rt = 

R 

Thus, the expression for work used in the present work for groundwater current is exactly analogous 

to that used for electric current in Joules's Law. 

Relation to Variational Statement 

The self-organization postulate discussed above in terms of a discrete set of flow tubes can 

be seen to become a variational principle ,for steady-state groundwater flow, if one invokes 

infinitesimal calculus and expresses the extremum condition in terms of an integral, rather than a 

discrete sum . 

Let the flow region be discretized into i = 1,2,3,4 ........ I flow tubes. Let the potential drop 

over each flow be discretized into j = 1,2,3,4 ....... J intervals. Then the rate at which work is done 

over the jth potential drop of the ith flow tube maY be written as, 

(7) 
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where Ll<I>ij is the drop in potential and ~j is the hydraulic resistance of segment ij. We may now 

proceed to sum this quantity over the entire flow region in order to derive the variational principle 

for steady-state groundwater flow. Thus, 

(8) 

With a few algebraic manipulations and invocation of infinitesirnals, we now proceed to obtain an 

integral representation of Q*. Noting that hydraulic resistance, by definition, is L.\x/[r A(x)], we may 

rewrite Q" 

(9) 
~ ~ A.. ( L.\ <1> .. )2 

Q* = L L IJ IJ 

r L.\x 

Multiplying numerator and denominator by L.\x and recognizing that A L.\x = L.\ V, where V is 

volume, we get, 

(10) 

For denoting the hydraulic resistive property of the material we now choose to use the 

parameter k*, hydraulic permeability (dimension, MT / U ), which, by definition, is the reciprocal of 

hydraulic resistivity, r. That is, k* = lIr. Then, 

(11) 

Finally, if we let I and J tend to 00 and L.\x tend in the limit to 0, the discrete sum represented by Q* 
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becomes an integral, 

(12) 

Sometimes referred to as Euler's integral, this equation is used as the variational principle for the 

Laplace equation. That is, upon minimization, this integral leads to the Laplace equation as shown 
in Appendix 1. 

Discussion 

Since the integral has been derived purely from consideration of forces and resistances, it 

appears that 0- and 0 must be valid for saturated groundwater motion as well as for unsaturated 

groundwater flow. There exists a caveat, however. No groundwater system can instantaneously 

adjust itself to imposed changes on boundary forces. The system will require a finite amount of time 

to organize itself in order to be in equilibrium with the changed conditions. During the time the 

system takes to adjust itself, other physical processes such as change in storage (dictated by hydraulic 

capacitance), kinetic effects, -hysteresis and so on may come into play. Assuming that such time­

related effects_ do not exist, the self-organization postulate and the related variational principle are 

valid for heterogeneous groundwater systems in which hydraulic conductivity may be either 

dependent or independent of the energy potential <I>. 

The partial differential equation of steady-state groundwater flow is known as the Laplace 

equation or an elliptic equation. This equation in distinguished from the Poisson equation which 

allows for the presence of source/sink terms in the elliptic equation. In groundwater systems, wells 

or boreholes are often treated as sources or sinks of vanishingly small radii for mathematical 

convenience. However, realistically speaking, wells and boreholes possess finite radii. Therefore, 

it is logical and appropriate to treat the inner surfaces of wells and boreholes as boundary surface 

rather than as abstract objects such as sources. Thus, the discussions presented above include 

physical situations covered by the Laplace equation as well as the Poisson equation. 

Variational calculus is an important part of mathematical physics which seeks to provide basic 

insights into the behavior of physical systems. The variational perspective which developed below 

appears to have been motivated by a perception that the Laplace equation must be a derivative of a 

more primitive integral statement. In other words, one starts with the premise that a primitive integral 

o exists, which, when minimized or maximized appropriately, will yield the Laplace equation. A 

mathematical "search" for such a primitive integral appears to have led to the Euler's integral given 
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above. In the present work, we have approached the same issue from a different view point, based 
on an a priori enunciation of postulates concerning expected system behavior. 

