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Abstract
Extreme Ultraviolet Interferometry
by
KennethAlan Goldbeg
Doctor of Philosophy in Physics
University of California, Berkeley
Professor Rogaw. Falcone, Chair

EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical
dimension and smallein order to achieve difaction-limited performance, all-reflective multilayevat
ed lithographic imaging systems operating near 13-nm wavelength and GidvdAystem wavefront tol
erances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of
multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, dfitival systems
require at-wavelength EUWterferometry for final alignment and qualification.

This dissertation discusses the development and successful implementation of high-accuracy EUV
interferometric techniques. Proof-of-principle experiments with a prototype flint-diffraction inter
ferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelemnggr-EUV
ferometric capabilityThese experiments spurred the development of the superior phase-shifting point-
diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective litho
graphic-quality EUVoptical system. Both systems rely on pinholéradtion to produce spherical refer
ence wavefronts in a common-path geomefstensive experiments demonstrate Eiatefront-mea
suring precision beyond 0.02 waves RMS. Eld\ging experiments provide verification of the high-
accuracy of the point-difaction principle, and demonstrate the utility of the measurements in successfully
predicting imaging performance.

Complementary to the experimental research, several areas of theoretical investigation related to
the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole
diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of
the pinhole diametetnvestigations of the relative merits offdient PS/PDI configurations accompany a
general study of the most significant sources of systematic measurement errors.

To overcome a variety of experimentalfidifilties, several new methods in interferogram analysis
and phase-retrieval were developed: the Fodiiansform Method of Phase-Shift Determination, which
uses Fouriedomain analysis to improve the accuracy of phase-shifting interferometry; the Fourier
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Transform Guided Unwrap Method, which was developed to overcofimuliiés associated with a high
density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the
measured wavefront to guide the phase unwrapping in the presence of noise; andatirxibedient

method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave

front surface fitting procedures.
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Introduction

EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical
dimension and smallefo achieve this end at 13-nm wavelength, nearlyadifion-limited, multilayer
coated, neanormal-incidence reflective optical systems with 0.1 numerical aperture are required (Himel
1993).The suggested wavefront aberration tolerance for these sophisticated, all-reflective systems, com
posed of aspherical elements, is only 0.02 waves RMS, or 0.ZWilllamson 1994) This places
extremely high demands on the fabrication of Etdvror substrates and miilyyer coatings and even
higher demands on the metrology tools required to characterize them.

The EUVwavefront is determined by the geometric figure of the mirror surfaces and by the prop
erties of the multilayer coatings, which are deposited across mirror areas of several square centimeters.
While advanced visible-light interferometric techniques possefistngequired measurement accuracy
are being developed (Somrgeen 1996a, 1996b), optical aberrations arising from multilayer coating
defects and thickness errors are measurable only at theogéPdtional wavelength. Furthermore, it is
widely agreed in the lithography community that final alignment and qualification must be perfdrmed
wavelengthin order to successfully predict the imaging performance of an optical sydtese factors
motivate the development of high-accuracy EW&efront-measuring interferometry

This thesis is devoted to the development of BEltérferometry capable of achieving the highest
wavefront-measuring accuracy and precision. Early proof-of-principle experiments with a prototype EUV
point-diffraction interferometer (PDfpr the measurement of Fresnel zoneplate lenses (GgldBéba,
1995b) demonstrated sub-wavelength EidMrferometric capabilityand revealed the very high quality
of the lithographically-fabricated zoneplate optics. Experience and the limitations of the conventional PDI
spurred the development of the supepgbase-shifting point-diffraction interfemeter(PS/PDI) (Medecki
et al. 1996)The implementation and development of this novel tool at BdVvelengths is now in
progress on an undulator beamline at Ernest Orlando Lawrence Berkeley National Lalsakdt@myted
Light Source synchrotron radiation facility (Goldpest al 1995b, 1997Tejnil et al. 1996a, 1997).

The prototype PS/PDI is being used to test lithographic-quality multitosed 18 Schwarzschild
objectivesWhile extensive experiments with one such objective have revealed its ndeaalstidif-limited
performancethe more important data comprise a wealth of information about the performance of the

interferometer itself.



Evaluation of the interferometsrperformance has revealed significant progress toward the accuracy
and precision tgets set by the wavefront measurement requirements ofliidgraphy In tens of sepa
rate trials performed on a 0.07 N@ib-aperture of the ¥05chwarzschild objective, a wavefront-measuring
precision better than 0.02 waves (0.27 nm\/60) has been observeticcuracy verification with imaging
experiments has shown excellent agreement between predicted and measured perfadditionally,
the interferometer has been used in the first direct quantitative measurement of chromatic aberrations relat
ed to the isolated properties of multilayer reflective coatings.

Accompanying the discussion of development of the experimental system and its prototypical compo
nents, theoretical and empirical investigations of the systematic and random error sources are presented in thi
thesis.The studies are presented in a very general manner and are intended to serve as a framework for
the investigation of the most significant error sources in the PS/PDI measurement of arbitrary optical sys
tems.Special attention is given to the Eldytical systems of interest to this resealdte theoretical studies
feed back into the experimental methods and have improved the quality and reliability of the measurements.

Experimental diiculties have complicated many aspects if this research, and have necessitated t
creation of new general methods of interferogram analysis. Several techniques developed by the author
and described herein overcome the limitations of the optical system under test and problems associated
with the experimental system. Emphasis is placed on the practical implementation of robuitient ef
analysis methods, and many examples of varying complexity are presented.

The investigation of the measurement precision has identified the individual contributions of the
interferometels components to the measurement uncertainties. It appears clear that even with the high
performance demonstrated to date, there are several areas in which improvements are possible: and spec
ic recommendations for such are made.

EUV interferometry research and experiments were performed between May 1993 and November
1997 using facilities of the Lawrence Berkeley National Laboratory and the University of California,

Berkeley EUV Imaging experiments were conducted at Sandia National Labgratbiyermore, California.

OVERVIEW
This thesis is @anized into four main sections, covering both theoretical investigations and the
results of experimental research. Part | presents a detailed investigation of the most critical physical com
ponent of any point-difaction interferometeithe pinhole responsible for the pointfdiiction that gener
ates the spherical referenwavefront. Here, a highly detailed vector model of the electromagnetic field in
the vicinity of the tiny pinholes is illuminated with EUMht and investigated to predict the upper limits of

reference wavefront accuracy



Part Il describes the research conducted with an il diffraction interferometer (PDI) used to
evaluate the wavefront diidcted by high-resolution Fresnel zoneplate leriBeis. research paved the way
for the development of the more sophisticgtbdse-shifting point diffraction interfemeter(PS/PDI).All
of the research related to the E®&/PDI is presented in Part Ill. Chapter 4, which provides a description
of several PS/PDI designs, is followed in Chapter 5 by a mathematical investigation of systematic error
sources and measurement issiié® interferometer configuration for the measurement of a Schwarzschild
objective is described in Chapter 6, and the measurements themselves are presented in Chapter 7. Chapte|
contains the results of numerous experiments conducted to evaluate the performance of the interferometer
Finally, Chapter 9 records an investigation of chromatic aberrations and the wavelength-dependent behaviol
of the Schwarzschild objective related to the properties of the multilayer coatings.

The six chapters of Part &l describe practical aspects of interferogram analysis, including detailed
procedural descriptions of the individual methods. Following a general overview in Chapter 10, Chapters
11 and 12 provide a description of the two major classes of phase-recovery methods, single interferogram
techniques and multiple interferogram phase-shifting techniques, respec@iapter 12 also includes a
novel phase-shifting analysis method developed by the author to overcome phase-shift calibration errors,
the Fourier-Transform Method of Phase-Shift Determinatiohis method eliminates problems associated
with phase-step uncertainties and fringe print-through in situations where it may be applied.

The critically important and challenging subject of phase-unwrapping is addressed in Chapter 13.
Here, following a discussion of conventional methods, a new unwrapping procedure developed by the
author is described’his method combines highly-filtered phase-information with raw phase data to per
form what is calledrourier-Transform Guided Unwrappind his robust method was designed to ever
come the presence of numerous invalid data regions found in the measurement of tBehialdkzschild
objective. It preserves all of the phase information present in thevrappedphasemap without Shefr-
ing the complications from invalid points that plague all other unwrapping methods.

Analysis in terms of a convenient set of aberration polynomials, such as the familiar Zernike circle
polynomials, is essential for the accurate description and interpretation of the measured data. Chapter 14
describes some important properties of the Zernike polynomials and presents practical issues of how these
functions may be mostfettively represented on a comput€hapter 15 describes general methods of
wavefront surface fitting, including the very important Gram-Schmidt method of orthogonalization which
is extremely useful for minimizing uncertainties associated with polynomial fifsimgodification made
by the author to the published method streamlines the fitting procedure and reduces uncertainties by elimi

nating the need to perform a matrix inversion in the transformation between two polynomial basis sets.



Following the concluding remarks of Chapter 16, the seven appendices cover several auxiliary top
ics important to this researchhese include EUptical properties, EUVptical systems, EUVhultilay-
er behavigrand Fresnel zoneplate lens&kso given are the definition of fringe contrast, followed by a
Fourierdomain method of fringe contrast determination implemented by the akithalty, there is a
note regarding the conventions used in plotting theficteits of the Zernike polynomials when repre

senting a wavefront surface.
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EUV Pinhole Diffraction

2.1 INTRODUCTION

The central principle of the EUpOINt diffraction interferometers is the generation of the reference
wavefront by pinhole difaction. Both accuracy and precision rely on the spherical quality of fiectif
ed wavefront across the numerical aperture of measurefbrdad assumption may be made that for a
sufficiently small pinhole, a spherical wavefront of arbitrary quality may be achieved over a given numer
ical aperture. Howevesuch an assumption is fitiult to justify for an experimental, and necessarily
imperfect, pinhole in a highly absorptive, thick membrane subject to a plane-polarized incident electric
field of non-uniform intensity

In principle, detailed knowledge of the electromagnetic field gimgrfrom the pinhole membrane
would enable the prediction of non-spherical components in tiraaléd wavefront phase and allow esti
mation of the measurement accuracy limitse goal of this section is to assess the results of a first-prin
ciples simulation of the pinhole-éliicted reference wavefront, to guide the selection of the appropriate
pinhole size and characteristics of the experimental interferameter

While the simplifying assumptions of this simulation do overlook several experimental conditions
(non-ideal pinhole shapes, spatial variation of the incident electric field, etc.), this work lays the foundation
for further research and more detailed analysis performed utilizing the rapidly increasing capacity and
availability of computing powemhese early results may portray an optimistic view of the minimum
required pinhole size for EUWterferometry: only careful experimental research can truly establish-a max
imum allowable pinhole size or qualify an individual pinhole for a given application and desired accuracy
2.1.1Motivation of the Numerical Simulation

Several methods have been developed to stufipatibn from a variety of aperture shapes with
various boundary conditions (Cerjan 1994, Born Afdf 1980), yet no general analytical treatment
addresses difaction through pinholes in a highly absorptive medium with the range of non-ideal shapes
that serve as reasonable physical models for the experimental pinholes usedpoidifraction inter
ferometry near 13 nm wavelength (Goldpet al. 1996)The introduction of the three-dimensional pinhole
structure and inclusion of the polarization of incident light motivate the use of numerical solutions based on
detailed simulations of the vector electromagnetic field in the vicinity of the pinftokein itself presents
an especially difcult challenge owing to the relatively tgr diameter of the pinholes in question (3A15
and the polarization-dependent absorptive boundary conditions at the membrane interfaces.

Beyond rigorous numerical solution of MaxwelBquations in the domain containing the pinhole,
no analytic treatment is didiently versatile to accommodate the irregular pinhole shape models that
serve as approximations to the actual shape of the experimental pinholes. Determination of the complete

electromagnetic field in the vicinity of the pinhole was performed in this study for a variety of pinhole
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EUV Pinhole Diffraction

geometry models usinpEMPEST3D (Wong and Neureuther 1995). Several pinhole models with-cylin

drical and elliptical cross-sections were considered in the studies described in this Thaptecalcula

tions set an upper limit to the allowable pinhole diameters necessary to achieve a reference wavefront of a
given guality in an ideal system.

All of the TEMPEST3D calculations were performed in 1995 on a CM-5 connection machine.
Typically, these simulations utilized 128 parallel processors and 870 MB of RAM, requiring approximately
five minutes of CPU timéAt the time these simulations were performed, thgelaimulation domains
necessitated the use of a sup@mputer and restricted the simulations to a narrow cross-sectional area con
taining the open pinholeThe author notes that at present such computing power (aside from the number

of processorsis becoming available on desktop workstations.

2.2 MODELING THE ELECTROMAGNETIC FIELD

Pinholes with diameters ranging from 50-150 nm (23-1atA = 13 nm), fabricated by electron
beam lithography in a highly absorptive cobalt membrane approximatei;n487A) thick (Spallas et
al. 1995), are considered in this study because they are suitable for testing optical systems with NA
around 0.1 near 13 nm wavelengthe three-dimensional electromagnetic field in the vicinity of the pin
hole was calculated usifgEMPEST3D, a time-domain, vector electromagnetic field simulation comput
er program. Once the field has been calculated at the exit-side of the pinhole membrane, the reference
wavefront is calculated using a simple vacuum-propagation model incorporating the Fresnef-Kirchof
approximation for fafield diffraction.
2.2.1Calculating the Field in the \¢inity of the Pinhole

Calculations are performed on a range of pinhole geometry models, including cylindrical and coni
cal pinholes and elliptical pinholes of uniform cross-section. Figstetvs the four pinhole-bore models
studied hereTo simplify the models, variations of the field incident on the pinhole are neglected: across
the small simulation domain, uniform, normally incident plane-wave illumination with linear polarization

along thex-axis is assumed. Experimentalhowevey the electric field may vary over an extremely small

Cylindrical Tapered Flared Elliptical

Figure 1 A representation of the four pinhole shape models used IFBNEPEST3-D simulationsThe pinholes
range from 50 — 150 nm diamet&he walls of the sloped pinholes (tapered and flared) are angled tat the@ ver
tical. The two-fold symmetry of these models is exploited to increase the simulation domain size.
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EUV Pinhole Diffraction

Table 1.Parameters of the pinhole simulations

wavelength A =13.55nm (91.5 eV)

illumination uniform plane wave, normal incidence, plane polarized

simulation domain size 230.6 nmx 230.6 nmx 115.2 nm = 1A x 17\ x 8.5, periodic inx andy
simulation nodes uniform, A/15 spacing, % 108 total nodes, exploiting two-fold symmetry
pinhole diameters 50 nm — 150 nm

cobalt membrane thickness, 90 nm = 6.6% density 8.9 g/cnd

index of refraction n=1-6+if=1-0.0659 0.0657 = 0.9341 40.0657

spatial scale, rendering suspect the uniform-illumination assumptiisis especially true for lge pin
holes, and for those displaced significantly from the center of the focal patteithe pinhole size cen
ditions described herein setaaver limit for the magnitude of aberrations that should be expected from
ideal plane-wave illumination.

Parameters of the simulation are listedable 1.The simulation domain, which exploits the two-
fold symmetry of the pinhole models, contains a cobalt membrane in vacuum with a thin free-space layer
above and beloMf EMPEST3D uses periodic boundary conditions in ¥endy directions, thereby
forming an infinite square array wirtual pinholes with centeto-center spacing of 230.6 nm for the para
meters of interesThis periodicity is represented in Fig. 2(a). If the pinhole itself is symmetric about both
thex- andy-axes, defined from the center of the pinhole (as is always the case in these simulations), then
the domain size may be reduced by a factor, fasishown in Fig. 2(b). (It should be noted that recent
versions ofTEMPESTunder development do not impose periodic boundary condifitrese advances
were not available at the time this research was undertaken.)

The propagation of EUVight in cobalt is characterized bgipid extinction: the 1 intensity trans
mission depth is 16.4m (1.21A) at 13.55 nm wavelength, and the relative transmission througm9¢

4.1x 103, This rapid extinction is important to the separation distance between the pinholes of-the peri

O

Figure 2.The three-dimensiondIEMPESTsimulation domain. (aJhe inherent periodic boundary conditions create
a virtual lattice containing the simulation domain. On the right is a cross section containing the pinhdleedis.

its of the simulation domain are outlined in black. Thg simulations performed here exploit the two-fold symmetry
of the pinhole models to enable the simulation afdadomains.
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EUV Pinhole Diffraction

tapered

cylindrical

flared

50 nm 75 nm 100 nm 125 nm 150 nm

Figure 3.Calculated electric field intensity patterns showindradtion within the pinhole and attenuation in the

cobalt membrane. Surface heights represent the electric field intensity in a plane containing the axis of the pinhole
and the direction of the electric field polarizatidine light propagates from the bottom of each image to the top.
White lines on the surfaces represent the boundaries of the cobalt.

odic domain. In order to consider the individual pinholes as isolated structures, the separation must be
great enough to substantially reduce the contribution of overlapping fields from the neighirtwizg
pinholes. Hence the rapid extinction makes this simulation possible.

A short distance away from the pinhole, light propagates through the material with characteristic

exponential extinction:

I(X) — Ioe—x/16.4 nm_ (1)

Within the open pinhole, a stationaryfdifction pattern is formed. For pinholes of circular cross-section
and various radii, the electric field is shown in FigTBe figure shows only the cross section taken in the
plane parallel with the polarization.

Polarization dkcts the propagation of light in the pinhole, and breaks the rotational cylindrical
symmetry of the studylong the walls of the pinhole (i.e. the interfadbg electric field satisfies détr-
ent boundary conditions in the #@ifent directionsThe electric field polarizegdarallel to the boundary
must be continuous across the interface, with a continuous first derivative in the direction normal to the
boundary Since the field inside the absorber is rapidly attenuated, this continuity requirement forces the
parallel electric field to become nearly zero along the pinhole Wélks field polarizegerpendicularto
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EUV Pinhole Diffraction

the interface may be discontinuous, and is not necessarily small at the boundary

This polarization dependence illustrates one malferdiice between scalar and vector solutions to
pinhole difraction.While it is true that for pinhole diameters many timegdathan the wavelength, the
contributions from the boundaries of the pinhole become negligible, this is certainly not the case for the
pinholes of interest her&he diference between the parallel and perpendicular boundary orientations
establishes a@dependence in the fiicted wavefront manifested as a small amoumtstimatism(the
lowest-ordered @dependent aberration).
2.2.2Propagation toFar-Field

Once the fields have been calculated and the field at the exit of the pinhole is knowrfirabedlif
wavefronts are calculated by numerical propagation of the calculated electric field to a spherical surface, 10
cm away Experimentallythis distance representsfdifction to thefar-field and corresponds to the position
of the detector in the EUWoInt diffraction interferometer and phase-shifting poinfrddtion interferome
ter described in this thesiBhe x-polarized component of the electric field, calculatedn2a/(\/5) below
the cobalt membrane, is used asittital field for the numerical propagation. In the absencespalar
ized component, thepolarized component of the electric field across the initigblane is siffcient to
completely and uniquely describe the propagated field (Clarke and Brown 1980). Furthermore, for rele
vance to interferometry the interference fringe pattern is generated by the interaction of like-polarized elec
tric field components of the test and reference be@hestest wave here contains oripolarized light,
and therefore the presence of grayolarized light in the reference beam would contribute only to the sta
tionary background intensitfhe propagation is performed with a two-dimensional Fourier transform that
approximates the Fresnel-Kirchiafiffraction formula for faffield diffraction (Born and\olf 1980).

In the pinhole simulation domain, the propagaetegentfield may be described as thelinear
superposition of thdiffractedfield and the incidentiniformfield transmitted through the cobalt mem
brane.To isolate the dffacted field, a uniform (constardpmponent representing only the attenuated
transmitted field is subtracted before the propagation was perfofhisdsuperposition and subtraction is

illustrated in Fig. 4. Isolation of the fifcted field enables the imposition of the boundary condition that

Eincident Eincident

7' 7' o
L _m:-@-

RO

Etotal Eno-pinhole Epinhole-only

Figure 4.Strategy for the calculation of the fil#fcted wavefront fronrTEMPESTsimulations. Superposition is used
to isolate the dffacted wave from the wave transmitted in the absence of the pifihidesubtraction is necessary to
eliminate the contribution of the finite, square simulation domain cross-section.
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EUV Pinhole Diffraction

the difracted field becomes arbitrarily small away from the pinhd¢ementioned previouslyhe rapid
extinction of all light not transmittetthroughthe open pinhole allows the use of a relatively small domain

size in these calculations.

2.3THE DIFFRACTED WAVEFRONT

The Kirchof model of scalar difaction theory (Born aniVolf 1980) provides a first approxima
tion to the faifield wavefront difracted from the experimental pinhole.
2.3.1Simple Theory —The Airy Pattern

Consider the diffaction of uniform, plane-wave illumination from a simple circular aperture in a
planar screen. For a small aperture, in thdiédd this is referred to aSraunhofer diffraction(Goodman
1988:62).This simplified model predicts a spherical reference wavefront that covers the central portion of
a diffractedAiry pattern,bounded by the first difaction minimum.

A highly simplified model of the field emgent from a circular pinhole of diametbis

L |r|< d/2

t(r) = ’ |r|>d/2'

)

Following Goodman (1988:48-54), the angular spectrum of tlfractiéd wavefront when the system is
illuminated by a normally incident, monochromatic plane wave is calculable via Foarisform. Let

= (ax, ay) be direction cosines of the field in th@andy directions.The angular spectrum is
0 2t
Ulo/A) = [t(r)expr—o [ 0 . 3
(a/)deUpQAan ®

Taking advantage of the cylindrical symmetry of the problem, Eq. (3) can be solved using the Fourier
Bessel transforniThe result is the familiafiry pattern,named after its discovere®. B.Airy.

(2

EQTT Drdr Ad . gmod
HpY

dr2
U(a/A) = 2T[J’t )Jdoa—ar rdr—2nJ' o o MOy O (4)

The intensity is proportional to the aperture area:

|(a/A)D@%gang%dg. )

The first difraction minimum corresponds with the first zero of the Bessel fundfi@hatx = 1.221= 3.83.

Hence, withO as the polar angle,
a=122 A/d - snB=122 A\/d. (6)

To compare thehaseof Eq. (4) with an ideal, spherical wavefront, notice that the expression is

purely real. Changes in sign correspond tochange of phas@hus, by inspection, the phase of Kigy
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EUV Pinhole Diffraction

Table 2.Maximum measurement NBased on an idealiry diffraction pattern producing a spherica
reference wavefront within the first eféiction minimum.

d[nm] |50 75 100 125 150 175
NA 1033 0.22 0.17 013 011 0.094

pattern relative to an ideal spherical wapsg, is

0, J;(Td/A) =0
Qairy =00 1( )

7t Ji(md/A) <0 ")

In this simple treatment, the phase of théradted wavefront iperfectover the central region of the pat

tern.The NAthat is filled by this central region is

NA filled =snB=1.22 )\/d . (8)

Calculations based on Eq. (8) are showiahle 2.

In eachTEMPESTsimulation case, the phase of thdrdifted wavefront is fit to a series of Zernike
polynomials (see Chapter 15) over a range ofakgles.The four lowest-order polynomials that describe
the displacement of the coordinate system from the wavefront center of curvature are removed from this
analysis. Pinholes from which the remaining peak-to-valley (P-V) wavefront aberratiayeistkan 0.15
A are rejected from consideration in this stullyis includes all pinholes Iger than 150-nm in diameter
2.3.2Cylindrical and Conical Bore

In addition to a simple cylindrical bore, two conical bore models, tapered (narrower at the exit) and
flared (wider at the exit), are studied in this chater both of the conical models, the cone half-angles 10
The five pinhole diameters studied here are 50, 75, 100, 125, anthl&bnical pinholes are labeled by

their maximundiameters.
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Figure 5.Calculated wavefronts dificted by cylindrical pinhole3he optical path diérence (OPD) between the-dif
fracted wavefront and an ideal spherical wavefront is shéhaincident illumination ix-polarized.Note the changes
in thez-axis scaling.
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Cylindrical Tapered Flared
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Figure 6.Calculated P-Mivavefront aberrations within 0.08 (diamond symbol) and 0.1(square symbddrXi#xee
pinhole bore shape models and fivdfetiént diameters. Pinhole cross-sections, parallel to the polarization, \&etor
shown above thg-axis labels: black represents the cobalt membrane, white is empty Apac®lous behavior is
seen in the 50-nm-diameter pinholes where the astigmatic aberrations dominateattedifvavefronts and the 0.08
NA wavefront has a lger peak-to-valley error than the 0.1 MAvefront when the defocus terms are subtracted.

©
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numerical aperture, NA

OOO 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 7.Calculated reference wavefront Paferration magnitude plotted as a function of pinhole diameter and
numerical aperture for pinholes in the cylindrical bore modialvefronts are only calculated for the five labeled pin
hole diameters; bi-cubic interpolation is used to generate the contours in the intermediateTegierpected
behavior of wavefront quality improving with reduction in pinhole size is demonstrated; hpaeoeralous behav
ior occurs where the pinholes are greater than 100 nm arig bilow 0.08The cross-section for 0.08 N4 indicat
ed by a dark dashed linEhe dashed white line indicates the maximumdiAhe spherical wavefront predicted by
the simpleAiry diffraction formula, NA= 1.22A/d.
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= /A Figure 8.Longitudinal change in the ceniaf

£.200 curvature of the wavefront dlifcted by cylin
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2 E 150 V/ centerof-curvature is determined from the
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S 0 bottom (exit-side) of the cobalt membrane;
= JN/ positive position valuesdicate that the center
5l0 75 100 195 150 of-curvature liewithin the pinhole.

pinhole diameter [nm]

Calculated wavefronts dificted by the cylindrical pinholes are plotted in Fig. 5 with the piston,
tilt, and defocus components remov@ééavefronts difracted by the two smallest pinholes reveal a small
astigmatic component, while thedast pinholes difact wavefronts dominated by rotationally symmetric
aberrations.

The calculated P-Wavefront aberration magnitudes are plotted in Figs. 6 and 7 for each of-the pin
hole bore shapes and diameters studéthin this range, the P-"berration magnitude is an increasing func
tion of the pinhole siz&he dominant wavefront aberration components for tigetasinholes are rotational
ly symmetric (spherical aberration). Howeweismall astigmatic (co®Pcomponent, less than 0.82P-V, is
present in each dihcted wavefront.

There is no significant qualitative ftifence between the wavefrontdrdifted by the cylindrical and
the conical pinhole models. In general, each conical pinhdtealsf a reference wavefront that is similar to a
wave difracted from a cylindrical pinhole of diameter between the minimum and maximum conical diameter

As the raw wavefront data is analyzddfocus, a rotationally-symmetric aberration component of
orderr2, is typically the dominant aberration component. Defocus, howasises from the arbitrary
position of the origin of the coordinate system (just below the pinhole membrane) used in the calculation.
Experimentallythe defocus is determined by the relative longitudinal positions of the test beam and the
membrane containing the reference pinhdleere exists one point along the axis of symmetry which may
be called the centaf-curvature of the difacted wavefrontThis point, for which the best-fit defocus is
identically zero, occurs somewhere in the vicinity of the reference pinftodenext-higher rotationally-
symmetric aberration component is spherical aberration, of otdBue to the? dependence of the
defocus magnitude and presence of higitder aberrations, the best-fit amount of defocus in an arbitrary
reference wavefront depends strongly on thedflAieasurement.

One characteristic observable in the data is a shift of the longitudinal position of theoteunter
vature with changing pinhole size, shown in FigT'i®is efect is an important contributor to the astigmat
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Figure 9.Calculated characteristics of the reference wavefrorftacliéd from elliptical pinholes into 0.08 and 0.10

NA. With the position-dependent wavefront components removed, the residuabiReffont aberrations, the ampli

tude of the astigmatic (co®Pcomponents, and the intensity non-uniformity are shde. 25 pinhole shapes are

shown in grey behind the appropriate locations on the plots; intermediate points are based on a minimum-curvature
surface interpolation and are thus not verified by the simulation. Pinhole ellipticity axdiitleetion polarization of

the incident light both introduce a small amount of astigmatism into thiaaiéd wavefronts. Note that in the top-

center plot, the unlabeled contours &f&3. In the bottom-center plot, the unlabeled contodrie.

ic wavefront found fronelliptical pinholes, discussed in the following section.

The asymmetric wavefront components irfrdiftion fromcircular pinholes come from the pofar
ization of the incident fieldAs stated earlierlectric field components parallel and perpendicular to the
vertical walls of the pinhole satisfy tBfent boundary condition$he field emeging from the pinhole is
not rotationally symmetric, but contaiastigmaticcomponents.
2.3.3Elliptical Bore

A series of simulations was conducted to investigate fheteff elliptical pinhole cross-sections on
the difracted wavefront. Several of the relevant reference wave parameters are shown in Fig. 9, for 25
width and ellipticity combinations at 0.08 and 0.1 NA.

From elliptical pinholes, the dificted reference wavefront can contain a significant amount of
astigmatism. In the previous section, the dependence of the longitudinal position of thefeemtea
ture with respect to the pinhole size was discussed; fieist & manifest in the rotationally-symmetric

defocus term. Here, where the pinholes are elliptical, the horizontal and vestitads-of-curature
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occur at diferent longitudinal positions; the& defocus term then takes on @dependence and astigma

tism is introduced into the diiicted wavefronts. Furthermore, regarding the higindered aberrations,

the elliptical pinhole wavefronts show greater aberration magnitudes in the direction of the pinholes’
majoraxis, leading to an additional source of astigmatism. Figure 9 shows tteb@x\dtion magnitude

and the magnitude of these astigmatic components, in addition to the intensity non-uniformity discussed
in the following section. Since the astigmatic term depends oB&;@snegative sign of the cdiefent

simply indicates rotation by 90

2.4 INTENSITY UNIFORMITY

Separate from the wavefront phase, an important consideration for the quality of the reference
wavefront is the intensity uniformity across the Ndmeasurement. In an idesiry pattern, for example,
although the wavieont phaseis that of an ideal spherical wavefront, thiensityvaries monotonically
from its peak at the center of the pattern to zero at the fifsiaibn minimum. Since the signal-to-noise
of the measurement is related to fringe contrast, and fringe contrast depends on the relative intensities of
the test and reference waves, the uniformity of the reference wave must be taken into consideration in the
selection of the appropriate reference pinhole diameter

To evaluate the uniformity of the pinholefdéfcted reference wave, define a non-uniformity

Cylindrical pinhole intensity non-uniformity Airy pattern intensity non-uniformity
0.20

Q
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@
Q.
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c
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\ \o?.ql-
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ooOL . . ., 1 ., ., . I, 1L ooo. . . . [+ . . I v 1y
50 nm 75 nm 100 nm 125 nm 150 nm 50nm 75n$m 100 nm 125nm 150 nm
pinhole diameter pinhole diameter

Figure 10.The intensity non-uniformity of the ditfhcted wavefronts in the cylindrical bore model, calculated for a
range of pinhole diameters and numerical apertures and compared with the featur@érpfpdutern. Pinhole-dif
fracted reference waves cannot uniformly illuminate arbitrarilyelapertures. Non-uniformity from the radial
decrease in intensity ultimatelyfedts interferogram fringe contra3te dashed dark line indicates 0.08 NAe
dashed white line indicates the angle of the fifst diffraction minimum where, in the simple theotiye non-uni
formity is one.
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parameter as

v=1-tmin 9)

By this definition, when the reference wavefront is perfectly unifégp.equals 5, andv is zero. On the
other hand, if the reference wave intensity falls to zero within the NA Ithgequals zero, and is one.
Based on th@ EMPEST3D calculations for the cylindrical-bore pinhole model, discussed in
Section 2.3.2, Fig. 10 shows the reference wave intensity non-uniformity as a function of pinhole diameter
and NA. The TEMPESTcompares very closely with the simpley model, also showriThe calculation
reveals that a reasonable reference wave non-uniformity of 30% at 0.G8Mifes a sub-75-nm-diame

ter pinhole, and at 0.1 Nequires a sub-50-nm pinholEhese are very challenging requirements.

2.5 ERRORANALYSIS

The uncertainty of the phase or intensity of th&atifed waves can be estimated using information
about the simulation method and separateding data from the calculatioi$ie simulation convegence
requirements, the electric-field data, and a separately calculated secondary data set are here used to place
upper limits on the magnitude of the uncertainties.

One cause of uncertainty is the finite lateral size of the simulation domaéstimate of the total
poweroutsideof the simulation domain provides an upfrit to this uncertaintyBased on the field
magnitude at the edge of the domain and the rate of field attenuation away from the pinhole, the uncer
tainty uppetlimit in the diffracted field is estimated to be not more tharf b@sed on a unit amplitude
incident field.This field uncertainty translates to-4@adians or ~210° waves of phase uncertainty
Attenuation in the membrane makes the contributions from the adjacent virtual pinholes in the periodic
simulation domain even smaller than this level. Further study is required to fully characterize the uncer
tainty introduced by the small domain size.

The TEMPEST3D electromagnetic-field simulation utilizes an iterative approach to compute the
fields within the domain. Convgence owsteady-statés achieved when three successive iterations agree
to within a givenabsolutetolerancee. Only a small subset of the domain points are used in the eonver
gence testindgAn alternate convgence scheme using thelativefield magnitude may be more appropri
ate for simulations such as this, where the field magnitude varies substantially from one region to the
next. Furthermore, convggnce tests across the entire domain or a full cross-section of it would improve
confidence in the results. Such strategies were not implemented in this version BMRAESTprogram.

With a unit amplitude input electric field, the conyence parameteris set equal to 0.01. Smaller

values require much longer processing time, making their use infeasible for the breadth of experiments
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performed.Yet this value of renders the uncertainty in each point to be aglas 0.01With the calcu

lation of the first-quadrant fieldnfoldedto all four quadrants, there are 26255 or 65,025 lateral nodes

in the domain. Since the fliicted wave is calculated via discrete Fodtiansform, the errors propagate
linearly into the wavefront measuremenhhat is, any component of the Foursgrectrum is calculated by

a simple summation of the field in the image-plartee maximum uncertainty (without any scaling coef
ficient) in that measurement is 65,025% 650.The figure of merit is the ratio of this maximum uncer

tainty to the amplitude of the €liicted wave: this value dictates timeximunmphase erroror the five

pinhole sizes ranging from 50 to 150 nm {50, 75, 100, 125, 150 nm} the unscaled peak amplitudes of the
diffracted waves are {5503, 8222, 12044, 17460, 23013}, making the maximum uncertainty at the peaks
{11%, 8%, 5.4%, 3.7%, 2.8%]}. Following thisgament, the uncertainties increase away from the peak
because of the decrease in théradted waves amplitude with angle.

Uncertainty in the complex field amplitude translates directly into maximum uncertainties in the
phase. Based on the vector addition of the peak calculated field amplitude with the uncertainty (having
unknown phase}he maximum net phase error is {D,D.08, 0.054, 0.037, 0.028} radians, or {0.018,
0.013, 0.009, 0.006, 0.004} waves %6, \/77,\/116,A/170,A/224}.

In practice, these maximum uncertainty valuesrarehlarger than the actual errors in the caleula
tion. Because of the absorptive membrane, most of the field amplitudes at the exit-side of the simulation
domain are smaller than 0.01, the error tolerance, yet the fields are well-behaved and are reliable to a much
higher accuracy

One secondary estimate of the uncertainties comes from consideratiory-piatfaeized field.The
illuminating electric field is polarized only in thedirection and the material contains no polarization-
rotating bi-refringencelhe presence of ypolarized field comes from very small glancing-incidence
reflections within the pinhole and from numerical errors accrued during the calculation of various vector
field curls and divegences. For this reason, the errors should not gerlgnan the amplitude of tlye
polarized components.

Similar to before, since a discrete Fouti@nsform is used to calculate thefrdi€ted wave, the
sum of the absolute values of tolarized field amplitudes at the exit-side of the domain can be used to
estimate the erroHere, the field totals for the three smallest pinholes are {60, 34, 19}, meaning uncer
tainties at the peaks of {0.3%, 0.4%, 0.5%]} relative to the peak amplitudes stated pretiecalyse of
the intensity fall-of, uncertainties at the maximum angles within th&alited wavefront are on the order
of twice these value3he amplitude uncertainties relate to phase uncertainties of1{g43 6.4x104,
8.0x104} waves, or /2100,A/1570,\/1260}.

It is difficult to judge the accuracy or reliability of these calculations well bald®@0 orA/500.
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Further research could be used to clarify some outstanding iesuesio the dfiracted waves depend on
the domain size, the number of nodes per wavelength, the absolute error tedesamgie- versus deu
ble-precision calculations, etc.? In the absence of such tests, these results must stand as they are, awaitin

further verification.

2.6 CONCLUSION

Calculated EUMvavefronts difracted into 0.08 and 0.1 Ny 50 to 150-nm pinholes in a cobalt
membrane show aberrations that increase as a function of pinhole size. Even in the presence of a slightly
conical bore or an elliptical cross-section, thérddted wavefronts are spherical to within 0.01 waves
(A/100) from 125-nm pinholes and within 0.002 wawes@0 from sub-75-nm circular pinholes. Both
polarization and pinhole ellipticity introduce astigmatic components into thhaaéd wavefront.
Polarization contributes astigmatism due to the rotational-symmetry-breaking boundary conditions. Since
the longitudinal centeof-curvature varies as a function of pinhole diamethiptical pinholes with dif
ferent diameters along the major and minor axes generate astigmatism feyeatdihechanism.

The intensity uniformity of the difacted waves is an essential consideration for evaluating the
quality of the reference wavefront. Experimentalhe desire for intensity uniformity places a separate
restriction on pinhole size from the phase-uniformity requirenwithin these simulations it is shown
that the sub-75-nm pinholes are capable of producing non-uniformities below 30% for Ori8asiére
ments, while sub-50-nm pinholes are required for the same non-uniformity at OThéke results close
ly follow the predictions of the simplsiry-pattern from the Kirchdfdiffraction model.

To the extent that these pinhole models correctly represent experimental conditions, measurements
of aberrated spherical wavefronts using Epbint diffraction interferometry may be limited to an aceura
cy of a few thousandths of a wavelength when pinholes as small as 50 nm are used — substantially small

er than the dffaction-limited resolution of the test optics.
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3.1 INTRODUCTION

The first prototype implementation of the Eydint diffraction interferometer (PDI) was dedicat
ed to the development of high-accuracy Eldiérferometric capabilityand to the investigation of high-
resolution Fresnel zoneplate lensBse experiments and measurements described in this chapter detail
the progress made toward those goals.

Experiments related to the investigation of zoneplate aberrations were conducted Betyuestn
1994 andAugust 1995These experiments revealed the nearlfratition-limited quality of the low-spa
tial-frequency wavefront aberrations (Goldpet al. 1995a, 1995b). Mid- and high-spatial frequency
aberrations were observable in the measured intensity profégsl @t al. 1996b).

As a demonstration experiment, the Eltérferometry performed on Fresnel zoneplate lenses was
the first critical step toward the development of more sophisticated measurement techniques. Ultimately
the uncertainties in the measurements were on the same order as the wavefront aberrations that were foun
and the success of the measurements was limited by a range of experimental issues, &lgveatarum
ber of concrete lessons were learned; the significant problems were identified and later overcome.

This chapter details the theory and use of the BNV and describes the experimental sysfEne
characterization of a Fresnel zoneplate lens is presented. Development of this prototyipeeEerdme
ter led to a superior interferometer design concept, the PS/PDI, which is the subject of Part 11l of this the
sis. Before the measurement goals for the zoneplate lenses could be achieved, the PS/PDI was applied to

the measurement of lithographic reflective optical systems.

3.2THE CONVENTIONAL PDI

The PDI was first described by Linnik (1933) and later by Smartt and Steel (1975) as a simple, com
mon-path, wavefront-splitting interferometer well-suited for applications in X-ray optics, where ¢onven
tional amplitude-splitting interferometer designs are not easily implemédrted?DI has previously been
used successfully in a number of short wavelength applications (Speer et al. 1979, Mrowka and Speer
1981).The interferometershown in Fig. 1, consists of a sm@&felence pinholén a semi-transparent
membrane, placed near the focus of a coherently illuminated optical system undéetdktminating
beam is often generated by a suitaiidgect pinholespatial filterto ensure a coherent, spherical wavefront.

A single beam passes through the test optical system, acquiring the aberrations of interest here.
This may be considered as the linear superposition of two beams transmitted through the pinhole mem
brane. One beam passes through the membrandraoifl and forms the interferométiestbeam

Light diffracted through the tiny pinhole forms trefelence beammand overlaps the test beam across the
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Conventional PDI

e

object pinhole test optic reference pinhole CCD
spatial-filter in semi-transparent camera
(object-plane) membrane

(image-plane)

Figure 1.A schematic representation of the essential components of the ConventionaltiRppinhole in a semi-
transparent membrane is placed near the focus of a coherently illuminated optical system fiagteddffom the
pinhole forms a reference wave that overlaps the test wave over the numerical aperture of interest.

measurement NA. In principle, the reference beam consists of a nearly perfect, spherical wavefront, and
the test beam contains the aberrations of the optical sydthere the overlap occurs, interference fringes
appear in a measurable pattern that reveals the path-lerfgtieniie between the two beams.