THE TRANSIENT FLOW PROCESS 

At the outset it appears logical that the postulates presented above must be extendable, in a 
straight forward way, to transient flow of groundwater. However, a physically comprehensible 
variational statement of the transient groundwater flow process has as yet to be formulated. Purely 
from a mathematical point of view, Gurtin (1964) proposed a variational principle for the linear 
diffusion equation. Gurtin's variational principle, which involves convolution integrals, has been 
used by some as a basis for formulating numerical methods for solving the transient groundwater flow 
process. The physical import of Gurtin' s variational principle is not clearly understood. 

We now proceed to extend the set of postulates to include the transient groundwater flow 
process. We begin by identifying the physical attributes of the transient flow system 

ATTRIBUTES OF A TRANSIENT GROUNDWATER SYSTEM 

1. In a transient groundwater system, mechanical energy is brought in across inlet segments and 
taken out across outlet segments of the system-boundary 

2. Part of the energy that is brought into the system is expended in doing work to overcome 
resistive forces in order to move water and part of the energy is stored within the flow region 
through change in energy potential. The storage of energy is a reversible process. However, 
energy expended in moving water is an irreversible process. 

3. The storage of energy in a water-containing geologic material is mediated by the "hydraulic 
capacitance" parameter, which is conceptually analogous to "thermal capacitance" of the heat 
flow process. In general, hydraulic capacitance of a chunk of geologic material is the mass of 
water it can take into storage per unit change in water pressure. Because groundwater systems 
comprise deformable and de saturable geologic materials, the storage of energy involves 
mechanisms other than the elastic attributes of water. Thus, hydraulic capacitance includes effects 
due to mechanical deformation of the porous medium as well as the capillary potential of porous 
media. 

SELF-ORGANIZATION TENDENCY OF A TRANSIENT SYSTEM 

Given these attributes, how may one expect the system to optimize itself in response to forces 
which cause it to change its state over a small interval of time Llt? 

A groundwater system which changes its state over a finite interval of time will experience 
a continuous expenditure of energy as water is moved through it. The energy so expended may come 
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either from the reserves already existing within the system or from influx of energy brought in by 

water moving into the system across boundary segments. Thus, there exists a continuous interaction 

between energy storage and energy expenditure during the transient flow process. Consequently, a 

tendency for self-organization, should one exist, could be reasonably expected to be related to how 
the system strikes a balance between storing energy and expending energy. 

POSTULATE 4: Tendency for self-organization during change of state 

During the transient process of water movement, the groundwater system tends to partition 

energy in some optimal way between reversible storage and irreversible mechanical work. By analogy 
with Hamilton's principle it is postulated that the difference between energy expended in doing work 

and the change in storage of energy is an extremum 

As before, consider that the flow system is divided into I = 1,2,3,4 ..... , I flow tubes and j = , 
1,2,3,4, ..... , J potential drops. The rate at which energy is expended in moving water over a small 

interval of time is equal to, 

(13) 
__ At( ". " .. (ACP2ij)2) Ew = Energy Expended as work u L..J L..J 

I J Rij 

For reasons to be discussed later in the section on Hamilton's Principle, we define, in an ad 

hoc fashion, energy stored in a segment of the flow tube to be equal to the energy contained in the 
segment at the beginning of the time interval less an incremental change in energy. Thus, 

(14) 

where, Cij is the hydraulic capacitance of the segment ij (dimension, MT2/L2
) , CPo is the initial 

potential at the beginning of the time interval and cP is the potential at the end of the time interval 

Note that Cij(CPo\ is the mass of water contained in segment ij at the initial time, and, G(CPo\ 2 is the 
energy cont,ained in the segment at the initial time. Similarly, Cij [CPij - (CPO)ij ]2 is the incremental 

change in energy, being the product of the change in mass times the change in potential over segment 

ij. For the transient flow system, the postulate of self-organization states that the difference between 

the energy expended and the energy stored must be an extremum Thus, we have, for a small interval­

of time At, 
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(15) - c..(<I>ol - (<1> .. - (<1>0) .. )2) . 
IJ IJ IJ IJ 