The reference pinhole size must be chosen to balance two opposing concerns: throughput and refer
ence wavefront qualityrhe pinhole should be significantly smaller than th&atition-limited focal spot
size of the optic under test to ensure a high-qualifyadtied reference wavefront across the dAnea
surement. Reducing its size decreases the amount of liffactifl into the reference beam. Because
interference fringes are required for analysis, the pinhole often must be displaced significantly from the
focus into a region where the light intensity is Idis further reduces the amount of light in the refer
ence beam. From the balance of these considerations, the transmission of the semi-transparent membrane
is chosen to provide nearly equal intensity in the two interfering beams, ensuring high fringe ddwrast.
optimum number of fringes required for analysis is strongly dependent on the power spectrum of the test

optic. Analysis issues are addressed in Part IV

3.3 EXPERIMENTAL COMPONENTS

This section presents a description of the key components of thePBUSYystem configured for
the measurement of Fresnel zoneplate lefideskey elements are shown schematically in Fig. 2.
3.3.1EUV Fresnel Zoneplates

A number of zoneplates were prepared and examined with thePBlMBecause of experimental
limitations, the wavefront aberrations were carefully investigated in only one zoneplate.

A series of similarly prepared zoneplates was fabricated byABdkrson and Dieter Kern (1992)
for testing with the EUVPDI. The binary zoneplates used in these experiments were fabricated in-electro
plated nickel on a silicon-nitride membrafiée zone plates have a diameter of g6 an outer zone

width of 75 nm, and arimary or first-order focal length of 1.2 mm at 13.5-nm wavelengthe zone
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Figure 2.The arrangement of the PDI components configured for Etd8nel zoneplate measurement, 199Mh8.
arrows indicate the degrees of freedom of the five translation stages. Measurements were performed at Beamline 9.0.1 at
theAdvanced Light Source.
plates contain an opaquentral stopof 60um diameterwhich gives them an annular pupithout the
central stop, the zoneplate design calls for approximately 640 transparent and opaque zone pairs.

As discussed iAppendix 4, EUMlight is diffracted by the zoneplate into a series of coginer
and diveging diffractive orders, each with a unique real (cogirey) or virtual (diveging) focal point. In
addition tothe difracted orders, there is a strong “ufrdi€ted” zeroth-order component that propagates for
ward without focusing.

Wavefront measurements are based on the focused firsietiife order Overlapping light from the
other orders is blocked by an essential, appropriately-located aperture stop, caitdet-aarting apeture
(OSA). Of primary concern are the overlapping zeroth-order and negative-first-order beams. If not ade
guately blocked, the strong zeroth-order beam is capable of causing damage to a sensitive detector
Although it contains only (roughly) twice as much flux as the first-gitlpropagates in a comparatively
narrow angleThe negative-first-order beam is of equal strength as the first-order beam and propagates past
the focus with the same digmnce angle. Because these beams originate from the comparatively small
zoneplate lens and propagate over gdafistance, their overlap in the detector plane is nearly complete.

The OSAis placed in a position where it takes advantage of the opaque central stop of the annular
pupil. This is shown in Fig. 3. It is necessary to place the @5Anough away from the zoneplate that the
first-order beam is narrower than the diameter of the @iSkole while maintaining enough working dis

tance in the vicinity of the focus to allow the PDI membrane room to op&hegosition of the OSA
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Figure 3.Position of the ordesorting aperture

to transmit only the focused, first fidicted-

order from a Fresnel zoneplatith a 60pum
central stop in the 200m-diameter annular
zoneplate and a 50m OSApinhole, the OSA
must be placed more than 3/4 of the distance to
focus from the zoneplate; yet the O8AISt not
project so far as to limit access to the focal plane
by the PDI pinhole membrane.

determines the range of wavelengths that can be used without obstruction. Some of the data in this chapter
show the dects of the OSAncroachment on the first-order beaftith a first-order beam of 200m diam
eter at the zoneplate, and an Q8A404um diametertheOSAmust be placed beyond 3/4 of the distance to
focus. Here, with a focal length of 1.2 mm, 8Amust be placed beyond 0.9 mm from the zoneplate,
leaving less than 0.3 mm of working distance.

The OSAis mounted to the zoneplate membrane and positioned in the followind e ®@SA
pinhole exists at the center of a thin, circular metal foil. Using an appropriately-sized ball-bearing, the foil
is forced to conform to a spherical shape by firmly pressing the ball-bearing and foil into a thick piece of
rubber The foil then forms the shape of a spherical cap, with the pinhole at the Téetésget height
of the cap is around 1 mm, but not less than 0.9 mm. Using a microscope to observe the back-illuminated
zoneplate, the cap is carefully positioned with the @B#ole above the zoneplate centers then held
in place using a drop of epaxy
3.3.2Light Source Description

The light source used in these experiments is an undulator beamline operatingdaatimeed
Light Source (ALS) at Ernest Orlando Lawrence Berkeley National Laboratoeybeamline incorpo

rates a spherical grating monochromator with a resolving poweAaf= 3000 (FWHM) at 13-nm wave

1994-5 ALS Beamline 9.0 Schematic

Chemistry
Branchline
op-u . . .
horizontal mior spherical grating turning
aperture monochromator mirror | Atomic Physics
IG ~_ Endstations
ALS Kirkpatrick-Baez vertical
undulator prefocus system focus mirror
e Beam EUV
Interferometer

Figure 4.Schematic representation of the shared 8-cm-period undulator beamline 9 Adaatheed Light Source, c.
1994-5 A spherical grating monochromator provides a resolutiodf = 3000 and a flux of 10 m\hrough al20-
pum pinhole. In the horizontal direction, the source is imaged onto the interfermwddfrct plane, 1:1A bendable
focusing mirror vertically re-images the beam from the monochroteait slit onto the interferometsrobject plane.
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length. Glancing incidence beamline optics, shown schematically in Fig. 4, focus the beam both horizon
tally and vertically onto an entrance pinhole spatial filter locatedn2iérs from the zone plaféhe

entrance pinhole diametarhich determines the spatial coherence of the zoneplate illumination, was cho
sen as 12(im to maximize throughput without sacrificing Hiu
mination uniformity This diameter is small enough that the
zoneplate produces a filiction-limited focal spot with a cen
tral Airy disk diameter of approximately 170n in the plane
of the primary (first-order) focus. Flux through the entrance

pinhole is in the range of 38-10'2 photons per second, or

~10uW at 13.0-nm wavelength, depending on experimenta
H 9 P 9 P Figure 5.The PDI pinhole array provides

conditions, including wavelength and other beamline settini @ range of pinhole diameters and absorber
thicknesses for various working condi

3.3.3Pinhole Descriptions tions.The pinholes, spaced by fin, are
used one-at-a-time.

A variety of image-plane reference pinholes were fabi
cated for use in the first EUNDI experimentsAs this was a prototypical system, the optimal pinhole
membrane configuration was not known before the experiments were conducted. Special membranes were
fabricated (Spallas et al. 1995) containing an array of pinhole sizes and with a graded absorber thickness,
according to the prescription of Somigan and Hostetler (1993Jhese arrays were intended to cover a
range of testing situations and also to identify the optimum experimental combination of attenuation and
pinhole sizeThe original design of this membrane, shown in Fig. 5, consisted of a 200-nm-thick silicon-
nitride membrane and a graded cobalt film of approximately 40 to 70-nm in thickness as the absarber layer
The pinholes, patterned by electron beam lithogragmged in size from 150 to 400-nm in diamelée
pinholes were etched completely through the silicon-nitride membrane prior to the cobalt defdsgion.
thermal evaporation process was done using care to achieve highly anisotropic deposition, which maintains
the open pinholes through both the cobalt absorber and the silicon-nitride membrane.

Initial PDI interferometric tests (Goldlget al. 1994, 1995a, 1995b) revealed that to improve the
reference wavefront quality and fringe contrast, smaller pinholes and increased attenuation were required.
Both objectives were satisfied by an additional deposition Amggoximately 2.4 nm of chromium, fol
lowed by 24 nnof gold, were deposited by thermal evaporatime efective pinhole diameters were
determined before and after deposition by observation of thiaaibn pattern, including angles beyond
the angle of the first difaction minima, under plane-wave illumination conditions. Pinholeadifion

data is described in Section 3.5.
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Figure 6.Geometry of the PDI Fresnel
zoneplate measuremeiihe object pinhole,
obiect 2.4 m from the zoneplate, is imaged by the
pir%hole zoneplate and forms a first-order focus with
a focal length of 1.2 mm at 13 nAxrows
indicate the motions of the five stages.
PDI reference
I/. pinholes
3.3.4Stages

Alignment of the essential components of the interferometer is achieved using five translation
stages, shown in Fig. &he object pinhole spatial filter sits on a kinematic rotation stage, allowing it to
be easily removed and replac@&tiis is mounted to a two-axis lateral translation stage, controlled by hand
using two micrometerd.he system demagnification of 2000 and the relativebelginhole size (120-
pm) make hand-positioning possible. Positioning the reference pinhole near the zoneplate focus requires
three degrees of freedom. Here the zoneplate is mounted to the end of a cylindrical tube that attaches
snugly into an axial mount maintaining a constant patayular orientationThrough a pair of bellows,
this mount is coupled to a longitudinal-direction stage outside of the vacuum chah&®DI pinhole
membrane attaches kinematically to a mount that is also coupled through a bellows to a high-resolution
lateral motion stage. Using a pair of dc-motors and a two-dimensional Heidenhein scale, this critical stage
is capable of 0.01u#m resolution and stability over an approximate area of 8xn2nmm.
3.3.50ther Components

At a distance of several centimeters beyond focus, the light from the zeroth-order beam is hundreds
of times more intense than that of the firsfrdifted ordeWhile the first-order beam divges to a diame
ter of 2 cm at the CCD detector plane, the zeroth-order beam remains approximatety @idle. Hence
the intensity per unit area 16,000 times higher in the zeroth-order than the fisprotect the sensitive
CCD detector from accidental misalignment of the OSA, a small circular beam-stop is placed before the
CCD detectarThis beam-stop, often referred toths lollipop,is held by two thin, adjustable wires. Its shad
ow is visible as a grey disk in the center of each image.

The CCD detector used in these experiments is a Princeton Instruments 1I@24 pixel, back-
thinned,back-illuminated, 1-square-inch area, 16-bit deteétiot3.4-nm wavelength, the CCD sensitivity
is approximately 0.8 measured counts per photon (measured by Patrick NaUhéeauglue is based on

measurement of the statistical distribution of measured intensity values at various illuminatiofdevels.
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Figure 7.Six separate Fresnel zoneplates were inspected withligbtV (a) through (d) are made of the same annu

lar design, while (e) and (f) are made with no central stop rediba.inspection wavelength is as follows: (a) 12.4
nm (100 eV); (b) through (e) 13.48 nm (92.0 eV); )8 nm (106.5 eV). Only zoneplate (a) was used extensively
in wavefront measurements.
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reduce the contribution afark noise the detector isooled to temperatures below 280during the
experimentsTo protect the CCD from contamination, a squamg-cryo-pumpcold-fingerin thermal con
tact with a liquid nitrogen bath is placed in close proximity to the detector

A differential ion pump separates the interferometry endstation from the vacuum system of the

beamline Turbo pumps are used to maintain pressures beld@3torr.

3.4THE TEST WAVE: FRESNEL ZONEPLATE DIFFRACTION P ATTERN

Under uniform illumination conditions, the stationary test wavefront measured in the detector plane
(far-field) resembles the illumination pattern of the pupill204um-diameter pinhole spatial filter placed
2.4 m from the annular Fresnel zoneplate lens provides coherent illumination of acceptable uniformity: at
13.0-nm wavelength, the fir8iry-null in the pupil plane has a radius of approximately B60 The radius
of the zoneplate is only 1Qdm.

The diffraction patterns from a number of similar zoneplates were inspected. Figure 7 shows six of
these images. In each case, mid- and high-spatial-frequency errors are clearly visible as circular and radia
features in the image$hese dkcts are the result of small fabrication errors, either in zone-placement or

in the line-to-space ratio €jnil et al. 1996b).

3.5THE REFERENCE WAVE

The accuracy of the PDI is primarily determined by the quality of the spherical reference wave
front, which is lagely determined by the size of the reference pinhole. Size is the most critical aspect of
the PDI reference pinholes: they must be small enoughftaaif high-quality spherical wavefront over
lapping the entire NAf the zoneplate. Open pinholes on the order of 100-nm diameter in a thick-absorp
tive membrane are extremelyfititilt to fabricate, and more challenging to procure. Often the pinholes
used in these experiments were slightlgéarthan the tget size range.

Using EUVlight, the pinhole quality was established in three ways: first, by inspection of-a sam

pling of pinholes with electron-beam microscopy; second, by observation of the independent pinhole dif

96 nm 176 nm 210 nm 228 nm 245 nm

Figure 8.Measured pinhole difaction patterns from five adjacent reference pinholes &drdifit sizeThe circular
Airy-like diffraction minima enable estimation of the pinhole diameters, as shown below each ph&eimadow of
a small, round beamstop suspended close to the CCD detector is visible as a dark disk in the center of each image.
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fraction pattern; and third, by inspection of the measured interferogfammg$ollowing sections describe
these observational procedures and enumerate the most important experinfenisedifThe issues dis
cussed here are the critical size of the reference pinhole and the inadvertent contamination of the semi-
transparent membrane during experiments.

3.5.1Pinhole Diffraction

One way to characterize the pinholes and the reference waviefsitotis to perform pinhole difac-
tion experiments in which isolated reference pinholes are uniformly illuminated and-lieédfdiffraction
pattern is observed. In order to perform this experiment,arb@iameter circular aperture was placed with
in 5 mm of the pinhole membrane. In this configuration, with no optical system (zoneplate) in pldde, the
fraction pattern from each reference pinhole of the77array was measured at 12.4-nm wavelength.

Five diffraction patterns representing one row of pinholes with increasing diameter and constant
absorber thickness are shown in FigTBese pinholes were located in the thickest part of the absorber
substrateThe approximate &ctive pinhole sizes are calculated from diameters of the first minimum ring
of theAiry-like diffraction patterns.

3.5.2 In SituPinhole SizeAssessment

It is important to develop inspection criteria to distinguish unacceptable pinhai&s There are
several rapidly identifiable clues in the data which serve as warnings of poor pinhole tsalitiy the
interference fringe pattern reveals a clear signature of the reference wavefront. Under uniform plane-wave
illumination conditions, the expected fd#ction pattern of the reference wave is the well-knéwp-pat-
tern of concentric circular rings surrounding a bright central lobe, and separated by circular intensity nulls.
A uniform wavefront phase in each of these rings is shiftexaglians from the neighboring ring&/hen
the pinhole is placed in the outer regions of the focal pattern of the test optic, where the reference pinhole
illumination is rapidly-varying, the pinhole éfifiction pattern can no longer be described simply #srgn
pattern; yet it does contain many of the same features.

Note: a common practice during the zoneplate experiments is to perfmokgound subtraction
to improve the fringe visibilityHere, an image of the test beam alone is acquired with the reference pin
hole located very far from the focused beam. By subtracting the test beam pattern from subseguent mea
surements, the average intensity is close to zero and even faint fringes became clearlyhésibiages
in Fig. 9 have all undgone background subtraction.

3.5.2.1Zeros of Fringe Vsibility. Bringing the reference-pinhole-containing membrane out of the
focal plane yields an interference pattern of concentric riftgssedefocusings result from the mis
matched radii-of-curvature of the test and reference beams. It is easily shown from the Fresciedrdif

integral (Goodman 1988:59-60) that for a small longitudinal displacem#r number of waves of defo
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Figure 9.(a) and (b) Interferograms from ov@red reference pinholes show clear evidence of reference wavefront
intensity minima within the NAf measurementWhen the system is out of focus, the broad reference wave intensity
patterns are clearly visibkes a modulation in the fringe contrast. Atthough less pronounced here, the loss of fringe
contrast is from this samefe€t.

cus (equivalent to the number of fringes observed) is

(NA)?z

n= O 4.1um/fringeat 0.08 NA, A =13.0 nm. (1)

With a high-density of defocus fringes, reference wave intensity nulls are easily observable as circular
bands of zero fringe contra3this is evident in Fig. 9. Here the images are a combination of multiple pat
terns: the slowly-varying bands of contrast modulation due to the fanhole size, the rapidly-varying
defocus-fringes due to the longitudinal displacement of the pinhole, the annular pupil of the zoneplate,
and the shadow of the beam-std¢herever the reference wavefront amplitude nulls g¢berfringe con
trast becomes zerdhe displaced center of the ring pattern is due to a lateral displacement of the refer
ence pinhole from the test-beam axis.

3.5.2.2Fringe forking. An abrupt reference wavefront phase shifttodians produces a rapid
change in the fringe pattern, from bright to dark or vice-varsa. efect is here referred to &snge

forking. Several examples of this behavior are shown in Fig. 10.

Figure 10.The presence of “forked” fringes, as indicated by the arrows, gives clear evidence-fizedginholesThe
pinhole difracted wavefront undgoes an abrupt half-cycle phase-shift as it crossefractiin minimum.This causes a
point or contour of zero fringe visibility bordered foykedfringes one-half-cycle out of phase.
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3.5.2.3Contrast variation Even when the pinhole is small enough that there are no regions of zero
fringe visibility and no forked fringes, it may still be toogarA properly-sized pinhole behaves as a
good spatial filter and creates a uniform reference waten an interference pattern contains any
regions of reduced fringe visibilitghe pinhole is still too Ige. Often observed are bright regions aligned
in the direction perpendicular to the fringes. Most likely this is caused by the directionally-dependent illu
mination pattern in the focal plane: the pinhole samples a small region in a pattern of rings, causing a
directionally-dependent diicted wave to resulthis efect is present in Fig. 10(c).

3.5.2.4Contamination One major experimental (iiulty facing EUVinterferometry is the issue
of hydrocarbon contaminatioAlthough it has not been well characterized, this contamination-is fre
guently observed in varied experiments involving Eligit (Alastair MacDowell Avijit Ray-Chaudhuri,
Werner Meyeillse, personal communication). Hydrocarbon contamination on otherwise clean surfaces
apparently occurs at a rate which is dependent both on the density of hydrocarbons in the vacuum system
and on the local intensity of EUNght impinging on a surface.

Because it relies on difiction from a tiny object in the image-plane, the PDldy sensitivao

imperfections in the semi-transparent pinhole membrane — especially those that are close to the reference

Figure 11. Mask contamination, damage, or defects greatly impair the proper use of the[EHUSystem alignment

and interferogram-recording with long, continuous exposure times inadvertently damaged the mask in the vicinity of
the reference pinhole. (d) through (f) Damage is often concentrated along the vertical and horizontal directions
because ébrts were made to record interferograms with horizontal and vertical fringe patterns. Evidence of this dam
age is pronounced in the defocused interferogram patterns shown here.
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pinholes Any non-uniformity transparent or opaque, behaves as an additional pdiaiethf corrupting

the quality of the reference wavefrofmhe most sensitive component of the PDI, the pinhole membrane,
also receives the most strongly focused HIig¥t, making it highly vulnerable to contamination. Long,
continuous exposures during the interferometry experiments and the inspection of reference pinholes
severely damaged many of the membrane pinholes used in these experiments.

Evidence of this damage is clearly visible in the interferograms shown inlFign thany of the
interferometry experiments an attempt was made to align the fringes with either a horizontal or vertical
orientation.To do so implies that the reference pinhole must be displaced horizontally or vertically from
the center of the focal pattern. Many of the observed damage patterns (especially(€jidgardugh (e))
display a “+” pattern consistent with the deposition of hydrocarbons along the twd\thessthe pinhole
membrane is displaced from the focal plane by several microns in the longitudinal directigar area
of the membrane is illuminated. Hence, contamination features that are (reldtivélgin the reference
pinhole contribute to the interference pattern.

More evidence of contamination in the mask can be seen in the interferogram data of Section 3.6.
When, because of contamination, there is more than one pdiatthf, and thus more than one *fil
tered” reference beam, the multiple beams combine to form an interference pattern of their own, separate
from the test wavefront. For example, in the center of the annular aperture where the test beam intensity is
nearly zero, a fringe pattern is often observed. Because these multiple “reference beams” are spatially fil
tered, they typically cover the entire measurement NA, and their interference is most noticeable in the
dark regions of the patterwhen image subtraction is used to remove the unmodulated portion of the
intensity pattern, these separate, fainter patterns of reference wave interference are most visible.

Two successful, proven ways to combat the build-up of carbon contamination are, first, to clean the
experimental and vacuum system components to remove latent sources of hydrocarbowxi(ftager
grease, etc.), arskcond, to introduce a small pressure of oxygenAddmmugh the introduction of oxygen
to the PDI system through a thin capillary aimed directly onto the pinhole membrane made no noticeable
difference to the contamination issthee beneficial décts of oxygen have been dramatically demonstrat

ed in the PS/PDI system that followed.

3.6 PDI EXPERIMENTS
During the course of the EURDI experiments with the Fresnel zoneplate test optic, several data sets
were collectedThe limited scope of these experiments results from the narrow experimental window of
opportunity that existedetween the fabrication of adequately small reference pinholes and the contamina

tion of the pinhole membrane.
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Table 1.Measurement of a Fresnel zoneplate test optic in three data sets.
Data Set SeriesA Series B Series C
Photon Enagy 96.0 eV 96.0 eV 96.0 eV
WavelengthA 12.9 nm 12.9 nm 12.9 nm
# of images 5 5 4
Orientation 0° 139.5 139.5
ExposureTime 60 s 120 s 120 s
Spatial Filter none 120um 120um
Fringe orientation horizontal vertical horizontal

Among the interferometric data are three sets in particddd, and C, described here and shown
in Fig. 12. Each separate set represents a sequential series of images recorded with the same experiment
conditions, difering only in the lateral position of the reference pinhole. In principle, an entrance pinhole
spatial filtermustbe used to ensure the coherent illumination of the zoneplate test optic. Hawever
increase the photon flux (reduce the exposure time) and investigatéetiteobthe spatial filtering, inter
ferograms were occasionally recorded without a spatial. fiheries B and C were recorded using the
120um-diameter object pinhole spatial filtéfor Seried\, no spatial filter was used. Between Series B
and C the reference pinhole was translated laterally by several microns to change the fringes-from hori
zontal to vertical; otherwise all other experimental conditions were maintdinegharameters of each
series are given imable 1.

Wavelength.The wavelength was chosen based on the fixed position of thew@$respect to the
zoneplate lens. Outside of a narrow wavelength range, the edge of the first-order beam becomes clipped by
that aperture.

Intensity. The input photon flux is measured using a detector placed a few centimeters beyond the
object planeThe use of an object pinhole spatial filter guarantees the coherence of the illumination at the
expense of flux. Using the pinhole filtehe flux is reduced in two ways: first, the spatial filter directly
limits the amount of light passing through the object plane, and second, the increfaaetibdifangle
generated by the use of smaller pinholes sends more of the remaining light ayg tanigles not collect
ed by the zoneplate. By this simplgament, the usable flux depends on the diametdr*am one typi
cal measurement, a 120n object pinhole reduced the photon flux to 15% of its unfiltered strength.
Separatelywhen using the 120m pinhole, the measured flux collected by the zoneplate was 25.3% of
the unfiltered strength; it was 2.2% of the unfiltered amount when usingien§0rhole.

Orientation. Following Serie®\, the zoneplate was removed and reinstalled withfardrft
azimuthal orientation. Based on the easily-recognizable and measurable positions of the imperfections in
this particular zoneplate, the rotation angle is known to be 123 (estimated uncertaintyThis rota
tion is appropriately re-introduced into the wavefront data to facilitate comparison of the three sets.

Exposure Time. The exposure time was chosen to achieve more than 100 detected counts in the
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Series A

Series B

Series C

Figure 12.Three EUVinterferogram data series from measurements of one annular Fresnel zoneplate les. Series
was recorded first, when the pinhole membrane was relatively éltaough in Series B and C thefetts of pin

hole membrane damage are clearly evident (non-uniform fringe contrast, fringe patterns in the dark regions of the
zoneplate, etc.jhe interferograms are analyzable and the wavefront may be studied.

peak-to-valley fringe modulatioffhis arbitrary level is a compromise between the measurement-accura
cy, the rate of membrane contamination, and the limited beam-time allocated for the experiments.
Alignment was performed using continuously updating exposures, each of less than two seconéds in dura
tion. To record data for future analysis, exposure times between one and two minutes were typical.
3.6.1Raw Data

To improve the fringe visibility during system alignment and pinhole positioning, the zoneplate
data were recorded using background subtraction, as described previbadlyst wave images used for
subtraction were recorded with the reference pinhole placed far from the foqus @0ay laterally).
These images are “subtracted” from subsequent images to enhance the fringe visibility during alignment
and data collection.

By collecting several similar measurements in series, each analyzed individnalgempt is
made to quantify and reduce random measurement elralysis methods are discussed in Partitv
the analysis of each image, the wavefront is fit to a set of 37 Zernike annular polynomials, based on a
central obscuration of 35% (chosen slighthg&arthan 30% to reduce the contribution ofrdiftion
effects at the edge) (Melozzi and Pezzati 199B§ arbitrary piston and the position-dependent tilt and
defocus terms are subtracted from the wavefront. Using the known measurement NA, a systematic coma
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Series A

Series B

Series C

Figure 13.Contour and surface reconstructions of the averaged wavefronts from the three measurement series
represent 0.05 waves, ®20. The azimuthal rotation angle of the SeAesavefront has been adjusted to match the

angle of Series B and C.
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Table 2.Global wavefront statistics for the three measurement serigs.

RMS

P-v

A
B

0.133A 1.72nm A/7.5
0.134A 1.73nm A7.5
0.147A 1.90nm A/6.8

0.731A 9.43 nm
0.727\ 9.38 nm
0.753A 9.71 nm
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Figure 14.Zernike
annular polynomial
representations of
the Seried\, B, and
C average wave
fronts. The position-
dependent piston,
tilt, and defocus
terms are not shown.
Thegrey band
behind the plot val
ues indicates the
measurement uncer
tainty based on the
standard deviations
of the dataWith
each plot the magni
tudes and directions
of the astigmatism,
coma, and spherical
aberration compo
nents are shown.

Figure 15.A com
parison of the
Zernike codficients
of the three mea
surement series. By
inspection, the
agreement between
SeriesA and B is
closer than between
AorBandC, even
though B and C
were consecutive
measurements.
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error term is also subtracted from each $bis procedure is described in Section 5.5.2.

Contamination issuesThe fringes visible in the central part of the interferograms are an indica
tion of contamination in the PDI pinhole membrane, as described in Section JBidterference of
the reference wave with the light fdé#cted from the contamination produces these fringes, which are
most easily identifiable in the regions where the test wave intensity is small. Hpthévarterference
must also span the entire NA, adding uncertainty to the measurements.

One way to estimate the amplitude of the waviatifed from the contamination is to compare the
fringe modulation in the two regions. Since the reference wave amplitude is the nearly the same in both
regions, the dference in the fringe modulations reveals the relative amplitudes of the test wave and the
“contamination” wave. (See Section 3.8 for a description of this metBadgd on this simple approach,
the contribution of the contamination has an amplitude of approximately 1/10-th of the primary-interfer
ence pattern. Hence, the contamination contributes not more@thmnadians, 0+0.016 waves (0.21 nm,
or ~A/63),to the phase measurements.
3.6.2WavefrontAnalysis

For each of the three data sets, the average wavefront is computed and displayed in Fig. 13. Here
the wavefronts are represented in two ways, both as surface phase maps and as confmotpétsep
resentation of the wavefront data is shown in Figs. 14 amal tEBms of the set of 37 Zernike annular
polynomials. (This plotting format is discusseddimpendix 7.) Since the polynomial fit cdiefents are
calculated separately for each interferogram, a measure of the uncertainty in each term is available in the
standard deviation. Each term in the @gis the average of the measured ioehts; the standard devi
ationo,_ is indicated by the grey regiofihe global statistics for the three average wavefronts are shown
in Table 2 Although there are qualitative tifences in the measurements, these global statistics are in

excellent quantitative agreement.

3.7 CONCLUSION

Several conclusions can be drawn from the interferometric zoneplate wavefront measurements
described here. Foremost is the conclusion that from this high quality zoneplate, the wavefront aberrations are
smaller than or on the same order as the resolution of the measur&dibm®ach series the uncertainties
are low relative to the comparison of the thiiggs means only that the wavefront measurements were repro
ducible in a very limited way —a change of the experimental geometfgciéd the outcome of the teEhe
primary explanations for this are the poor spatial filtering capabilities of thesiaeer reference pinholes, and
the dificulties caused by the contamination of or damage to the reference pinhole membrane.

These tests represent some of the first at-wavelength wavefront measurements performed on high-
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resolution EUVoptics, and are the first using a poinfdiftion interferomete/At the time they were cen
ducted, they demonstrated the ability to measure sub-wavelength aberration magnitudes. Further progress
on the development of the ELRDI was arrested by the invention and implementation of the PS/PDI,

which is in many ways a superior tool.

3.8 NOTE: THE CONTRIBUTION OF CONTAMINA TION TO WAVEFRONT
MEASUREMENTS
To determine the &dct of the waves difacted by the mask contamination, consider a simplistic

model of the interferogram intensity pattern that is composed of three wawésst wavd, the refer
ence waver (of comparable magnitude 19, and a small contribution from the light fiécted from the
contaminatiorc. The intensity pattern may be written as follows using three arbitrary phase functions:

| =|T+R+c? =[T]? +|R? +|d? + 2]TR cos@, + 2|Tc|cos®, + 2|Rc|cosqs. )
This simplifies to a stationary intensify plus the modulation terms from the three cross-products.

| = A+2]TRcos@, + 2[Tc|cos@, +2|Rc|coss . (3)

Outsideof the main illuminated area, where the test wave amplitude is sfralb) and the reference

wave overlaps the contamination wave, the total peak-to-valley fringe height is
|smal| = 4-|RC| . (4)

In themain regionof the interferogram, the pattern is dominated by the interference of the test and refer

ence waves.
liarge = 4TR. ®)

The ratio of the fringe heights in the two areas allows us to estimate the relative amplitude of the contami

nation wave.

lsman  4Re| _

IIaJrge 4{TR1

Based on the addition of the two complex wawvesdR, within this simple model the wavefront phase

c

| (6)

uncertainty in radians, is given by this ratio.
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4.1 INTRODUCTION AND MOTIV ATION

Experience with the EUWDI yielded an understanding of the serious limitations of the cenven
tional point-difraction interferometer for high-accuracy measurements, and led ultimately to the develop
ment of a novel point difaction interferometer design capable of greatly improved throughput and pos
sessing the capacity for phase-shifting interferometrthePhase-Shifting Point Diffraction
Interfeometer(PS/PDI) (Medecki et al. 1996, Goldest al. 1997Tejnil et al. 1997)This chapter
describes the design and basic operational principles of the PSHDaddvantages of the PS/Pidé
described relative to other common-path Eidiérferometer designs.

High-accuracy wavefront measurement with the Conventional PDI (hereafter referred to as simply
PDI) is hindered by several factors. In the PDI design (Fig. 1(a)), the reference wavefront is generated by
diffraction from a sub-resolutioefelence pinholén a partially-transmitting membran€he test beam is
formed from the light that is transmitted through the membrane, containing the aberrations of the optic
under test. Since the reference beam is sampled from the test beam, there is no available means to intro
duce a controllable relative phase-shift between the two; therefore static fringe pattern analysis methods
must be usedlhe reliability of such analyses is limited in the presence of mid- and high-spatial frequen
cy variations of the test beam intensBurthermore, significant lateral displacements of the referenee pin
hole from focus, typically 10-25 tim@gNA (1-2 um in EUV interferometry), are required to generate
enough fringes for static fringe pattern analysis. Such displacement greatly decreases the ameunt of pin
hole-difracted light available for the reference wavefront. Consequeatimatch the intensities of the
two waves, and to provide good fringe contrast, the membranesigogicantlyattenuate the test wave
front; this reduces the overall throughput, dicefncy, of the interferometeSuch necessary beam attenu
ation may make alignment and measuremefficdif by pushing the required single-image exposure time

into the range of several minutes.

Conventional PDI Figure 1. Schematic representations of (a) the
Conventional Point Difaction Interferometer (PDI),

and (b)the closely related Phase-Shifting Point
Diffraction Interferometer (PS/PDI). Both systems
require coherent illumination of the optic under test.
The PDI uses a partially-transmitting membrane and a
sub-resolution pinhole to sample the aberrated test
beam and produce a reference wavefrbhe PS/PDI
utilizes a low-angle beamsplitter to divide the test
beam into multiple separate beams in the image plane.
One beam passes through @éaopen window in an
opaque image-plane membraAesecond beam is
focused onto a sub-resolution pinhole and produces a
reference wavefront.

a) I

Dl

b)
grating
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4.2 PS/PDI DESCRIPTION

In the PS/PDI designs, of which one example is shown in Fig. 1(b), a small-angle beamsplitter
(such as a coarse grating) is employed to separate the test and reference beams, forming multiple foci in
the image-plane. Using a two-pinhole spatial filter in the image-plane, two beams are selected: one beam
passes through a trwindowin an opague membrane, while another beam fiadied by a sub-resclu
tion refelence pinholglaced at the center of the focal spot.

This design overcomes several of the limitations of the conventionallRiDklating the grating
beamsplitter perpendicular to the grating ruling introduces a controllable relative phase-shift between the
test and reference wavefronts, facilitatptiase-shifting interf@mety (PSI), a powerful category of data
analysis techniquesdditionally, the centered reference pinhole and thgelaapen window lead to an
overall throughput increase of at least two orders of magnitude compared to the conventional PDI.

There are many ways in which the PS/PDI may be used, and several available variations on the basic
design. Besides the evpresent concern about the size of the reference pinhole, the grating beamsplitter
may be placed in several available locatidie position and pitch of the grating determine the separation
of the test and reference beams in the image-pldngeappropriate separation depends on the quality of the
optical system under test and on the desired mid-spatial frequency resolution of the interféFberetare
also advantages and disadvantages related to the selection of which dfabeedibrders becomes the test

and reference beanighese issues and others are addressed in the following sections.

4.3 CONFIGURATIONS OF THE PS/PDI

One central advantage of the PS/PDI over the PDI is that the reference pinhole is centered on the
brightest part of the focused illumination, greatly enhancing the amount of transmitted light in the refer
ence beam. In any configuration of the PS/PDI, one primary motivation is to deliver the highest available
flux to the reference pinhole. Since the pinhole acts as a spatialréitesving any aberration in the ref
erence beam, the primary quality of concern for the reference beam is simply its focused.itrigurgity
ciple, the beamsplitter may be placed in any available position ahead of the image-plane.

Figure 2(a) shows the conventional PDI alongside several configurations of the PS/PDI with a grating
beamsplitter and one using a glancing-incidence miFigures 2(b) and (c) show two similar configura
tionswith the grating placed either before or after the test dMien the wavefront division occurs ahead
of the test optic, the multiple beams will travel alondedént paths through the system; in extrerasges,
consideration must be given to the fact that apertures in the system may block all or part of the beams.

In any of the PS/PDI configurations, a choice must be made as to which beam is the test beam and
which beam is filtered to become the reference b@mse are called tHest-order refelenceand the
zeoth-oder refeenceconfigurations, denoting which beam becomes the reference. Sirtmeathesepara
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tion is typically small in thémage-plane, Conventional PDI
switching between the two configurations is

usually a trivial matterHowevey intensity anc

beam quality issues, discussed here and il

DI

Section 5.10, often motivate the use of ont
configuration over the other

Figure 2(d) shows thepsteam grating
configurationapplicable in circumstances
where the illuminating beam is of high qual
In this design, two similar two-pinhole spati

filters are used: one in the object plane, an

second in the image-plan& grating placed
.
ahead of the object pinholes separates the grating

verging test and reference beasmall &

object pinhole filters the test beam, guaran

. ) o o pinhole(s) testoptic ~ mask camera
ing a spatially coherent, spherical illuminati (object plane) (image plane)

f h f b h Figure 2.The PDI (a)s compared to four configurations of the
wavefront.The reference beam, however  pg/pp) (b-e). (b) and (e diferent only in the placement of

passes through a tg window in the object the grating beamsplittein configuration (d) the beam is split
upstream of the object pinhole, and similar window-plus-pin

plane and is filtered by the reference pinho hole masks are placed in both the object- and image-planes.
Configuration (eshows a dierent mechanism of beam-split

in the image plane. In bypassing the spatia ting, using a Lloyd mirror

filter pinhole in the object plane, the reference

beam reaches the image plane with much greater intensity than in the other PS/PDI configurations.

Although advantageous in this regard, the upstream grating configuration requires that the illuminating

beam incident on the object plane be ofisigitly high quality (i.e. nearly difaction-limited)to be well

separableThis requirement precludes its implementation in Edpylications where the illuminating

optics typically are not of nedliffraction-limited quality

Depending on the operational beam wavelength, there may be several available ways of achieving

the required wavefront divisioithe grating systems are convenient because a relative phase-shift

between any two difacted orders is induced by a simple lateral translation of one component, and is

therefore straightforward to implement and contiwolother system, shown in Fig. 2(e), is reminiscent of

Lloyd’'s mirror (Born andVolf 1980:262-263), where a glancing-incidence mirror is usddldahe illu-

minating beam onto itself over the entrance pupil. Here, thefNRe illuminating wavefront must be of

more than double the object-side MAthe systemThe implementation of phase-shifting in this configu

ration is problematic, if it is possible.
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4.4 COMPETING INTERFEROMETER DESIGNS
In addition to the two point-difaction interferometer designs used in this research, two other com
mon-path interferometer designs have been implemented fordptité testing: th&nife-Edgeor
Foucault Bst(Foucault 1858, 1859), and the grating-bdsatgral Shearing Interf@meter(LSI), or

Ronchi Interfeometer(Ronchi 1923, 1964), shown in Fig. 3.
One Example of the PS/PDI

The simple-to-perform Knife-Edge test
involves placing a high-quality opaque edge

the focus of the optical system under test. By

blocking some of the aberrated rays, the resi Knife-Edge (Foucault)

tant farfield intensity pattern reveals the slop .
of the wavefrontThis test was successfully ) W
employed in the alignment of an EWBthwarz knife-edge

schild objective (Ray-Chaudhuri 1994). For ~ Grating LSI (Ronchi)

high-accuracy applications, the advantages ¢ F )
the Foucault test in simplicitgensitivity and ©) I>I<):.><
grating

high-eficiency are outweighed by the tiuity Figure 3.Schematic drawings of the PS/PDI and two common-
in performing accurate analysis of the data. path interferometers that have been used in Et&/ferometry

The grating-based LSI is another test convenient because of its relative sinTlisiiyterferome
ter design has also been used to test3¢hwarzschild objectives identical in design to those under-inves
tigation with the PS/PDI (Ray-Chaudhuri 199V¥0od et al. 1997 coarse grating is placed near the focus
of the optic under testhe grating divides the beam into multiple, overlapping orders whicshesed
angularly in the direction perpendicular to the grating rulings. In a tygiesring interfesmeter the
interference ofwo slightly-displaced overlapping beams reveals the wavefront slope along the direction of
the shearHere, analysis is complicated by the presence of multiple overlapping Gd@shear angle is
determined by the grating pitch; the important parameter is the ratio of the shear angle toTthe NA.
amount of shear dictates the slope of the measured wavefront, and thergédyedietermines the sensitiv
ity of the technique. Using grating translation to induce phase-shifting into the measurements, wavefront
slope data is gathered along two shear directions, and the two separate measurements must be reconciled
reconstruct the wavefroralthough the success of this technique has been demonstrated, its applicability to
high accuracy wavefront measurement is still under investigation.

Both of these interferometer designs have advantages over the F8¢PBI:eficiency, because a
second spatial-filter pinhole is not used, and ease of alignment, because the placement of a tiny pinhole

onto the beam focus is unnecessahgere are fewer critical components and stages, and those-compo
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nents are easier to obtakcknowledging these advantages, howettee PS/PDI design has many posi

tive attributes not possessed by the other two. In generating a single reference wavefront by pinhole dif
fraction, extremely high accuracies may be achieVhd.interference data that is collected enables mea
surement of the wavefront itself, not the wavefront slope, so analysis is more straightforward and uncer
tainties are greatly reduced. Because of the high-brightness synchrotron source in use for BsFIV
experiments, the relatively lowerfiefency of the PS/PDI has not presented any significant experimental

disadvantage.

4.5 INTENSITY AND EFFICIENCY CONSIDERATIONS

The relative dfciencies of the PDI and PS/PDI configurations vary widehis issue may be of
foremost concern in circumstances where the available intensity of coherent illumination is Tilmited.
efficiency dictates how much time is required to conduct interferometric measurements. Here, to illustrate
this variation, a few simplified assumptions about the loss mechanisms are applied to a side-by-side com
parison of the dferent point difraction interferometer configurationBhe relative dfciencies of the
PS/PDI, the Knife-Edg&est, and the LSI are also compared.

The EUVPS/PDI, configured for the testing of ax1Bchwarzschild objective as described in this
thesis, will serve as a model for this exercise. Experimental characteristics of the synchrotron beamline
source and several of the interferomateomponents are applied hérbe inherent diciency of the test
optic will affect each of these common-path interferometers in the same way and is therefore neglected in
this discussion.

The object pinhole is illuminated by a beam of giaal quality forming a focal spot of approxi
mately 50pm? area (at 0.008 NAA 0.54um-diameter object pinhole transmits approximately 1/200th of
the incident illuminationAssume in this discussion that for high-quality optics, the image-plane reference
pinholes transmit 1/10th of the incident illumination; also assume that geaerdowpinholes of the
PS/PDI have 100% transmissidiihen aberrated optical systems are tested, the size of the focal spot
increases and transmission through the reference pinhole is re@ibisedoes not &kct the eficiencies
of the Knife-Edge or LSI test, butstgnificantlyaffects the assumptions made here about transmission
through the reference pinhole.

Assume for simplicity that the transmission gratings are binary: alternating opaque and transparent
stripes of 1:1 line-to-space ratio. Phase-gratings and gratings with a line-to-space ratio other than 1:1
could be used to improve throughput or to match the relative intensities of the test and reference beams;
but in this example, only the simple grating will be considered. For such an ideal grating, the intensity
transmitted into the zeroth-order beam is 1/4, and the intensity in one of the the first-order beafns is 1/
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(A good rule of thumb for such gratings is that the ratio of the intensities of the first order to the zeroth
order is 412 = 40%.) The gratings used in EUMterferometry are typically supported by a 1000-A sili
con-nitride membrane, with a transmission of THus the total intensity transmitted into the zeroth- and
first-orders is 1/16, and 11 = 1/40 respectively

Regarding the conventional PDI, assume for example that 20 fringes are desired, necessitating a
lateral displacement of the reference pinhole by approximatelyNIA. If the area of this displaced pin
hole is one-quarter of the centfaty disk area (a desirable size), then the amount of light transmitted

through this pinhole in a high-quality optical system can be on the orderab®®. To balance the

Conventional PDI
1/200 le-6 & 1le-6

1/2x106

1/200 1/200
a) : | ‘MF l
1/2x108
PS/PDI: grating after optic
1200 first-order reference
1/20 01/80001/8><104
1/200
fi rst--order referenc 1/3200 1/3200
1/200 1/10,1
1/16, zeroth-order reference
- 1/40 1/8000 1/8000
: 1/200
C) I ‘MF l
zeroth-order reference 1/3200,/3 210t
PS/PDI: grating before optic
1/200 1, 1/10 )
- 1/16, first-order reference
l/:40 1 1/200; 1/8000 1/8000 I1/8><104
d) ‘H :
"1/3200 1/3200  1/3200

first-order referenc

1/200 1/10,1
- zeroth-order reference
! 1 1 /2005 1/8000 1/8000 \ 1/8000
[ f
1/3200 1/3200  1/3.2<10%

zeroth-order reference

PS/PDI: upstream grating
1/200, 1

1/40, n
1/16

1,1/10

f)

‘1/40l 1/40 . 1/40 I 1/400.

1/16  1/320 /320 1/320

Figure 4.An efficiency comparison of the dérent point difraction interferometer designs. On the left, the approxi

mate eficiency of each element is showfhe eficiency of the optic itself, the same in all configurations, is omitted.

On the right are shown the approximate integrated intensities of the test and reference beams as they propagate
through the interferometerghe first-order reference and the zeroth-order reference configurations are also compared:
in (b) and (c), and in (d) and (d)his side-by-side comparison reveals tHeehcy advantages of some configura

tions over others. Numbers are givermable 1.
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two illuminating beams, the transmission of the semi-transparent membrane must be of this same order of
magnitude. In practice, it is possible that an optic withdanid-spatial-frequency errors may scatter

more radiation away from the center and into the vicinity of the displaced pinhole. Furthermore, if the ref
erence pinhole is lger than it should be, the flux transmitted into the reference beam may be closer to

104 than to 16P.

Figure 4 compares of thefiefency of each PS/PDI design. On the left are schematic representa
tions of interferometeré&bove each of the essential components, the approxinfatermties (photons
outversus photon®) used in the calculations are shown. On the right are representations of the-integrat
ed test and reference beam intensities in each segment of the interferorhetersre several important
values to consideThese require the following definition: the test and reference beams combine to form a
stationary intensityand amodulated intensitthat can be represented as

| = Istationay * Imodulated®0S (@8]

with @ as the arbitrary optical path fiifence in radiang.his and the definition of fringe contrast are

Table 1.Comparison of the relative intensities in six poinfrddtion interferometer configuratioriBhe station
ary intensity is the average intensity in the interference pattern, while the modulated intensity describes the half-
height of the fringes. Contrast is the ratio of these two intenditieseficiency comparison is based on the
ratios of the modulated intensities among thieht configurations shown. Intensity magnitudes are given fela
tive to the illuminating beam upstream of the object pinhole, neglectindfitiensly of the test optic.

Liationary — lmodulated  fringe  relative

Schematic [x10-6] [x10-6] contrast efficiency
Conventional PDI
- | [ |
a) : ' 1 1 100%  8x10°3
PS/PDI: grating after optic
- | H
b) I == 325 125 38% 1
first-order reference
o 3
) : _ 156 125 80% 1
zeroth-order referénce
PS/PDI: grating before optic
- . A
d) , : , 325 125 38% 1
first-order reference
" =2
e) I : 156 125 80% 1

zeroth-order reference
PS/PDI; upstream grating

_H B
f) & i 5625 5590 99% 45
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given inAppendix 5. (Notebecause the two interfering beams travel with the samegéivee angles and

fully overlap, the termstensityandflux are used interchangeably in this discussidhg stationary

intensity represents the average amount of light recorded in the interference pattern, while the modulated
intensity describes the intenshtgightof the interference fringes. 100% contrast is achieved when the two
intensities have equal magnitude.

One significant advantage of the PS/PDI revealetabie 1 is that the PS/PDI has over 100 times
greater dfciency than the PDI. Comparison of the first-order and zeroth-order reference configurations
produces two interesting results. First, thiicieincy of the first-order reference configuration is twice as
high because the brighter zeroth-order beam is unattenuated in the image-plane. Second, the modulated
intensity isthe samen the two configurationsThis result is due to the fact that the modulated intensity
comes from the cross-product of the two intensities, and is proportional to the geometric mean. No matter
which of the two beams is attenuated by the spatial filtering, the geometric mean is the same. Having the
same modulated intensity in the two configurations, the one with lower stationary intensity will produce
higher fringe contrast — indeed, the contrast is twice as high in the zeroth-order reference configuration.

Another result of this comparison is the observation that the upstream grating configuration is 45 times
more eficient than the configuration of the PS/PDI used for experiments. Because no object-plane spatial fil
tering is performed on the reference beam, to avoid beam overlap this configuration needs a very high-quality

PS/PDI: grating before optic
1/200 1, 1/10

- 1/16,
1/40

first-order reference

1 1/200, 1/8000 1/8000 Il/8><104l

first-order referenc "1/3200 1/3200 1/3200
1/200 1/10, 1
n zeroth-order referenc
. 1 1/8000 1/8000 1/8000
| ] |
|

1/200;

zeroth-order reference 1/3200 173200  y/3.2<104

Knife-Edge Test
1/200

1/2

1 1/200 1/200 _ 1/400

knife-edge

LSI
1/200

B 18
1 1/200 1/200 . :1/1600
—f—71_|] §>< s iy b
grating )

Figure 5.A comparison of the @€iencies of the PS/PDI and two non-pointfdittion interferometer designs. (a)
through (c) show the approximatdigEncy of each element, neglecting the optic itself. Schematit¢br)gh (f)
separately model the approximate integrated intensities of the test and reference beams as they propagate.
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Table 2.Comparison of the relative intensities of three interferometer deSigasntensity magnitudgs
are given relative to the unfiltered illuminating beam, neglecting fizéeaty of the test optic.

|stationary Imodulated fringe relative

Schematic [x109] [x109] contrast efficiency
PS/PDI
: A
a) = i 325 125 38% 1
first-order reference
" 2
b) ' : 156 125 80% 1
zeroth-order reference
Knife-edge
5000 5000 100% 40
1250 1250 100% 10

illuminating beam. If the reference beam were not of high qutiiy the attenuation of the image-plane pin
hole would be much greater and this configuration will have compardiblerefy to the others.
4.4.1Comparison with Other Interferometer Designs

In Fig. 5 andTlable 2, an diciency comparison is made between the PS/PDI, the Knife-Edge test, and
the grating-based LSI. For a given application, it would appear that there is a necessary lretshe=eh
efficiency and accuracWWhen implemented experimentaltiie eficiency advantages of the LSI design may
be outweighed by the longer time required for analysis ag@ramncertainties in the measuremeitse
time saved by the predicted factifrten reduction in the single-image LS| exposure time may be undone by

the increased analysis time and the need to record more exposures than in the PS/PDI scheme.

4.6 CHOOSING THE OPTIMAL PINHOLE SIZE

Selecting the optimal pinhole diameter for a given application of the PS/PDI requires the balancing
of several opposing conceridie desire for a high degree of spatial filtering and a reference wave of uni
form intensity motivates the use of the smallest available pinhole. Hovtlegentensity of the reference
wave is critical to achieving fringes of good contrast, a vital aspect of measurement precision. Based on a
simple scalar difaction model, this section outlines two methods for determining the optimal pinhole size
for a given application, as applied to the study of Edystems with 0.08 or 0.1 NA. Until such time as
the results from a more detailed analysis of Ghifvhole difraction (such as that presented in Chapter 2)
are readily available, these two methods provide approximate results and illustrate important physical
effects that require future study
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Figure 6.A simple model of the dependence of the fringe contrast on the pinhole didvasttt on “Airy pattern”
diffraction from a circular reference pinhole at 13.4 nm wavelength. Given the relative strengths of the test and refer
ence beams and the transmitting properties of the reference pinhole, the contrast dependence on pinhole diameter wil
follow one of the labeled contours from the graphs. For example, if a measured 100-nm reference pinhole produces
20% fringe contrast at the center of the interferogram, following contour “E” the fringe contrast will be 12% at the
edge of the 0.08 NAnd 9% at the edge of 0.1 NA. If a 50-nm pinhole were placed in this same system, then the
expected fringe contrast would drop to 5.8%4he centerd.4% at 0.08 NAwnd 4.2% at 0.1 NA.
4.6.1ReferenceWave Uniformity

When the pinholes are smaller than the central lobe of the focal pattern of an optical system under
test, the amplitude of the field transmitted through a pinhole should be roughly proportional to the pinhole
areaAlthough this simple model neglects the complicated attenuatiegtiebf high-aspect-ratio, highly
absorptive pinholes on the order of a few wavelengths in dianitetell serve as a good starting point
for these calculationgo keep the model simple and useful, assume circular pinholes in opagde mem
branes, and scalar ftdction of ideal Airy-like reference wavedVith d as the pinhole diametehe dif

fracted field amplitudd is

0 (4 kdsine)

E(d,8) = Ad?
? (Lkdsine)

O

®3)

rrrir

A'is a constant multiplier dependent on the characteristics of the pinhole and on the relative strengths of
the test and reference beams. If we define the amplitude of the test wave in the plane of the detector as 1,
thenA is on the order of #2. Yet A is an experimental parameter and cannot be known ahead of time.

Using this simplified model, the intensityf the interfering test and reference beams is
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, 2
| =|e? + E[" =1+|Ef + 2E|coso, 4)

where@ represents the phase of the test wavefront plus a significant PS/PDI spatial carrier fréwency
spatial carrier frequency typically introduces ayéanumber of fringes, and the resultant field varies from
its maximum to its minimum value over a short distafite fringe contrast is defined (Appendix 5) as

_ 2|
1+[EP

(%)

When the intensities of the test and reference beams are matched, the contrast is one.

One goal in selecting a pinhole is to have high contrast across the entifendé&surement. For
several values of the parameferig. 6 shows the fringe contrast at the center of the interferogram and at
the maximum polar angles within numerical apertures of 0.08 anditéeXcontrast is calculated from
Eqgns. (3) and (5)T'he non-uniformity in the difacted reference wave causes a greater contrast variation
from the lage pinholes than from the small pinhol€ke corresponding labeled contours in the three
graphs represent the same values of the parameter
4.6.2A SimpleApproach to Pinhole Spatial Filtering Considerations

Determining the optimal reference pinhole size for a given PDI or PS/PDI application is a daunting
task theoreticallyand a laborious task experimentafiandoning the level of detail used in thEM-
PESTsimulations of Chapter 2, a simple approach to this problem proves useful for assessing the level of
spatial filtering produced by dérent pinhole sizes in the presence of aberrated test beams. Based only on
Kirchoff diffraction from an idealized opaque planar screen, this study gives insight into the troublesome
problems associated with filtering astigmatic aberrations.

In order to study the isolatedfedts of individual low-ordered aberrations, an initial 0.08 (&
erencewavefront is given varying aberration magnitudes composed of a single low-ordered aberration
component at a time. For this mathematical study (similar to studies by SangHun Lee), ideal circular pin
holes of varying diameter are placed precisely at the center of the focal pattern produced by an optical
system operating at 13.4 nm wavelength. In approximation to the Kitohwfidary conditions, the sim
ple discrete Fourigiransform (DFT)s used to mathematically propagate the scalar electric field
(Sections 2.3 andl113.1). On propagation to the detector affiield, the pinhole field produces the refer
ence wavefrontA wavefront-phase analysis of the reference wave is performed within 0.08 NA, and the
contributions of defocus, astigmatism, coma, and spherical aberration are idehgified.pinhole size is
varied, the diracted reference wavefront is studied within 0.08 NA. Displacement of the pinhole from
the position of best-focus is not considered here.

This study is limited to the case where the pinhole is centered in the focal pattern. Experimentally
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Figure 7.A simple study of pinhole spatial filtering designed to assess the degree of filtering producéereytdif
circular pinholes sizes in the presence of varying degrees of primary wavefront aberrations. Calculations are per
formed for a 0.08 NAvptical system operating at 13.4 nm wavelength. Defocus, astigmatism, coma, and spherical
aberration are investigatethe abscissa in each plot is given in RMS wavefront displacement of the single aberration
component being investigatethe RMS wavefront displacement of thefidi€ted wave is given.

in the PS/PDI, every f&frt is made to center the pinhole in order to maximize the intensity transmitted
into the reference wav@&his situation is very diérent from the PDI, in which the pinhole is significantly
displaced from the center of the pattern in order to produce an analyzable interference pattern.

Figure 7 contains the results of this studgre, as the RMS aberration magnitudesraneased,
the pinhole diameters required to produce a reference wavefront with an arbitrarily small RMS-displace
ment (such a&/100)decease Of the four primary aberrations studied, astigmatism is by far the most trou

blesome, as it is the mostfititilt aberration to spatially filtehis property is born-out by the experimen
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tal observations that astigmatism creates the greatest uncertainty in the measurements (Chapters 3, 7, and
8). According to this simple model, in the presence of 0.1 waves RMS of astigmatism, the pinhole size
required to filter the aberrations down to 0.03 waw¢33) is L4 nm, to filter down to 0.01 waves/{00)

is 89 nm; and to filter down to 0.003 wava#3@3) is 67 nm.

This simple study leads to two important conclusions. First, the optimal pinhole size to achieve a
desired reference wavefront quality depends strongly on the aberrations present in the system. Second,
astigmatism ishe most dificult aberration to filterThe measured astigmatism in sub-aperfucé the
Schwarzschild objective examined in this thesis is 0.42 wave®i0\0856 waves RMS (see Chapter 7).
According to the simple calculation shown in Fig. 7, a sub-90-nm pinhole is required to filter this astig
matism magnitude to below 0.01 waves RMS in the reference beam. By comparison, coma and spherical
aberration magnitudes muchdar than this are easily filtered by considerablgéampinholes.

Because of its critical importance, more research in the area ofpiEibdle difraction and spatial
filtering is certainly required. Both detailed and simple calculations should support the experimental
research so that a greater understanding of the pinhole size requirements of high-accuracy applications
will be known.With the recent availability of pinholes from well-controlled pinhole fabrication processes
at this small scale (fabricated by EAkderson) and the continued measurement of optical systems of

various wavefront qualitymportant empirical data will be gathered.
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5.1 OVERVIEW

In the pursuit of the highest achievable accurddyg important to consider all elements of the-sys
tem, including the system geometag potential sources of systematic erfdhss chapter is devoted to
mathematical investigations of each of the PS/PDI components with the goal of identifying the most sig
nificant sources of systematic errArvery general approach is adopted so that this discussion may be
applied to the design of interferometers for the measurement of arbitrary optical sygtesresappropti
ate, the results of these sections are applied to the specific configurations usedimeedkbometry of
lithographic opticsThese EUVcalculations are highlighted at the end of each section and summarized at
the end of this chaptelRandom error sources and issues relating to inadequate pinhole spatial filtering are

not covered in this chapter

Figure 1. grating gratlng geometric _ detector
. aberratlons 5.8 coma, 5.9 coma, 5.5 misalignment, 5.6
coordinate
systems, 5.2

1 x
X
Z

source detector

grating placement

bandwidth, 5.4 (shear), 5.7 distortion, 5.12
spatial-frequenc window shape
pissues % Y variations, 5p11

Interferometry Issues
Chapter 2 Reference Wavefront Quality
Chapter 4 PS/PDI Description

Interferogram Analysis
Chapters 11-12Phase Retrieval

Chapter 13
Chapter 15

Phase Unwrapping
Wavefront Fitting

5.1.10utline

In low-NA configurations, a few definitions and formulae lead to simple mathematical descriptions
of the various componenfEhe predicted performance of an interferometer configuration can be judged
based on the magnitude of théeefs identified in this chapteFigure 1 enumerates the most significant
effects and indexes the sections of this thesis in which they are addressed.
5.1.2 System Parameters

There are at least three interferometer configurations of special interest here: badimdEUsible-

Table 1:Lithographic system parameters of inter@$tese numbers will be used for comparispn
throughout this chaptey investigation of systematicfe€ts. Particular attention is paid to the
EUV parameters as they pertain directly to experiments described in this thesis.

Parameter EUV Visible Deep UV
wavelengthA 13.4 nm 632.8 nm 193 nm
NA; ~0.08 ~0.08 ~0.6-0.7
magnification 4-10 4-10 4-10
A2NA .084um 3.96pum 0.16pum
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light measurements of an EUkhographic optic and, for comparison, a 193-nm-wavelength lithographic

system with NA> 0.6.Approximate system parameters for each are givdalite 1.

5.2 DEFINITION OF COORDINATE SYSTEMS

Mathematical descriptions of the interferometer are simplified by the introduction of several inter
related coordinate systems, individually appropriate feréifit regions or componenidhis section intre
duces three coordinasystems and the expressions that relate ttiemb-aboratory Systemthe Beam
Systemand theDetector System.

Common to all of the coordinate systems is thedfl#he beam in the region of interest, called the
local NA.The local NAis determined by the sizes of various apertures and pupils in the system and
describes the cone of rays that eventually reaches, or emanates from, an image or objEbtpeiate
the rays relevant to interferometric measurement of low spatial-frequency aberrations. In a reflective,
cylindrically symmetric optical system, is defined as the maximum half-angle within the system NA.

By definition,
NA =sina . 1)

Where the spherical beams are incident on planar surfaces normal to the certtralteaygent oft is a

useful quantityDefinet as

t=tana = NA

= ()
v1-NA

5.2.1The Laboratory System
The Cartesian system, baboratotry Coodinates shown in Fig. 2, defines points in 3-D space as

P(x, y 2. Thez-axis coincides with the central ray TheLaboratory Coordinates

of the interferometés testbeam; the origin of the

coordinates is defined as the center of curvature

the diveging (or conveging) spherical beanThis

point is typically determined by the position of a

pinhole spatial filter in either the object- or the

image-plane, or by the focal point of the interfero z

eter's test beam.

R=yx*+y?+2% . ©)
r=x?+y?. @ ©

Figure 2.TheLaboratory Coodinate Systerns based
on Cartesian or cylindrical coordinates using the-mea
surement units of the experimental syst&hme z-axis is
defined to be collinear with the central ray of test
beam, with the centaf-curvature as the origin.

Where spherical beams are incident on a planar

face, cylindrical coordinate systems have a maxi
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Two equivalent representations of the sphe@EmCoordinates

O
Figure 3.The sphericaBeam Coalinate Systemases polar and azimuthal angles to represeangularposition
within the diveging or conveging spherical beani\n alternate representation of the same coordinate system defines
an angular position using arandy pair of polar anglesAgain, thez-axis is defined to be collinear with the central

ray of thetestbeam, with the center of beam curvature as the origin.

mum radiusry corresponding to rays at the anglérom the axis.
fy =ztana =2zt . (5)
5.2.2The Beam System
A spherical coordinate system, shown in Fig. 3, provides a more natural description of tpe diver

ing or conveging beams: for the optical systems of interest here, aberrations are described as departures
from an ideal, spherical wavefront. Based on the central ray of the test beam, we gefiii@@awithin
the beam using the polar and azimuthal andle@)( It will also be convenient to define a polar angle
vector, separated intg andy angular components:

0= (6, ey) = (6 cosq, 6 sin ). (6)
In some cases, this angular vector simplifies translation to the Cartesian Laboratory System. Other expres

sionsin this coordinate system reld@¢o k, which is also used to represent the beam propagation direction:,
k= (kx,ky,kz) = (sin@cos@,sinBsing,cos), |k|=1. @)

2Ky O

GX’y = tan %E . (8)

Normalization of the polar angle relative to the local WifA simplify calculations in some caseghis

system is called theormalized Beam Codinates For this purpose, define a normalizatyley as

9)

<
[l
Qo
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TheDetector Coordinates

AY Ay Figure 4..The Detector
Coordinate Systeris used to
represent measurements

P P recorded on a planar detector
t/ ly 0 Both Cartesian and polar rep
. 'y © 1 © rgsgntations are usethe _ori
c X § § gin is taken to be the point of
‘—g_ intersection of the central ray
5 of the test beam and the detec
§ tor plane.
3
regular normalized
(0<r<ry) (0<p<1)

5.2.3The Detector System

The final coordinate system introduced here is the 2-D jp#tector Coodinates defined in the
plane of the detector and centered on the point of intersection of the central ray of the test beam with the
detector planeThe Detector Coordinate System is shown in Figh goint in the detector plane may be
represented in the units of the Laboratory frame, or by a corresponding\setridlizedDetector

Coordinatesutilizing a dimensionless radigsbased om.

r

p=E—. (20)
r(X
From Egns. (2) and (10) we also have the relationships,
r=ryp=tzp. (11)

The normalized coordinateg, () eventually become the coordinate system of the data analysis, which is

based on a unit circle representation of the systexit pupil.

5.3 NUMBER OF FRINGES
From the mathematical description of the PS/PDI arises a convenient rule of thumb useful for

determining the required position and pitch of a grating beamsplitter

Rule of Thumb: The number of fringes in the interferogram equals the number of
grating lines illuminated within the N&f the optical system.

Subiject to the fact that wavefront aberrations in the test optic cause curvature in the observed-fringe pat
terns, this rule is approximatén investigation of the origin of this rule leads to a description of how the
PS/PDI can be used with broadband illumination (Section 5.4).

Let a; andag be the maximum half-angles within the image-side and object-side numerical aper

tures NA and NA, respectively Constraining our discussion to one side of the optical system, in general
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Figure 5.A grating beam-splitter
is used to produce the test and
s reference beams of the PS/PDI.
The first-order difraction angle

0 is determined only by the grat
ing pitchd. The beam separation
in the image-plang depends on
0 and on the positionof the
grating with respect to focus.

sinfla=a
z

7

we have,

NA

J1-NAZ

Depending on the configurationjs defined as the distance from the grating to the object-plane or as the

NA =sina, and t=tana= (12) and (13)

distance from the grating to the image-plane.
For either an object-side or image-side grating (Chapter 4), the lateral width of the grating illumi
nated within the local NAs w, as shown in Fig 5.
w=27. (14)
Therefore for a given grating pitchthe number of grating lines illuminated is

w_2a
d d

Nlineﬁ -

(15)

When the grating is placed on the image-side, the cgimgebeam from the optical system forms a
series of real images corresponding to thieadifion orders of the gratinghe lateral separation of two
adjacent image-side fosifollows from the grating equation for the firstfdifcted ordei = d6 where® is
typically much smaller thaa.

y2)\
=70=— .
3 d

(16)
Givens;, the number of fringes within the Ni& readily calculated from the maximum path length
difference between the zeroth and the firdtalited orders. By symmetrihis maximum dierenceA is

twice the diference between the central rapd the rays at the angle

A, =5sina; =s NA, and A=27,, -~-%NA1 . (17) and (18)

The number of fringeBlyingesis equal to the path length fiifence in waves (units af.

2z 2z
zFNAi = — = Niipes, (19)

N =
fringes d

>|>

thereby justifying the rule of thumBhis number may also be written usiggxplicitly

2st;
Nfringes = NIin% = i - (20)

When the grating is placed on the object-side, the rule of thumb still applies. In this case, however
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the grating divides thdiverging beam, and each grating order besides the zeroth appears to originate from

a separate virtual object source. By analogy with Eq. (16), the separation of these virtual objects is

(21)

ZA
=z0=—.
% d

In principle, the separation of the real foci in the image-plane is equal to the separation of the virtual
objects, scaled by the magnification of the system.
§ =M. (22)
The relationship of the object-side and image-sideaNgles,
a;=a,/m, (23)
allows Eg. (20) to be written independent of the system magnification.

2st.  2s;t
Nfringesleinesz%: S;\)O' (24)

In the small-NArange where sia = tana a useful approximation for the number of fringes is
2 2
Nfringes: Nlines:TSNAﬁ :TSONAJ' (25)

In theupsteam grating configuratiofSection 4.3) the multiple object sources are real, and the same
rules apply
5.3.1Numbers

For a specified number of fringes.

10 mmy,
we can investigate the corresponding L J
= iy
image-plane beam separation by solvil % 1 mm, S 38 26/
. . 5 \
for 5 in Equation (25): & ]
g 100 pm;
§= 0 o) £
= ) Keo) i
2NA 2 10 pmd
< E
ol 3
Figure 6 shows Eq. (26) plotted versus & ]
S 1umg
NA for three wavelengths of interesb E ;
achieve 40 fringes at 0.08 NAtheEUV, 0.1 um— - —
56 80901 4567891 2 3 45678
193-nm, and HeNe configurations ' numerical aperture (NA)

quires beam separations of 4, 60 Figure 6 The number of interferogram fringes depends on the wave
length, the image-plane beam separation, and the measurement NA.

pm, and 198um respectivelyForty For a wide range of numerical apertures, this figure shows the beam
separation required to produce a given number of fringese

fringes at 193 nm with 0.6 NAequires a experimentally relevant wavelengths are considered: EUV(13.4 nm),
deep UV(193 nm) and visible (632.8, HeN@he star indicates EUV

beam separation of 64m. numbers relevant to experiments conducted in this thesis.
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5.3 Summary
Beam Separation s/Nyjnge = A2t = 0.084um/fringe U Niinge/S = 2/A = 12 fringesim.

54WHITE-LIGHT CONFIGURATION AND BANDWIDTH

For the grating-based configurations of the PS/PDI, the rule of thumb presented in the previous
chapter equates the number of grating lines illuminated to the number of fringes obBeevizdt that
this rule is independent of the illumination wavelength leads to the conclusion that, aside from chromatic
aberrations (wavelength-dependerieefs) in the test optical system, the PS/PDI may be regarded as a
broad-bandinterferometerThis section describes the most important wavelength-depenéesit eff the
interferometerNote that this discussion addresses only an idefiladtibn-limited, achromatic optical
system under test.

Since the NAs a property of an optical system independent of wavelength, the number of grating
lines that fall within the NAs determined only by the geometRor a given wavelength, the number of

observed fringes is related to the image-plane beam sepagatiocording to Eq. (24):.

2st;
Nfringes = NIines = % ' (27)

Using N as a convenient system invariagtnay be written as

NA
~ A 28
S (28)

showing that the image-plane beam separation is proportional to the waveéldngpththe illumination is not
monochromatic, grating-difacted beams are focused tdfeliént lateral positions in the image-plambe

position of the zeroth-order focus does not depend on the grating pitch, and is thus not wavelength-dependent

a) ! b) c)

1
+15t* +15t +1°

O —— 0" —— +0”‘>I<

- i
1

1
no image-plane filter First-Order Referene Zeroth-Order Reference
configuration configuration
Figure 7.When a grating is used to separate the test beam, tteetie orders are fcted by the bandwidth of the
illumination. (a)Different wavelength components of the first-order beams are separated by a lateral displacement in
the image plane. (b) In the first-order reference configuration, the reference pinhole behaves as a mongchromator
selectively transmitting a portion of the bandwidth mofeatively than the rest. (#) small translation of the image-
plane spatial filter puts the system into the zeroth-order reference configuration, in which a much broader range of
wavelengths is transmitted.
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In the image-plane, the positive and negative first-order beams form foci on opposite sides of the
zeroth-order beamAs shown in Fig. 7, a simple lateral translation of the two-pinhole spatial filter allows
selection of either of the two first-order beams or of the zeroth-order as the reference or teEhésam.
two configurations are referred to as fhist-order refeenceand thezeoth-order refeenceconfigura
tions, respectivelyThese names indicate which beam is filtered by the reference pinhole. In the presence
of finite-bandwidth illumination, these two configurations do behave somewfexrtedifly Some advan
tages and disadvantages of these two similar arrangements are discussed in Section 5.8.

In the first-order reference configuration, the tiny reference pinhole serves as a monochromator by
geometrically selecting some wavelengths to pass through the pinhole fivieatsf than others. For this
to be true, howevethe test optic must be of nearlyfdittion-limited quality In the complementary
zeroth-order reference configuration, thgé&window transmits a range of wavelengths determined by the
window size and position. Hence, the range of recorded wavelength components migydre difthe
two configurations.

Due to the typically long time scale of measurement, relative to the frequency of the radiation, light
of different wavelengths addiscoheently. Therefore, if there are wavelength components present in
either the test or the reference beam but not in both, those components will contribute only to the unmod
ulated background intensity in the recorded ddtamodulatedefers to the recorded light that does not
contribute to the interference fringes.
5.4.1Effect of Bandwidth on the Measured Fringe Pattern

When using the PS/PDI with broad-band illumination, interpretation of the measured interference
fringe patterns may require careful consideration. Chromatic aberrations and geometrical considerations
must both be consideretihe relevant bandwidth herenstthe source bandwidth; strictly speaking, it is
only those wavelength components that reach the detector and are present in both the test and reference
beamsThese are the only wavelength components capable of producing interference fringes. For reasons
stated above, this restriction may exclude some components of the original source bandwidth.

One design consideration of the interferometer is thédrdiit wavelength components separated

Figure 8.The origin of interferogram chromatic-dependence in a
reflective achromatic system. For a particular wavelength compo
nent, the interferogram fringes reveal the optical pathrdiice
between two waves, measured in wavelengffith a mirror surface
height profileh(x) different fringe patterns will be observed for each
wavelength of measuremeithe surface depression shown in the
figure is one-half oh, yet is one-third oh,. Upon reflection the
aberration path length is doubléthus, these twavavelengths gen
erate diferent fringe patterns for the same aberration.
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by a grating placed before (on the object-side of) the optical system will travel alfargrdipaths
through the optical systenfihe significance of this &fct must be evaluated based on the illumination
bandwidth and the design on the test optical system.

If a range of wavelengths is present, then the measured interferogram will be an additive-combina
tion of the wavelength intensity components allowed to reach the detactoperfect optical system, the
pattern of equally-spaced, parallel interference fringes is the sarak ficavelengthsHowever in the
presence of aberrations, eagvelength component may contribute dedént, overlapping interference
pattern, thereby confusing measurement.

Even in the absence of true chromatic aberrations, geometfigetisedan contribute wavelength-
dependence to measurements. For example, consider a reflective optical system with a surface figure erro
of arbitrary depth (or height). Light reflected from the region of a depression travels a relatively longer
distance than the light in adjacent ar&dss situation is depicted in Fig. 8.

The significance of a given path-lengthfeience on the interference pattern is inherently wave
length-dependent. For each spectral component, the interference fringes represent contours of constant
path-length diierence, separated by one wavelengttus, for a given path-length fiifence, diferent
wavelengths will generate &fent fringe patterns. In the presence of finite bandwidth illumination, this
effect canblur a fringe pattern. Howevea special situation arises if the spectral intensity distribution is
symmetric about a central wavelength: the contrast is reduced, but the fringe positionsfactednaf
Such a situation only fects the signal-to-noise ratio of the wavefront measuremEnitscan be demaen
strated mathematically as follows.

The measured intensity is the sum of the intensity contributions from all of the available wavelengths.

Eg. (3) defines an intensity-weighting functis\) with units ofA-1, and an intensity functiod(r ;).
I(r) :_[dl (r;)\) :IW()\)J(I‘;)\)d)\ , (29)
A A

where Jw(A)dr =1. (30)
A

A general expression for a single wavelength compol{ed) is

4nh(r)C

J(r;A) = A+ Bcos% i +TE, (31)

where the vectok represents the spatial carrier frequency of the fringe pattern, and is invariant of wave
length.h(r) is the combined mirror figurerror as seen by a given ray in an arbitrary reflective optical
system.The path length of a particular ray is doubled upon reflection from a surface, as the light must

twice travel the distande
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Consider the addition of two @&frent closely-spaced wavelength componagtéA andA+AA

with A << A,
2I(rAe =N +1I(r A, +AN) = Ar)+3 B(r)cos% [F + )\4111_1(3 Eﬁ% B(r)cos% i +%E (32a)
o (o]
= A(r)+ B(r) cosgk [ + 4T)d\1(r) EposEnT(r) ;ﬁE (32b)
u o O 0O %o ol
O 4mh Ch(r) O Can CF
=Ar)+ B(r)cosmm+—)\ (r)%—gg—f)m 5 H E (32c)
a o [H 0% O E

In Eq. (32b), the wavelength-dependence is expanded to first-orderdn.thethe limit of narrow band
width AA or small aberrations(r) Eqns. (32a)o (32c)reduceto the intensity pattern of the central wave
length, as expectedhis fact leads to the illustration of an important result, worth elaboration.

The addition of two closely spaced and equally-weighted wavelength components
yields the same fringeattern as the central wavelength, with a reduction of fringe
modulation determined by the magnituden@f) andAA.

5.4.2Fringe Blurring in Symmetric Intensity Distributions

In the special case of symmetric intensity distributions we can derive a general form of the resul

tant fringe patternThe predicted reduction of the fringe modulation can be used as a criterion to set an

upper limit on the allowable bandwidth. Non-symmetric distributions may be represented by the addition

of a symmetric distribution with an asymmetric distribution. In this case, the following treatment would
apply to the symmetric part, and the asymmetric part would have to be addressed separately
When the wavelength distribution(A) is symmetric abowX,, pairs of intensity components within
the distribution add to re-create the pattern of the central wavelength. For a symmetric distribution,
w(Ao —AN) =w(A, +AA). (33)
The sum of a pair of intensities within the distribution integral of Eq. (29) will be

WA, = AA)I(r; A = AA) +w(A, +AN)J(r; A, +AM)

g
=2W(7\0+A)\)§A(r)+ B(r)coslé(le%o(r)% %?gg%‘%ﬁg% (34)

By symmetryand Eq. (34), we have

= [W(A)I(rA)dh = fw(Ag +AA)I(riA, +AN)d(AN) (352)

g%(m) (35b)

5

a
=2J W()\O+A)\)§A(r)+8(r)cosg(m+ % %E,g

o oan
0
0

O Ao %o )‘
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s 0 an o Lo mad
= Ar) B(r)cos%(m A, % EE,KEJW()\O M)QEE d(A)\)E (35¢)

This representation allows us to define a bandwidth-depefrifege blurring functionW(d) to simplify

this discussion,

W(8) = — [w(A, +A)\)E)\—E d(An). (36)

The dimensionless paramegethat describes theidth of the spectral intensity distribution will be defined

differently for diferent distribution models (Gaussian, top-hat, etc.). Continuing to simplify Eq. (35c),

I(r)=A(r)+ B(r)cosgcm +M%— E,hﬂgw(a)E (37a)
0 Ao B DM O E
1(r)=J(rin,) - B(r)cos%cl] +M%ﬂgw(6) : (37b)
0 Ao [ O

In Egns. (37a) and (37b), the bandwidth-dependent term acts to reduce the magnitude of the fringe modu
lation B without changing the positions of the inflection poifisrthermore, wheA(r) andB(r) are
slowly varying functions relative to the spatial period of the fringes, then the positions of the fringe maxi
ma and minima will match the monochromatic cas$wis in the presence of a symmetric spectral distrib
ution, the fringe contrast is merely reduced, ®fd) represents the fractional loss in fringe modulation.
5.4.3Determining W(J) for the Gaussian and dp-Hat Distributions

For quantitative results we investigate two spectral intensity distribution ma@alsssianand
top-hat The Gaussian distribution is defined by its full-width at half-maximum (FWHM), definég; as
the top-hat is defined simply by its full-wid8

5.4.3.1 Gaussian Distribution Consider a Gaussian distribution centered ahguwvith an RMS
width of A,o. In this definition,o is the dimensionless parameter describing the distribution width relative

to the central wavelength. Normalization requires that Eq. (30) must be satisfied.

wy(A, +AN) = J%m exp[—(gz\rz ] (38)

Solution of the integral in Eq. (36) yielwg(o).

wo?

3 (39)

W (0) =

As stated previous|y\, is defined diferently for each distribution shape; the definition may use any con

venient parameter that describes the distribution width. Often, a more convenient representation of the
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Figure 9.A plot of the fringe-blurring functiol(d) for the Gaussian and top-hat spectral distributions as a function of
the distribution widthsW(d) is a parameter that describes the reduction in fringe height that can be expected in PS/PDI
interferometry in the presence of a symmetric spectral distribution. Note that the two distribution widths are defined dif
ferently: this primarily accounts for the f&rence inMd). The two width definitions are illustrated in the inset graphs.

Table 2.Values of the fringe blurring functiot(d) for the Gaussian and the top-hat spectral intensity distributions,
and a selected distribution widtlds W describes the expected reduction in fringe contrast related to non-merochro
matic illumination of a reflective optical system. * is the measured bandwidth used imfderometry
0 Wy(Gaussian) W,(top-hat)

0.000 0.00 0.00

0.001* 2.22x 107 1.03x 107

0.002 8.90x 107 4.1 x 107

0.005 5.56x 106 2.57x 106

0.010 2.22x 10° 1.03x 10°

0.020 8.90% 10° 4.11 x 105

0.050 5.56x 104 2.57x 104

0.100 2.22x 103 1.03x 103

0.200 8.90x 103 411 %103

Gaussian distribution will be in terms of the full-width at half-maximum (FWHj¥ather tharo.
69 ando are related by a constant ci@ént. It is easily shown that
(FWHM)? =32 = (8In2)0” . (40)

Defining Wy using the FWHI\/Bg instead of the RMS widtts,

2
=5 e " 0.2225. (41)
5.4.3.2Top-Hat Distribution. In a similar manner as above, choose a normalized top-hat distribu
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tion centered abouwt, with a full-width Ad.

o1l 1
e AN <2A.D

(A +8A) = O e ; (42)
Ho |an>1a.3,

From Eq. (36) the fringe-blurring function is

52 _
96

w(s,) = 0.10352 , (43)

Selected values of the blurring-functia{d) from Fig. 9 are listed iffable 2. Even for significant band
widths, the magnitude of the blurring-function, shows that in the presence of mirror surface aberrations,

small on the scale of the central wavelength, the fringe modulation is not substantially reduced.

5.4 Summary

Bandwidth. Wy = 2.22x 107 @ 0.1% BW(Gaussian distribution). Fringe amplitude is
reduced by 2.2% 107 per wav@ of aberration at this bandwidth.

5.5 GEOMETRICAL COMA SYSTEMATIC ERROR

This section describes a systematic, geometric coma error introduced by the image-plane separatior
of the test and reference bearfisree methods for the removal of this error are proposed.

For several reasons, high-accuracy implementations of theFJ\And PS/PDI do not utilizes-
imagingopticsto image light from the exit pupil onto the detector plane. Such optics are common in most
conventional interferometer desigi$ie primary reasons for their absence is the unavailability of optical
elements of suitable quality and the fact that low#4V measurements def only localized décts from
diffraction.An important geometrical f&fct related to the absence of re-imaging optics causes a third-order
systematic error to be introduced. Experimental observation of faet bas been used as a verification of
system sensitivity (Section 8.9)he magnitude of this ffict depends linearly on the image-plane separa
tion of the test and reference beams, and tHastafboth the PDI and the PS/PDI configurations.

Essentiallythe test and reference beams are two dimgrspherical beams with a lateral disptace
ment of their centers-of-curvaturs they propagate toward the detector plane, the relative path-length
difference generates the interference pattern. Neglecting aberrations in the optical system, the pattern con
sists primarily of parallel, uniformly-spaced, straight fringes; but consideration of the path-lefagth dif
ence including terms out to third ordegveals a systematiomaof magnitude comparable with the sen
sitivity of the EUVPS/PDI interferometer

In Fig. 10, light from the two beams reaches a common point at the deféitihmut loss of gener
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ality, we take the displacement vecsdo lie along thex-axis. Setting the origin on one of the rays, the

path lengths are

R = V"‘xz + y2 + 72 , (44) P(x.y.2)
Ry

_ A2 2 2

Rz—\/(x s +y? + 22, 45)
‘ R

_ mxif oyl |, ox=stf |, oyef s

AR= Z\/“ 0,0 T 6,0 Z\/1+D >0 o 48 ] >z
image plane z detector plane

At this point it is convenient to define the following Figure 10.The description of systematic errors

begins with the path length tifence of the test and
reference beam centers to a point on the detddter
figure shows the beam separatand the image-to-
detectosplane distance.

dimensionless quantities

tu=x/z
H= y/z : (47)
5 = s/ 2 << max{u}, max{}

Now re-writeAR in term of the dimensionless variables.

AR=zy1+u? +v? - z\fl+(u —3)2+v2 . (48)

Using the binomial expansion, expand the square-roots keeping terms up to first-drdelyirviany

terms in the expansion cancel leaving

AR:Z&J%—%(UZ*‘Vz)Jr%(UZ+V2)2_W5:% (49)
1-{u”+v°)| -

To express this as a wavefront aberration observable in the data, it is convenient to use the normalized
cylindrical Detector Coadinate Syster{see Section 5.2hormal to thez-axis.