The implication is that as the system evolves over an interval of time dt, ,r will be an extremum By 

invoking infinitesima1s we may express Q in integral form as, 

l1t 

(16) 
Q = f f k *(V<I»2 dV - fC(<I>~ - (<I> -<I>o)2)dV 

o v v 

where c denotes hydraulic capacitance per unit volume. 

The last expression for Q is a variational statement of the transient groundwater flow process. 

That it reduces to the parabolic equation upon minimization is demonstrated in Appendix 2. 

It is pertinent here to compare the above integral with'the variational statement of the heat 

conduction equation proposed by Gurtin(1964), 

(17) 
QOurtin = f (K * V<I> * V<I> + c * <I> * <I> - 2c *<1>0 *<1» dV , 

v 

where the asterisks denote convolution in time. Because of the convolutions involved, Gurtin's 

variational statement does not explicitly involve time. Purely from a mathematical perspective, Gurtin 

showed that the minimization of the integral yields the parabolic partial differential equation. If we 
( 

replace convolution by simple mUltiplication and recognize that 

(18) 

then, we recognize that the -variational statement derived from the· self-organization postulate and 

Gurtin'c variational statement are quite similar. 
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ANALOGY WITH HAMILTON'S PRINCIPLE 

In the early eighteenth century, Hamilton provided a logical basis to understand the behavior 
of dynamical systems. Hamilton's methodology can be understood in terms of three components, 
namely, the Hamiltonian, the Lagrangian and Hamilton's principle (Ballentyne and Lovett (1980». 
In a conservative system (that is, a system which does not experience any external forces; Seale, 
1977) consisting of many particles in motion, the Hamiltonian, H, is defined as, 

(19) 
H = T+V, 

where, T is kinetic energy and V is potential energy. It is assumed that H can be expressed in terms 
of momenta and coordinates. 

The Lagrangian (also known as kinetic potential) is the difference between kinetic energy and 
potential energy expressed in generalized coordinates. Unlike the Hamiltonian, the Lagrangian is 
applicable to non-conservative systems, that is, systems subjected to external forces (Seale, 1977). 
Thus, the Lagrangian is defined as , 

(20) L = T - V . 

Hamilton's principle states that in a dynamical system composed of discrete material particles 
and in which T and V are known as a function of coordinates and time, the integral, 

~ 
(21) 

QHamilton = J(T - V) dt 
t) 

is as small as possible. That is, as the system evolves over time interval, it evolves in a fashion which 
minimizes (21). Note that QHamihon is merely the Lagrangian integrated over the domain of interest. 
It is of interest to compare the variational statement developed from Postulate 4 above with the 
logical format of Hamilton's principle for dynamical systems. 

In view of (13) and (14), we may define the total energy in the system to be the sum ofthe 
energy stored and the energy expended. Thus, 

(22) 
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Similarly, the difference between energy expended and energy stored is, 

(23) 
L* = E -E w s 

And, the integral of L" over an interval of time is (16), the variational statement of transient 

groundwater flow. We see that H" is similar to H, L" is similar to L and (16) is similar to (21). Thus, 

the logical structure of the development of the variational principle for transient groundwater flow 

is similar to that of the Hamiltonian, the Lagrangian and Hamilton's principle. 

Caveat 
The fact that the approach based on Postulate 4 led to a variational statement similar to 

Gurtin's mathematically derived variational principle and that the over-all structure of the 

development has similarities to that of Hamilton's principle are encouraging. However, caution is 

in order. 