Et =tana, where NA =sina

= %V"uz +v2 0]0,1], within the system NA (50)
O

Hp=tan™(v/u), the azimuthal angle

The path-length diérence of interest may now be written as the product of radial and angular terms,

AR= zESt[l—%tzp2 +3t%p* _..-]pcos(p: Apcosqa. (51)

\“‘gl_tsz

Generalizing the directiosasq,, and replacing with s/z, AR becomes

AR= zét(l— 1t%p? + 3% - -)pcos(cp— 0) = Z—atpcos((p— 0) (52)

ll_tzpz

st
AR=st(1-1t%p? + 2t%p* —...)pcos(@-¢,) = ——=——pcos(p- @) . (53)
( 2 8 ) S( s) m S( s)
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beam separation detector
(displacement) coordinates tilt vector coma vector
y y ap ay
S P T C
o)
> x ® X a as

Figure 11. The description of several experimental quantities is facilitated by representation in pairs of coordinates.
The test and reference beam separation in the image plane may be represented by a sirg[€heetitband coma
components of the path lengthfdience have a convenient representation in a singleC vector defined from the
Zernike polynomial coditients @y, ay) and g, a;) respectivelySince they share the same radial dependence, and

differ only in the co8 or sirf angular dependence, these vector representations simplify many aspects of the analysis.

It will be useful to separate the angular dependence of Eqg. (53) into cosine and sine components as follows
AR= sI(l—%tzp2 +3t%p* —-~~)p(cos<pS cos@+sing,sing) . (54)

The first term in the expansion is the tilt that defines the fundamental fringe patternegative
sign of the third-order term in Eq. (54) shows that tliecebf the geometric coma isreductionof the
fringe period at the edges of the measurement. (This also may be understood that from the perspective
that at the edge of the field, a small change in angle results igea tdmange in position on the detector
than at the cent@rThe higherorder efects are always aligned parallel with tileterm (also the beam
separation), so there is no induced curvature of the fringes.

For a given optical system, the magnitude of thisatfdepends primarily on the image-plane sepa
ration of the test and reference beaf® bandwidth discussion of Section 5.4 showed that in the eonfig
uration where the beam from the firstfditted order is used as the test beanfierifit wavelength com
ponents are brought to flifent image-plane separations. From the combination of thesefettsett is
clear that attention to the chromatic dependence of the systematic coma may be necessary in some cases
5.5.1Representation of Zernike Pairs iné¢tor Notation

Further simplification of the path-length féifence expansion can be made by introducing a vector
notation for the pairs of Zernike terms that naturally separateirody-oriented component3he defi
nitions of the Zernike polynomials may be found in Chapter 14, and the Zernifieieaepair vector
notation is discussed in Section 14.3.1. Here, the relevant terms are diltyahécomacomponents.

Any wavefront aberration on an unobstructed circular aperture may be described by a series of

Zernike polynomials, with coBifients {a}.

W(p.g) = az(p.g). (55)
The tilt and coma components are defined specifically as
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Tilt:  Z, =pcos, Z,=psing, (56a)
Coma: Zg= (3p3 - Zp) cosQ, Z;= (?;p3 - 2p)sin(p, (56b)

p3cosp andp3sing do not appear independently within the Zernike polynomalmiear combination of

tilt and coma is required to represent these terms.
pcosp=4Z5+42)  gng PSINQ=4Z;+37,. (57)
For a simplified vector notation, define a position veptor
p=(pcosy psing), (58)
and two more vectors representing the tilt and comdiciesits of a Zernike Polynomials series.

A =(a.a,) “tilt vector”

) 59
FC =(ag.3;), “coma vector (59)

These vectors are shown in Fig. 1
Now, keeping only terms up to third-orddne path-length diérence in Eq. (54) may be re-written.

(The inclusion of higheorder terms, necessary only when bifs is lalge, is straightforward.)

AR= t(l—%tzpz)pﬁ;: t(p3) —%t3(p2pE'k) = t(l—%tz)s[qzl, z,)-1t%sM25,2;). (60)

Hence, T =t(1—%t2)8. and C=-%t%. (61a) and (61b)

Notice thats || T || C. Finally, the path-length dérence may be written as the sum of tilt and coma com
ponents.
AR=T ({71, 2,) +Cl(Z5,77) =t{1-3t2)si{(z1, Z,) - £ t°s1(Z5, 27) . (62)

5.5.2Isolating and Removing the Geometric Comafé&t

Accurate PDI or PS/PDI wavefront measurement in the absence of re-imaging optics requires that
the systematic error from the geometrical coma be identified and subtracted from ti@el@tare sev
eral means available for determining the magnitude of tfesteTfwo methods are described here.

The magnitude of the geometric coma depends very sensitively on tbéridasurement (N&
dependence)Vhen the data is analyzed, this Aot strictly the NAon the measurement-side of the
optical systemTypically a sub-region of the available data is selected: the relevaof Nferest here is
the NAdefinedby the selected sub-region and the cone of rays that created it. In practice it may therefore
be difficult to precisely know theneasuement NA

Method 1 outlines a procedure to follow when the measuremeiig WAll known. In Method 2,
two separate measurements witedé#nt fringe rotations and/or densities are combinedagpribri

knowledge of the measurement WMot required. In both cases, the goal is to determine the change
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§~§. 0.02 Figure 12.The image plane separation of the test and
§8 0.02 / reference beams introduces a systematic geometric
« § ' / coma errarThis graph shows the magnitude of the
g s 0.01 / required Zernike coétient coma correction per
EgE @ wave of measured tilt as a function of N#.0.08
3%“5 001 NA, the correction is 0.001waves of coma is
5L required for each wave of measured At0.1 NA,
g ‘§ 0.005 N the correction is 0.0017 waves per wave of tilt.
g S~
@ 0.000pt

0.00 0.10 0.20 0.30 0.40
numerical aperture, NA

required to remove the geometric coma from the Zernike polynomial serieguaralently from the
measured wavefront itself.

5.5.2.1Method 1: Removing the Geometric Coma with Known Measurement e mea
surement NAs precisely known, then the removal of the geometric coma systematic error is straightfor
ward.Analysis proceeds from the path-lengtHetiénce of Eq. (62)The tilt and coma vectors are parallel

and have a fixed relationship basedtotne tangent of the NAngle.

2T 2T

S - _ ~ _ 142
€= 6(1—%t2) T 6-2t2 T, (63a)
2
=—LT2=—%NA2T, (63b)
In terms of the NA, 6 - 8NA

The approximation holds for small NA.
In the presence of wavefront aberrations, the measured Cgmiay take any arbitrary value.
From this coma, the geometric coma ef@amust be subtracted to yie the actualcoma. Using the

measured tilt and the known NA, the geometric coma subtraction is as follows:

C'=C,-C=C,- (64)

6-2t2

Figure 12 shows the significance of this correction by plotting the amount of coma correction
required (in waves) per wave of measured tilt. If the system has 40 fringes, multiply the ordinate by 40 to
find the magnitude of required coma correction in waves.

Section 5.9 describes a coma that comes from the planar grafmagttify spherical beam. If this
effect is present in the test wavefront, then Egns. (63) and (64) may need modification to account for this
effect. Like the geometric coma, the grating coma is also proportional to the tilt, so the modification is not
complicated.

5.5.2.2Method 2: Removing Geometric Coma Using the fleienceWavefront. Performing two

separate experiments using gratings aligned fardift angles or with dirent pitch, enables a combina
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tion of measurements that can be used to identify and remove the geometric coma. (The image-plane ref
erence pinhole(s) and window must be designed to accommodat# tiigsanalysis method utilizes a
Zernike polynomial fit to thelifference wavetmt, representing the dérence between two separate mea
surements. Equivalentlgince the fitting polynomials are orthogonal, the first set offictezits may be
simply subtracted from the second set to provide the fittindiciaefts of the diference wavefront.

Consider separate measurements using to two gratings inserted into the same beam pasition, nor
mal to the central rayout with the rulings oriented along fdifent directionsThe image-plane beam sep
arations will bes; ands,, not necessarily equal in magnitudssume that the optical system under test
has an arbitrary wavefront aberratiddfip, ¢). To reduce measurement uncertainties, the two wavefronts
used here may themselves be composite wavefronts formed from multiple series of similar measurements.

If for both measurements the test beam passes through the same image-plane point, thenr the contri
bution of tilt and geometric coma to the two observed path lendératites may be written according to

Eqg. (59). Including arbitrary wavefront aberratiohls
0R =W +t(1-1t%)s, ({2, 2,) - 1%, ({25, Z,) = T, ({2, 2,) + C, [{Z6, Z;), (65a)
AR, =W+(1-1t%)s, [{Z,, 2,) - 1%, ({25, 2,) = T, ({2, 2,) + C, [{Ze. Z;). (65b)
Taking the diference,
AR -AR, =(Ty - T,)({2,,2,) +(C, - C,) 426, Z;) = T, U2, 2,) + C, 26, Z;) , (66)

where AR; — ARy) is the measured @frence wavefront, aritl, andC, are themeasued Zernike coefi-

cients that describe it.

s =(Ti-T2) = (a0, 8)
0o _ . (67)
s =(C1-C2) = (6. 2)
tilt vectors, T coma vectorsgC
ay ay
T
f y
(o
Tl Cl
— al 86
Cpa=C1-C>
TA:Tl_TZ CA:bTA

Figure 13.When two or more measurements are made f@relift orientations of the spatial carrier frequency of the
fringe pattern, the systematic coma may be isolated and renithisds facilitated by the definition of twdifference
vectorsT , andC,, as shownThe systematic coma components must be parallel to the tilt in the individual measure

ments. Experimentally the measured co@asndC, come from the inherent con@l plus the systematic coma,
oriented parallel to the tilt in each measurement. By using tfexatite com&,, the inherent coma is separated
from the systematic coma componefiise proportionality constattbetweenC, andT, is easily found using a
least-squares technique.
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The contributions of the wavefront we are trying to meadéliege removed by the subtraction.
Figure 13 shows the tilt and coma vectors of two separate measurements, aridrémeeiectors
described by Eq (67T-he measured coma vect@s andC, both contain the inherent cor@a, which is
removed by subtraction.

Even though the NAand thud) is not known, we may utilize the fact that th¢o of T, to C; and
of T, to C, is fixed, and solve for the proportionality constariat provides the best fit. Using the method

of least-squares, the criterion for the best fit to the data is to find the minimum of the error fE#(Elion

The minimum occurs where the derivative with respettitozero.

de?(b 2
dl:E ) <0=abf1, [ ~2(1, T,). (69)
R el (70)
Solving for b, " A” & T
By the known relationship of tilt and coma in Eq. (63), we can solve &rd thus NA.
b=-— ' and t= -0 (71)and (72)
6-2t2" 2b-1-

t

V1+t? (73)

From here, the procedure for removing the coma follows Method 1. From the two measured comas

NA = sin(tan‘l t) =

C; pand the measured tilf, , the geometric coma is subtracted. Separatetyeach measurement (1

and 2), we find the underlying comia.

C'=C,-C=Cy,-bT,=Cy, - DaHilZ? :_22;7 ETLz . (74)

The measured wavefront, after the removal of the systematic coma, is found frawerdogeor another
suitable combination.of the two sets of measurements.

As stated earlieiif the so-calledyrating comasystematic error is present in the test wavefront, then
the above discussion requires some simple modificafidresaddition of the grating coma onlyfexdts
the proportionality constant between the tilt and coma terms. Since for Method 2, the measureimment NA
a parameter of the fit, and the proportionality constant is unknown, no modification is required-to deter
mine the inherent coma. Howey&dquations (71) through (73) which relate the fitting paranteterthe

measurement NA, do require modification.
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5.5.2.3Alternate description of Method 2: Removing Geometric Coma

There is an alternate geometric description of the cc coma vectors
subtraction in Method 2 that does not use thieifice wave &
front, but yields the same solutidiVe utilize the two separat bT,
measurements, and the fact that the tilt vectors in each mi |
proportional to the geometric comwith the same @portion- ,'
ality constant. :

_——

Figure 14 shows a graphical representation of this C,

method. Using the coma terms from two measuremerts pi
. . Figure 14.A geometrically alternate, yet
formedat different beam displacemer@s andC,, vectorspro- mathematically identical description of the
systematic coma removal. Here the mea
sured comaC, andC,, contain both the
inherent com&’ and the systematic coma
components that are parallel to the mea
(they may not match exactly) at the location of the inherer  sured tiltsT, andT,. The constant of pro
portionalityb depends only on the Néand
comaC’ we are trying to find. Following the least-squares s the same for both. Finding thehat pro
vides the best agreement between the inher
method we define an error functi@A(b) that here represents  ent coma of the two separate measurements

yieldsC'.

portional to the tiltsT; andT, are subtracted to reach the be

agreemen(The distance between the two points is minimize

distance in the cof€ient vectorspace shown in Fig. 14.
E*(b) =|(C,-bTy)-(C, - bT2)||2 =[Colf + 024" - 26(T, IT4). (75)
This expression is identical to Equation (68), and thus its solution will be the same.

5.5 Summary

Measured Geometric Coma|C|=1/6 NAZ [T| O At 0.08 NA,|C|/[T|= 1/6 0.08 =
0.0011 waves per wave of tilt = 556104 waves per fringelC| = 0.37 nm @ 50 fringes.
At 0.1 NA, |C|/[T| = 1/6 0.2 = 0.0017 waves per wave of tilt = 83L04 waves per fringe.
|| = 0.56 nm @ 50 fringes.

5.6 SYSTEMATIC ERROR FROM DETECT OR MISALIGNMENT

It is reasonable to assume that the planar detector used in PS/PDI interferometry is not perfectly
aligned, with its surface-normal parallel to the central ray of the optical system. Such misalignment, repre
sented as a small inclination of the detector plane, introduces a systematic astigmalibeerm@aygnitude
of this error depends on the beam separation and may be comparable gethectaracylhe sensitiv
ty of a given configuration to detector misalignment is presented at the conclusion of this section.

Following Section 6.5 on the geometrical coma systematic, ¢éneefect of the detector misalign
ment on the observed interference pattern may be derived in terms té#dtafthe path-length difr-

ence between the test and reference beams, observed in a coordinate system appropriate for the detector

81



Systematic Eors and Measw@ment Issues

) b) \ Figure 15.Definition of the
) coordinate systems used in the
Wp(x ¥ d

o8 description of the detector mis
image ES S
plane 5
g
8

alignment systematic error
Begin with Equation (51) for the path lengthfeience, using, as the distance from the image-

T

plane to the detector along th@xis, as shown in Fig. 15. In terms of the dimensionless coordinates, the

path length dierenceAR; is written in the case of perfect alignment
AR, = zoét(l—%tzpz)pcoscp, (76)

where, without loss of generalithhex-axis is defined along the displacemsnf the test and reference
beamsAs beforet is the tangent of the NAngle,d is the dimensionless angle related to the beam separa
tion, andp is a dimensionless radial coordinate in the detector system. Maintaining the cylindrical coordinate

system, and reintroducing= ptz, as theregular, Laboratoly radial coordinate,

AR, __El 2Hcoscp (77)

Figure 15 shows how the coordinate systems are defineghresents the radial coordinate in the detector
plane, whiler is the real-space radial coordinatéth a non-zero detector tilt angjethere are small changes

in z, X, andy across the detectddefine the vectors’ = (X, y') in the detector plane, and= (x, y) in the
Laboratory System, and, as before, the patyular vectory = (y,, y,). Based on the tilt anghe misalign
mentof the detector introduces a first-order changeand a second-order change in the lateral coordinates.

Assuming small misalignments, only terms up to first ordgmiill be kept in the following discussion.

.
227, +Y, X +Y,Y = 2, +y [0 = ZOBHV—E (78)

The new path length dérence becomes

= g. 2 H’ cosQ, (79)

Using the first-order expansion pin yfrom Eq. (78), Eq. (79) gives

10 yr 20 2y 0

AR:ZS—?%—Q—E = o (80)
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Keeping only the most significant terms, Eq. (80) becomes

AR= AR, —@sr CoS@. (81)
pa

Putting this back in terms of the dimensionless coordinateg %),
AR= AR, —t*s(y [p)pcose. (82)

To simplify this expression, redefine how the detector tilt is described: the detector is inclined by an angle

y, in the azimuthal directioq)v. Then

yp=ypcoso-0,), (83)

and Eg. (82) becomes
AR= AR, - syt?p? cos((p— cpy) cos@= AR, —%sytzpz[cos(&p— (py) + coscpy] . (84)
This has the ééct of adding a small astigmatism to the measurements. Isolatingfeéremtit fromAR,
leaves
AR = _%szz[cos(Z(p—(py) + coscpy] ) (85)
The presence of the constant gpserm adds defocus and makes the magnitude of fieist efifferent
when the tilt direction is parallel or perpendicular to the beam separation dirdctletector tilt in thes-

direction & || s) produces a “cylindrical” path length tfence of

il AR, =-1syt%p?(cos2g+1) . (86)
For a tilt in they-direction § [0 s). the path-length change is astigmatic.

yilt: ARy = —%wtzpzsin&p . (87)
The term in Eq. (86) behaves as a small defocus, arising from the fact that one of the bdaassis of

5.6.1Numbers

The peak-to-valley magnitude of the astigmatism described by Eq. (87) is
peak-to-valley: |AR y| = wtz =sy NAZ . (88)
The approximation holds for small NA. Equation (88) is plotted in Fig. 16 as a function fafr déam
separations in the range relevant to EMigible, and 193 nm system measurements. For convenience, we

can re-write Eq. (88)uttingy in degrees rather than radiabe peak-to-valley astigmatism magnitude

per degree of detector tilt is

peak-to-valley: |AR y| ~0.0175sNA2=1.1x10*s@NA=0.08 . (89)
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P-V astigmatism per degree of detector tilt misalignment
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Figure 16.Detector misalignment (tilt) introduces a path-lengtfedénce between the test and reference beams
causing a systematic astigmatic error dependent on the beam separation and the measurdmergralAstars indi
cate relevant values for EUdNA visible-light PS/PDI interferometry at 0.08 NA.

5.6 Summary

Detector Misalignment. P-V astigmatismA = syNA2 0 ~0.47 nm tilt. Also, AlNfinge = A
NA/2 = 0.54 nn tilt/fringe. The measured Zernike céeient of astigmatism is half of this, or
0.27 nm tilt/fringe.

5.7 GRATING PLACEMENT CONSIDERATION: SHEAR

As discussed in Section 4.4, the PS/PDI shares many similarities to a conventional lateral shearing
interferometer (LSI) in that both systems introduce a relative lsbaay or displacement, to generate the
interference pattern. In principle, the various configurations of the LSI interfere the test beam with a
sheared copy (or copies) of its@lhe PS/PDI, on the other hand, produces a spherical reference wavefront
by spatially filtering one copy of the test beam in the image-plane where the beams are stylaeated.
the measurement involves spherically dieg beams and no re-imaging optics, in both configurations the
central rays of the two beams are directed at slightfgrdifit anglesThe beam shear in the PS/PDI is

determined by the grating pitch and the illumination wavele#gttemparison of the importance of shear
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in the two interferometers is shown in Fig. 17.

By rule, the PS/PDI reference pinhole should be chosen small enough that the reference wavefront
significantly overfillsthe measurement NA. Howeysince pinhole-dffacted reference wavefronts are
typically of suitably high quality only within a cone of finite angle, selection of the grating position and
pitch should be made with attention to the beam shear angle. For a given optical system and wavelength,
the number of fringes in the interferogram depends only on the image-plane separation of the test and ref
erence beams (Section 5.Bhere are, howevginfinite combinations of grating pitch and position that
yield the same separation.

Here, the discussion is limited to the PS/PDI configuration with the grating placed between the test
optic and the image-plane. Similar analysis for other PS/PDI configurations follow a nearly identical form:
where the grating is placed before the test optic, the shear angle is scaled by the system magnification.

From the grating equation, the shear afigke equal to\/d. For a grating of pitckl and distance

from the image-planethe image- or object-plane separation of beam is

V.
0z=—=s, (90)
d
_— /,"--‘\\1
\ 4
. 4 shear angle
test beam reference beaTh" (ang|e between the
(high quality over half-angldd) Ce_ntraJ rays)

o
-
(a) small shear (b) large shear
_ oot rr-' "
- Pad
-'.- i 'H-“ /// Ifr 1I
a ; ‘I. f/ I |
& P ] // 1 i
(Q/.) | & "'\. .I'll
i I Y s
5 ¢ . i
5 &
5 £
= o,
\.‘ __.r'
(c) small shear (d) large shear

Figure 17.The importance of beam shear considerations is shown in this figure. Shear is here defined as the angle
between the central rays of the test and reference b&amsest beam is represented with solid lines, and the refer
ence beam with dashed lines, as shown in the toplnathie LSI (a) and (b), the test beam interferes with a sheared
copy of itself, and fringes are produced in the overlap reyilren the shear is Ige (b), only a fraction of the avail

able area is investigated. In the PS/PDI the spatially-filtered reference beam should havargerNi#an the test

optic (c). Howeverif the shear angle is ige (d), then to guarantee that the reference beam will overlap the test beam
over the measurement NA, the requirement on tliedifon angle of the reference beam becomes more severe.
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Assume for a given application that the reference wavefront is of arbitrarily high quality only over a cone
defined from the central ragut to a half-angl@. Clearly a minimum requirement for measurement is
that3 > a, the maximum half-angle within the N#& measurementVhen the shear angleis significant
relative toa, and the test and reference beams are displaced, the new requirefhiéetomes
B>a+06. (91)

Producing a high-quality reference wavefront is a matter of foremost importance and a significant
challenge to point-difaction interferometryAny method of relaxing the requirements on the magnitude
of B gives more freedom to other experimental parameters. One direct means of rBdsi¢mgeep the
shear angl® as small as possible. For a given image- or object-plane beam sepgratioay be
reduced by moving the grating away from the image-plane (or away from the object plane in other
PS/PDI configurations). Choosing the optimum grating position requires balances the often oppesing con
cerns of the grating’pitch and the illuminated area. Fabrication issues may constrain the maximum size

of the grating, but gratings of ger pitch (coarsemay often be made to higher quality

5.7 Summary

ShearAngle. 6 = Nd = shear angled = grating pitch3 = half-angle over which reference
wavefront is of arbitrarily high qualityt = NA. Minimum requirement > 6 + a.

5.8 GRATING FABRICATION ERRORS

Aberrations and local imperfections in the grating-beamsplitter can contribute directly measurement
errors.This section describes the most significant grating error contributions, and recommends various
methods of overcoming thefhe most important recommendation is that when the quality of the grating
cannot be guaranteed to beyond the level of measurement accuracy desired, then one of thadiest-dif
order beams should be filtered to become the reference beam.

It is helpful to view the grating, which serves a dual role as beamsplitter and phase-shifting ele
ment, as a binary transmission hologram approximating the coherent interference of multiple plane waves
separated by small angles. Imperfections in the grating pattern can be described by aberrations in the
interfering beamsThe inversionof this description (by BabinatPrinciple)is a single illuminating beam
diffracted by the imperfect grating into multiple, coherent, aberrated beams.

For the following discussion it is useful to treafeli&nt types of grating imperfections separately
Figure 18(b) shows several types of grating defects. Pattern placement errors, in which the unbroken opaque
lines are not accurdyedrawn, are referred to ggating aberations The other kinds of defects in which
the opaque lines are missirngansparent regions are obstructed, or the thickness of the supporting substrate

86



is non-uniform are addressed separately from the grating aberi
tions.
5.8.1Grating Aberrations

It is important to note that the phase of the zeroth-ordel
fracted beam isot affectecby the grating pattern itself. Light
propagating into the zeroth-order adidiphase independent of
the positions of the rulingShis is because the grating pattern
introduces no path-length change into the various parts of the
zeroth-order beam. On the other hand, thieadifed beams are
defined bythe grating positions: the wavefront phase of these
fracted beams is subject directly to the grating aberrafidresfok
lowing discussion presents a simple analogy that is used to d
strate this point.

In the absence of a grating, the superposition of multipl
coherent beams would form a stationary intensity pattern in tf
grating plane. By Babinet'Principle (Babinet 1837), the single-
beam illumination of a grating that approximates this same ini
ty pattern generates the fdifction of multiple beams similar to tl

former configuration.
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(a) ideal
binary grating

I

|8|

i

(b) exaggerated
nonideal grating

Figure 18.Imperfections in the
PS/PDI grating beamsplitter can
introduce aberrations into the test and
reference beams. (ahows an ideal
binary transmission grating of equal
line and space ratidhe grating in

(b) contains several aberrations types
discussed in this section: low-spatial
frequency pattern errors, dust or sub
strate errors, and pattern defects.
These types of aberrations cafeef

the test and reference beam irfefif
ent ways.

To illustrate this point, consider a grating of pittivith rulings aligned perpendicular to the

axis. Define the spatial carrier frequency of the grating

210~
=—X.
d

K

(92)

We may represent the grating transmission funckioh as asquae wavedefined by an arbitrarspatial
ly varying grating phase®(r). Separating the grating phase into an aberration fungfigrand a carrier
frequencywe have
®(r) = olr) +K [ = glr) +Kx, (93)
A, cod®(r)] 20
=0 .
FD, cog@(r)] <0

This description leads naturally to a representation of the grating as the interference of two beams.

and T(r) (94)

At this point, we neglect the spherically digirg or conveging angle of incidence, and consider the

beams as plane waves. (Section 5.9 addresses the systematic error issues related to the planar grating in
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spherical beam.) In this description, assume unit intensity of the beams, neglect variation of the beam
intensities, and assume that the test beam is unabeifhtedormalized intensity of the two interfering

beams is given by

() =4+ €*0f = 3+ oo ()] (%5)

The square-wave grating transmission function of Eq. (94) is an approximation to this sinusoidal varia
tion. Placing a simple threshold on Eq. (95) completes the analogy to Eq. (94), and justifies the approxi
mation. Sinceb was chosen arbitrarilghen for any grating phase functidxr) the difracted beams
acquire a wavefront aberratigr) and a direction determined &y

Regarding the description of spherical beams, Eq. (95) may be generalized to allow both of the
interfering beams to contain an additional phase term representing the path Idagghatifbetween a
spherical surface and the grating plafnieis additional phase, defined &§), appears in both beams, and

thus the resultant intensity pattern is dieetied. Mathematically

|'(I’) - %‘eir(r) + eiq:(r)+ir(r)

:%+%cos[®(r)] =1(r). (96)

The analogy may be extended to include the high@adiéd orders. Re-creation of a square-wave
intensity profile in the grating plane requires an infinite series of interfering beams, each with the same
phase aberration, but with aféifent propagation direction and intensitpiese beam directions are given
by positive and negative integer multipleskdf . . -X, -k, 0,x, 2, . . .nx, . . .).The illumination of the
square-wave grating with the single test beam generates this same serfeaovédlibrdersThis series

may be generalized as a Fourier cosine series.
T(r) = Y acodq(r) +nkx] . (97)
n

5.8.2Phase-Shifting

The origin of the phase-shifting properties of the grating is easily shown from the discussion of the
previous section. Here, neglect aberrations and imperfections in the grating, and assume that the grating is
defined by a carriefrequencyk and a square-wave transmission function. Once again we equating the
coherently-combined intensity of a series of interfering beams with the grating transmission fixsction.
above, takingc to be aligned with th&-axis, the translational invariance of the grating along/itizec

tion allows the substitution offor r.
() =T(x) = ¥ acos(nk). (98)
n

Physical translation of the grating in tkelirection, perpendicular to the grating rulings, may be

expressed as
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1(x=%,) =T(x=%,) = > ancos[nK(x - xo)] =5 a,cos(nkx-A4,) (99)
n n

where we defined the phase steg\as nkx,. This very important result shows that a physical translation
of the grating produces the samteef on the diracted waves as a constant phassetetween the
interfering beams in our model. Furthermore, between anwatiiazentgrating orders4n = +1), for a
given grating translation the relative phase shift will be the s@ha.is, the expression
Ag(n,n=1;X,) = Nkx, = (N=1)KX, =KX, (100)

is invariant inn.

Another important, albeit obvious, by-product of this discussion is that the grating translation required
to produce af, single-cycle, phase shift between adjaceffitagifed beams is simply; (Recalling the defi
nition of k = 217d, we can see from Eqg. (100) that the translatjprequired to produce atphase change
is in factd.) Since the ideal grating in this treatment is periodicwith periodd, we should expect that
translation byd returns the system to its original state.
5.8.3Local Imperfections and Substrate Errors

Besides the low-spatial frequency pattern errors which introduce phase aberrations infoatite dif
ed beams, there are othbkigherspatial frequency errors of conceAm opaque dust particle or a defect
within the illuminated area of the grating may appear as a dim region, or a region of low (or zero) fringe
contrast in the data. Since the plane of the grating is not typically imaged onto the detector friane, dif
tion broadens the features of these high-spatial frequency aberrA8ahg. grating is translated over
several fringe cycles, the motion of these aberrations will distinguish them from the stationary defects in
the optics or elsewhere. By performing careful measurement, it may be possible to overcome localized
grating defects by using otheleanregions of the grating.

One form of grating fabrication error is perhaps the most troublesome. If the grating is patterned on
a membrane or substrate, then substrate thickness variations can introduce phase errors that could be ver
difficult errors to overcome. In that case, the quality of the test beam is directly compromised. Once
again, careful measurements performed usirfgreifit regions of a lge grating may reveal the presence
of such systematic errors.
5.8.4Recommendations

The above discussion leads to a recommendation that may appear-tduititez. It has been
shown that aside-from local imperfections and substrate errors, grating pattern aberrations create phase
errors only in the difacted beams. By allowing the zeroth-order to become the test beam, and by spatially

filtering one of the difacted orders to become the reference beam, these grating aberrations may be over
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come.That is, where concerns about the grating quality exist, the first-order reference configuration is rec
ommended over the zeroth-order reference configurafttia.recommendation, howeyeuns contrary to

the assertion that the zeroth-order reference configuration should be used to achieve high fringe-contrast.

5.8 Summary

Grating Fabrication Err ors. Recommendationuse thefirst-order refeenceconfiguration
whenever grating fabrication error magnitudes are unknown, or are known to be comparable
with the desired accuracy

5.9 GRATING COMA

Another potentially significant systematic error comes from the use of a planar grating beamsplitter
in a spherically divaying or convaging beam. Since the angles of incidence vary across the illuminated
region of the grating, a small phase error is introduced into thaadd beams. In a geometrical descrip
tion, the grating pitch appears reduced to tie@wif rays perpendicular to the grating rulingbis leads
to a variation in the difaction angle within the cone of the beam.

Thegrating comaintroduced here may be filtered, and therefore eliminated, when the interferome
ter is used in the first-order reference configuration — the grating aberrations are manifest only in the
non-zero difracted orders (Section 5.8)herefore with appropriate filtering, the relevance of the grating
coma may be limited to the zeroth-order reference configuration only

The mathematical formulation presented here follows from the discussion of grating aberrations in
Section 5.8It is important here to consider the spherical djeece of the illuminating bears before,
we create an analogy between the grating transmission, and the intensity pattern produced by a pair of
coherently interfering beams in the grating plane. Starting with a single, illuminating beam, we solve for
the phase aberrations ofidifracted beantequired to produce the desired pattern. Limiting our discussion
to the interference of only two beams simplifies the problem considefahilyat end, consider only the
fundamental sinusoidal-transmission of an ideal grating of gitthe descriptions fotonveging and
diverging beams, with a radius of curvatuReare identical in form.

Consider the illuminating beam to be an ideal spherical wavegitigefrom a point source located
a distance from the grating planéhe path length of a ray traveling from the source to a pasR, as
shown in Fig. 36 and@ are defined as the spherical polar and azimuthal angles, araxtigeis defined
perpendicular to the direction of the grating lines.

In the plane of the grating, the radial coordinate,

r=ztan®, (101)

andx in the new coordinate system is
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X =r cos@= ztanBcosQ. (102)
The path lengthR from the source point to the grating is
R=z+rsin®=z+ztan@sin® = z(1+tanOsind). (103)

Our immediate goal is to discover the phase of a beam that interferes with the illuminating beam to
produce the grating pattern in intensig before, we assume the two interfering beams are of uniform
intensity across the illuminated ar&®e may express the grating transmission function in the new eoordi
nate system, using defined as beforex = 217d.

T(x) = § +$cos(kx) = 4 + § cosg(kztan 6 cosg) . (104)

The normalized intensity pattern produced by the interference of two beams is
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Figure 19.The amount of systematic coma error introduced by the planar grating in a spherical beam depends on the
system NAiIn the vicinity of the grating, and on the amount of tilt or equivalently the number of fringes in the mea
surementThe top row shows the ratio of the Zernike comafadent to the tilt codicient plotted in log-log and lin

ear scalesThe lower row calculates the amount of coma for a certain number of interferogram fringes within the
measurement NAThe same information is plotted in log-log and linear sddie.grating angle is arbitrary and

therefore this discussion is easily extended to jfewma and the dilt components.
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. L2
I(r) =4[ +€°| =4+ Lcos(®-kR). (105)

Comparing Eqns. (104) and (105) allows us to solve for the phase fudiction

® =kR+kx =kR+kztanBcose. (106)

Here thekRterm is not expanded in order to keep the form of the giivgr(or convaging) beam in the
expression of interfering beafhe remaining term has onkdependence because of thegosmpo
nent.A series expansion Bireveals separate terms that represent the spherical componenfyaotiatif

angle of the second beam, and higbeter phase aberrations.

¢ =kR+ choscde +10°+20°+. ] = kR+(kzcos@)0 + 5 (kzcosg)0® + 2 (kzcos@)@® +---  (107)

® = (spherical part) +(tilt) + (higher - order aberrations) . (108)

As a final step, it is convenient to represent the phase termsiothelizedBeam Coalinate
Systenwhere the polar angkis normalized to the NAnglea: p = 8a. Here,p is a dimensionless
angular radiusvariable, that allows us to make the transition froBeam Coadlinate Systepnto a repre
sentation on a unit circle, over which the Zernike Polynomials are orthogonal. Here it is important to
remember thatr is thelocal NAangle describing the optical system in the vicinity of the grating. Clearly
if the beam is planar (collimated) as it reactiesgrating, thewt = 0, and there is no systematifeet

introduced by the grating, regardless of the image-side NA.
® = kR+ (ak2)p cosp+ (%aus)p3 cosp+ (1—2£-)0(5}<z)p5 cosp+--- (109)

We can write this explicitly in terms of the Zernike polynomials, as described in Chapter 14, using the
shorthand notation for the Zernike polynomiz]s Z;(p,@). After tilt, the third and fifth-ordexk-direction

coma terms are

Z; =pcosy, (110a)
Zs= (3p3 - Zp) cosQ, (110b)
2,5 = (10p° ~12p° +3p) coso. (110c)

The isolated cubic, and fifth-order terms that appear in Eqg. (109) can be re-written using
plcosp=425+%2, (111a)
and P cosg=423+2Z5+3 2. (111b)

Keeping only terms up to fifth-ordewe can now rearrange terms to write Eq (109) as

® =kR+kao(1+ 302 + Fat)z, +kao(§+ s a?)Z, + ke ®Z (112)
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Aside from the aberrations in the test optics, and other unrelated systematic error sources, this-is the mea
sured phase.

The methods for removing the grating coma follow directly from the removal of the systematic
coma, described in Section 5.5alfthelocal NAin the vicinity of the grating, is well-known then the
removal may be straightforward. Note that it may be the case thatetdwuement NAwhich includes
only the sub-region of the beam involved in the analysis, is smaller than the availabiehdAletector
In such cases, thleeused in the calculations should be theasuementa, representing only the subset of
rays that eventually reach the detector and are used in the analysis.

At this point, the direction of the grating rulings can be generaliteel description is simplified
by using the representation of Zernike pairs in vector notation, as described in Section 5.5.1. Here, we uti
lize a tilt vectorT = (a4, ay), a coma vecto€ = (ag, a7), and we introduce a fifth-order coma vector
Cs = (43 a14). By matching the coétients in Eq. (12) the magnitude of the grating coma is prepor

tional to the tilt

(1+¥0(2)0(2
— 25 ~ 12
9+202+3a* TeaT (113)

Hence the adjustment @ required to remove the grating coma is
C=C-AC . (114)

The fifth-order correctiol€s is always more than one order of magnitude smaller than the third-order

correction.
7250‘4 2 4
ACg=—B "  _T=2a"T (115)
2.2, 1.4 75 '
1+§a +450
and the required adjustment is Cs =C5-ACs. (116)

Figures 19(a) and (l®hows the magnitude dfg relative toa,, calculated for between 10 and 60 fringes.
The magnitude in waves is plotted in Figs. 19(c) and (d).
If the measurement N& not well known, then a method of combining orthogonal measurements,

as described in Section 5.5.2, should be employed.

5.9 Summary
Grating Coma. |C| = 1/9 NAZ |T|= 3.6x 104 waves per fringglC| = 0.19 nm @ 40 fringes.

5.10 SATIAL FILTERING BY THE IMAGE-PLANE WINDOW

ly passing the test beam through a finite window in the image plane, the PS/PDI performs-an inher

93



Systematic Eors and Measwement Issues

ent spatial filtering of the light in a way that the PDI does Tlo¢ significance of this low-pass filtering
depends on the size and shape of the window relative to the size of the focusethigeievant length
scale, it will be shown, i5/NA.

A certain amount of filtering is required to ensure that the overlap of the adjacent orders is mini
mized as the test beam passes through the winfitive system is designed carefuliigen with the refer
ence beam centered on the reference pinhole, the test beam passes through the center of the window

Since the filter sits in the image plane of the test optic, and measurements are performed-in the far
field, the window may be regarded simply as a spatial filter ifrtheier domainof the beamThis
description is repeented in Fig. 20. For the test beam, the window acts as a broad, low-pa3sélter
pinhole acts as eery narow low-pass filter for the reference beam (ideadlydelta-function)The window
displaced significantly from the central ray of the reference beam, functions as a band-pasandtait
ting, orleaking higher spatial-frequency componeritke fact that thesefetts are readily observed in the
data has led to the development of an alignment system based on a rapid 2-Biaosf@m of the mea
sured dataThese observations are discussed in Section 6.5.)
5.10.1A Simple Model for Spatial Filtering

This section presents a simple mathematical treatment of the wimdpatial filtering déct.
Based on the fact that the light propagates from the exit pupil of the test system to a focus in the image-
plane, and then to the detector in thefi@ld, we may regard the pinhole and window as spatial filters in
the Fourier domain of the beam, as stated above. For spatial filters of moderate dimensioficiemd suf
distance to the detectdhe farfield (Fraunhofer) approximation for the fl#ction calculations is suitable

(Goodman 1988:61)he neaifield term becomes significant only when for the lateral distance r

Az
r \/% . (117)

This is approximately 2Qm at 13.4-nm wavelength and 10-cm distance.
Define G; as the electric field of the test beam in the exit pupil of the test @ifis. the test beam
field as it reaches the detegtafter having passed through the image planeglbet the field in the

image-plane, antlbe the transmission function of the window; either or both may be complex. Here we

Figure 20.A simple lateral translation of the image-plane
spatial filter in the PS/PDI switches between the first-
order reference and the zeroth-order reference configura
tions.The axes here are centered on the test beam focus.
The positive and negative first-fidicted-orders fall on
opposite sides of the focuBanslating the spatial-filter
makes either the zeroth-order beam or one of the first-
order beams the reference beam.

first-order reference zeroth-order reference
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will use the symboF{ } to denote the Fourietransform in the following manner:
F{b(k)} =, b(k)e" "dk = B(r) . (118)
Based on our assumptions fgrandg,
F{G}=g F{T}=t. (119)

The ConvolutiorTheorem allows us to determifeg

Fod} =G -T=G, . (120)

The features of; are essentially mapped ory. The efect of the filtering appears in the detected field as
a convolution of the propagated test beam and the Fararesform of the window transmission function.
The efect of an arbitrary filter may be studied in terms of its transférivhen the window is
small, then the central peak dis angularly broad, and the convolution@fwith T blurs any sharp fea
tures inG;, decreasing the spatial frequency content of the measurement. Otherwise, when the window is
large, the peak of will be very narrowand the convolution d&; with T will leave G; largely unafected.
T helps us to define thengularresolutionof a given filter
Let us consider a square window of wigthand explicitly write the dffaction equation. Some

leading constant coifients are ignored for simplicity
T = [ 1) &Far = (1" ax f17e" "y (121)
T(k) = w? sinc(} wk, ) sinc{} wk ) . (122)
T may be expressed in terms of the polar angles ir-taedy-directions6 = (6,,, ey).
T(6) = w? sinc(} wk®, ) sinc{3 ke, ). (123)
The full-width of the central peak of sim(s approximatelyt Thus, the angular width dfis given approxi

mately by

wk AB 2m A
— =1 AB=—=—
> oW (124)

This width itself has no dependence on NA. Howeligsisignificance on the highest measurable spatial
frequencies, is given by the ratio of the full angle of the optical systeto 26.

highest frequency = 2a =20(—W = 2w cycles. (125)

Features of higher spatial frequency than this will subtend an angle small@&6tttha convolution will

strongly blur these feature&8 may be regarded as thagular resolutionof the PS/PDI in any direction.

For the EUVconfiguration of 13.4-nm wavelength, with 0.08 or 0.1 NA, Fig. 21 shows the highest trans
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mitted spatial frequency for a range of reasonable window sizes.
5.10.2Effect of Spatial Filtering on the Intensity and Phase Measurement
The above description showed that the image-plane spatial filtering of the windollunslyarp
(angularly narrow) features in the test wavefront when the window is relatively small. It is important to
understand how this blurring mayfexdt the measured intensiyd phasef the test wavefront. For every
specific design of the window/'size, shape, and position, thikeef will be somewhat dérent. In this sec
tion, an informal, heuristic gument provides a useful tool for demonstrating that when the test optics are
of high quality intensity ripples adjacent to sharp features may not be accompanied by ripples in the phase.
If the centered window transmission functigin) is strictly real and has polar symmetityen its
FouriertransformT (k) is also strictly realThe following equation demonstrates this point for an arbitrary

real functiont(r).

T(k) = [1(r) "o = J'At(r)(e”"f' +eC)dr =2 [ () cos(k (¥} dr OR. (126)

Depending on the shape of the winddwnay have a series of positive and negative lobes. (This is the
case for the rectangular window and its accompanying sinc function transform. Furthermore, in an aberra
tion-free optical system, apart from any constantfaeit the test bear@; is also realThus the convo
lution of the test bear@; with T (that is,Gy) is real.

Sharp changes in the test beam intensity may occur where there are physical apertures or pupils
within the system, or where defects in the optical surfaces create localized dark Petgilbagietectqr
these sharp changes in the intensity may be accompanied by intensity oscillations, due (mathematically) tc
the convolution of the test beam with the lobe3.d&s T is a strictly real function, howevehere is be
no variationin the phase oBy. Clearly if the test optic contains features that create rppasevaria-
tions across the aperture then there will be accompanying ripples in phase as well.
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1pum 2 um 5um

Figure 22.Simulated image-plane spatial filtering of a uniformly illuminated optical system with a circular aperture.
The window in the PS/PDI spatial filter transmits the test beam with some spatial filtering. For 13.4 nm wavelength
and 0.08 NA, the &ct of variously sized square and circular filters is shdime. intensity recorded in the detector
plane clearly shows thefetts of filtering at 54m-width and below

0.5 um

square

circular

5.10.3Examples

A straightforward difaction simulation is performed to illustrate théeef of various amounts of spa
tial filtering on a PS/PDI interferometer for EWtical system measurement. Considering an aberration-free
optical system operating at 13.4 nm wavelength with 0.08 NA, both circular and square windofescoit dif
widths are studied.

Figure 22 shows the (simulated) detected intensities for square (top row) and circular (bottom row)
windows 0.5- to 5.@@m-wide.As described above, the ripples are caused by the convolution of the circu
lar pupil with the Fourietransform of the window transmission function.

Another subject of interest is the way in which spatial filterifigcs$ small, localized defects in the
optic. Figure 23 shows the results of a simulation in which these defects are modeled as dark circles in an
otherwise bright region far from the edge of the aperfire.top row shows how these sharply-defined dark
regions appear in the exit pupit 0.08 NA, the fraction of the whole aperture subtended by these features is
shown above each. For reference, these relative sizes are also provided for the two cases of the zoneplate
and the Schwarzschild objective experimente pupil sizes in these cases are @00and 4 mm respec
tively. The relevant dimension of the dark features is their angular size with respect to the full aperture of the
test optic.The bottom row shows the (simulated) intensity patterns at the deseetied for displayrhe
angular widthof these simulation images is 1/10-th of the aperture.

Notice that below 1/40-th of the aperture width, the features are below the angular resolution of the
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1/400 1/200 1/100 1/40 3/80
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10 um (4 mm) 20 pm (4 mm) 40 pm (4 mm) 100 pm (4 mm) 150 pym (4 mm)
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detected

|a— 1710 —p
20 pm (200 pm)
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Figure 23..Spatial filtering of defects in the test optic is simulated in this figure. Here, defects are modeled as dark
solid circles in an otherwise bright pupil illumination patté&hove each simulation, the defect sizes are given as a
fraction of the full angular width of the optic, with relevant numbers quoted for the zoneplate experiment ard the 10
Schwarzschild objective. Here the defect size is given with the full aperture size shown in parefleciles.

width is 5um. Details of the same angular area of the pupil as recorded in the detector plane are shown in the lower
row; the images are scaled for displBglow 1/40-th of the full-angle, the defects behave essentially as delta-function
aberrations, unresolved by the spatial filedyove 1/40-th of the full-angle, the recorded test beam patterns follow the
increasing angular size of the defedise horizontal and vertical pattern in the test beam images is the sinc function
generated by the square window shape.

window, and all appear very similadBecause of their relatively small size, the resultant intensity patterns
reveal the behavior af. Mathematically this situation is analogous to the convolution of a delta-function
with T. In qualitative agreement with Eq. (125) plotted in Fig. 21, the highest transmitted frequency lies

between 1/40 and 1/100 of the aperture width. Features smaller than this sizer@selnetby the filter

5.10 Summary
Spatial Filtering. Highest spatial frequency f wZA/NA) cycles O 12 cyclegim filter width.

5.11 VARIATIONS OF THE PS/PDI SFATIAL FILTER

The previous section described the way in which the size of the image-plane wifelis/tht
highest spatial frequencies resolvable with a given configuration of the P8IB[j.the window-pinhole
displacement direction, the maximum allowable width of the window is constrained by the image-plane
separation of the test and reference beams. Howievteie perpendicular direction, there is no constraint
on the size of the window: the window may be defined as a long slit, narrowdisglecement direction

The square window design is easily generalized to the case of a rectangular window of dimensions
w, andw. The Fourieitransform of the rectangular window transmission function is
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T(0) = wyw,sinc{3 w ke, ) sing(3wyke ) | (127)

Separating the- andy- directions allows the definition of two angular convolution half-widths.

A8, = Wlx and AB, = le (128)

These serve as thxe andy-direction angular resolution of the systeks.described in Section 5.10, to
maintain a high spatial frequency response, it is desirable toMN@ap small as possible. It is not neces
sary howeverto reduce)d significantly beyond the angular resolution of the detectsumally determined
by the pixel size and the detector placement.

To minimize overlap of adjacent orders on either side of the test beam, the size of the window is
constrained in the displacement directidhe width should not exceed the beam separation distance
With x aligned parallel to the displacement, this constraint on the maximum sizgwf < s) limits the
minimum achievablé8,. In they-direction, since there is no such constrakf, may be made as small
as desired.
5.11.1Image-PlaneWindow/Pinhole Filter Designs

There are a number of available designs for the window and pinhole spatial filters some of which
are shown in Fig. 24T’hese designs, each allows only two beams to pass through at a time, are divided
into two sets to distinguish between fivet-order refeenceand thezeoth-order refelenceconfigura
tions. By definition, the reference beam is whichever beam is filtered by passing through the small refer
ence pinhole.

Several designs enable measurement in two directions without requiring window translation. In two
measurements, one grating may be replaced by anotiesrted with its rulings rotated by 90 degrees
from the first. Sections 5.5 describes the importance of having separate measurements performed with dif
ferent test and reference beam displacements.

One advantage of the first-order reference configuration not previously addressed is the fixed posi
tion of the test beam when separate measurements are prefdhiseguarantees that the same field
point is being measured. Plus, as described in Sections 5.8 and 5.9, the first-order reference configuration
can be used to filter aberrations introduced by a grating beamsplitéefirst-order referencsvo-direc
tionsdesign shown in Fig. 24 was chosen for the experiments inigtgkferometry described in this
thesis.The ability to perform a pair of measurements without translating the beam is very important if the
beam separation distance is significant with respect to the field-of-view of the test optic.

In the presence of Ige mid- or high-spatial frequency aberrations, which scatter light away from

the central peak in the image-plane, it may be desirable to reduce the amount of beam overlap, by
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First-order referenceconfigurations

conventional design two-directions low-frequency high-frequency
(overlap minimization)

Zeroth-order referenceonfigurations

= | ) -]

conventional design two-directions low-frequency high-frequency
(overlap minimization) in two directions

Figure 24.Several designs for the PS/PDI image-plane spatial-filter in both the first-order reference and the zeroth-
order reference configurations. Patterns that are symmetric @bod®® are designed to be used with two separate

90° orientationsof the beamsplittetamger windows transmit a greater range of test beam spatial frequencies, however
leakageof the reference beam through the windows may introduce measurement uncertainties.

decreasing the size of the winddwvhe so-calledow-frequencydesigns shown in Fig. 24 sacrifice spatial
resolution to improve data quality

As described above, there is no constraint on the size of the window perpendicular to the beam sep
aration directionThe high-frequencydesigns shown in Fig. 24 exploit this fact by using a rectangular
window, long in one direction, to transmit high-spatial-frequencies. In the first-order reference cenfigura
tion, howeverit may not be possible to have two orientations of measurement with a single high-frequen
cy designThe filter design shown in Fig. 25 achieves the objectives of having tieoetif beam separa
tionsand high-spatial-frequency response (in one direction) with either the zeroth-order reference or the
first-order reference configurationBwvo gratings of diierent pitch but oriented in the same direction may

be placed on the same translation stage to simplify the experimental apparatus.

Figure 25.An image-plane spatial filter design that
allows measurement with two fifent beam separa
tions, and provides high-spatial-frequency response in
both the zeroth-order and the first-order reference con
figurations.Two gratings of diferent pitch, but same
orientation are usehe reference pinholes are inten
tionally displaced to avoid overlap from adjacent dif
fracted orders.

5.11 Summary

« Filter Design.Place pinholes at 9@&djacent to a square window to enable direct measure
ments of systematic fetcts. Separatelyadjust width perpendicular to beam separation to
improve spatial frequency response.
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5.12 DISTORTIONS DUE TO THE PLANAR DETECT OR

In the absence of re-imaging optics, the test and reference beams propagate as spherigaity diver
beams incident on a planar detecRrnevious sections (5.5 and 5.6) have described the systematic error
contributions of the beam separation at focus, and detector misalignment, based on the geometry of the
systemAnother source of systematic error is the small geometric distortion arising from the planar geom
etry of the detector itself, intercepting the spherical beams.

Unlike the previous systematic error components which arise from a path-lerfigtaraié
between the test and reference beams, tféstahay be described as a systematic, radial distortion across
the measured area. In the angular representation Belnmm Coaldinates the planabDetector Coodinate
Systenbecomes non-linear with a purely radial dependence.

In theBeam Coalinate Systenthe polar angle at a given detector positiod isis the radial
detector position.

r(6)=ztan® - G(r):tan_l%g. (129)

The radiug in the detector plane corresponds to rays at the maximum angle within tberh&asure

menta,
Iy = ztana (130)

As beforet is the tangent of the NAnglea.

r—:tanO( =t. (131)
z

In theNormalized Detector Codmates the dimensionless radipsis defined as
p=—. (132)
Now, 8 may be rewritten in terms of these new parameters

o(r) = tan‘l%g: tan‘lé%ééz tan~(tp) =6(p) . (133)

When a measurement is made, the wavefront is typically sampled on an array lifeap)nEquation
(133) represents@rrectionwhich must be performed after measurement, to put the wavefront back into its
natural, spherical coordinate systdim.make the transition from the normaliZBeftectorcoordinate system

to a normalizedBeamcoordinate system, we divifieby a as described in Section 5.2. Definas the nor

malized polar angle.
1, _
y(p)=—+= Stan Y(tp). (135)
By their definitionsyy andp will be equal only at the central point£ p = 0) and at the edge of the mea
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surement NAy = p = 1). For the domain gf on (0,1), there is some distortion, dependent on the NA.
For small measurement Nfxapproximate® over the entire range. For ¢gr measurement NA, howeyer
the non-linearity causes the two to diyerThis dimensionless distortion may be characterized by-intro

ducing a parametex defined as
1, 1, -
A(p) =(p) -p = tan(tp) ~p = —tan(tena p) -p. (136)

A, which is defined in the normalized coordinate system, indicates tareedife between the actual polar
angle (normalized) and the radial position on the detdatane interpretation, for a givgn A represents

the amount ofadial shiftthat is required to remove the distortion. Since by definitiandp agree at 0 and

1, A must be zero at these points. Figure 26 shifp¥ plotted for nine dierent values of NArecall,a =

NA). Table 3 first lists the peak value of the distortion for eactsN#wn in Fig. 26, and then translates that
number into pixels in several experimental measurement doriéthdN as the pixel-width of a measured
interferogram, the normalized peak distortlg,is multiplied by the radiubl/2 to calculate the amount of
distortion in pixels. Note that at 0.08 NA, the approximate image-sidefdfesent EUMithographic opt

cal systems, the peak distortion is &2@4, less than 0.19d his indicates the presence of a 1i@y83-pixel

peak distortion in a typical, 800-pixel-diameter measurement.

5.12 Summary

Planar Detector Distortion. For 800-pixel measurement diametand 0.08 NA, peak
distortiomA = 8.22x 104 O 0.33 pixels.

0.10 1071
. NA
008 3 / \ 07 /45 N
a ] / \ 05| 102 o —
| 7 B 3 // N\
. : /\ 0.3 /L~ O
110.06 A~ I\ 82 ] ’/} \{
2 ] \ 0.05 3 |
g : /‘\ 10 = I/’ NG \1
S /| [ N\
£ 0.04 N |/ \
% . / / — \\\\ // \\\II
a i </ \u
0.02 . / é AN 10 / /,l ‘\\ 1l
: / /I ﬁ
000 . 10_5_ LI LI LI LI LI I
0.0 02 04 06 08 10 00 02 04 06 08 10
Detector radial coordinate, Detector radial coordinate,

Figure 26.The use of a planar detector to record the sphericallygingeinterference pattern introduces a radial dis
tortion into the coordinate system of measurenmf&sthe radial position of a point on the detector is translated into
an angular position in the beam, the two coordinate systems match only at the center and the dori¢éithiadbe.
array the radial distortiod\(p) is defined in Eq. (136).
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Table 3.Peak measurement distortion firxelg for a various array 0.10
sizes, at dierent NA.A,eq[pixels] = Apeq (Npixeld2)- v,
< 0.08 v
MeasuremenArray Size (pixels) 2
NA | Distortion 250 500 750 1000 | S 0.06
0.05 3.20x 104 0.04 0.08 0.12 0.16 © p
0.1 | 1.29x103 016 032 048 065 | 004
0.2 5.17x 103 0.65 1.29 1.94 2.59 = . A
03 | 1.18x102 | 148 295 443 59 0.02 7
0.4 2.12x 10?2 2.65 5.3 7.95 10.6 0.00
0.5 | 3.38x102 423 845 1268 169 00 02 04 06 08
0.6 4.98x 102 6.23 12.45 18.68 24.9 numerical aperture, NA
0.7 6.98x 102 8.73 17.45 26.18 34.9 Figure 27.Peak distortion as a function of
0.8 9.45x% 102 11.81 23.63 35.44 47.25 NA. The distortion is based on a unit-circle

coordinate system.

5.13 SUMMARY OF SYSTEMATIC ERRORS AND RECOMMENDA TIONS
The following list enumerates the most important results and systematic éobs eescribed in
this chapterThe numbers pertain to the at-wavelength measurement of aditBbyfaphic optic operat
ing at 13.4-nm wavelength with 0.08 NA.
* 5.3 Beam Separations/Nyjnge = M2t = 0.084um/fringe [ Ngjngd/s = 2/A = 12 fringegim.

e 54 Bandwidth.Wg =2.22x 107 @ 0.1% BW(Gaussian distribution). Fringe amplitude is reduced
by 2.22x 107 per wavé of aberration at this bandwidth.

+ 5.5Measured Geometric Coma|C|= 1/6 NAZ |T| O At 0.08 NA,|C|/[T| = 1/6 0.08 = 0.001
waves per wave of tilt = 5.5 104 waves per fringelC| = 0.37 nm @ 50 fringeét 0.1 NA, |C|/[T| =
1/6 0.2 = 0.0017 waves per wave of tilt = 8:3.04 waves per fringelC| = 0.56 nm @ 50 fringes.

* 5.6 DetectorMisalignment. P-V astigmatismA = syNA2 0 ~0.47 nmf tilt. Also, AlyNginge = A
NA/2 = 0.54 nmf tilt/fringe. The measured Zernike cdiefent of astigmatism is half of this, or 0.27
nmpP tilt/fringe.

« 5.7 ShearAngle. 8 = Nd = shear angled = grating pitch3 = half-angle over which reference wave
front is of arbitrarily high qualitya = NA. Minimum requirement > 6 + a.

« 5.8 Grating Fabrication Errors. Recommendatioruse thdfirst-order refeenceconfiguration when
ever grating fabrication error magnitudes are unknown, or are known to be comparable with the
desired accuracy

+ 5.9 Grating Coma.|C|= 1/9 NA2 [T|= 3.6x 104 waves per fringelC| = 0.19 nm @ 40 fringes.
¢ 5.10 Spatial Filtering. Highest spatial frequency f s#A/NA) cycles 00 12 cyclegim filter width.

« 5.11 Filter Design.Place pinholes at 9@&djacent to a square window to enable direct measurements
of systematic décts. Separatelyadjust width perpendicular to beam separation to improve spatial
frequency response.

¢ 5.12 PlanarDetector Distortion. For 800-pixel measurement diamet@nd 0.08 NA, peak distortion
A=8.22x104 O 0.33 pixels.
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6.1 INTRODUCTION

The EUVPS/PDIwas developed for at-wavelength measurement of lithographic-quality reflective
optical systems operating near 13-nm wavelength and 0. This.chapter describes procedures and
results of a wide range of experiments intended to study the properties of the Schwarzschild objective, the
interferometerand the testing methods themselves.

Using a specially-designed undulator beamline aftheanced Light Source at Ernest Orlando
Lawrence Berkeley National Laboratpsuccessful characterization of a multilageated 18-demagni
fication Schwarzschild objective was conducted between November 1996 and MayH&8Y experi
ments include intensity and wavefront measurements of the tliragi®Bub-apertures, investigation of
the spatial filtering properties of the pinholes and windows used in the interferoshadézs of the
mechanical properties of the interferometer system, and analysis of wavelength-depiendestic
aberrationsarising from the resonant-reflective multilayer coatings. Extensive tests were also performed
to evaluate the measurement methods and their precision.

EUV PS/PDI interferometry demonstrated angstrom-range wavefront-measuring precision and sub-
nanometer measurement accurd®gpeated measurements conducted over a span of several weeks show
a high degree of system stability and repeatapyity careful investigations of the experimental data have
enabled the identification of areas in which further improvements can be AsaoeFall 1997, the EUV
PS/PDI experiments are still in progreEhese ongoing experiments seek to push the measurement accu
racy to new limits.

It was known in advance that the EW&/PDI system is best designed for the measurement ef near
ly diffraction-limited optical system&Vhen systems contain g wavefront aberrations or mid-spatial-
frequency defectgccurate measurement becomes very challenging. From the thasésafub-apertures
that were measured, a wide range of experimental conditions were encountered. Experiences and insights

are discussed in this chapter

6.2 EXPERIMENTAL COMPONENTS
Many of the components used in the PS/PDI experiments are the same as or are similar to those
used in the earlier PDI experimemsnewer dedicated beamline source is optimized for high flux and
moderate bandwidttret the same 8-cm-period undulator and optical table used in theFEtd$¥Wel zone
plate measurements are still in ke CCD detector used to record the interference patterns is also of
the same specifications as before. In this section, several of the most important components of the experi

ment are described in detail.
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Figure 1.Optical design of the 20Schwarzschild Figure 2.The measured period of the Mo/Si multilayer

objective, shown to scale and in the proper orientation: coatings of the 20Schwarzschild objectivhe prima

light is incident vertically from the bottorithe primary ry mirror is designed with a graded coating to compen

and secondary mirror substrates are shown in gthy sate for the lgre range of incident angléEhe measure

units are in mm. ment uncertainty of 0.125 A is indicated as a gray band
about the measured points.

6.2.1The 10x Schwarzschild Objective

The 1& Schwarzschild objective studied in these experiments is one of four Schwarzschigapicsto the same opti
cal design specificationsi€henor et al. 1993, 1994a; Kubiak et al. 1994, Bjorkholm et al. 18985 et al.
1997).This particular optic is referred to as 4B’ (Berkeley) to distinguish it from two similar optics,
10x1 and 111, which are used in prototype micro-stepper Eiddaging applications at Sandia National
Laboratory in Livermore, CaliforniaThe fourth optic is used at Brookhaven National Laboratory by
researchers frolAT&T Bell Laboratories, also for interferometric applications.

The optical design calls for two nested spherical mirror substrates, Mo/Si multitated and
designed for peak reflectivity and optimized performance at 13.4-nm wavel&€hgtbpecifics of the

optical design are shown in Fig.The full optic has an annular pupil, yet only ontaxis sub-aperture
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D

is illuminated at a timelhe unobstructed

object-side and image-side numerical af
tures of 0.008 and 0.08, respectivelye
defined by a removable aperture stop th

rests against the primary mirrdihe optic

is designed to have a circuld00um-

diameter field of view in the image-plane

with a 1m depth-of-focus.
The multilayefcoating deposition

and measurement were performed by pupil-defining

David Windt. The lage range of angles-o aperture

incidence (13.1 to 29.1 mrad, or 0?6 Figure 3.A removable aperture stop, placed against the primary

. . mirror of the 1& Schwarzschild objective, defines three sub-aper
1.67) across the convex primary mirror tures with 0.08, 0.07, and 0.06 NAhe 0.08 NAaperture (broken
during fabrication) is positioned above the region predicted to have
the highest wavefront qualjtpased on visible-light interferometry
multilayer substrate to maintain high All three sub-apertures are investigated at BAAvelengths.

necessitated the deposition of a graded

reflectivity and uniform phase across the radius of the apefthesexperimentally-measured graded
thickness variation is shown in Fig. 2.

Visible-light interferometry was used to measure the individual mirror substrates, and a process of
clocking(aligning the relative azimuthal rotational orientation of the two mirmwes) performed to
achieve the minimum predicted wavefront error in one of thaxa$ sub-apertures.

Not knowing in advance what the magnitude or type of the Bldvefront aberrations would be, a
strategy was adopted wherein the optic was given an entrance pupil with three aperture=of siftes
as shown in Fig. 3The removable aperture stop rests against the central point of the primary mirror and
separately defines 0.06, 0.07 and 0.084dp&rturesThe 0.08 NAsub-aperture was accidentally broken
during fabrication, creating the “D” shagkhe circular apertures occupy a plane normal to the mechani
cal axis of the opticThe of-axis illumination encounters the circular pupil at an angle d¢fftain the
central ray to the vertical, making the pupil appear slightly foreshortened in the radial direction and there
fore elliptical. Because of the reflection, the beam passes through the aperture twice.

The optic and its mechanical housing were designed to be used in the vertical orientation with the
image-plane at the top of the mechanical housihg.image-plane is defined by three small, carefully
chosen steel balls. In imaging applications, the wafer rests on these three balls with the photoresist facing
downward. Because the optic is designed to be used in this vertical orientation, and any change-of orienta
tion could possibly introduce mechanical or gravitational changes to the mirror substrates, adtdtUV
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ALS

variable line-space
monochromator

1-um-diameter pinhole
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Figure 4.The key optical elements 8L.S Undulator Beamline 12.0.1.2, a tunable, coherent Eb#ce, 1997A
four-jaw aperture and turning mirror select the Etmponents of the narrow central cone of the undulator-radia
tion. A variable-line-space plangrating monochromator incorporating a vertical focusing mirror produces a-resolu
tion of AJAN = 200-1000The Kirkpatrick-Baez (K-B) mirror pair vertically images the monochromator exit slit and
horizontally images the source onto the object-plane of the interferoifiateentire beamline produces a demagnifi
cation of 65 in both the horizontal and vertical directions. Measured pinhfsectidn patterns are shown for five
EUV wavelengths, using a logarithmic grayscale. Only the central portion diftfection pattern is used as thellu
mination reference wavefront.

ferometric tests were performed vertically with the optic illuminated from below
6.2.2ALS Undulator Beamline 12.0

An undulator beamline, containing a grating monochromator followed by a Kirkpatrick-Baez (K-B)
mirror pair, delivers radiation from the undulator to the interferometer (Attwood et al. 1993, Beguiristain
et al. 1996)The beamlinés shown schematically in Fig. Zhe angular demagnification of the beamline is
designed to maximize the coherent flwailable for illumination of the Schwarzschild objective near 13-
nm wavelengthThe entire system operates under vacuum, in pressures ranging<ttord $orr in the
beamline to 8107 torr in the interferometer chamber

In conjunction with the undulatothe monochromator allows the wavelength to be tuned centinu
ously from 5 to 25 nm, with a spectral resolution in the rangé/f ~ 200-1000The monochromator
contains a planar blazed grating with variable line spacing, illuminated at glancing incidenesit slit
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Figure 5.The key optical elements of the PS/PDI endstation configured for measurement of 8ehi@rzschild
objective. Light from the beamline is directed upward by a turning mirror at nearcience The image-plane pin
holes and CCD camera are inclined at 32riormal to the dfaxis central rayA high-speed shutter placed after the
K-B mirrors protects the critical optical components from continuous Exposure. Black arrows indicate the
degrees of freedom of the componefitse experimental coordinate system is shown on theDeftinsteamand
upsteamrefer to the directions of photon flux in the beamline, with and against the flux, respettivefd and
outboad are respectively toward and away-from the storage ring.

remains stationary and in focus as the grating angle is adjusted for wavelength s@ectatrieve good
fringe contrast, the interferometer requires a source coherence-length greater thgeshpdtr-length
difference encountered in the interferomdieia system designed for approximately 50 fringes across the
aperture, this requirement translates into a spectral resolutidhXofreater than 50'he resolution of the
monochromator is therefore fafent for this experiment, as demonstrated experimentally

The K-B mirrors are thin carbon-coated silicon substrates that are polished flat and then bent into an
approximately elliptical shap@&ransverse widths of the mirrors are varied in such a way as to enable them
to be bent into the proper final shape when bending forces are applied near the ends (James Underwood,
personal communication).

The configuration of the interferometer endstation is shown in Fitp Bluminate the
Schwarzschild objective verticallg flat, multilayefcoated turning mirrgmounted at an angle-of-inci

dence near 45is placed between the K-B and its focus, directing the beam upWerdurning mirror is
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held on a kinematic Gimbals mount which pivots about the designed point-of-incidence of the beam with
the mirror The angle and longitudinal position of the mirror mount is manually adjustable using three
micrometers that are attached to a self-contained, detachable stagaeaitjustable beam angle and
position facilitate beam alignment and enable the investigation of wavefront aberrations across the field-
of-view of the opticWithin the field-of-view wherever the object pinhole is placed the beam may be
brought to the proper angle and position through the object-plane.

With a minor focusing error (since remedied) in one of the components of the monochrtmator
bandwidth was approximateh/AA ~ 200, or 0.067 nm full-width at half-maximum (FWHM) at 13.4-nm
wavelengthThe nea5° multilayercoated turning mirrgrdesigned for peak reflection at 13.4 nm, has a
measured full-width at half-maximum bandpass of 0.9 nm, considerably wider than that of the monochro
mator In principle, the exit slit of the monochromator controls its transmitted bandwidth. Since the vertical
mirror in the K-B pair forms an image of the exit slit in the object-plane, if the K-B system wiese-dif
tion-limited, then the exit slit would be redundant with the object pinhole — the size of the pinhole would
determine the transmitted bandwidth. Before a major overhaul in the summer of 1997, the performance of
the K-B system waaberration-limited, meaning that the image of the exit slit in the object-plane was sub
stantially blurredTherefore the object pinhole was not performing as a wavelength filter

EUV light from the beamline is strongly polarized in the inboard/outboard direction, parallel to the
floor. On axis, the first-harmonic light from the undulator is polarized, and the glancing-incidence beamline
optics do not significantly &fct the direction of the polarizatiofhe nea5° multilayer mirror is also a
polarizing element (se&ppendix 3). By directing the beam verticalliis mirror selects the inboard/eut
board polarization approximately 12 times moffeciegintly than the vertically polarized components.

6.2.3 Hectors Magic Flange

In the focal plane of the K-B, coincident with the object-plane of the test optic, the sub-micron
object pinhole is held in a kinematic mount attached to a three-axis stage, shown i kégstage
enables horizontal translatiarf the object pinhole to position it within the narrow beam, and vertical
translation to bring the pinhole into tHesired object-plan&his versatile stage and housing arrangement has
come to be called “Hectar Magic Flange” (HMF) after its designefector MedeckiThe flange is held
between a pair of bellows that enable motion over a rarggpobximately 1 cm (verticaR 5 mmx 5 mm.

A removable pinhole holdeshown in Fig. 6, consists of a metal cylinder with a tapered conical
tip. This tip fits kinematically into a conical well of a slightlydar angle, mounted inside the HMFart
of the cylinder is machined away and a flat area is created that allows the pinhole to sit on the axis of the
cylinder A hole is bored below the pinhole position to allow the light to reach the pifffi@eotation

angle of the cylindrical pinhole holder is set by a flexible arm attached &b 8@ cylinder axisThis
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arm snaps into a grooved holder mounted to
HMF outside of the vacuum chamh&n o-ring

seal is formed where the holder enters the H)

kinematic sub-micron

— the holder passes through an open cylindri mount pinhole

screw that, when tightened, compresses the ¢
ring against the holdeFigure 6 also shows a

configuration for visible-light interferometry in
which the pinhole holder is modified to introdt

45° flat  polished

a polished, tapered-capillary fibeptic source _ €
mirror fiber tip

and a 45 turning mirror to bring a laser source
into the object plane.

A small 1.5-mm-diameter circularifice
Visible-light
at the bottom of the HMF acts as afeliéntial configuration

aperture separating the vacuum of the chamb Figure 6.lllustration ofHectors Magic FlanggHMF),

which performs as a object pinhole kinematic mount on a

three-axis stagd&/isible light may be introduced into the

tion stage gives the HMF additional functional chamber via an optical fiber with a polished tip in-con
junction with a small 45mirror. A 1.5-mm orifice at the

In one position, the orifice is open to allow the  bottom of the flange (not shown) acts as &ediintial
aperture for the vacuum systefnthree-position stage

EUV beam to pass. Second, the orifice may b can bring a detector or a small glass window valve onto

. . _ the top of the orifice.
sealed with a small glass window-valve allowing

from the rest of the beamline. Here, a threep

the co-propagating visible-light beam from fieS to be used for visible-light system alignment while
the interferometer chamber is vent&dis feature has proven to beiamaluableaid. In its third position,
the stage contains a photodiode that can be positioned immediately above the orifice to aiciigiEUV
ment and diagnostics.
Also connected to the HMF is a thin capillary oxygen inlet line. It is widely known that the presence
of a small pressure of oxygen is useful in the abatement of hydrocarbon contaminationaopti€a\sys
tems. Here the capillary directs a jet of oxygen gas into the, [divieted toward the entrance-sidetod
object pinholeThe capillary conducts oxygen through a needle-valve so that a predictable and constant
pressure of oxygen may be used. On a base pressux&0f ®rr, the oxygen pressure is typically 04
torr in the interferometer chamb&ome oxygen flows through the orifice into th&-d%rror chamber and
the K-B mirror chambeAlthough it has not been carefully characterizedity, the presence of this low
oxygen pressure may in fact be beneficial in removing contamination from those optical surfaces.
Aligning the narrowfocused EUVWbeam through the sub-micron object pinhole is not trividien

the system is far from alignment and there is no detectable beam flux through the object pinhole, creative
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measures are required. First, to ensure that the beam enters the 1.5-mm-diameter orifice at the entrance t
the HMF, the area surrounding the hole is painted with phosplsing a viewport located above the® 45

turning mirror and a small, adjustable, strategically-positioned mttrerorifice may be observed when

the system is at vacuurihe beam spot is clearly visible on the phosphor paint when it fails to enter the
orifice. The detector on the three-position stage immediately above the orifice can be used to center the
narrow beam through the orifice.

Once it is known that the beam clears the edges of the orifice, the object pinhole must be posi
tioned in the beam. Here, to establish the location of the beam within the object-plane a thin mylar mem
brane is placed in the object-plane using a separate but identical pinhole Incdderatter of seconds,
the focused EU\beam burns through the myléeaving a visible burn-spot on the otherwise transparent
membrane. In a microscope fitted with a copy of the HMF kinematic mount, the object pinhole can be
hand-positioned in a matter of minutes into the proper location based on the mylar bukalspeing
the proper position within 10 or 20n is usually satisfactory for locating the pinholesitu. A separate
strategy involving an accurate stage that duplicates the orientation of the HMF translation axes and kine
matic mount could simplify the alignment process by eliminating the need for fine hand-positioning.
However the recent installation of highly sensitive detector electronics has made locating pinholes from
scratch easier and much less time-consuming.
6.2.40ther Stages and Components

The elements of the beamline that are mogicdif to adjust are the bendable and tiltable K-B-mir
rors. Once a satisfactory configuration of the K-B mirrors was found, and the nominal focal position was
acceptable for the illumination of the Schwarzschild objective, no further adjustments of the K-B mirrors
were made.

The particular K-B mirror substrates used during the time of these interferometry experiments were
known to be of poor qualityet these were the only mirrors available at the tiFhe. longitudinal distri
bution of light near the imperfect K-B focus allows the object pinhole to be placed within a range of sev
eral hundred microns without $efing a dramatic loss in flux. Near the focal plane, the distribution of
light is measurable by scanning the three-dimensional position of the object pinhole while using a
retractable photodiode-detector placed several centimeters above the object plane to measure transmissio
While the poor performance of the K-B system createdgeiahan expected focal spot and caused a
lower than expected photon flux through the object pinhole, this unintended property of the beamline
actually facilitated the positioning of the object pinhole over a broad range (df twnpitudinal posi
tions. K-B mirrors of much higher quality have since been fabricated, installed, and tested.

With the beam and object pinhole held stationktgral alignment of the image point is performed
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by two-axis horizontal translation of the test opfihis translation with respect to a stationary object

point takes advantage of thexl®emagnification to enable positioning of the image point with better than
0.14um resolutionThe optic itself sits on a bearing-stage, and a pair of Picomotors are used to move the
optic through several millimeters of trav&he Picomotor translations are demagnified 2:1 using flexural
pivots and are coupled to the motion of the bearing through a pair of wobble-pins.\lariehte

Differential Transformers (LDTs) are used to monitor the positions of the Picomotors (and hence the
bearing on which the optic rests) through the vacuum chamber walls.

A coarse grating beamsplitter is placed between the object pinhole and the entrance aperture of the
test optic.The grating, typically 18um-pitch, is made of a gold absorber pattern on a 100-nm-thiek sili
con-nitride membrane, with&-me area (fabricated by Dino Chiarlo). In order to conduct measure
ments with the fringe patterns in two orientations, &@art, two separate gratings and grating-stages are
used.To enable phase-shifting, the two gratings are held on separate one-dimensional horizontal transla
tion stages, each with motion in the direction perpendicular to the rulihggrating stages are attached
to coarse translation mechanisms that allow the gratings to be completely retracted from the beam.

Custom-designed hardware (by Paul Denham) and software (by Joshua Cantrell and the author) are
used to control the three axes of the HMF stage (object pinhole positioning), the grating stages, and the twc
axes of the Schwarzschild objectiVéne motorcontrol software programs were created to be very respon
sive with a high degree of interactivity and the inclusion of many features that facilitate the requirements of
the interferometry experiments. Motor positions are adjustable using on-screen control panels containing
scalable grid-displays of present and previous positions in three-dimensions, where appropriate.
grams include a position memory feature that allows tens of previous locations to be stored and recalled,
rapidly returning the system to a previous st&teomaticrasterandspiral scanning features are included
to aid in the location of pinholes and other points of intefés.grating-control program stores calibrated
step values to facilitate phase-shifting, and it keeps track of step numbers to aid in data collection.
6.2.5Pinhole Spatial Filters

The quality of the pinhole-difacted waves is the single element that has the most substantial
impact on the accuracy and precision of the interferomEterpinholes are the most critical elements of
the interferometer; therefore the use of high quality pinholes in the object- and image-planes is impera
tive. Because of their small size, and because of their usdrastdie elementdhigh qualityfor pinholes
has a functional definition based on their performance as spatial fiftesiti)

The commercially-available lasdrilled object pinholes used are on the order ofif@rbdiameter
approximately one-fourth of the diameter required to producdraatibn-limited beam at 0.008 NA.

Evaluation of the quality of the diiicted waves is presented in Sections 6.3 and 8.3.
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Figure 7.The image-plane reference pinholes used in the PS/PDI experiments were fabricated by focused ion-beam
lithography in a 100-nm-thick §\, membrane with a 70 nm InSb absorber laféer the open-stencipinholes and
window were etched completely through the membranes, additional InSb absorber layers were deposited on the two
sides of the membran&he membrane contains two window and pinhole patterns separateduby, defining two
closely-spaced field points displaced in the upstream-downstream dird¢te@pinholes were fabricated at Intel.

Pinhole size is discussed in Section 6.4.

Two sets of image-plane pinhole membranes were used in the PS/PDI experiments described here.
The first set of pinholes was made of a patterned gold absorber layer on a solid silicon-nitride membrane,
fabricated by electron beam lithograpiihe pinhole pairs consisted of two sub-100-nm reference pin
holes adjacent to a square wind&@0um on edge, with centéo-center separations of 4ubn. This first
pinhole membrane was abandoned because of problems created by contamination on the solid membrane
Without the benefits of oxygen gas, the membranes became unusable in a matter of minutes, as damage t
the window membrane obstructed the transmission of the test beam.

A second set of image-plane pinholes, shown in Fig. 7, was fabricated on a membrane consisting of
a 100-nm-thick silicon-nitride (§N,) support membrane, with a 70-nm-thick indium-antimonide (InSb)
absorber layeAn open-stencil pattern of pinholes and windows was created using focused-ion-beam lith

ography tadrill open holes in the membrane. Following the pattern definition, additional 70-nm-thick lay
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ers of InSh were deposited on both sides of the membrane to increase absorption and reduce the pinhole
size.The 1k intensity transmission depths of InSb &igN, for 13.4 nm wavelength light are 15.2 nm and

117 nm respectively; therefore, based on thicknesses of 100;NgeBid 240 nm InSb, the transmissivity of

the membrane is expected to be on the order of 5®8. Unlike the semi-transparent PDI pinhole mem

brane, the PS/PDI membrane is required to be opaque.

This second pinhole membrane was used for all of the PS/PDI measurements repoitéeédefeur
pinholes were used in literally thousands of interferogram exposures over the course of two months. For refer
ence, these four pinholes have been here lal#el&],C, and D, as indicated in FigThe difraction charac
teristics of these pinholes are discussed in Section 6.4.

In this configuration of the PS/PDI for Schwarzschild objective measurement, the image-plane pin
holes are manually pre-aligned and remain stationary with respect to the moving test optic. For repeatable
pinhole positioning, the pinholes are attached to a kinematic mount that rests on the three balls that define
the image-planeélhe mount holds the pinholes inclined at 22riormal to the central ray of thef-axis
beam.The tops of the balls fit snugly into three shalloadial “V” grooves on the undside of the
mount, creating three distinct and repeatable positions of the mask, approximatedpdr20 his three-
way positioning facilitates measurement of all three sub-apertures of the Schwarzschild objective without
modification of the pinhole mounting.

The pattern of the pinhole membranes can be arranged in many ways. Using an array of
pinhole/window patterns facilitates wavefront measurement across the field-of-view of the test optic with
out repositioning the image-plane pinholes. Here, offiewltfy is the requisite 12%linclination of the pin
hole membrane that causes pinholeanrrarray to occupy dérent longitudinal plane#it this time,
research has been proposed to investigate the importance of keeping the pinholes at normal incidence to
the central rayUntil this evaluation has been completed, the inclination of the pinhole plane should be
maintainedThe first efect of the membrane tilt is that field points separated bym@aterally (a typical
distance) difer in longitudinal position by 8.a4m. With a 10x demagnificatioroptical system, each
micron of longitudinal image-plane position change requires auf08djustment of thebject-plane posi
tion: a 8.4pum image-plane change requires agégradjustment of 84Am from the object-plane.
6.2.6High-Vacuum-Compatible High-Speed Shutters

A reliable, high-vacuum-compatible beam-shutter is of prime importance for thariiférome
ter. The shutterplaced beyond the K-B mirrors in a position where the beam size is approximately 4-mm-
diameter protects the critical and sensitive interferometer components from constant, intensegeJV
sure.The shutter must be synchronized with the CCD control hardware to prevent exposure during read-

out. Two novel shutters have been custom designed and implemented in the interferometry experiments.
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a) Galvin shutter b) Batson shutter

steel yoke leaf springs

Nd-Fe-B
magnets

solenoid

0.001”

brass foil side view

Figure 8.High-vacuum-compatible high speed shutters are required to protect the optical components from constant
exposure, and to ensure the proper operation of the CCD deteatoshutters have been developed for this purpose.

a) A shutter designed by James Galvin operates based on the Fafaday¥fo achieve greater travel and faster
operation, a second shutter designed by Philip Batson was installed after the interferometric measurements described
in this thesis had been performed.

These are shown in Fig. 8.

A compact shutter designed by James Galvin, shown in Fig. 8(a), operates based on the Faraday
effect: a current-carrying shutter flap moves within the strong stationary field created by a pair of strong
Nd-Fe-B magnets held in a steel yokhis particular shutter functioned successfully through months of
daily operation, but stdred from a short range of motion (below 4 nih@t caused it to block a portion
of the available beam.

In the active area, the measured magnetic field is approximatefg$§laThe flexible shutter flap
is created from a single piece of 1-mil brass foil machined or hand-cut and folded into the proper shape.
The shutter has a travel of approximately 3 mm, carries approximately 1-amp peak current, and operates
with a minimum useful open time of approximately 50 msec. One or both of the clamps that hold the
shutter flap must be electrically isolated from the vacuum chamber

During the development of the shutteeveral conductive non-magnetic materials were evaluated
for use as the shutter flap. One-mil-thick (26M) brass met the criteria for high flexibilitjght weight,
vacuum compatibilityand shape-retention. One important design flaw was discovered and addressed
early on.When the foil was folded sharply near the position where it is required to bend, the joints were
observed to fail after only a few hours of operatibinis problem was overcome with the design shown in
Fig. 8(a), wherein thkegsof the flap are neither bent sharply nor creased in any Bexyding occurs in a
gradual arc along the relatively long length of the filere is no stress applied to the fold which causes
the flap to project forward at 90

One element not shown in Fig. 8(a) is a motion restrictor that limits the backward (into the yoke)

117



The EUVPS/PDI- Schwarzschild Objectivedting

travel of the flapWith the lage applied forces and the narrow but deep magnetic gap, this restrictor is
required to prevent the shutter flap from sticking to the magnet surfdeesestrictor consists of a thin
glass tube on the end of a wire bent into a “C” shape and epoxied into position.