Note that in considering the energy stored in a chunk of geologic material over an interval of 

time we defined it as the sum of sum 'of the energy stored at the initial time less an incremental change 

in storage (14). That is, 

(24) 

where C is the hydraulic capacitance of the chunk of material. However, intuition indicates that 

energy stored over an interval of time is in fact the difference between the energy content at the end 

and at the beginning of the time intervals, 

(25) Es,actuaI = C [<1>2 - <I>~] • 

Although (25) is intuitively a more meaningful definition for stored energy, it is mathematically 

unsuitable in deriving the variational principle because a variational principle so constructed will not 

lead to the classical differential equation upon minimization. Thus, in trying to make physical sense 

out of the variational principle, one has two alternatives to consider. First, assuming that the 

differential equation is logically sound, one may seek a reason why (24) is indeed a correct expression 

for stored energy and is thus to be preferred over (25). Or, second, one may choose (25) in 

preference to (24) and formulate a variational statement which may have to be used purely as an 

integral and not compatible with the differential equation. This raises the possibility that dynamic 

groundwater systems may be understood logically in terms of hitherto untested integral equations. 
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OTHER INTRIGUING ISSUES 

ADEQUACY OF MASS CONSERVATION APPROACH 

Traditionally we have been trained to solve problems of groundwater dynamics in terms of 

the principle of mass conservation which is implicit in the partial differential equation describing non­

steady diffusion. However, with the introduction of variational calculus it was recognized that the 

dynamics of groundwater movement could be understood in terms of integrals. While this 

recognition came about on mathematical grounds, its physical significance had largely remained 

unnoticed. From the form of (15) and (16), it is easy to see that the variational integral actually is a 

statement of energy optimization and that the Hamiltonian is in reality a statement of energy 

conservation. Therefore, it stands to reason that in solving the dynamic groundwater flow problem, 

it is necessary that both energy conservation and mass conservation are assured. However, the 

classical differential equation only assures mass conservation and ignores energy considerations. A 

question then arises: is the solution obtained for the partial differential equation consistent with 

energy conservation? 

A simple example illustrates how the differential equation may not assure energy conservation. 

Consider a groundwater system occupied by a single homogeneous material, completely isolated from 

the outside world. At time t = 0, the potential distribution within the system is non uniform. Thus, 

at t == 0, the system is not under equilibrium and, given sufficient time, the system will tend to a state· 

of equilibrium at which the potential is the same everywhere; that is, the system will be under 

hydrostatic eqUilibrium If c is the specific hydraulic capacitance of the material occupying the 

system, then, the total energy in the system and the total mass of water in the system are, 

(26a) 

(26b) 

Total Mass of Water at time zero = f c tP dV , and, 
v 

Total Energy at time zero = f c tP2 dV 
v 

Then, the average potential (energy per unit mass) over the flow domain at t = ° is, 

(27) 
<b (t = 0) = 
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If we allow the system to equilibrate to a hydrostatic condition, what will be the hydrostatic potential? 

Note that during the process of equilibration, water moves from locations of higher potentials to 

locations of lower potentials. Energy will be taken from storage from those locations where potential 

decreases and added to those locations where potential increases. Since the system is isolated and 

no external sources of energy are available, the energy needed to overcome resistance and move 

water will have to be derived from within the system Therefore, part of the energy released from 

locations of declining potential will be irretrievably expended to overcome frictional resistance and 

the rest will be stored at those locations where potentials are rising. If this logic is correct, the total 

energy (that is, the energy which will manifest itself in the form of the potential ~) at t = 00 will be 

less than that which existed at t = O. But, the total mass of water is the same. Hence, the average 

potential, which is the hydrostatic potential at t = 00, will be such that, 

(28) <I>(t=O) > <I>(t=oo) 

However, if we choose to evaluate the final hydrostatic state purely on the basis of mass 

conservation, as we traditionally do, we would not be accounting for the energy lost in overcoming 

resistive forces. Consequently, we will conclude that, 

(29) <I>(t=O) = <I>(t=oo) 

This issue of looking at transient water movement from the perspective of work appears to be quite 

important and needs further attention. If indeed energy availability is an important issue, then two 

different materials (say sand and clay) which start with identical initial conditions may proceed to 

different equilibrium states because of their differing ability to offer frictional resistance and to store 

energy. 