To achieve greater travel and faster operation, a new shutter designed by Philip Batson was used.
The shutter arms open rapidpulled by the force of a pair of small magnets inside a solenoid symmetri
cally placed between the arnThie arms are pulled against the force of a bent leaf-spring that holds the
arms closed in the absence of curréhe minimum useful exposure time enabled by the shutter is approx
imately 0.05 seconds.

Once again the arms of the shutter are electrically isolated from the vacuum chartibersee
ond implementation a current meter attached between the shutter arms and ground enables the shutter to
function as a photocurrent deteci#hen the EUVbeam falls on the closed leaves of the shulier cur
rent from the shutter is typically on the order qf AL
6.2.7Beam Detectors

Identical to the EUWPDI experiments (Chapter 3), data is recorded with a back-thinned, back-illu
minated, un-coated, 10241024 pixel, 1-square-inch area, 16-Taktronix CCD camera optimized for
EUV detectionThe CCD is mounted at an angle of 2Xrbm the vertical to receive the central ray of
the test beam at normal incidentée detector is placed approximately 12 cm beyond the image plane.

Two Hamamatsu GaAgbhotodiode detectors are used to monitor the beamThedetectors
have %5-mn? areaAs mentioned in Section 6.2.3, one detector is held just above the HMF drffise.
detector is primarily used to center the beam within the 1.5-mm-diameter dkiSeeond detector is
held on a retractable arm in a plane just above the grating sthggsletector measures the beam current

after the object pinhole and is used to optimize the position of the object pinhole.

6.3THE TEST WAVE

The simple illumination pattern of the test optic reveals a great deal of information about the quali
ty of the Schwarzschild objective and its multilayer coatiligith no image-plane windows or pinholes,
the optic is illuminated at 13.4-nm wavelength using a p@n5diameter object pinhole spatial filtdhe
illumination is recorded with the CCD detectplaced approximately 12 cm beyond the image-plane.

One important characteristic of the Schwarzschild objective is that the concave secondary mirror
forms a real image of the primary mirror (the entrance péd@cm beyond the image plafiéne image
is inverted and is magnified by approximatek/ Any visible feature of the primary mirror is projected

sharply into this plan&lthough the CCD camera is placed several centimeters beyond this plgae, lar
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Figure 9.lllumination of the 18 Schwarzschild objective reveals a pattern of defectsleonishespbservable as

intensity variations in the test beafiransmission through the three sub-apertures is shown here as recorded by the
CCD camera in 1024.024-pixel images. (a), (b), and (c) are raw data shown in linear scalbe(aperture stop

does not fully extend to the edge of the mirror surface, allowing a curved sliver of light to pass. Details of several of
the blemish regions are shown in (d) through (i), with (d) and (e) taken from (a), (f) and (g) from (b), and (h) and (i)
from (c). Each detail is 120 120 pixels, subtending an approximate solid angle of 0.024 rad,°ordpdesenting an

area 5104m-wide on the primary mirror surface. Bright, thinfdittion halosare visible along the sharp boundaries

of the blemishes because the CCD is several centimeters beyond the plane in which the concave secondary mirror re-
images the primary

defects on the mirrors appear very distindly is apparent in Fig. Bhe ability to observe these features
clearly in the pupil is due to the short wavelength used, the narrow cone of rays, and the relaerely lar
size of the blemishe3he featuresre out of focus in the plane of the CCD, and under careful inspection,
a small bright ring is observable around every sharp feature.

6.3.1Blemishes

The presence of numerous blemishes in the test optic could be due to defects in the substrate, cont
amination of the substrate prior to coating deposition, contamination during deposition, contamination of
the coating surface, or a combination of the$eced. By eye, several dust particles are visible on the mir
ror surfaces, but the appearance of these streaks and spots suggests that there may be residue left by a w
cleaning proces©ne attempt at cleaning using de-ionized nitrogen gas was made, but this yielded little
observable dférence.

With the grating beamsplitter removed, the isolated test beam passes through the image-plane win
dow:. In this configuration, an image of the spatially-filtered test beam is recorded with each interfferomet
ric measuremenilest beam images from all three sub-apertures are shown in Fig. 10.
6.3.21lluminating Beam: In Situ Pinhole SizeAssessment

The spatially-filtered illuminating beam is the first spherical reference wavefront of the interferom
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Figure 10.Filteredtest beanimages from all three sub-apertures are recorded in the same manner as those shown in
Fig. 9. However with the PS/PDI image-plane pinholes and windows installed, the test beam is spatially filtered by the
4.5um window As before, the details, (d) through (i) (are X020 pixels, subtending an approximate solid angle of
0.024 rad, or 14 (d) and(e) are taken from (a), (f) and (g) from (b), and (h) and (i) from (c), although they do not
correspond to the same detail regishewn in Fig. 9The square shape of the spatial filter window is evident in the
rectangularpattern of ripples that surrounds each defgus is especially apparent with the smallest “sub-resolution”
defects. See Section 5.10 for a discussion of spatial filtering.

eter Based on observations of the test beam and of the angular rate of intensify tiadl-size of the
object pinhole can be determined approximafeie actualsize can be determined by other means, such
as electron microscopidowever since the most important property of the pinhole is the quality of the
wave difracted from it, areffective sizef the pinhole can be defined as the size of the equivalent ideal
pinhole that difracts anAiry-like wave.

By design, the first difaction minimum of the illuminating beam falls well beyond the dé&fined
by the entrance pupin estimate of the pinhole diameter may be based on the intensity full-width at
half-maximum, the known object-side Néhgle within the pupil, and an assumption ofény-like dif -

fraction patternAs discussed in Sections 2.3.1 and 4.6.1, the angular distributionAifyhattern

d d
I(a/)\)D%gJEEﬂ%E. (1)

a is the direction cosine with respect to the central\W#yen the half-angle of the intensity half-maxi

intensity is

mum#®,,, is known, then the pinhole diameter may be calculated empirically from

4= 0514\
Sin6|/2

: ()

based on Eg. (1). Using the average of two similar measurements of the intensity profile, taken from the
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Figure 11. (A) through (D)The patterns of the pinholes and the window are clearly visible in the logarithmically-
scaled Fourietransform of the reference pinholefdiction patterns. Because the (strictly-real) intensity of the dif
fraction pattern is measured, the Foutiansform shows polar symmetkyith a single beam centered on one of the
reference pinholes, the leakage of light through the window and the second pinhole illustrates the role of the window
as a bandpass filter for the reference beam, allowing a range of mid-to-high spatial-frequencies to pass. Reference
pinholes (A) through (D) are featured in (A) through (D) respecti&HBM images of the same pinholes are shown

for comparison. Irregularities in the shapes of the windows are clearly visible in the feouniin.

test wave measurements, thieefive pinhole diameter is estimated to be Qui6 More than one pinhole
was used in the interferometric experiments: after one pinhole had been used to gather the bulk of the
interferometric data, several other pinholes were te$tegse experiments are discussed in Chapter 8.
Experiments to determine the quality of the spatial filtering properties of the entrance pinhole are dis

cussed in Section 8.3.

6.4 THE REFERENCE WAVE
As with the PDI, the quality of the reference wavefront is the most important element for determin
ing the accuracy and precision of the PS/ADE size of the reference pinholegkly determines the

quality of the spatial filtering they generate. In this section, two ways of determinindettivefsize of

Table 1.Size determination by SEM and at-wavelengtfraition measurements of the four reference
pinholes used in the interferometry experiments.
SEM Diffraction
pinhole x-width y-width d=vxy x-width y-width diameter

A 137 124 130 168 141 154

B 220 201 210 168 154 161

C 164 171 167 177 173 177

D 163 144 153 172 159 167

121



The EUVPS/PDI- Schwarzschild Objectivedting

a) 250 ] 1 b) 210
i pinhole ]
i N
] [
200 xB —Ae— Py
. oC g & ¢ —_ 7 value
'g‘ ] aD @A o £ 190 °
1 ¥ oA =N -
£, 150 ] ® o
£ i & + = 180 A p "
§= . = -
2 100 Z 170 x i /\
d C
> 5] S\
: € 160
50 ] i
7] 150
O rrri rrri LI rriri LI 140 N >
0 50 100 150 200 250 time
x-width [nm]

Figure 12.Reference pinhole size determination experiments show poor qualitative agreement between the SEM
observations, and the measured pinholgadifion patternsThe averaged data is shownTable 1. (a)Separate-
andy-widths are determined from both the SEM images and tfractibn patterns. Each fliiction measurement is
shown in the left grapiThe SEM measurements of the same four pinholes are indicated by circled symbols. Over a
two month period, difaction measurements were made occasian@)y he time axis indicates only the order in
which the difraction patterns were recordelthe same plotting symbols are used in both graphs.

the reference pinholes are described, and characteristics of the reference waves are disdessaibed

in Section 6.2.5, there are four pinholes from one single pinhole membrane under investigatierpin
holes represent two orthogonal directions from two field pokgshown in Fig. 7, the field points are
located in the upstream and downstream directions, separated by qmiy 40

6.4.1The PS/PDI ReferencéVave

The reference wave in the PS/PDI is considerablgrdifit from that of the PDI because of the way in
which it is generated. In the PS/PDI, where a beamsplitter produces multiple focused beams in the image-
plane, the beam selected as the test beam passes through a (rdéatjeelyindow while an adjacent beam
is brought to focus on the sub-resolution reference pinhole. Regardless of the beam separation and the quality
of the optical system under test, there will be some ovaiygically, the most significant consequence of
this is the overlap, deakage of the reference beam through thgéawindow Since the window sits in the
image-plane and is displaced from the center of the refebeaaee, it behaves as a bandpass filter allowing
a range of mid- to high-spatial-frequencies to be transmitted.

In order to characterize the reference pinholes, experiments were done to investigatdrtweir dif
tion properties. In these experiments, the grating beamsplitter is removed and a single beam is brought to
focus on a pinhole under studihese experiments parallel those reported for the PDI pinholes, Chapter 3.

The measured fdield diffraction patterns may be understood from examination of their Fourier
transforms, shown in Fig11lBecause only the (strictly-real) intensity of theffald diffraction pattern is
measured, the Fouri¢ransform is Hermitian —ts complex amplitude shows polar symmeftythe
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center of the Fouridransform pattern is a narrow peak representing the spatial frequency content of the
highly filtered beam that passes through the reference pinhole. Figusith is logarithmically scaled
and smoothed for displaglearly shows the function of the window as a bandpass ftercomparison,
the SEM image of the pinhole window is shown adjacent to the Fdrai@formsThe shapes of the
windows, including irregularities, are clearly reproduced in the Fedderain. Even the second, unused
pinholes are visible in the Fourigansform as a faint bright peak.
6.4.2 In SituPinhole SizeAssessment

The sizes of the reference pinholes can be determined in several ways, including Sklgitand
diffraction measurements performawavelengthWhile SEM measurements are the most straightfor
ward indicators of size, the widths of thefdittion patterns yield the usefeffective diameterthat
would be expected by the assumption of idam;-like diffraction.

The SEM images of the pinholes (recorded by Larry Murray), taken in reflection mode, are shown in
Fig. 11. The maximum widths in the- andy-directions may be ascertained from the apparent open area
of the pinholesThe x- andy-direction widths are shown ifable 1, along with the geometric me&hese
two directions are arbitraryet provide some qualitative indication of apparent pinhole ellipticity

The pinhole diameters are also calculable from tHeadied intensity profile in the same manner
used for the estimation of the object pinhole diameter in Section 6.3.2. From Eq. (2), the half-angle at
half-intensity is usedlo calculate this angle, a small sampling of reference pinhdtaatibn patterns is
made.The angle-to-pixel ratio for the CCD camera is known from the interferometry experiments to be
approximately 0.2 mrad per pixdlo calculate the half-angle, the pinholefidi€tion patterns are spatially
filtered to remove the mid- and high-frequency content. For each image, a contour is generated automati
cally, tracing the half-maximum of the intensity in approximately 500 points. From these points, the first
moments of the distribution are used to determined#méral points in thex- andy-directions.These are
shown in Fig. 12The mean distance (in pixels) from each contour point to the center is used to calculate
the half-angleAlso of interest are the maximum angular widths inthandy-directions, given imable 1.
As with SEM analysis, these directions are arbitrarily chosen, yet provide a qualitative indication of any
ellipticity in the pinholes.

It is clear from the comparison of these two size-determination methods that then8g#8 danot
provide a good indication of thefe€tive pinhole diameters observed in thdrddtion measurements. In
fact, the pinhole thaappears layest in the SEM images, pinhole B, produces faadifed wave that is the

second-smallest of the four
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6.5 FOURIER-TRANSFORM ALIGNMENT METHOD

Once the illuminating beam is aligned and the object pinhole position is optimized for peak flux,
the most dificult procedure is bringing the reference beam onto the tiny reference pinhole, on the order of
100-nm diameteAlignment proceeds by lateral translation of the test optic, taking advantage okthe 10
demagnification to achieve fine adjustment of the lateral beam position in the imageAitanethe sys
tem is aligned, or nearly aligned, interference fringes become visible and the alignment proceeds by opti
mizing the appearance of the fringes, looking for uniformity and complete coverage of the illuminated
areaWhen the system is misaligned, even slightte fringe pattern is not visible and there are few clues
available to bring the system toward proper alignment.

One somewhat &dctive method is to observe thquae-ish ring pattern that surrounds the small
blemishesWhen the system is properly aligned and the test beam passes through the center of the win
dow, the rings are symmetriop-to-bottom and right-to-left. Using this indicator is equivalent to under
standing the Fourieslomain filtering performed by the window

A much more déctive technique uses the Fourtimaindirectly. Since the recorded intensity is
the farfield diffraction pattern of the image-plane field, a simple Fouraisform provides a mathemati
calimageof the field in that plane. For each image recorded, the fast Ftnaiesform (FFT) algorithm
can be implemented rapidly and the results displayed with logarithmic scale, giving immediatiegtual

back on the position of the beam within the window or pinhole. Such a system, developed by the author

Raw-datat = 0.2 s

log-scaled FFT

misaligned shear— two beams almost centered aligned
4.5 pm

Figure 13.The Fouriestransform alignment method facilitates the otherwisBedit alignment of the reference
beam through the tiny reference pinhole in the image-pEreraw intensity data collected by the CCD detector (top
row), with 0.2 second exposure time and 4 pixel hardware binning, is the ffield diffraction pattern of the field
in the image-planéds such, the Fourigransform (bottom row)eveals the distribution of light in the image-plane.
Since the real-valued intensity is measured, the Fewersform is Hermitian, accounting for the redundant image.

This typical series of images was recorded during system alignfsetite lateral position of the test optic is
adjusted, the beam becomes more centered in the window until the PS/PDI fringe pattern is clearlJhasitiage
marked as “shear” indicates that two beams are passing through the wéirddar to a lateral shearing interferome
ter. However in this geometry both beams clip the edges of the window and are thus of poor quality
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and successfully implemented as of October 1997, has greatly enhanced the alignment procedure. Images

are recorded with sub-1-second exposure times, and thesEiSplayed almost immediatelgdjacent to

the raw intensity dat#s the fringes become visible, the first-order peaks appear above the background.
Since the CCD measures only the (strictly-realfifdd intensity pattern and the phase information is

unavailable during the alignment process, the Feagectrum is Hermitian -the complex amplitude of

the FFTshows aedundant polar symmetr@everal typical interferogram and Fouwtiemsform images

are shown in Fig. 13.
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7.1 INTRODUCTION
The central goal of this thesis research is the development and demonstration of at-wavelength

EUV interferometry capable of accurately measuring lithographic-quality optical sy3teensnportance

of this capability lies in its the ability to predict imaging performance. In this chagagefront measure
ments from all three sub-apertures of the $8hwarzschild objective are presenfEBdese measurements
reveal the nearly difaction-limited quality of this optical system at the same time as they explore the per
formance of the interferometeé3ubsequent to the interferometric characterization, this optic was used in a
series of high-resolution imaging experiments at Sandia National Labor#teryesults of those experi
ments are also presented héwewill be discussed, these results show strong agreement with imaging

simulations based on the measured wavefront.

7.2WAVEFRONT MEASUREMENTS

This section contains the wavefront measurements of all three sub-apertures of the 10
Schwarzschild objective. Investigations were conducted in the same way for each sub-aperture, with the
Schwarzschild objective simply rotated by 12@out its optical axis to bring the proper sub-aperture into
position. Relative to sub-apertures B and C, @elarumber of data sets were recorded of sub-apétture
at 13.4-nm wavelength. For this reason, estimates of the interfertsmeeision are all based on mea
surements of sub-apertuke

To measure the system wavefront at a given field point, two phase-shifting measurements are per
formed using orthogonal fringe directions (i.e. beam separation direcfldnis)s necessary to remove a
geometric coma systematic error related to the beam separation (Sectidnpaib)f orthogonally-
aligned grating beamsplitters is used sequentialgreate the two directions of the fringe pattefine
test beam is chosen to be the zeroth-order beam from the grating; it passes through a stationary point in
the image-plane windaw he reference beam is one of the firstrdifted-order beams from the grating.

In each orientation, the reference beam is brought to focus on a reference pinhole that is one of two pin
holes placed at 9Qwith respect to the image-plane window (see Sectiorisaénd 7.2.5 for the design).

These two wavefront measurements are combined to remove the geometric coma systematic error using
the method described in Section 5.5.2.

From analysis of the four reference pinholes used (two field points were tested), one fact has
become clear: because of itgarsize, pinhole @oes not produce a reliable reference wavefitime.
wavefront variation observed from this one pinhole renders measurements performed with it unusable.
Since individual field-point measurements require the usmthfpinholes in a pajrdata from the

upstieamfield point, which use pinhole C, are not presented. In addition, because of the noticeable deteri
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oration in system performance and fringe contrast of the sub-ap&rinbexferograms that occurred after
re-alignment of the system, wavefront data taken after the re-alignment are not included. (This is the
“April” data discussed in Section 8.Bhe loss of fringe contrast is demonstrated in Sectich)3.1
7.2.1Determination of the Raw Phasemap

Beginning with the raw interferometric data recorded with the CCD camera, the individual expo
sures are normalized to compensate for the steadily decreasing electron-beam currévaintted
Light Source. During a measurement series of five interferogram exposures, the current typically decreas
es hy less than 0.5%. Using the least-squares method of phase-shifting analysis (Section 12.2.3) with the
FourierTransform Method of Phase-Shift Determination (Section 12 #h@)phase is calculated at every
point in the domainThe least-squares technique uses the temporal-domain data to inddperadeuiate
the phase at each poiitherefore, it is not necessary to limit the calculations to the sub-regiotecgst.

The modulo Z phasemaps are unwrapped using the robust Fetnaasform Guided Unwrapping
method (Section 13.5) to overcome the high densityadfdata points associated with the numerous
localized blemishes.

The raw unwrapped phase data is shown in Fig. 2 (in the following section, where the sub-region
definition is discussed). From the line-out taken in the middle of the sub-region, a high level of noise is
apparentThis characteristic of the raw phase data demonstrates why the simple unwrapping techniques
fail. The FouriefTransform Guided Unwrap method was developed specifically to address fibidtglif
7.2.2Establishing a Coordinate System -Sub-Region Definition

In order to successfully compare or combine measurements performddrantiimes, it iessen
tial to establish a consistent coordinate system fixed to measurable positions in the test optic. Even small
displacements or rotations between measurements can yield false wavefieoemc#sThe magnitude of
these diferences is simply related to the wavefront slopaléuivative at any point of comparison.

Virtually any set of clearly observable fiducial markings in the pupil can in principle serve as a refer
ence for the establishment of a consistent coordinate system. For the measurements of the Schwarzschild
objective, the distinctivpattern of blemishes in each apertobegamehe fiducial. Using the isolated test
beam images (Section 61&8corded concurrently with each phase-shifting data set, a single, universal coor
dinate system was established for each sub-aperture. First, one test beam image was declareéfio be the
erence Then, using the positions of the blemishes as a guide, test beam images from each data set were
aligned until the optimal image translations were ascertairtgs.optimization was performedanually
by the authousing image subtracticechniques. In the future, this painstaking process could be automated
by the introduction of an well-designed fiducial system and by the implementation of a relatively simple

software algorithm to compare pairs of test beam images.
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Figure 1.Sub-regions used for data analysis in sub-aperyrBsand CThe blemish regions are removed automati
cally based on the mid- to high-spatial frequency intensity variations of the measured te$heghanee sub-regions
are 659, 830, and 564 points wide and they contain 279188, 503569, and 224470 valid data points, respectively

Once the relative positions of the various data sets have been brought into agreement, the next step
is the establishment of the sub-region containing the valid data for analysis. Interferometrically there are
many ways to determine which data points are valid. Some methods are based on fringe contrast or mea
surement uncertainty (Robinson 1993): these typically apply a threshold function to establish a minimum
contrast allowed for inclusion. In this case, such methods are problematic dectiveefor two reasons:
first, edge-dects near the blemishes cause unpredictable results and may unintentionally include bad data
points in the sub-region. Second, and more importdotly fringe contrast alone is not a clear indicator
of invalid dataA second class of data validation techniques uses information obtained from the phase
unwrapping to determine which points are to be excluded (Huntley 1989, Kreis and Juptner 1989,
Robinson 1993, Charette and Hunter 1996). Given the high computational demand of this technique, and
the desire for a more straightforward approach based on the exclusion of the blemisfergna dif
method is required.

Because the fringe coverage is very good across the entire aperture for all of these measurements,
the sub-region determination method chosen for this application uses the intensity of the test beam as an
indication of data validityThe test beam image is compared to a low-pass-filtered version of itself, and a
threshold is applied to the ratio. In this wtye localized blemishes are quickly removed and the abrupt
edges of the domain are easily fouRdllowing the determination of valid data points, a circular region
reaching almost to the edge of the domain is selettes.region becomes thait circle in the normalized
detector coordinate system (Section 5.5®)ce the sub-apertures are slightly elliptical (Section 6.2.1) and
irregular in shape, some points at the edges are trinfiigate 1 shows the sub-regions defined for each
sub-aperture according to this methBdints included in the analysis are shown in wfitee numbers of

individual points used in wavefront fitting on sub-apertéeB, and Care 279188, 503569, and 224470,
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Figure 2.(a) Raw phasemap data from one single phase-shifting series representing sub-/Ap&nlyehe 659-

pixel-wide circular sub-region of data is showhe line-out below (a) is taken from the middle of the sub-region and
shows the magnitude and density of the high-frequency phase components that severely complicate the unwrapping
and analysisThe sub-region chosen for analysis eliminates most of the problematic regions, withdtinigathe
measurement of the underlying low-spatial-frequency aberrations. (b) Only theipcimded in the wavefront

analysis of this sub-aperture are shown.

respectivelyCompare the pattern of these sub-region maps to the test beams shown in Section 6.3.

Once the sub-region is determined, wavefront analysis may be perfdronedilitate understand
ing of the aberrations present in the system and to reducdehts eff mid- to high-spatial-frequency
components, surface fitting to the Zernike polynomials is performed. Figure 2(a) shows a raw unwrapped
phasemap from a single phase-shifting series of sub-apArthexe only the points within the full cireu
lar sub-region chosen for analysis are shown. Below Fig.tR&J)ine-out shows the severity of the high-
frequency noise present in the raw datae sub-region chosen for analysigludes the most problematic
points from the raw phasemafhen the troublesome points are excluded, the phasemap appears as in
Fig. 2(b).

It is very important to remove bad data points from the sub-regions used for wavefront surface fit
ting. Wavefront fitting is noticeably &fcted when these points with their spurious phase values are not
removed.The irregular patterns and ¢gr numbers of points excluded from the circular sub-regions
require that special attention be paid to the polynomials used for the antgsizernike polynomials
arenot orthogonal over these irregular domains, and the simplest methods of polynomial fitting will pro
duce unpredictable results.
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7.2.3Wavefront Surface Fitting

Chapter 15 addresses wavefront surface fitting in general, and Section 15.5 describes the Gram-
Schmidt process of wavefront surface fitting that is used to fit the conventional set of Zernike polynomials
on these irregular domains. Based on the Zernike polynomials, an intermediate set of polynomials is gen
erated thats orthogonal over the measurement domain. Once this set is known and the transformation
matrix between the two sets has been determined, analysis may be performed with a minimum of uncer

tainty. The first 37 Zernike polynomial cdefients which describe the low-frequenfigure aberrations
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Figure 3.Sub-aperturd. Contour and surface plots of the measured waveffdr.contours are separated by 0.05
waves, oi/20.
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Figure 4.Sub-aperturd. (a) Zernike codicients are based on 19 phase-shifting measurement seridsgl iodivid-
ual interferograms. (Bhe fitting-coeficient uncertainties are based only on the variations of the measuréd coef
cients from the 19 individual measurements.

Table 1.Sub-aperturd measured wavefront aberration magnitudém Zernike codicient, P-\ and RMS
magnitudes with uncertainties are given for each component.
Sub-aperturé\: wavefront statistics

o: 0.099+ 0.006A = 1.32+ 0.08 nm=A/10.1+ A/166
P-V: 0.593+£ 0.086A = 7.94%1.16 nm=A/1.7+A/12

Zernike codficient P-v RMS
aberration [A] [nm] [A] [nm] [A] [nm]
astigmatism 0.209+ 0.014 2.80+0.19 | 0.418+0.028 5.60%0.38 | 0.085+ 0.006 1.14%0.08
coma 0.021+ 0.005 0.28+0.07 | 0.042+0.01 0.56%+0.13 | 0.007+0.002 0.09%0.03
spherical aberration0.009+ 0.002 0.12+ 0.027 | 0.018+ 0.004 0.24% 0.05 | 0.004+ 0.001 0.05+ 0.01
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are calculated for each phase-shifting data set. Comparison and combination of separate measurements a
performed using the wavefronts reconstructed from these Zernikeeeoes. In this wayspurious mid-

and high-spatial-frequency contributions are removed.

7.2.4Sub-ApertureA

Sub-aperturd is considered to be the most important sub-aperture of th&d@warzschild
objective.Based on the results of visible light interferomgpgrformed bylim Gleason alelandic, this
0.07 NAsub-aperture was predicted to have nearfyadifion-limited performance.

Nineteen separate phase-shifting measurement&4andividual interferogram exposures, are
combined to form the wavefront phasemaps shown in F&Jl 8f these measurements are from the
“downstream™field point, using pinholeA and B.The average of twelve measurements from pinhole
are combined with the average of nine measurements from pinhole B to remove the geometric-coma sys
tematic errar

The wavefront phasemaps shown in Figr&generated from the first 37 Zernike polynomials shown
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Figure 5.Sub-aperture B. Contour and surface plots of the measured wavefront. (Abewspavefront over the
whole “D"-shaped aperture. (Below)easurements over a circular sub-region of the full aperture, excluding the
innermost portionThe contours are separated by 0.1 wavea/Ii.
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in Fig. 4(a).The position-dependent piston, tilt, and defocus components are removed from the aahlgsis.
1 shows the aberration magnitudes and measurement uncertainties for the low-ordered aberration component
Here, astigmatism is the dominant aberration component, with 0.418 waves B-885 waves RMS.
Qualitative verification of the measured aberrations comes from the imaging experiments per
formed with this sub-apertur&€hese experiments are described in Section 7.3.
7.2.5Sub-Aperture B
Sub-aperture B was designed to have a 0.0&ikbAlar pupil, but the pupil-defining aperture was
broken during fabrication and the pupil shape became a “D” facing away from the optic axis of the
Schwarzschild objective. Unfortunatehear the outer edge of the aperture, in the area designed to be
blocked by the aperture, the wavefront has a high degree of curvature in one direction.This @igvature
nificantly complicates interferometric measurement of this sub-aperture.
PS/PDI measurements require that the aberrations be small enough that the test and reference beam
are well-separable given the fixed image-plane spacing between the reference pinhole and the window
Where aberrations are ¢g, this separation distance must be increaddtbugh the 4.54m centeito-cen

ter spacing of the reference pinhole and window is adequate for the measurement of the other sub-aper

tures, here it is too narrowhe high curva 0.2 A

ture of the wavefront along one directior ? 0.0_ J \ [\w,_/

certainly elongates the focal spot in that % 02 T N \J

direction. Since the measurements are | § ] |astig.F 0.653

formed in two orientations of the beam % 04 | / chisn;%E 823‘213( i
-0

separation, the problems are limited to t SRR LR R RRRS RRRRS RRARS RERES RARN
0 5 10 15 20 25 30 35

one orientation in which the beam sepal Zernike polynomial number

o ) Figure 6.Sub-aperture B. Zernike cdiefents based on 9 indivd
tion is parallel to the beam elongation: t'  yal interferograms are reported for a circular sub-region of the “D"-

. . shaped aperture.
is where the overlap is most severe. In 1

orthogonal orientation, the overlap is no Table 2.Sub-aperture B measured wavefront aberration magnifudes.

an impediment to measurement. Sub-aperture B: wavefront statistics for the full aperture

o o: 0.260A 3.49nm = -~A/3.8
Due to a misalignment of the CCI P-V: 1.392\ 18.65 nm = ~7A/5

detector interferometric data is not avail o .
Sub-aperture B: wavefront statistics for the circular sub-apefture

able for the innermost portion of the ape o: 0.290A = 3.88nm = ~\A/3.4
) P-V: 1.344\ = 18.01nm = ~4\/3
ture. From the available data, two wave
o Zernike codficient P-v RMS

front surfaces are presented in FigTbe aberration | [A] [nm] | [A] [nm]| [A] [nm]
astigmatism 0.635 8.51 | 1.270 17.02| 0.259 3.47
upper surface represents the measured coma 0.141 1.89 | 0.282 3.78 | 0.050 0.67
spherical aberration 0.024 0.32 | 0.048 0.64 | 0.011 0.14
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Figure 7.Sub-aperture C. Contour and surface plots of the measured wavEfwobntours are separated by 0.025

waves, oi/40.

wavefront across the entire “D"-shape 0.050—
pupil. The lower surface imposes a cir < 0.0254
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Figure 8.Sub-aperture C. Zernike cdiefents are based on 10 individ
ual interferograms in two phase-shifting series.

Wavefront statistics for the circular sut
region are shown ifable 2, based on

the Zernike codicients shown in Fig. 6

. o Table 3.Sub-aperture C measured wavefront aberration magnilhdes.
No error estimate is given for the

Sub-aperture C: wavefront statistics
0. 0.048\ = 0.64nm = ~\/21

Zernike cosdicients presented here

because only one pair of phase-shiftin P-V: 0.367A = 4.92nm = ~M2.7
data series (10 interferogramgs com Zernike codicient  P-V RMS

. aberration | A1 [om] | [A] [om] | [A] [nm]
bined to compute the wavefront. astigmatism | 0.106 142 | 0.212 2.84 | 0.043 0.58
7.2.6Sub-Aperture C coma 0.020 0.27 | 0.041 0.54 | 0.007 0.10

spherical aberration-0.002 -0.02 | -0.003 -0.04 | -0.001-0.01

The third and smallest sub-apel
ture, designed for 0.06 NA, was found to have the smallest wavefront aberrations of the three-sub-aper
tures testedThe wavefront aberrations are smaller than over any other equivalent 0.@gjidA of the
other two sub-apertures. Figure 7 shows the wavefront phas€éhepavefront statistics are given in
Table 3, and the Zernike polynomial dieénts are shown in Fig. 8gain, ro error estimate is given for
the Zernike codicients because only one pair of phase-shifting data series (10 interferogras=)m

bined to compute the wavefront.
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'g' ) Fit-coefficient uncertainties from eight typical wavefronts Figure 9.Uncertainties in the wave

= i | front surface fit codicients are

= N interferogram shown for eight typical phase-shifting
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Zernike polynomial number investigated in Section 81

7.2.7Measurement Precision

Estimation of the wavefront measurement precision is performed on several fronts; this is the pri
mary subject of Chapter 8. Experimentatlye dominant ééct is the measurement-to-measurement varia
tion that is observed in the wavefront fitting dathe other contribution to the uncertainty comes from
the fit-variances related to noise in the raw data. Because there are so many data points undef considera
tion and the data is of relatively high quality after localized blemishes are removed, the contributions from
the fit-variances arsignificantlysmaller than from the formerfett.

Only sub-aperturd was measured a digient number of times for an ensemble of measurements
to be compiledThe standard deviation for each individual Zernike polynomialficiezit of the measure
ments made of this sub-aperture is plotted in Fig. @&bktion 7.2.4)With a magnitude of 0.014 waves
(0.188 nm, or A/70), the uncertainty is lgest in one of the two astigmatism da#énts. For the others,
the typical uncertainty values are roughly 0.003 waves (0.040 nm/200).

The less significant contribution to the uncertainties is that associated with the fit-variance, as
described in Section 15.6. Here the uncertainties are related to the quality of the fit, dependent essentially
on the mid- and high-spatial-frequency noise in the dataach individual phase-shifting data series is
analyzed and the wavefront surface fitting is performed, the uncertainty in eafitiemttei calculated.

The coeficient uncertainties for eight typical phase-shifting series from the measurement of sub-
apertureA are shown in Fig. 9here is a clear distinction in the magnitudes of thefioierit uncertain
ties between the March aAgril data setsThese two separate sets of measurements are described in
Section 8.6. Experimental evidence suggests that the discrepancy is strongly dependiamenaedifin
the observed interferogram fringe contra$tss point is investigated further in Section18.DOnly data
from the March data sets were used to compile the sub-ap&rpivasemap shown in this chaptéor

these measurements tlaegestcoeficient uncertainty is below 7804 waves (0.010 nm, orx*1300).
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Thus it is clear that the contribution from the fitting uncertaintpighless than from the measurement-
to-measurement variation. Itimportant to note here that although the fitting uncertainty id\pré data

is more than twice as [g& as in thélarch data, the measured wavefronfatdénce between the two data
sets is only 0.018 waves RMS (0.241 nm, ®5¥) and the dferences in the measured Zernike &ieef
cients have a typical value below 0.005 waves (0.067 nix/200) (Section 6.6.2).

7.2.8Zonal Fabrication Error

The presence of astigmatism as the dominant term in each measured sub-aperture suggests a trend
characteristic of this annular Schwarzschild objective as a whslde system is aligned for the mea
surement of each sub-aperture, the reference pinhole is placed in the position that produces the best fringe
contrast in the interferogram. For an astigmatic wavefront, characterizecybgdaically-shapedaberra
tion, this is the position thdialanceghe defocus components in the two orthogonal directions of the
astigmatismAdding a small amount of defocus to the measured wavefront is equivalent to a longitudinal
translation of the reference pinhole, placing it closer tdo#st focusn one of the two directions (i.e. the
tangentialor sagittalfocus).

Figure 10(a) shows the three measured wavefronts rotated into their proper orientation and placed
in position within the three-aperture pupil. By adding a small amount of defocus to each measured wave
front and observing the resulting annular pattern, shown in Fig. 10(b), it is possiljeddtsat the astig
matism measured in each sub-aperture comes from an aa@ralleror in the optical systenThis small
error, of magnitude less thau2, or ~7 nm, could be a figure error in either of the optical substrates, or

could be related to multilayer thickness variatiofeification of an overall zonal error can only be made

a) b)

Figure 10.(a) Measured wavefront phasemaps of the three sub-apertures oktBelarzschild objective oriented
and positioned within the pupil-defining aperture. Aldging a small amount of defocus to the measured astigmatic
phasemaps reveals the possibility of a zonal fabrication error in the annular optic.
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by the simultaneous measurement of all three sub-apertures, or by measurements made with very close
attention to the absolute coordinates of the reference pinhole. Neither is possible at this point, so the exis
tence of a zonal error can be no more than a reasonable conjecture.

It is much more likely that a zonal error would be caused by an error in the substrate figure than by
the multilayers, since any changes in the multilayer thickness capable of prodhtnghase variation
would most likelybe accompanied by a loss in reflectiviBuch reflectivity changes are not observed.
Furthermore, the multilayehicknesses were measured after deposition and were observed to meet the
design specification§he substrate figure may not have been measured with an accuracy high enough to

observe fabrication errors of this small size.

7.3 IMAGING EXPERIMENTS

At the conclusion of the interferometric measurements, thkeSt@warzschild objective was
brought to Sandia National Laboratpity Livermore, California, to perform imaging experiments using
the 1xI EUV imaging system (i€henor et al. 1993, 1994), shown schematically in FigThe “10x|”
Schwarzschild objective designed to be used in the Sandia system shares the same optical design as the
Berkeley “1&B”, and the mechanical housings are similar enough that installation<Bfih@he Sandia
system is trivial.

The Sandia system uses a lgzerduced plasma source. Light is collected by an ellipsoidal con
denser and directed toward the reflective Bg8t-pattern mask with a ne#° turning mirror The sys
tem uses Kohletype illumination with a partial coherence factor near Aswith the interferometry
experiments, here too the Schwarzschild objective is oriented vertically and is illuminated fromAbelow
photoresist-coated wafer rests on the three-ball mount at the top of the optic and records the image of the
mask.A manually-adjusted translation stage literally pushes the wafer forward in one direction, allowing
multiple exposures to be made on a single wafer

Figure 1. A schematic representation of the key
components of the SandiaxIEEUV imaging
systemThe system utilizes a lasplasma source
and reflective multilayecoated optics to illumi
nate the mask which is patterned on a reflective
multilayercoated substraté. 10x-demagnifica
tion Schwarzschild objective (such as theB0
Berkeley objective) is used to project an image of
the mask onto a photoresist-coated wafer that
rests on a three-ball mount at the top of the ebjec
tive. The longitudinal (vertical) position of the
multilayer mask mask may be adjusted to bring the image of the
with patterne mask into focus on the wafd@he 10<B objective
absorbete~ was brought to Sandia to perform imaging experi
ments using this system.

(400 pm¥
field of view

EUV 10 Schwalrzschil
source objective leng

J&

condenser
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7.3.1Experimental Results and Predicted Behavior

Comparison of the recorded results with the predicted performance shows very good agreement.
The results of imaging experiments at the resolution limit of the system are presented in this section.

The choice of the negative-tone, chemically-amplified resist &l was a compromise between
sensitivity and resolutioWith 100-nm-thick resist the images appear grdiny the essential features are
clearly visible in SEM micrographs. Figure 12 shows a line-and-space patternuoh @i2ch, where the
smallest individual features are Quin wide.

The performance of the system and the predictive powers of the interferometry are more clearly
revealed in images of akrchimedes statest pattern, shown in Fig. 13. On a single wafeages were
recorded at multiple focal positions, with aufix increment. Focal adjustments were actually performed
by longitudinal translation of the mask in 1Q6+ steps, which is nearly equivalent to arh-longitudinal
translation of the image plane, with a very slight change in the magnification (power).

Sub-aperturé was the only aperture used for these imaging experindrgsvavefront aberrations
in this sub-aperture are dominated by astigmatism of 0.418 wavesr®-485 waves RM&Astigmatism
causes the focusing properties to béed#nt along two orthogonal directioi$ie primary characteristic of
an optical system containing astigmatic aberrations is that the longitudinal positions of best-focusing occur at
separate planes for the two difens of the astigmatism. In other words, horizontal and vertical features
(for example¥orm their sharpest images infdifentplanes.This efect is clearly observable in the SEM
micrographs of Fig. 13. Here, when the system is a few microns fadusf, the sharpness of the thinnest
features is noticeably di#rent in the horizontal and vertical directions. On opposite sides of focus, the two

directions reverse rolesheasymmetry of these features in passing through focus can be attributed to an

4.0kV x20. ﬁk"l.hﬂnn

Figure 12.SEM micrographs of a resolution test pattern exposed in@ALphotoresisfThe pattern is of 0.{sm
lines and space3he image on the right is a detail of the region at the top of the image on the left.
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unintended dference in the expc
sure dose.

Based on the measured
wavefront at 0.07 NA, an illumi
nation partial coherence factor ¢
0.5, and 13.4-nm wavelength,
detailed calculations were per
formed to predict the imaging
behavior of 18B (Tejnil et al.
1997) with theArchimedes star
resolution test imag&:hese calcu

lations were performed using thi

SPLAT imaging simulation pro g_

gram developed at the Universit
of California, BerkeleyThe simu
lation yields the predicted field
amplitude in the wafer plane.
Adjacent to each exposure mea
surement, Fig. 18hows several
predictions of the imaging qualit
based on the application of simg
threshold values to the predictel
field intensity With a unit intensi
ty bright-field image, the thresh
olds are intended to simulate tht
behavior of the resist. Given the
limitations of the resist material
and the uncertainties in the expi
sure and development processe
comparison of the simulations
with the SEM micrographs show

excellent agreement.
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SEM of photoresist SPLAT simulations
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Figure 13.(Left column)SEM micrographs of aArchimedes staresolu

tion test pattern, measured at seven positions through-fblcesamount

of defocus is indicated at the left of each imagee characteristics of the
astigmatic wavefront are clearly observable in the pattern: the horizontal
features are sharpest when the system is defocusegdryirBthenegative
direction, while the vertical features are sharpestah3n thepositive
direction. Simulations of the imaging properties are shown to the right of
each imageA simple threshold is applied at three levels to the predicted
field intensity to model the behavior of the photoresist witfediht expe
sure doses. Based on a unit intensity bright field, the threshold values are
shown below each simulation imadée qualitative agreement between
the predictions and measurements is very good.
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8.1 RANDOM AND SYSTEMATIC ERROR MEASUREMENT

This chapter describes a number of experiments that are performed to characterize the magnitude
and efect of random and systematic errors on the performance of the interferodfetes random
errors, the most significant stem from the spatial filtering of the reference wavefront by the reference pin
hole and the spatial filtering of the illumination wavefront by the object pinhole. Direct measurements of
these dicts place bounds on the systersénsitivity to alignment.

In principle, each optical component of the interferometer is capable of introducing its own system
atic error into the wavefront measurements. Both mechanical and optical concerns are paramount.
Experiments (described here) are performed to assess the mechanical and thermal stabilities of the systen
Systematic errors potentially contributed by the grating beamsplitter are investigated in the comparison of
the zero-order reference to the first-order reference PS/PDI configurd®aas.indication of the sensi
tivity of the wavefront measurements, the geometric coma systematic error is examined.

Finally, the analysis methods themselves are investigated: the performance of the complex methods
described in Section 12.5 is compared to the conventional, simple methods described in Seclite 12.2.
Fouriertransform method (Sectiorl B) is also compared to the phase-shifting analyses.

In many of the experiments described in this section, the Fdraiesform method of single inter
ferogram analysis is used to extract the wavefront from individual measurements. In nearly all cases
described here, the uncertainties introduced by this analysis method are significantly smaller then the
effects being measured. Furthermore, fitting the resultant wavefront data to the Zernike polynomials

(Chapter 15) reduces noise and high-frequency variations in the data.

8.2 REFERENCE PINHOLE SPATIAL FILTERING

It is known that pinhole sizefatts the quality of the reference wavefrafthile theoretical calcu
lations help to establish the relationship between pinhole size and predicted wavefrontthaalityal
quality of the spatial filtering can only be assessesitu. One simple way to perform such measurements
is by the intentional misalignment of the reference pinhole about the focus of the referencénbicial.
spatial filter produces a spherical wavefront regardless of how it is illuminated. Experimd&maiyer
it has been shown that the alignmdogs affecthe wavefront measurementsis is not at all unexpect
ed, considering the fact that measured reference pinhole sizes (Section 6.4.geatbdarthe sub-100-
nm taget size.

Presentlywhen the interference patterns are recorded fine alignment is performed to optimize the
appearance of the fringes, as judged by the operators of the interferdteeiss, it may be said that the

position of the pinhole is arbitrary within a small domain of positions that produce analyzable and reason
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b) Wavefront comparison: eight measurements
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Figure 1.Assessment of the spatial-filtering properties of the reference pinholes is performed by comparing the inter
ferometrically-measured wavefront recorded at several de-optimized pinhole positions within the focus of the refer
ence beam. (a) Small translations produce a measurable change of tilt, allowing the eelatreepositions of the
pinhole to be determined. (Bnalysis of thedifference waveémts,computed for all pairs of measurements, indicates
the expected variability or uncertainty in the wavefront measurenfdr@dagest reported RMS displacement values
of the diference wavefront are on the ordeié80 and the average value is 0.0186 waves. Most of the RS- dif
ence comes from the astigmatic compon€he fraction of the RMS related to astigmatism is also shown.
Experimental wavefront variations are expected to be smaller than these values because the reference pinhole positiol
is optimized before measurement.
ably high-quality interferograms. Intentional translation of the pinhole to positions within this small
domain gives a qualitative assessment of how sensitive the wavefront measurements are to the position of
the reference pinhole.

To establish an upper bound on the wavefront uncertétiatyeference pinhole is moved as far from
the optimum as possible without losing the fringe pattern. Experimental uncertainties may thus not be this
large in practice.

Figure 1 shows the results of this test as performed using Pinhole D and the GQB-Bigerture
A. The reference pinhole was moved to eight separate arbitrary positions and a single interferogram was
recorded at eacknalysis was performed using the Foutiemsform method of single interferogram
analysis with a Gaussian filtereé/fradius of 8 cycles in the spatial-frequency domaive eight measured
wavefronts, labeled through H, were compared, with the piston, tilt, and defocus terms subtiBoted.
RMS displacement of thdifference wavebntsare shown in Fig. 1 for each paiihe lagest diference is
0.0361 waves (0.484 nm, ok/28); the average measuredfelience among all of the comparisons is
0.0186+ 0.0093 waves (0.249 nm, ok/53).

The relative positions shown in Fig. 1(a) are inferred from the measured tilts and an assumed mea
surement NAof 0.066 (based on the 0.07 N#&b-aperture and the size of the sub-region used for-analy

sis). The positions are determined from an easily-derived expression: with small NA, the path length dif

ferenceAR is

AR[A] :%(x, y){z.2,). 1)
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Z, andZ, are the Zernike polynomiat andy-components of the tilt, and, ) is the lateral displacement
vector The distribution width of these points indicates that thgelstrtolerable pinhole displacements are on
the order of 175 nm.

The wavefront variation shown here indicates that fromsamyleinterferogram measuremeat)
uncertainty of approximately 0.02 waves RMS (0.268 nm\/a0), should be expected. Since the refer
encepinhole position in the beam is adjusted before each series of measurements, this uncertainty becomes
a random error sourc&he implications of this result for phase-shifting measurements, which incorporate
several (typically S5)nterferograms together in a single measurement, are not clearly discernable.

Inspection of the individual dérence wavefronts reveals that the dominant aberration component
is always astigmatism. In general, the disagreements between any two measured wavefronts are dominat
ed by variations in the measured astigmatibh& fraction of astigmatism in the RMfBferences is
shown in Fig. 1(b) for each measurement.ddiese fractions are between 50 and 96%, with most above

75%.This astigmatism problem is discussed in Section 8.13.3.

8.3 OBJECT PINHOLE SPATIAL FILTERING

A similar set of experiments can be performed to assess the quality of the spatial filtering per
formed by the object pinhola generating a spherical illuminating wavefront. By incorporating alignment
positions far from the optimum, these simple tests provide an upper bound on the expected measurement
uncertaintyAlthough variations from only one component are of interest, these experiments involve two
components of the interferometé/hen the object pinhole is displaced laterathe position of the refer
ence beam focus in the image-plane also mdves sensitivity of the wavefront measurements to the
position of the reference pinhole, demonstrated in Section 8.2, necessitates re-optimization of the refer
ence pinhole position for each measureméhtis there is no simple way to isolate thieefof the object
pinhole alone.

These tests were performed using sub-apefutiée results of two object pinhole displacement
experiments are shown in Fig. 2. Once again, the Fetgiesform method of single interferogram araly
sis is used (Section 8.2)he intensity in a lateral plane near the K-B focus is measured by scanning the
object pinhole, using a photodiode to record the transmitted flux at each position. In each test, five object
pinhole positions (Ahrough E)are sampled, as shown in the FigTRBe stage is calibrated and the posi
tions are known to within fim. As before, the RMS displacement of tfiference wavetintsare calcu
lated for each pair of measurements, with piston, tilt, and defocus terms removed.

For Test #1, the average RMi#ference is 0.006% 0.0013 waves (0.08180.0178 nm, or A/164
). ForTest #2, the average is 0.0148.0049 waves (0.19180.0654 nm, or A/70). Since the object
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Figure 2.To assess the quality of the object pinhole spatial, filier separate experiments were performed in which

the object pinhole was translated laterally in the vicinity of the K-B focus. (ABdsepositions within the measured

K-B intensity profile are indicated by the letté&rshrough E in each test. For each measurement, the position of the
reference pinhole was re-optimized and the wavefront was calculated. (Beloyarisons of the wavefront measure

ment pairs, with piston and tilt removed, are shown in terms of the RMS displacement détaragifwavefronts.

The discrepancy in the typical f@ifence-magnitudes observed within each test is attributable to the factfémantlif
objectandreference pinholes were used in each case.

pinhole position is seldom adjusted during the course of many measurements, this uncertainty enters the
experiment as a systematic error source. In practice, the actual wavefront variation will be much smaller

than the wavefront variation caused by the intentional displacement of the object pinhole.

8.4THROUGH-FOCUS EXPERIMENTS

An important test of the spatial filtering properties of the object pinhole is one that examines the
dependence of the measured wavefront on the longitudinfalcaly position of the object pinhole.
Because the reference pinhole remains stationary in the image-plane, translating the object pinhole causes
only the test beam to focus above or below the image-plane.

Since the window is very lge compared to the focal spot diametégthin a broad range of focal
positions the window transmits the test beam with almost no dependence on the focal positiiony.
reference pinhole, howevatefines a stationary centef-curvature for the reference beahmus with
their longitudinal centers-of-curvature displaced, the test and reference beams acquire a small amount of

defocusThe defocus magnitude is easily derived for small NA. In waves, the path-lerfetiertit is

ZNA2

AR[A] = Z3. 2)
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Figure 3.Wavefront measurements recorded as the longitudinal position of the object pinhole is adjusted are used to
assess the sensitivity of the system to defocus. For each measurement, the position of the reference pinhole was also
re-optimized. (ap comparison of the Zernike polynomial fits to the four measured wavefronts shows excellent agree
ment of the aberration cdigients. (b)The magnitude of the dérences in these cdiefents is shownThe longitudi

nal position is known via the calibrated stage and the measured defocus, which depends linearly on the longitudinal
position. (c)The measured defocus follows the longitudinal position lingagyexpected. Howevyehe slope indi

cates aneasuement NAof 0.060 on the image-side, which is smaller than expected.

zis the longitudinal displacement, aAglis the Zernike polynomial corresponding to defocus.

Figure 3 contains the results of this experiment, again performed using sub-apditherebject
pinhole was translated vertically by a total of 594n%, and four individual interferogram measurements
were made. Here, as in Section 8.3, the experiments require re-optimization of the reference pinhole after
each longitudinal translatiohus the added uncertainty introduced by the reference pinliettsedre
incorporated in these results. Figure 3(a) shows the average of the measured Zernike polyndimial coef
cients, excluding piston, tilt, and defociifie very small standard deviations of each term (determined by
the four measurementaje shown in Fig. 3(b).

Figure 3(c) shows the measured Zernike ficieft of defocus versus the longitudinal position of
the object pinhole and reveals a discrepancy in the measurdierglope of the best-fit line is
6.626<104 wavesim. Using Eq. (2), at 13.4 nm wavelength, this slope indicates a measuremeht NA
0.0060 on the object side or 0.060 on the image-side. Based on the maximum width of the illuminated

area in the recorded data (702 pixels) and on the size of the circular sub-region used for analysis (659 pix
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els), the predictetheasuement NAs 0.066 within this “0.07 NAub-aperture.At the time these experi
ments were conducted, the Nv&as not accurately known from other means; it is therefore possible that

the numerical apertures under consideration are actually smaller than expected, by as much as 9%.

8.5 MECHANICAL STABILITY : DRIFT

Care was taken to design the interferometer to be rigid and isolated from vibration. Separate from
the motions of the source and the beamline, the most critical positions estativelocations of the
object pinhole with respect to the Schwarzschild test optic and of the image plane pinholes. Recalling that
the image-plane pinholes are mounted to the test optic, the most likely source of drift in the system is the
position of the object pinhole with respect to the test optic. Clahdybest way to measure the impor
tance of drift in the interferometer system, and probabniyinterferometer system, is to observe
changes in the measured wavefrionsitu.

Several such experiments were performed; the results of one are shown in Fig. 4. Here, the positions
of the pinholes and the test optic are optimized and then not adjusted for ten rAisirtgke interferogram

measurement is made once every two minutes for a total of six measurements; each wavefront is compared

a) Zernike coefficient magnitude b) Aberration magnitude c) Wavefront aberration
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Figure 4.In situmeasurement of mechanical stability is performed by observing changes in the measured wavefront
over time, as the system is left undisturbed in one position. Changes are recorded with respect to the first measured
wavefront (time = 0 min). (aJhe magnitude of the change in tilt indicates a lateral drift of approximately 90 nm in

10 minutes. (bYVith the tilt component removed from the analysis, the RMS andiRplacements of the measured
wavefronts are also shown. In ten minutes, the RM®rdifice did not exce@d200. (c)The diference wavefronts

are plotted using a consistent grayscale.
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to the first.The wavefronts are calculated using the Fourarsform method with a narrow Gaussian filter
1/e2 width of four cycles in thepatial-frequency domaiithe Zernike codicient magnitudes of the prima
ry aberrations in the ddrence wavefrontare shown in the Fig. 4(a): by definition, the Rvor from any

of these is twice the magnitude of the fioefnt. The P-Vand RMS wavefront displacements are shown in
Fig. 4(b) with the piston and tilt terms removed.

Following Eq. (1), and using the NAlue from the defocus experiment (Section 8 ,measured
4.1x102 waves of tilt indicate a lateral drift of approximately 90 nm in 10 minutes, or 9 nm/min on the
image-side of the optid-he defocus cofitient reached a maximum value of 4183 waves, which by Eq.

(2) indicates a longitudinal shift of 7\.2n in 10 minutes, or 0.7@2m/min on the object-side of the system.

To correctly replicate the way in which the interferometer has been used, the systeot was
allowed to stabilize after the alignment had been optimized. It is possible that the system drifts most
rapidly immediately after it is adjusted, and then reaches a more stable position. Further investigations to
characterize the system drift are warranted, but have not yet been perfohmedaximum allowable
drift rate should be based on the rate of data collection, and ongbedacuracy of the measurements.

An important secondary result can also be extracted from this experirhertlear observation of
small, well-behaved incremental changes using single-interferogram analysis methods indicates the high
sensitivity of this interferometewith measurement precision bel@d00. This precision magnitude is

supported by other self-consistency tests described in Section 8.10.3.

8.6 OBJECT PINHOLE EXCHANGE AND MEASUREMENT REPEATABILITY

Understanding the performance of the interferometer and the qualities of its components requires
evaluation of the wavefront measurements, subject to the exchange of “identical” elements wherever pos
sible.To what extent do the measurements depend on the optical components separate from the optic
under test? By performing a series of experiments with a numbeferkedif object pinholes, for exam
ple, systematic errors potentially introduced by defects in any one pinhole become random errors in the
larger data set.

This section describes two important experiments designed to evaluate the object pinholes and the
importance of system alignment. Because re-alignment was performed during the evaluation of-the multi
ple-pinhole efects, the results of these two experiments are essentially coupled.
8.6.1Multiple Object Pinholes

More than seven individual object pinholes were used in interferometry experimeatginholes
were known to be too Ige to fill the measurement NA; those measurements are not presented in-this sec

tion. Five other pinholes, discussed here, are commercially availableltaisel pinholes designed to be
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0.54m in diameterThey may in fact be somewhatdar. 010 Comparison of five object pinholes
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Figure 5.Comparison of wavefront measurements
under the exchange of five “On” object pin
holes. (a)The Zernike polynomial cogéfients and
(b) the RMS and P-Misplacements of the d&f-
fronts is described by thiifference wavetmtstatistics ~ €nce wavefronts are shown. Uncertainties are con
sistent with other measurements requiring re-opti
calculated for each pair of measuremenahles of the  mization of the reference pinhole position.

alone represents the March data, and B through E-re

sent theApril data.The variation in the measured wav

RMS and P-\displacements of the @&rence wavefronts are shown in Fig. 5(b).

Examining the P-\feasurements, one trend is apparent: the agreement is generally better among B
through Ethan it is betweeA and any of the others. One explanation is the system re-alignment, addressed
in the following sectionThe RMS displacements are all on the order of 0.01 to 0.02 waves, consistent with
the variation seen in the reference pinhole displacement experiment, described in Section 8.2.
8.6.2System Re-Alignment

As described above, the Schwarzschild objective was removed from the interferometer chamber and
reinstalled several times, including once for each of the three sub-apertureg\tabitime these experi

ments were conducted, the optic was not kinematically mounted to the translation-stage that controlled its
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Zernike polynomial number
object pinholesThis adds an extra degree of uace  Figure 6.Measurements recorded before and after a

) . complete system re-alignment show excellent agree
tainty to the diference measurement and further ment. Measurements are also separated by more than

two weeksA comparison (a)f the Zernike polynomial

explains why this experiment is coupled to the-pi coeficients and (bjhe magnitude of their dérence.

hole exchange experiment.

The comparison is shown in Fig. Bae two overlapping sets of Zernike polynomial ficefnts
are shown in 6(a); 6(b) shows the magnitude of tHerdifice. Here the only termsder thanA\/100are
astigmatisniz, and the ninth Zernike polynomialg, which istriangular astigmatismThese are also the
two aberration components with thegast Zernike polynomial ca@ients. The RMS and P-\displace
ments of the dference wavefront are, respectivedy018 and 0.153 waves (0.24 and 2.05 nm A6~

and -\/6.5). Seventy-four percent of the RMSfelience comes from the astigmatic component alone.

8.7.TEMPERATURE MEASUREMENT

An experiment was conducted to gauge the thermal stability of the interferometer chamber over
two days of typical operatioffhe air inside the experimental area of Auvanced Light Source where
the interferometer sits is designed to be controlletDt&°C. Howevey the experimental system sits with
in 10 m of a lage access door that is opened several times per day for several minutes at a time. Concern
over the actual chamber temperature prompted this simple study

A temperature meter was placed in thermal contact with the base of the interferometer chamber and
the temperature was recorded intermittently for two dBlys.results, shown in Fig. 7, verify that the cham
ber temperature stays within the published specifications éfliBeexperimental floorAdditional tempera
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25.0C Figure 7.The tempera
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time
ture measurements have since been conducted in which the temperature from a number of probes in various
positions is recorded automatically at regular intervidde. newer measurements are in good agreement with

the data shown here.

8.8 ZEROTH-ORDER REFERENCE VERSUS FIRSTFORDER REFERENCE

A small number of experiments were conducted to measure tbeedde between theeioth-order
refeenceand the defaulfirst-order refelenceconfigurations of the interferometdihese two very similar
modes of operation are defined in Section 4.3 and discussed further in Sections 5.4, 5.8.4, Asdhg 10.
names implythe essential dérence is a reversal-of-roles changing which one of the beams from the grat
ing beamsplitter is used as the test beam and which one as the reference beam. By definition, the reference
beam is that beam which is brought to focus on the reference pinhole to produce the spherical reference
wavefront. Starting in the first-order reference position, a simplgd.franslation of the beam positions
in the image-plane brings the zeroth-order beam to focus on the reference pintaiteentfiest-order
beam becomes the test beam.

From a typical, binary transmission grating, the first-order beams are eacis4@8énse as the
zeroth-orderSpatially filtering a first-order beam in the first-order reference configuratteaseshe
intensity discrepancy between the test and reference beams and further reduces the fringe contrast.
Evidence of the improvement in fringe contraderdd by the zeroth-order reference configuration is
shown in Figs. 8(a) and 8(b). Improved fringe contrast facilitates the analysis.

While intensity-balancing issues motivate the use of the zeroth-order reference configuration, con
cern for the quality of the gratirgdiffracted first-order beam is paramount. For this reason, the first-
order reference configuration, which filters thdrdi€ted beam, became the default mode of operation.

A comparison of the same wavefronts measured in both configurations is given in Fig. 8(c). Here,
the RMS displacements of thefdifence wavefronts are all less than or equal to 0.0131 waves (0.176 nm,
or ~A/76). Because reference pinhole re-alignment is required in each case, the uncertainties in these mea
surements do include the reference pinhole alignment uncertainty discussed in Section 8.2. Since that
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Figure 8.A comparison of wavefronts measured using the default first-order reference and the zeroth-order reference
configurations of the PS/PDIVhile the first-order reference configuration uses the zerditacti€d-order beam from

the grating to ensure a high-quality test beam, the zeroth-order reference configuiersom sifjnificant improvement

in fringe contrast by balancing the intensities of the two beams more cl@3€Elypm each of the four pinholes (A, B,

C, and D)the fringe contrast is shown for both configurations Fdr) a comparison, one typical sub-region of the
interferogram pattern is shown in detdihe cross-sections taken from the position of the dashed white line reveal both
thefringe modulation and the sampling density of the raw datZh@RMS and P-\displacements of the f&rence

wavefronts show that the phasemap measurements are nearly indistinguishable within typical measurement uncertainties

uncertainty is lager than the discrepancy found in this stutlis thus possible that the magnitudes of the

wavefront diferences between these two configurations are below the measurement uncertainty

8.9 OBSER/ATION OF THE GEOMETRIC COMA SYSTEMATIC ERROR

The small (4.50m) image-plane displacement of the test and reference beam centers-of-curvature
introduces a geometric coma systematic error that is readily observable in the data (Secfibe 6l8ar
observation of this very smallfett serves to demonstrate the high resolution of the ESNPDI.

The magnitude and direction of the coma systematic error depend linearly on the beam separation.
When an isolated wavefront measurement is made, the contribution of this systematic error is unknown.
However when any two such measurements are performed with a rotation or change in the separation, the
wavefont diffeencebetween the two measurements reveals the isolated contribution of the systematic error

The PS/PDI image-plane spatial filter was designed to facilitate the removal of this systematic
error. By performingtwo wavefront measurements using reference pinholes placeap@ét with respect
to the windowthe geometric coma is easily identified and removed according to the prescription
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Table 1.Difference wavefront statistics from measurements performed in two nearly orthogonal dirgctions.
Tilt (T ) and coma(,) for sub-aperture& and C.

Tal Cal
Sub-aperture P-v or P-v 6c
A 62.94\ = 843.3 nm 46.48 0.068A=0.92nm 45.77
C 55.41A = 7425 nm 46.8T 0.017A=0.23nm  46.8%

) sub-aperture A:
wavefront differencérom orthogonal measurements

pure coma

(astigmatism removed)
Figure 9.0bservation of the geometric coma systematic error can be made by the subtraction of any twe measure
ments in which the beam separation has chanlyetl.the beam separation, and hence the coma, rotated by nearly
90, thedifference wavetmt shows the coma fefct at approximately 45 Data from sub-apertufe (a) is shown

alongside pure coma (b) for comparison. Because the variation of the astigmatism term masks thfecinllab&f

than 1 nm in a 0.07 NAub-aperture), astigmatism has been subtracted from this fitheeariations in (aare

related to the measurement uncertainties.

described in Section 5.5.2.

The magnitude of the systematic error is small. For the measufectdde wavefronts, thét dif-
ference vectoiT 5 and thecoma diffeence vectoC, are shown ifTable 1.Within each sub-apertur&,
andC, are expected to be parallel; the an@esindB: shown in the table demonstrate the agreement
with expectations.

Based on measurements from sub-ape/ureig. 9(a) shows a dérence wavefront obtained by
subtracting the average wavefronts measured in the two nearly orthogonal beam separation directions.
Because this &fct is small relative to the variation in the measured astigmatism, the astigmatism has
been removed from the tBfence wavefront in the creation of this figure. For comparison, Fig. 9(b)
shows goure coma aberration aligned in the directiorBef

While the measurements presented for sub-apektuepresent the average of nineteen separate

phase-shifting series, those for sub-aperture C come fromvemipeasurements, one series in each direc
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tion. Given the small size of the data set, the level of agreement inférertit tilt and coma angles is
remarkably highThis agreement both facilitates the removal of the systematic coma and emphasizes the

high precision of the individual measurements.

8.10 PHASE-SHIFTING ANALYSIS

Analysis of the EUVphase-shifting PS/PDI data proved to be extremely complicated due to the
unreliable positioning of the grating translation stages responsible for controlling the phase-shifting incre
ments.To overcome these fiidulties, the author developed tReurier-Transform Method of Phase-Shift
Determination(Section 12.4.2) and applied it using the least-squares method of phase-shifting analysis
(Section 12.2.3)This section explains the necessity of this new technique and demonstrates the advantages
of this method over others, using experimental data. Several available phase recovery techmijass-for
shifting methods of analysis are presented in Chapter 12, along with a discussion of specific advantages
and limitations of eaclThe inherent sensitivity of the least-squares method of phase-shifting analysis is
presented at the end of this section, and the implications for polynomial fitting uncertainties are discussed.
8.10.1Phase-Calibration Dificulties

Difficulty in guaranteeing the position of the PS/PDI grating beamsplitter stages plagued the phase-
shifting analysis of the interferometric data during the entire course of measurements. For each individual
phase-shifting measurement, a series of five to nine (most ofteninfiederograms was recordeifter

each exposure, the position of the grating was advanced by approximately one-quarter cycienarf4.5

its 184um pitch.The stage motion is cal 10

bratedin situby careful observation of 80

the fringe pattern during the motion of _

the stage over more than 20 cycles (3! é o0

um) of motion. During the measureme Z 40

of a phase-shifting series, the grating i 20

translated by only one to two cycles to Il T
-0.3 -0.2 -O.Il 0.0 0.1 0.2 0.3rad

depending on the number of exposure = < , : : :
-15  -10 -5 0 5 10 15 deg

Fromall of the phase-shifting me 004 002 " o0o0o ' o002 | 0.b4cycles

T T T T T T T
surements, 951 individual interferogran -0.15 -0.10 -0.05 0.0 0.05 0.10 0.15Ys-cycles

Figure 10.Histogram of phase-step errors, calculated using 927
interferograms, from 163 separate phase-shifting series. Limitations
in the grating translation stage lead directly to errors in the phase-
incrementsThe taget increment was always one quadgele, or

172. The global phase of each interferogram was calculated using
the FouriefTransform Method of Phase-Shift Determination.

or 163phase-shifting series, weirevestk
gated to determine the magnitude of tt
phase-step errorghe relativeoverall

phaseof each image was calcugak using
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the FouriefTransform Method of Phase-Shift Determination (Section 12 B@nwithin each series the
average phasacrementwas subtracted and the distribution about the mean phase-increment was tabulat
ed.A histogram of the phase-step errors is shown in Figure 10. Here the ordinate is given in radians,
degrees, cycles, and quartgcle steps (the tget increment)The full-width at half-maximum of this dis
tribution is approximately 0.07 radians, 4.0 degrees10c@tles, or 4.4% of the quarteycle step.
8.10.2Comparison of Phase-Shifting Methods

Evaluation of the available methods of phase-shifting analysis using experimentaladJig the
most appropriate way to discern the actual benefits and drawbackJedtlstrate such an investiga
tion, a single phase-shifting measurement series was sel€biederies is comprised of nine exposures
with an (unintentionally) irregular phase-increment. Elements of this study are shown ih. Rigirg
data from sub-aperture B, a relatively-clear %6160 pixel sub-region was chosen. Details of four phase-
shifted exposures are shown.

The FouriefTransform Method of Phase-Shift Determination was used to determine the global
phase-shift between exposures. Here, the complex phase of the first-order peak in the spatial-frequency
spectrum is used to assign a global phase to the interferofinenaverage phase increment was found to
be 88.0. The individual steps or step errors are shown in Hi¢o)1

Seven separate methods of phase-shifting analysis are applied to the ramealatawrapped
phasemaps from each method are shown with the piston and tilt components rérhevfedrstep
method (Section 12.2.1jses only the first four exposur@$he Hariharan method (Section 12.2.2), Wwiliz
ing the first five exposures, is applied in twofeliént waysfirst, assuming quarterycle steps, and sec
ond, using the known average°§hase incremenf nine-step method* was the last of gimplemeth
ods to be appliedrhe complex method is applied in three ways, using the global phase increments calcu
lated with the Fouriefransform Method of Phase-Shift Determinatiohe least-squares method was
applied to three, five, and then all nine exposures.

One characteristic feature exemplifies the main problem associated with the simple techniques: in
the presence of phase-step errors, ripples appear in the data at twice the frequency of the fringe pattern.
This so-calledringe print-though,clearly visible in the first four images of FiglL(t), is absent from the
three applications of the complex method.

The discrepancies between the individual methods are most clearly revealediifethece wave

frontscalculated by subtracting the phasemap of the nine-bucket least-squares algorithm from the

* A nine-stepphase-retrieval algorithm developed by the autQoiartercycle steps are assumed.

a0 2l lg+lg=1y) L
9(x) = tan o-lp+2(ls-13-17) )
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exposure
four phase-shifting steps

sub-aperture B

four-ste Hariharan (5) Hariharan* (5

I erencep asemaps

P-Vv:0.1023 0.0912 0.0912 0.0236 0.1629 0.0993 [waves]
0. 0.0156 0.0097 0.0097 0.0042 0.0133 0.0052 [waves]
avg:7.5<10°6 1.1x10° 1.4x10° 1.1x10° 1.5<10° 4.8¢10°6 [waves]

Figure 11. A number of diferent phase-shifting analysis techniques, including both simple methods and complex
methods developed by the authare compared in this figure. (80 x 160 pixel details taken from a nine-exposure
phase-shifting series are showine small white cross indicates the same stationary position in all four inéges.

data comes from a measurement of sub-aperture Bhéojrregular phase-increments have an average step size of
88.C°. (c) Unwrapped wavefront phasemaps are presented for sefereutifmethods of phase-shifting analy3ise
various methods used fiifent numbers of exposures, as indicated in the names, or parenthéty&ach

phasemap is compared to the nine-image least-squares phasemap, afef¢healiivavefronts are showll are

plotted using the same grayscale. Displacement statistics for the six comparisons are shown below each image.
Double-frequencyringe print-thoughis problematic in the application of the simple techniques. How#weicom

plex least-squares method developed by the author to cope with irregular phase-steps is resistant to this problem.

phasemap of each of the other algorithms. In thegerelifce images, shown in Fidl(l), the fringe
print-through from the simple techniques and the less-regufaretite patterns in the least-squares-tech
niques are clearly visible. Below each image, thiedihce wavefront statistics are given.

One important statement can be made about all of these measurement tectieqesphase-
errors, or theaveragephase errors, are zero to within the measurement noiseTaigls more groperty
of the periodicity of the fringes than of the analysis methods themselves. Depending on how the piston
term is adjusted, in the absence of measurement noise the phasemaps generated by any two analysis mett
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a) RMS displacemenf\J100] b) P-V displacement\/100]
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FT-LS

P-V =0.176A
Figure 12.Analysis of the nine individual interferograms in a single phase-shifting series is performed using the
Fouriertransform method. (a) and (Within a 160x 160 pixel region, the pairs of measurements are compared to
assess the self-consistency of the resultsTi{e)average wavefront determined from the nine individual measure
ments is compared to the wavefront calculated using the least-squares Mieéhdiference wavefront reveals the
extent of the spatial filtering in the Fourigansform method, and shows the mid-spatial-frequency content of the
measured phasemaps.

ods can be made to agree at one or two points within each cycle of the fringe pattern. Between these points
of agreement, individual methods may dgesras evidenced by the periodicity of the fringe print-through.
The implications of this zero averageféitnce are that in cases of high fringe densine level of fringe
print-through can be tolerated withoufeadting the low-spatial-frequency components of the measured
phasemap. Howeveif the fringe density is sparse, then the phase errors introduced by print-through may
dominate the low-spatial-frequency wavefront aberrations, adversetyiiag the measurements.
8.10.3Fourier-Transform versus Phase-Shifting Methods

Besides the phase-shifting methods, the other important analysis technique applied to interferometric
data is the Fourigransform method of single interferogram analysis (SectloB) IThis relies on the spa
tial rather than the temporal domain of measurement. Experience has shown these methods to be very reli
able and robust in the presence of ndi$ey do, howeverequire the application of spatial filtering to the
data and thus sielr from lower spatial-resolution than the phase-shifting methods. Furthermore, spatial fil
tering causes any abrupt discontinuities in the data to introduce analysis errors within the vicinity surround
ing the discontinuity

To assess the quality of the Fouwtemsform method of analysis, two studies were maékde.first
evaluates the self-consistency of the analyses as applied separately to the nine independent measuremen
described in the previous sectidine second compares this analysis with the least-squares tecHirigue.
Fouriertransform method is applied separately to all nine images of the phase-shiftingTeeaiesid
possible edge-#dcts, the analysis is performed using the entire 20Pd24 pixel image, before the
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160x% 160 pixel region of study was isolated. For this analysis, a Gaussian filter of radius seven cycles
was applied in the spatial-frequency domain.

The nine separate phasemaps calculated with the Ftnamasform method were unwrapped, and
the diference wavefronts from all measurement pairs were tabulated. Figures12(a) and 12(b) show the
RMS and P-\Wisplacements of these fdifence wavefronts, respectiveljhe average of the RMS dis
placements is 0.00380.0009 waves (0.04#0.012 nm, or A/307).

For comparison with the least-squares phase-shifting technique, the average of the nine separate
phasemaps was computed. Figure 12(c) shows a side-by-side comparison of this average wavefront with
the least-squares result; both are shown with piston and tilt components reffwvedfierence between
the two is also shown. By inspection, the characteristics of tfexatite clearly reveal the result of spa
tial filtering and averaging on the Fourkeansform data. Notice that the original fringe pattern, shown in
Fig. 11(a),has horizontal fringes, indicatingvattical displacement of the test and reference beams in the
coordinate system of this measurem@stdescribed in Section 6.4, the overlap of the reference beam
through the window causes the latter to behave as a bandpass filter for the Fomtlgis reason, the fea
tures observable in the flifence phasemap show much higher spatial-frequency content in the vertical
direction than in the horizontal direction.

There are two important results here. First, the self-consistency of the Roangform method
applied to separate interferograms is measured to be a30® on this domain. Second, the RMJeatif
ence between the Fourigansform method and the phase-shifting analysis is approximd&€lyThat
difference is comprised only of mid-to-high spatial-frequency features — features that do not significantly
affect the measurement of the low-spatial-frequency aberrations of interest.

The Fourieitransform method of analysis is appropriate for use in most cases where phase-shifting
data is not available or where high accuracy with high spatial resolution is not required. Further research is
necessary to evaluate the performance of the Fetaiesform method in the vicinity of blemishes or near
the edges of the domain, where its performandersuf
8.10.4Sensitivity of Least-Squares Phase-ShiftiAgalysis

Additional error sources in the measurements are related to the detection and digitization (dis
cretization) of the interferogram image. In addition to photon shot-noise and noise sources in the detec
tor's amplification electronics, the digitization performed by the detector in the recording of the interfero
gram should also be consider@the high-spatial-frequency noisdegfts all play avery smallrole in the
wavefront measurements presented in this thesis; howthegrmay become significant in low-light inter

ferometric applications where high-brightness sources are not avalilhldesection is not intended to

158



Interfeometer Performance and Characterization

present an exhaustive nor detailed study of nofeetsf but instead to give an orddrmagnitude esti
mate for the ranges in which they become relevant. More detailed and general analysis dettiedeasf
been performed by Koliopoulos (1981) and Brophy (1990).

The relationship between the phase-uncertainty oihtigidual points and the uncertainties of the
Zernike polynomial coditients is described in Section 15WWhen a lage number of pointhl are mea
sured (on the order of 100,000 — 300,000 is typical), the uncertainties of the Zernfidettefare

approximately /N times as lage as the indivie Least-Squares Method: five interferograms

ual variation; this may be more than 100 time 101;
smaller in ideal circumstances. E \
A pair of simple studies is performed tc g 10_25 \\
evaluate the &fcts of shot-noise and image di é E \\/70
tization on the phase measurements conducts g 103§ ke
with the least-squares technique using five gu: § E
ter-cycle phase-shifting steps. Here an ideal in ?i’é 10% 3
wavefront with 20,000 points in a linear slope é- ]
and a range of one cycle is used as the input. i 10‘5; %%
the first studyto approximately model Poisson E Q"o;
statistics of photon-countirthe simulated inten 1045_ e ER N B

1 10 100 1,000 10,000 100,000
photons (shot-noise study)
discreet intensity levels (digitization study)

sity data with 100% fringe contrast is subject:

to Gaussian noise of widtfN. In Fig. 13, the
) ) Figure 13.Two empirical investigations of the sensitivity
recovered phase is compared to the input ph of the least-squares method of phase-recovery to photon

. . shot-noise and image digitizatiofhe abscissa is given in
and theRMS difference is plotted for a range ¢ photons for the shot-noise studynd in the number of dis

. . creet intensity levels for the digitization stud
maximum photomumbersAn empirical formu 4 g 4

la relating the RM$hase uncertaintgq, to the peak number of photoNss

1
6.5VN @

O¢[waves| =

The digitization €ict can be isolated from all of the other noise sources. Biesan integer
describing the number of discrete levels present in the fringes with no other noise e dislS phase
uncertainty iscalculated in the same manner as above, and an empirical expression is obtainedgetating
the level of discretizatioD.
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In general, for EUMPS/PDI experiments the tgat fringe height is set at approximately 1000 counts.
The measured detector sensitivity is 0.8 counts per detected phitiorl.000 counts, or 1250 photons,
the RMS point-by-point phase uncertainty from shot-noise is approximate®B4avaves (0.054 nm, or
A/250). Discretization with 1000 levels produces a significantly smaller RMS phase uncertait@of 9
waves (0.0012 nm, orA#11,000).
According to the results of this simple analysis, noise and other high-frequency random errors from

the detector do not significantlyfa€t the EUVPS/PDI measurements presented in this thesis. Once

again, they may become important only when reliable data i g12
o
required in low-light situations. ;EL 10 //J
o
8.10.5Intensity Fluctuations kS 8 /
o . . S 6 ,
Fluctuations in the overall intensity level of the recorde 3 /
(2] 4 A/
. . L @
interferograms can introduce measurement uncertainties into 5 5 /
%)
phase-shifting analysis. Intensity variations can be caused by 5 0

tuations in the light source, or by therformance of the shutter 0 2% 4% 6% 8% 10%
interferogram overall
intensity variation (RMS)
Fig 14.Fluctuations in the overall
intensity of the recorded interferograms
in a phase-shifting series introduce
phase uncertainties into the measure
ment.This graph shows the results of a
simple empirical study conducted to
investigate this ééct. Within a series

While single-interferogram analysis methods are generally
fected by intensity changes, phase-shifting methods rely on
stability of the system during the multiple exposures of a ph

shifting series.

Similar to the investigations presented in the previous
tion, a simple empirical study is performed to gauge the sen:

ty of the least-squares method of phase-shifting analy#liscto-

of five simulated ideal interferograms,
the individual exposure intensities are
varied before analysis with the least-
squares method is performed.

ations in the overall intensity of the measured interferograms.

Once again, an ideal input wavefront with a linear slope aadge of one cycle is used as the inphe
simulated phase-shifting interference data is generated for five gopatephase-steps. Before the analy

sis is performed, the overall intensity levels of the individual “interferograms” are adjusted by randomly
chosen multiples selected from a given Gaussian distribution width. For each distribution width of inter
est, 500 such analyses are performed and the RN&Beatti€e of the calculated phase from the ideal input
phase is tabulate@he average of RMS phasefdience indicates the expected phase-uncertainty for

each intensity distribution widtiThe results of this investigation are shown in Fig. 14. For intensity vari
ations below 10%,an empirical relation between the RMS phase uncertainty and the RMS overall intensity
variation is

(% variation)

936 ©

0 [Waves] =1.069 x 10~3/(% intensity variation, RMS) =
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In the EUVPS/PDI experiments, the primary source of overall intensity fluctuations is the steady
decrease in the electron beam current ofiieanced Light Source. During a typical phase-shifting-mea
surement, thALS current was observed to decrease by less than B$%escribed previouslyhe beam
current is recorded with each exposure, and the images are normalized before the analysis is performed.
Intensity variations from the source are therefore limited to less than approximately 0.25%.

A secondary source of intensity fluctuations is the shudescribed in Section 6.2.Bhe perfor
mance of the shutter used in these experiments is limited to approximately 0.02 sEcerafere, with a
typical exposure time of five seconds, the fluctuation from the shutter could bgeaadad.4%.

These two sources of intensity fluctuations are predicted to contribute less than 0.001 waves
(0.0134 nm, oA/1000) to the phase uncertainty of the measurementss-than the variations produced

by shot-noise at these intensity levels.

8.11 FRINGE CONTRAST AND WAVEFRONT FITTING UNCER TAINTY

The process of wavefront surface fitting used for the analysis of the interferometric data involves the
minimization of theit variancebased on a finite basis of orthogonal polynomials (Chapteif h&)variance
comes from theesidualwavefront error remaining after the contribution from the polynomial sufifiog
has been subtracted from the raw datee surface fit is constructed from the contributions of each of the
orthogonal polynomials in the finite basis; thtlee set of polynomial coié€ients is all that is required to
reconstruct the fit on a given domain. For the Zernike circle polynomials, typically 37 polynomial-compo
nentsare specifiedAs described in Section 15.6, the uncertainty in each of these fiiceres depends on
the magnitude of the variance and on the characteristics of the individual polynomial components.

A large number of wavefront measurements were made of sub-agerDver time, the transmis
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Figure 15.Measured dependence of thegkest Zernike coétient uncertainty on interferogram fringe contrast for 30
separatghase-shifting series. Each series corresponds to the same downstream field point measurement of sub-aperture
A. A relative deterioration in fringe contrast observed inApel data sets may be attributable to changes in the refer

ence pinhole transmission.
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sion properties of the reference pinholes changed, and the intensity of the reference wave dEeecased.
loss of fringe contrast accompanying this decrease in reference wave intensity had a sigridataon ef
the fit variance of the individual measurements.

Figure 15 shows a comparison between the measured fringe contrast (calculated with the method
described irAppendixA.6) and the lagest fitting-codicient-uncertainty among the 37 Zernike polynomial
coeficients, 0,4, Thirty phase-shifting series were considered. Note that in these measureggiits
always attributable to Zernike polynomial humbers 33 and 34, which are high-ordered coma&herms.
comparison clearly demonstrates the inverse relationship betwggand the fringe contrast: the recip
rocal ofo,,,Shows a roughly linear dependence on contfasempirical relationship that describes this

dependence is
A

~ 160 + 5060 contrast

(6)

OWB.X

Typically, 0,,axiS more than 1.5 times er than the individual uncertainties of the important lewer
ordered aberration components (astigmatism, coma, and spherical aberration).