VECTORIAL MECHANICS AND ANALYTICAL MECHANICS 

It is pertinent here to recognize two broad lines along which the science of mechanics 

has developed since the late seventeenth century. The discussion below is largely from Lanczos 

(1970). The first is the branch of "vectorial mechanics" which starts directly from Newton's Laws 

of motion and takes into account all forces acting on a particle, whose motion is uniquely determined 

by these forces. The problems which are well-suited for vectorial treatment are essentially those 
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which can be handled with a rectangular frame of reference, since the decomposition of vectors in 
curvilinear coordinates is a cumbersome procedure even with advanced principles of tensor calculus. 

The other branch, usually called "analytical mechanics" originated with Leibnitz, a 
contemporary of Newton. As described by Lanczos (1970), in analytical mechanics, the entire set 
of equations of motion can be developed from one unifying principle which implicitly includes all the 
equations. The principle takes the form of minimizing a certain quantity, the "action". Since the 
minimizing principle is independent of any reference system, the equations of analytical mechanics 
hold for any set of coordinates. This permits one to adjust the coordinates employed to the specific 
nature of each problem 

Whereas the classical partial differential equation of groundwater flow is based on vector 
mechanics, the integral approach presented in the foregoing pages conforms to the spirit of analytical 
mechanics. Experience with natural groundwater systems has shown that these systems are invariably 
characterized by complex, convergent and divergent flow patterns. They should be naturally 
amenab1e to analysis with the help of curvilinear coordinates rather than with the help of rectilinear 
systems. The main practical difficulty in using curvilinear coordinates is the h~dling of detailed 
geometric information specific to each problem Indeed, this difficulty in harnessing geometric 
information has significantly contributed to the traditional attention given to problems of prescribed 
symmetry and the development of tensor calculus. However, the outlook in regard to curvilinear 
coordinates has undergone a radical change in the recent past. With the availability of powerful 
graphics software, handling of large amounts of geometric information and processing them rapidly 
is now a reality. Consequently, the time has now come for us to devote attention to the approach of 
analytical mechanics with the view to making practical use of directly solving integral equations 
pertaining to natural groundwater systems characterized by complex, convergent and divergent flow 
patterns directly in terms of curvilinear coordinate systems. 

MEANING OF A MATHEMATICAL SOLUTION 
In solving problems of groundwater hydrology, as in the case of many other physical systems, 

the phrase "mathematical solution" is generally considered to be synonymous with a closed-form 
solution to the partial differential equation. However, the identification of a framework of basic 
postulates and the existence of variational principles show that the notion of a mathematical solution 
must transcend the notion of a differential equation. Ultimately, the scientific methods we use are 
based on observationally established "laws" to which our physical systems must conform2

• Therefore, 
"mathematical solution", as ·appJied to the groundwater system, must involve . system response 
compatible with the "laws" or ''postulates'' of Newton, Hamilton and Lagrange. Such being the 

2 In the case of abstract mathematical systems, axioms are analogous to the notion of laws of physical systems. In 
physical sciences and mathematics, laws and axioms constitute irreducible sets of assumptions which govern all interpretation 
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case, one could, in principle, directly solve the integral equations sterruning from the postulates (or 
the variational principle) and solve the steady-state or dynamic groundwater flow problem, regardless 
of whether a differential equation exists or not. 

This insight is of interest because it suggests a way of getting things done that is different from 
the one and only traditional way we have been used to. It is good to have alternatives. Perhaps, the 
computer revolution may even render this alternate· way more advantageous than the traditional 
methods we are used to. 

CONCLUDING REMARKS 

In order to rationally understand physical processes such as groundwater flow, the standard 
scientific method is to set up conceptual-mathematical models, which are bestowed with specific 
attributes. Ideally, these attributes of the abstract model should have one to one correspondence with 
the attributes of the real system which the model helps to understand. The model, even in the most 
favorable circumstance, will only possess few of the attributes of the real system Hence there will 
invariably exist an information gap between the model and the real world. 

The differential equation is one such model. In the present work we have created another 
model involving integrals constructed on the basis of a framework of postulates. Instead of relying 
on gradients at points, the integrals rely on potential drops and resistances over finite regions of 
space. Careful look at the integrals, without concern for differentials, has led to some interesting 
insights. 

The integrals sterruning from the postulates involve energy and work while the traditional 
approach of the differential equation dedicates attention to mass conservation. Discussions presented 
above raise a question whether the solution generated for the differential equation will assure energy ~ 

balance. If energy is not conserved, is the credibility of the differential equation model diminished? 
Is there a need to explore alternative models which will assure mass conservation as well as energy 
conservation? 
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APPENDIX 1 

Variational Principle for Steady groundwater flow 

Show that, upon minimization, the integral, 

(AI) 

leads to the Laplace Equation, V' kO Veil = O. 

Let h be an admissible function which is continuous over the flow domain but vanishes 

over the boundary r. Let A be a real number such that, 

(A2) OI(eIl+Ah) = !ko(VeIl'VeIl + 2AVeIl'Vh + A2 Vh·Vh)dV. 
v 

Need to show that, 

(A3) I dOll = V· k ° Veil = O. 
dA =0 

Using Green's First Identity (Sokolnikoff and Redheffer, 1966), 

(A4) 2 f k * Veil . Vh d V = -2 f h V . k * Veil d V + 2 ! h k * VeIl'n dr. 
v v r 

The surface integral on the right hand side of (A4) is zero because, by definition, h vanishes on 

the boundary. Therefore, 

(AS) I dOl] = - 2 ! h V' k * Veil dV . 
dA },=o v 
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If 0 1 is to be an extremum for non-zero values of h, the integrand (AS) must be equal to zero, 

and hence it follows that, 

(A6) V· k* V<P = o. 

APPENDIX 2 

Variational Principle for Transient Groundwater Flow 

Show that, upon minimization, the integral, 

~t 

(A7) ° = 01 + 02 = f f k *(V<P)2 dV + c J{(<p -<Po? - <P~}dV , 
o v v 

leads tothe parabolic equation, V· k· V<P - c ( a<P/at) = O. 

Note that the first integral on the right hand side of (A7) has already been shown in Appendix 1 
to lead upon minimization to V . k· V<P. We now proceed to minimize the second integral on the 

right hand side of (A 7), 

(AS) 02 = c f {<p - <PO)2 - <p~} = 
v 

Again, let h be an admissible function and A be a real number. Then, perturbation by Ah leads to, 

(A9) 02 (<P + Ah) = c f[ <p2 + 2Ah (<P - <Po) + A2h - 2<P<Po ]dV 
v 

Differentiating with reference to A and setting A = 0, we get, 

(A9) 
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Combining (A4) and (A9) and noting that at - 0 (<I> - <l>o)/at = a<l>/a t, we get, 

(AIO) 
[ dOl = -2 Jhlv. k * V<I> - c( a<l> )]dV . 

dA =0 . v at 

If 0 has to be an extremum for all non-zero h, then the integrand of (AID) must be zero. 
Therefore, 

(All) v . k * V<I> - c a<l> = 0 . 
at 
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Flow domain with 5 Boundary Segments 
(Numbers are mgnitudes of potentiaQ 

1120 

100 

Figure 1: A flow domain with 5 boundary segments on which potentials are prescribed 
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Figure 2: Four possible flow configurations, (A) One inlet and four outlets; (B) Two inlets and 3 outlets; (C) Three inlets and two 
outlets, and, (D) Four inlets and one outlet 
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