Fortunately due to the laye number of points used in the {70,188 and the relatively high qual
ity of the phase-shifting data available, the fioeint uncertainties related to the surface fitting sigmif
icantly smallerthan the uncertainties related to the measurement-to-measurement variation. For this rea

son, the uncertainties from the surface fitting are not included in the analysis presented in Section 7.2.4.

8.12 SUMMARY AND CONCLUSIONS

All of the individual experiments described in this chapter demonstrate the precision of the- interfer
ometer: reference and object pinhole displacement experiments, mechanical stability tests, pinhole ex
change, system re-alignment, and observation of the geometric coma systematd eescribe experi
ments that are similar in principle, where two wavefronts are compared by inspection of fibxein céfs.
Here, thevariationsin the data stand out and are characterized.

The following section contains a brief summary of the main performance evaluation experiments
described in this chaptdfollowing that is a discussion of accuracy and the need for further testing.

8.12.1Summary of Precision-&sting Measurements

« 8.2 Refeence pinhole spatial filtering.Based on measurements made as the reference pinhole is
displaced slightly from the optimum position, the expected measurement-to-measuremenarRMS
front variation is 0.012 0.009 waves (0.249 nm, oi/53).

» 8.30Dbject pinhole spatial filtering. In two experiments, lateral translation of the object pinholes
produced an RMS wavefront variation of 0.G306.001 waves (0.082 0.018 nm, or #/164) in the
first experiment, and 0.01#40.005 waves (0.192 0.065 nm, or &/70) in the second.

» 8.4Through-focus experimentsSmall longitudinal translations of the object pinhole adjust the posi
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tion of the reference pinhole through foclibe average of the measured RMS displacements of the
difference wavefronts is 0.0#50.007 waves (0.204 0.088 nm, or A/66).

« 8.5 Mechanical stability Based on observations of the wavefront changes over ten minutes as the
system is held stationgrthe interferometer components appear to driie image-plane lateral and
longitudinal drift rates were approximately 9.0 nm/min and 7.2 nm/min respectuelihe object-
side of the optic, these motions would be 90 nm/min laterally andun72in longitudinally

« 8.6.1 Object pinhole exchange and measement repeatability. Five object pinholes were tested in
measurement of sub-apertéteThe average of the measured RMS displacements of fieecdife
wavefronts is 0.01% 0.004 waves (0.19¥ 0.051 nm, or */68).

« 8.6.2 System e-alignment. The test optic was removed from the vacuum chamber and re-aligned
from scratch several times. For the two combined measurements of sub-apettier&MS dis
placement of the diérence wavefront is 0.018 waves (0.24 nm, 556).

« 8.8 Zeroth-order reference versus first-orderr eference.A comparison of the two methods shows
an average dérence wavefront of RM8isplacement 0.018 0.003 waves (0.13 0.04 nm, or

~\/101).

« 8.11 Fringe contrast and wavefiont fitting uncertainty. A dependence was observed between the
measured fringe contrast and the &oifnt uncertainties of the Zernike polynomial fitbe lagest
observed uncertainty of the first 37 dogénts follows 16,,,,[1/waves]= 160 + 5060 contrast, for
contrast values between 10% to 50%. Uncertainties of the low-ordered primary aberrations are
approximately two-thirds as Ige. Typical values range from 2xI04 waves (2.7-94103, or
~A/5000-A/1400).

8.12.2Comments

It is clear from the above measurements that the most significant limitation to the measurement pre
cision is the quality of the reference wavefronts generated by the reference pinhole. Every one of the tests
described here incorporates a re-alignmengélar smallpr other change that causes the reference pin
hole efects to be included in the measurement. Not doing so is unavoidable. By isolating these reference
pinhole efects, the reference pinhole spatial filtering experiment indicates that measurement variations on
the order oA\/50 RMS should be anticipated.

One of the four pinholes, pinhole @as found to introduce the st measurement-to-measure
ment variation and the least spatial filtering of the four pinholes studi¢dhis pinhole is not much er
than the other pinholes used for these experiments. Here, two conclusions can be drawn: the reference pin
hole is the most significant limiting agent in achieving high measurement precision in the ZBPWI;
and improvement could be achieved by the use of slightly smaller pinhdesall sacrifice in fringe cen
trast brought about by the use of a smaller reference pinhole will not significantly limit the precision of the
measurements relative to the other contributing factors.
8.13.3The Astigmatism Problem

The goal of having an interferometric system for which the accuracy and precision can be specified

independently from the characteristics of the optical system under test appears to be thwartedfby the dif
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culty of spatially filtering astigmatisnWithout exception, the dominant component of théedihce
wavefronts in each of the relevant experiments described in this chapter is astigmatism.

Section 4.6.3)ives some insight as to how astigmatism becomes the midstltiéberration to
remove by spatial filtering, but it does not provide insight into any one solution nfecévef than reduc
ing the pinhole size. It appears clear both experimentally and from the simple model that the pinhole size
standard for filtering astigmatism is narrower than for any of the other primary aberrations. For this rea
son, the performance of the system necessarily depends on the constituent aberrations of the test optic.
8.13.4Accuracy and the Need fofwo Pinhole Tests

In addition tohigh precision, high accuracig the true goal of interferometric optical system
measurement.

In principle, the simpldifference measementslescribed in this chaptdn which the system is
subjected to slightly diérent conditions in two measurements, are incapable of detecting systematic
errors.The presence of a systematic wavefront figure error would go unnoticed if it were lost in-the sub
traction of the two measurements being compared.

When the assumption is made that every optical component of the interferometer is capable of con
tributing systematic errors, then a wide variety of systematéctsf and the mechanisms to generate them
can be hypottezed.As discussed in Section 5.8, systematic errors introduced directly by defects in the
grating beamsplitter can be identified bygkatranslations of the grating, or by grating exchange. More
onerous by far are reference wave systematic errors introduced by the object and image-plane spatial filter
pinholes. It may be suggested that the particular defects or irregularities of a given pinhole introduce a sta
ble aberration pattern in the reference wavefront iegees. In addition, there may be unknown physical
properties of pinhole difaction (e.g. polarization dependerstigmatism, irregularities caused by non-uni
form illumination, etc.) that may create systematiors of significant magnitude near they&raccuracy
Far more simple are geometric systematic errors (Chaptieatsome from the beam separation (geometric
coma),detector misalignment (a source of astigmatism), the use of a planar grating in a spherical beam
(grating coma), and the use of a planar detector in a spherical beam (a source of radial distortion).

While some of these systematideets can be observed and are easily subtracted from the wave
front measurements (e.g. geometric coma), others present a more daunting grbblenportance of
identifying these décts cannot be overstated because the accuracy of the interferometer is at stake.

One strategy for overcoming the systematic errors uses a two-pronged approach. First, of the sys
tematic errors that cannot be directly observed, canniegnitudebe determinedThis is the strategy
applied to the investigation of the pinhole spatial filtering. For example, what may be manifest-as a sys

tematic error in a single measurement becomes a random error whga auarber of measurements are
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made in ways that induce changes in the “systematic”. ginerpinhole translation and pinhole exchange
experiments are all examples of this strategy for turning systematic errors into random errors and identify
ing their magnitude by carefully observidifferencesThe average magnitude of thefdiences indicates

the typical contribution of the systematic error to any single measurement.

The second strategy is to find a way to isolate the systemigtatsefinder consideratiomhe gee
metric coma removal is one example of this. Given that the systematic error depends directly on the mag
nitude and direction of the beam separation, introducing ac®ion in the beam separation allows this
systematic déct to be identified and quantified.

The identification and isolation of other systematic errors requires a so-calledst In such,
every attempt is made to remove the contributions of the test optic from the measurement, andyke bare
tem performance is studied. One way in which this could be achieved in th® &I is by using a
two-pinhole testin which a two-pinhole spatial filter is placed in the image plane of the PS/PDI (Gpldber
1997).The image-plane window that transmits the test beam is replaced by a second tiny reference pinhole.
The measured interference pattern and wavefront can be compared to those predicted for two ideal pinhole
spatial-filters, and systematic errors will be revealed in tHierdiice. Besides the expected tilt aed
metric coma, small detector misalignments may be observable in this sensitive technique.

To improve the measurements and broaden the significance of the two-pinhole test, the experiment
may be expanded to include agamumber of pinhole pairs, in flifent orientations, and with &fent
separations. Sensitivity to certain geometric errors will be greater in some orientations than in others. In
addition, the use of many pinhole pairs provides information on the variation in the spatial filtering prop
erties of the pinholes: the wavesfditted from the pinholes are essentially being “compantti’ each
measurement.

Some diects may not be observable using the two-pinhole tests. For example, if every pinhole
were to create the same kind of aberration in tHeadied reference wave it generates, then a comparison
of any two waves by subtraction would reveal nothing. Experiments have been performed to assess the
quality of a single reference wave, using shearing techniques to compare the wavefront to an angularly
displaced copy of itself. Such measurements could be attempted for the PS/PDI reference waves, but it is
not clear that the tests could achieve the desired il accuracy that is necessalgernatively, rota

tion of the optical system may help to identify thesect$.
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9.1 INTRODUCTION: 10x SCHWARZSCHILD MUL TILA YER COATING PROPERTIES

Measurements of isolated chromatiteefs provide perhaps the clearest demonstration of the sensi
tivity and importance of at-wavelength interferometric tesfifige resonant reflective multilayer coatings
exhibit a strong wavelength-dependent response in both reflected intensity and phase that occurs separate
ly from the figure of the optical surfaces under test. By tuning the wavelength and performing measure
ments near the reflectivity peak, these chromafecef are easily demonstrated and the properties of the
multilayers can be studied.

Multilayer response depends critically on the multilayer period, the illumination angle, and the
wavelength and polarization of the incident ligks.described in Section 6.2.1, the multilageatingsare
designed for peak reflectivity and wavefront response at 13.4-nm wavel€hgttange of angles subtend
ed by the light incident on the primary mirror necessitates the use of a multilayer containing a radial thick
ness gradienfThis design makes the performance of the system very sensitive to changes in wavelength.

This chapter contains measurements of the chromatic response of the multilayer coatings. In addi
tion to the direct demonstration of chromatic aberrations and the sensitivity of the interferometer itself,
measurements such as these would be required to understand the system performance in the presence of
broadband illumination. For example, understanding imaging performance under broadband illumination
requires that both the intensity transmission and the wavefront be considered over the range cf illumina
tion wavelengthsA separate section of this chapter addresses measurements made without-the wave
length-filtering of the monochromator

Qualitative wavelength-dependent measurements of chromatic aberrations have been reported pre
viously by Ray-Chaudhuri (19954d)he investigations presented here may be the first high-precision

guantitative measurement of sucfeefs.

9.2WAVELENGTH-DEPENDENCE OF THE TRANSMITTED INTENSITY

The first experimental indications of the presence of chromdéctefrelated to the multilayer
coatings were observable in the transmitted intensity patterns. Figure 1 shows the transmitted intensities
for sub-apertured, B, and C.The data from sub-aperture C were recorded with the sub-aperture defining
pupil removed and a Ige region of the clear aperture visibldnese images clearly show the response of
the multilayer coatings in a wavelength-dependent, annular paigedescribed in Section 6.2.2, for
these measurements the illumination bandwidth set by the monochromator is measured to be below 1-A
full-width at half-maximum.

The areas at the inner and outer edges of the annulus are especially intdrestpeyiods of the
multilayer coatings were designed and measured to be within a thickness tolerance of 0.125 A over a
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Figure 1.Wavelength-dependent intensity transmission patterns are shown for two sub-apertures>oStievidz

schild objective. (a) Sub-apertuhg0.07 NA) is shown with the aperture-defining stop in place. (b) Sub-aperture C is
shown with the stop removed to expose gdasection of the annulus. lllumination wavelengths in nanometers are
shown in the lowetleft corner of each image. (€he appearance of the Schwarzschild objectifid! annular pupil,

with and without the stop, is showFhe square outlines illustrate which two sections of the annulus are shown in (a)
and (b).The annular characteristics of the multilayer response are clearly visible in these images.

finite region of the aperture (i.e. a limited range of radii}the edges where nofeft was made to cen
trol the period, the reflectivities appear highest at the shorter wavelengths; this intlicstedayers in
these regions. Comparison of the measured and theoretical intensity transmission behaviors has been pre

sented elsewhere €jhil 1997).

9.3WAVELENGTH-DEPENDENT WAVEFRONT MEASUREMENTS —
CHROMATIC ABERRATIONS
When the PS/PDI is aligned and optimized, experiments to measure the wavelength dependence of
the wavefront are very simple to perform: adjustment of the undulator and beamline monochromator tune

the illumination wavelengthsery minor position optimization of the optical components is all that is
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Table 1.The wavefront measured at the central wavelength, 13.4
nm, is subtracted from the individual wavefronts measured at|eag
wavelength generating thiifference wavetmt Statistics of the
difference wavefronts are givefhe measured change of the fogal
position is also given.

13.0nm- &

A [nm] P-V [nm] RMS [nm] defocus im]
13.0 1.70 0.29 1.54
131 1.36 0.17 1.62
13.2 1.02 0.13 1.55
13.3 0.48 0.07 0.09
13.4 —  Central wavelength —
135 1.65 0.17 0.79
13.6 3.28 0.48 1.28
13.7 2.58 0.34 1.24

13.2 nm

required to perform measurements atedént wavelengths

13.4 nm

The wavelength-dependent change of the measui

wavefronts is a small fefct. Its significance becomes mos
apparenin an examination of thdifference wavetmtsgen
erated by comparison to the wavefront at 13.4-nm wavt ' '
length.With the wavefronts scaled in nanometers (rathe

13.6 nm

than in waves), pairs of measured wavefront profiles ar

comparedThe measured wavefronts from sub-aperfure

13.0 nm

are reconstructed from the first 37 Zernike polynomials
isolate the low-spatial-frequency figure changes of intert

The diference wavefronts are shown in Fig. 2. In

13.2 nm

Fig. 2(a), the dference wavefronts are individually scale
from black to white. In 2(b), the eight tifence wave
fronts are all represented on the same graysthterele

vant statistics of these tifence wavefronts are presente

13.4 nm

in Table 1. One noteworthyfett is the apparent change
the focal position at each wavelength. On either side of

central wavelength (13.4 nm), the focal shift occurs in tl

13.6 nm

92000000

same longitudinal direction. Defocus is not included in t

difference wavefronts of Fig. 2 or in the wavefront statis
-1. 64 +2.18 NmM
0

Figure 2.Chromatic aberrations are observable in
the variation of the diérence wavefronts mea

9.4 BROADBAND ILLUMINA TION suredover a range of wavelengtfihese argen
’ erated by comparison of the wavefronts to the

To illuminate the system with relatively broadbaniWavefront measured at the design wavelength,
13.4 nm. (ajndividually scaled images. (@)l

illumination, the monochromatar planar grating may be wavefronts are shown on the same scale grayscale.
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adjusted to give a specular (zerothfrdiftive-orderyeflection. In this configuration, the bandwidth is-pri
marily determined by the undulator: with 55 magnetic periods, the natural bandwidth of the undulator
radiation into the first harmonic MAA = 55, or 0.24 nm at 13.4-nm wavelength.The total flux reaching
the K-B mirrors does not increase noticeably because the blazed grdtiactslifery diciently into its

first diffractive order

With a measured bandwidth of 0.9 nm (6.7%), the-A&amultilayercoated turning mirror does
not significantly filter the beam. Here, the tebnoadbandis used to denote the case where the zeroth-
order reflection from the monochromator is usedhet-to indicate the presencetofily broadband light.

A series of interferometric experiments was performed with the beamline mothi@nochomator
configuration.The experiments were all conducted using sub-aperture C (0.06 NA) of the Schwarzschild
objective. Experiments with the standard beamline configuration, using the firsttilie order from the
monochromatqrwere conducted immediately following the broadband experiments, with no physical
changes made to the interferometer
9.4.1Wavefront Measurements witBroadband Illlumination

Comparison of the wavefront data measured both withndtibutthe monochromator shows
agreement to well within the expected uncertaifibe wavefront in th@o monochomatorcase was cal
culated from three phase-shifting series. Compared to the measured wavefront at 13.4-nm wavelength, the
difference wavefront, reconstructed from the first 37 Zernike polynomials, shows an RMS wavefront dis
placement of 0.l waves (0.147 nm, oiA#90) and peak-to-valley displacement of 0.108 waves (1.45
nm, or -A/9). Based on these values, the two measurements are indistinguishable within the uncertainties
typically observed in this interferometer
9.4.2Wavefront and Intensity Measurements in the Zeroth-Order Reference Configuration

In the presence of broadband illumination, the zeroth-order reference configuration of thei®S/PDI
predicted to behave @#rently from the default first-order reference configurattsdescribed in
Section 5.4, the wavelength-dependerfraiition angle of the grating beamsplitter separates the available
wavelength components laterally in the image-plaie. position of the zeroth-order focus remains sta
tionary, affected only by the chromatic aberrations in the test opéitin the first-order reference config
uration, where the pinhole sits in the gratinfitst-order beam, it functions as a monochromator — based
on the geometryit transmits some wavelength components mdieieftly than othersThe test beam is
transmitted through the window and may contain a much broader bandwidth than the reference beam.
Alternately in the zeroth-order reference configuration the various wavelength components are not dis
tributed laterally in vicinity of the reference pinhole, and (dependent on the chromatic aberrations of the
test optic) the reference beam is broadbaheé. test beam in this configuratiaiso contains the available
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wavelength components, transmitted through thgelarindow

With broadband illumination, a comparison is made of the wavefront measurements from these two
configurationsThe two tests were performed consecutively; wavefront measurements from single phase-
shifting series are compared herae diference wavefronts, compared assuming 13.4-nm central wave
length, show an RMS displacement of 0.010 waves (0.134 nmA/DB0G) and P-\Wisplacement of 0.122
waves (1.635 nm, ork8). Hence, the wavefront measurements are again indistinguishable within the
typical uncertainties.

From these two configurations, the transmitted intensity is expected to be higher in the first-order refer
ence configuration becauak of the wavelength components of the test beam are transmitted to reach the
detectorThe fringe contrast is f&icted by three independent considerations: the relative intensity of the first-
order beams is estimated todmproximately 40% of the zeroth-order beam; the spatial filtering of the ref
erence pinhole significantly reduces theensity of the reference beam; and, since interference fringes are
only produced by the interference of like-wavelength components, a mismatch of the bandwidths of the two
beams reduces the observed fringe contrast. Given these considerations, the zeroth-order referenee configura
tion may be expected to produce greater fringe contrast.

After compensating for the decreasing intensity of the synchrotron illumination, the total measured
signal is 2.4 times higher in the first-order reference than in the zeroth-order reference confiimation.
overall fringe contrast is measured to be 22% with the first-order reference, compared to 41% with the
zeroth-order reference configurations.

These particular intensity and fringe contrast measurements depend too strongly on the transmission
properties of the reference pinhole to carry broad implications for the benefits of one configuration over the
other Furthermore, the quality of the optical system plays an important role in determining the maximum
achievable fringe contrast from the PS/PDI. More investigation is needed to establish the advantages and
disadvantages of these two arrangements. Howtheeconsistency among the wavefront measurements

indicates that the interferometer system is very tolerant of the bandwidth of the illumination.

9.5VISIBLE-LIGHT
Observations of the intensity transmission of the $6hwarzschild objective were made at-visi
ble-light wavelengthsAs described in Section 6.2.3, HeNe laser light was introduced via afibierline
directly into the HMFE Spatial filtering was performed by the fitepolished tip, and the illumination
overfilled the NAsignificantly The intensity transmission data is shown in Fig. 3 adjacent to a similar
EUV image at 13.4-nm wavelength.

A special visible light PS/PDI image-plane pinhole membrane was fabricated, and one series of
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Visible lightA = 632.8 EUV,A =134

T : / e ediE e L 4

Figure 3.Side-by-side comparison of the transmitted intensity measured at a visible-light wavelength (a), 632.8 nm,
and the EU\design wavelength (b), 13.4 nifhree regions are shown in detail for visible-light,tfepugh (e), and

for EUV, (f) through (h)The detector is well beyond the plane in which the pupil is re-imaged by the secandary
diffraction afects the two wavelengths to a muchetiént extent. Only some of the blemishes observable at EUV
wavelengths are seen in the visible light image, demonstrating importen¢iiées in these two methods of inspec

tion. The bright patch of light in the lower portion of the visible-light image is caused by an unintentional reflection in

the vacuum chamber

experiments was conducted as a demonstratic
PS/PDI interferometry at visible-light wave
lengths. Because of the ¢@r difraction angles
from the grating beamsplitter used in the EUV
experiments, a coarser grating was choséis
ensures that the zeroth- and first-order beams
within the acceptance angle of the object-side
and reduces the fringe density in the interfero
gram. In these experiments, a simple mechan

limitation prevented the fibeip from reaching

the object planéAs a result, the measurements
Figure 4.A visible-light PS/PDI interferogram of sub-aper

were hampered by an unacceptable amount ¢ tureA. The grating beamsplitter used in this image is more
) ) coarse than the one used for Eiterferometry leading
defocus. Figure 4hows one interferogram pat  to a lower fringe density
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tern from this demonstration experiment.

The development of a concomitant capability high-accuracy visible-light interferometry capability
is highly desirable for many reasons. System alignment could be performed while the components inside
the chamber are accessible, before the system is brought under vacuum. Furthermore, direct comparisons
could be made between the wavefront measurements performed atrielUNsible wavelengths.

One major dfficulty in this efort is the presence of systematic errors that depend on the image-plane
beam separation. For example, the magnitudes of the systematic ferh&Sefction 5.5) and the astigma
tism related to detector alignment (Section 5.6) depend linearly on this sepaatieatly fifty times the
EUV wavelength, the beam separation required for the visible-light measurements makes these systematic
effects more than an order wfagnitude lager than the small aberrations of interest. Funtbsearch is
required to identify ways to address these problems. One solution may be to fesert dbmmon-path
interferometersuch as the LSI (Chapter 4) or the conventional PDI, both of which are easier to develop and

operateat visible-light wavelengths than for the EUV
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InterferogramAnalysis Oveariew

Interferogram Analysis Methods

Single Interferogram Techniques Multiple Interferogram Techniques
(12) Phase-Shifting Interferometry (PSI)

12
5 (12)
‘—_i,‘ Fringe-tracking methods Fourier-transform Simple algotithms Complex algotithms
© identifying fringe extrema methods known phase step unknown phase step
S (11.2) (11.3) (12.2) (12.5)
()
Q choosing the calculate phase steps
o bandpass filter (12.5.2)

(11.3.3)

apply least-squares
(12.2.3)

Domain
Determinatioﬁ_.

(14a-d)

Figure 1.Flowchart-outline of the interferogram analysis methods discussed in this disseftaéiaiapter and sec
tion of each subject are shown in parentheses.
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10. INTERFEROGRAM ANALYSIS OVERVIEW

“In any interferometric optical testing procedure the main objective is to determine the
shape of the wavefront measured with respect to a best fit sphere.” (Malacara and
DeVore 1992)

Fundamentallyinterferogram analysis is the solution of an inverse problem for which more than
half of the information is missing and the data is coarsely samfateidtensityfringe patternis recorded
at a location removed from the optical system under test, and the central questiaat &ectric field in
the exit pupil produced the measured intensity distribution?

This section, comprised of Chapters 10 through 15, is dedicated to the practical solution of this
inverse problem, with specific attention paid to interferogram analysis ofieigiferometric datalhe goal
is to retrieve the wavefront produced by the optical system under test. Following some simgaifying
tions, this dificult inverse problem becomes tractable and yields to rapid automated analysis methods.

Historically, methods for interferogram analysis have been divided into two main categories by
their use of either single or multiple recorded interferogram images. Figure 1 outlines some of-the avall
able methods and shows in which section of this thesis they are discussed.

Thesingle interfeogram analysis techniqug¢€hapter 1) use either the fringe profiles or a
Fourierdomain analysis of the intensity data to recover the pf&asd-ourier-transform methods resis
tant to noise and can be highlfieknt and very simple to applidowever it suffers from low spatial-
resolution and can be vulnerable to errors in the presence of abrupt features in the data.

Although more time-consuming and generally more challenging to implement than those involving a
single interferogram, theaultiple interfeogram techniquefChapter 12) combine several separate-mea
surements to gain a significant statistical advantage. Utilizingethporaldomain of measurement by
introducing a relative phase-shift between separate measurements, these Phase Shifting Interferometry
(PSl)methods are able to achieve high accua@yhigh spatial resolution. In the presence of imperfect
data, howeverthe price paid for this higher resolution and accuracy is a significantly mficeltifrocess
of analysis, required to be robust in the presence of noise.

Once the phase is known, most analysis techniques require one, fenitieal step Typically, the
phase is only measured to within an integer multiplerpfa®d for each fringe in the interference pattern
there can be an accompanyimgdiscontinuity contourTo remove the presence of these discontinuities,
the data must undgo aprocess calleghase unwrappingdlthough innocuous in appearance, the process
of phase unwrapping (Chapter 18)n itself a challenging inverse-problem and, in the opinion of the
author is the most difcult aspect of interferogram analysihe literature is filled with phase unwrapping
techniques for all occasions, and there appears to be little agreement as to the best approach.

After the wavefront phase has been successfully unwrapped, interpretation of the data often
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requires that the measured surfaces be cast into a convenient set of orthogonal surface polynomials, such
as the Zernike polynomials (Chapters 14 and 15). Once a coordinate system has been established for the
data, the surface fitting can proceed in several ways, with some methods more appropriate for accurate
analysis than others.

The procedures and techniques described in these chapters cover the process of interferogram
analysis from start to finish, following severalfdient paths. More than just a recitation of available
methods, these chapters also introduce several novel procedures developed by thadudhimg the
Fourier-Transform Method of Phase-Shift Determinat{@hapter 12), developed to addreséidifties
with phase shift calibration, and tReurier-Transform Guided Unwrap Methd@€hapter 13), created and
successfully employed to overcome significant high- and mid-spatial-frequency noise in the raw phase
data. In addition, to facilitate accurate wavefront surface fitting and representation in terms of the aberra

tion polynomials, an expedient Gram-Schmidt orthogonalizationess (Chapter 15) is described.
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11.1 INTRODUCTION

Several methods of single-interferogram analysis are available when phase-shifting methods cannot
be applied. Procedures that determine the positions of the fringe maxima or minima, or that utilize
Fourierdomain processing, all rely on the same assumption: intensity variations causegHeystud
the test beam can be separated from those caused &aypieidealone Although this assumption makes
these analysis methods highly sensitive to amplitude fluctuations that distort fringe positions, proper filter
ing of the interferogram data can greatly enhance the reliability of single interferogram analysis methods.
This section provides a description of several of these methods and discusses their application.

The methods that scan the interferogram searching for local maxima, minima, or zero-crossings of
the derivative are known &snge-trackingor fringe-centertechniques. Often the discrete derivative of the
interferogram data is used to locate these contours of constant phase, each separated from the next by one
wavelengthAfter the distinciphase contours are properly ordered, a (typically sparse) representation of
the wavefront surface enugs.A wide variety of intensity-based fringe-tracking strategies are discussed
by Yatagai (1993). In general, fringe-tracking methodfesdifom non-uniform spatial sampling, and risk
overlooking sub-wavelength variations in phase.

Since the advent of computgided data collection and image -processing in the last few decades,
fringe-tracking techniques have become less widely used. Other techniquederaigofficantly higher
resolution and accurachiistorically, howeverthe fringe-tracking methods have proven very successful,
and thus merit a brief discussion héreese straightforward methods were applied at the earliest stages of
this EUVinterferometry research.

A separate class of procedures, Foarier-transform techniquesitilize the spatial-frequency
domain to separate low-to-mid spatial-frequepbgsemodulations of interest from lowétrequency
amplitudemodulations and high-frequency noi$gpically a spatial carriefrequency is introduced to
facilitate this Fouriedomain separatiomhe Fouriestransform method, first described Bakeda et al.

(1981), has spawned a great number of adaptations and related techrigufaadamental aspects of the
Fouriertransform method are described in this chaptéh emphasis placed on the practical application of
these methods to EUNiterferometry

11.1.1The Monotonic Phase Requirement

Although the various fringe-tracking and Foutieansform methods ddr greatly in their approach
and implementation, both types impose one important requirement on the measured wavefront phase.

Proper analysis requires ttet intensity maxima and minima represent points where the
local phase is separated from other minima/maxima by an integral numbecyafl@s (or
wavelengths)).
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Figure 1.Interferogram intensity extrema

2\ (4m) s iNteNSty Maximag=n A occur when either of two conditions are met:
wavefront @ intensity minimagp= (n+1/2) A the phase equals a multiple af or the phase
phase o false maxima function itself reaches a maximum or mini
A(2m) mum.To guarantee successful analysis, the

singe interferogram techniques require that

the latter case, illustrated by the central point
0 of the graph, never occurs within the mea
1 surement domairhe figure shows the core
) ) spondence between each intensity extrema
intensity. —o- and the phase function.
position

This requirement removes potential ambiguities from the data. In some cases, filtering must be
used to remove the isolated, spurious local maxima created by high-frequency noise. Excluding such
noise, this rule applies mainly to low-spatial-frequency variations.

Consider Fig. 1, in which this requirement is violated and such phase ambiguity is illuStnéded.
figure is based on the one-dimensional expression

I(x) = A+ Bcod@(x)] , 1)
with A= B = 1/2 and a parabolic phase function. (This discussion can easily be extended to two dimensions,
where a similar rule applieyl but one of the local minima and maxima are seen to correspond to points
where the phase crossgg) = nA/2 waves (onrtradians). Notice that in the center of the graph the local
intensity maximum (indicated by a gray circle) corresponds to a local minima of the phase functim, and
to a specific multiple ok/2 in phase. Suchfalse maximunsan corfuse the fringe tracking analysis meth
ods: it may be counted erroneously as a position whereA/2 waves.

This requirement can be illustrated mathematic&lipm Eq. (1), the condition for an intensity
extrema is

di(x)
dx

=0= —B%gn[cp(x)] _ )

This condition is satisfied in two cases: first, where the phase function has a minimum or maximum

de(x) _
v 0, ©)

and second, where the phase function cregseadians, (onA/2 waves).
sinf@(x)] =0 O ¢(x) = nt[radians] = % [waves] . @)

In order to guarantee that over the measurement domaimihextrema come fronp(x) crossingni/2
waves, there must exist no point in the domain at which Eq. (3) is sat®fiscorings us to threequiva
lentrequirements og(Xx).
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1. @(X) must not contain an extrema within the domain of measurement.
2. @(x) must bemonotonicwithin the measurement domain.
3. dg(x)/dx # 0 within the measurement domain. In two-dimensions, this requiremignt4g.

A spatial carriefrequency ortilt, is introduced to satisfy this monotonic phase requirement. Beginning

with a phase functiop,(x) containing zero average slope, add or subtract a tilt complkxent
@(x) = @y (x) —kx. 5)
Using requirement 3 above, one statement of the monotonic phase requirement becomes

dep, (X)
b <k (6)

The test wavefront slope must neither equal nor exceed the slope of thefiagtiency wave.

Experimentally this places more of a requirement on the cafrézruency than it does on the test
wavefront.The carrieifrequency can usually be controlled to some extent, while the test wavefront is
determined by the optical system being measured.

This slope restriction alone doest place a limitation on the highest measurable spatial-frequency of
the test wavefront. In principle, high-frequency components of small phase amgdituztemeasured as
long as the slope does not exckeBor example, if the phase functigg(x) contains a single spatial-frequen
cy componenk, such that

®o(x) = Asin(kaX) @)

then the limitation on the amplitudeimposed by Eg. (6) is

k
A< ®)

In practice, there will be a wide range of spatial frequencies and amplitudes preggxt ithis simplis
tic model requires that high-frequency components have smaller magnitude than the low-frequency com
ponents, to impose an upper limit on the plelgpe.

The limitation on the highest allowable slope comes from the Nyquist limit (Nyquist 1928). IR princi
ple, the sampling density cannot be lower than two points per fringe or the pattern will be unmeasurable.
The width of the detector elements may also contribute to a reduction in measurable fringe contrast if the
fringe density is too highilhere are sub-Nyquist interferometry (SKig¢thods that rely oa priori wave

front information (Greivenkamp 1987).

11.2APPLICATION OF THE FRINGE-TRACKING METHODS
This section is a brief digression into the application of fringe-tracking methods of interferogram

fringe pattern analysid.hese methods were used in the early stages of theifielNerometry research,

184



Single InterfeogramAnalysis Methods

applied only to the Fresnel zone plate measurements. (Once the more sophisticatettrdrmiaen meth
ods of single interferogram analysis were successfully implemented, they quickly replaced fringe-tracking.)
Assume, for the purposes of this discussion, that a spatial daedeency has been introduced to
generate a fringe pattern with a generally-horizontal fringe orientation. Contours of constant phase chosen
for analysis may be those of the intensitgsxima theminima or the so-callede-crossingsThe zero
crossings are the inflection-point contours of the fringes.
One procedure for locating the fringe maxima uses the discrete derivative of the intensity along
each column. Consider an interferogrgm y) on a rectangular grid of si2g, x Ny.

Procedure 1: Fringe-Tracking Method Using Fringe Maxima.
1. Loopi from 1 toNy

2. dg) = 13, j+1) — I3, j) (single-column dis@et derivative)

3. i*={j|d(j) =0 AND d(j+1) <G (set containing locations of the maxima)
3a j*={j|d(j) <0 AND d(j+1) > & (alternately the minima may be used)

4, Add points {(, j*)} to the set of maxima from which the contours are constructed.

4a. [Optional] Keep track of therder of these points vertically

4b. [Optional] Use polynomial fitting of the neighboring points to more accurately

locate the individual maxima, allowing the elementg &b take non-integral values.
5. Sort (order) the contour data into separate, “continuous” contours.

In Step 2, the maxima are identified as points where the derivative goes from non-negative to negative. Of
course, noisy data can generate spurious maxima; the data may require filtering in the vertical direction.
The median filter and various other low-pass filters have been recommeradagaiYL993).

Sorting the contour data means identifying the corfiaarto which each maxima point belongs.
This procedure is also calléinge omdering.When the contour lines are unbroken and span the width of
the arrayas is the case in Fig. 2(b), this exercise is almost trivial to perform. Howfaher data exists
on a limited sub-region, if contours are discontinuous, or if the contours deviate significantly from a pre

b) 0) d)

(6]

N W b

i

ABC D
Figure 2. lllustration of the fringe-tracking method, with sortinghe vertical-direction derivative is used to locate

the extrema of the interferograms in (a) andTbe positions of these extrema, shown in (b) and (d), trace contours

of constant path-length-dérence between the two interfering beams. Each contour is separated from the next by one
wavelength of path-length-dérence Analysis requires that each contour be regarded separately from its neighbors in
a process known a&drting. Numbers indicate the index of the sorted contdtisen the contours span the width of

the domain, sorting by examination of the columns is trivial. Howevleen the domain does not reach the edges of

the array or contains obstructions, automated sorting procedures become complex.
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dictable direction, then the sorting algorithm may require a flexible approach. Fig. 2(d) shows a case
where a flexible sorting routine is required. Notice here that scanning upward (or downward) along the
columns indicated by the linés B, C, and D, a simple conteaounting algorithm would erroneously
attribute adjacent maxima points tofdient contours. If the fringes do not reach the edge of the measure
ment domain, care must also be taken to avoid falsely attributing maxima or minima to points near the
domain edges.

One severe limitation of the fringe-tracking techniques is the relative sparseness of the sampled
wavefront contour data. If the fringe separation corresponNgtrels on average in the detector mea
surement domain, then the coverage of the measurements is approxinhatelyh#/ total number of
available pointsAlthough this may béhousand®f points, since those points are arranged along narrow
stripes, the surface fitting and subsequent wavefront reconstruction may yield spurious wavefrent curva
ture in regions not covered by the contours.

The decision on whether to use the maxima, minima, or zero-crossings depends on several compet
ing factors. In the presence of noise, the signal-to-noise ratio is often highest at the peaks of the intensity
pattern. Based on this alone, maxima location would appear to be more accurate than minima location.
Complicating this assumption is the fact that variations of the background intensity or of the fringe ampli
tude can shift the locations of the extrefilaese competing concerns must be addressed in choosing the

best algorithm.

11.3 FOURIER-TRANSFORM METHODS

Since the early part of the 1980s, Foutransform techniques for interferogram fringe pattern
analysis and wavefront recovery have gained widespread acceptance as the leading methods for single-
interferogram analysis @ikeda et al. 1981, Nugent 1985, Bone et al. 1986, Kreis 1986, Roddier and
Roddier 1987). In addition to their versatility and ease of application, the Ftarisform techniques
hold other more significant advantages over the fringe-center metfibése Fourier methods often eon
tain spatial-frequency filtering as one component of their application, and are thus more resistant to the
presence of high-frequency noise, low-frequency background variation, and low-frequency fringe-ampli
tude variations. Furthermore, these methods generate wavefront data over the entire measurement domait
unlike the sparsely-sampling fringe-center methods.

In this thesis, Fourietransform methods are used in the analysis of all of the Fresnel zoneplate
data (Chapter 3) and for various measurements of the Schwarzschild objective where phase-shifting data
is unavailable (Chapter 8).

The Fouriettransform methods are easily understood from consideration of the spatial-frequency-
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spectrum of the interferogram dafa. begin, theeal one- or two-dimensional interferogram data is-rep
resented by additive and multiplicative intensity compondititese components of the fringe modulation
represent the stationary and the modulated intemsipectivelyAs in the other single-interferogram

techniques, a spatial carrgequencyk, is introduced to facilitate analysis.

I(r) = A(r) + B(r) co 9, () + k, ], with A B,q, OR. (9)

Successful implementation of the Foutiensform techniques relies on frequency-domain separa
tion of the interferograrphasemodulation from themplitudemodulation.This requirement puts limita
tions on each term of the interferogram as represented in Eq. (9), and on the spatiditerparaacy as
well. A(r), B(r), and@(r) may contain both low- and high-frequency variations, but there must be a range
of spatial frequencies over which these functiongyaret (arbitrarily small in magnitude)he spatial
carrierfrequency is used to shift the phase-variations of interest intquhésregion of the domairnrhe
range of phase modulation spatial frequencies that is available for accurate analysis is primarily deter
mined by the spatial-frequenayidth of the quiet region.

Since the two terms in Eq. (9) are additive, it is always possible to attribute all of the high-frequen
cy variations in the interferogram &fr) alone. (This is not true for phase-shifting analysis (Chapter 12),
in which the stationary components are separable from the modulated components of the)intensity

To facilitate the Fouriedomain representation of the interferogram, the cosine may be separated as

follows.
1(r) = A(r) + 3 B(r)ell (Vo] 1 1 g(p)grilen(r) o] (10)
1(r) = A(r) + C(r)e*o™ + C* (r)e ™ , (11)
where C(r) = 1 B(r)e®") 12)

and * indicates theomplex conjugaté-rom Eg. (1), the Fourietransform of the interferogram may be
written

i(k) = a(k) +c(k — ko) +c*(k +k,). (13)
Here, functions denoted by upper case letters are used to indicgpatiaé(measurement) domain, and
lower-case letters denote the Foutiemsform of each(The definition of the discrete Fourgansform, as
applied to interferogram data, is discussed in SecfidhZ)The phase information we seek is contained in
c(k —ky), or equivalently irc*(k + k). The addition of the carridrequency facilitates the separation of
eitherc(k — k) or c*(k + ko) from the other components of the spatial-frequency spect(ém.k,) and
c*(k + ky) form separatside-lobesentered otk and—k, respectivelyThe isolation of one side-lobe is
our immediate goal.

Sincel(r) is real, its Fourietransformi(k) is Hermitian, indicating
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i(k) =i*(-k). (14)

The amplitude of the spatial-frequency spectrifk)||has polar symmetry about the central, zero-frequen
cy componenta(k) is also Hermitian and typically contains a strong peak near zero-frequelatgd to
the overall intensity of the recorded interferogram.

Depending on the phase aberrations present in the system unaearidst, typically consist of a nar
row peak near zero-frequendyre presence of the carrieequency shift andc* by k, and K, respective
ly, where they can be isolated from the other spatial-frequency-domain components of the spectrum.

Applying toi(k) a bandpass-filter centered abkyt(alternately about k) in the spatial-frequency
domain achieves several of our goals. One of the compot(&ntsk,) or c*(k + k) is isolated from the

rest of the frequency spectrum. Symboligally
i"(k) = Filtered, {i(k)} = Filtered, {a(k)+c(k —k,)+c* (k +ko)} = c(k =k,). (15)

Filtering destroys the Hermiticity afk), and Fourieinversion ofi'(k) produces an approximation to the
complex functionC(r). C(r) is only approximately known due to the necessary spatial-frequency-domain
filtering and the possible overlap afk) andc*(k). Filtering strategies are discussed in Sectibi.B.

Fourierinversion of the filtered interferogram returns us to the spatial domain.
FHi'(k)} =C(r)e*e" = 1 B(r)e® () ko, (16)
The wavefront phase information is contained in the exponential term. Here there are several
equivalent ways of determinirgy(r).

L Om{c(r)}

0,(r) +ko O =tan =60 E: tan‘l(lm{C(r)}, Re{C(r)}) = tan‘l[C(r)] . (17a b, ©)

or, equivalently Q(r) +ko O = Im{ln[C(r)]} : (17d)

Note that the additive terky D behaves simply as a removable waveftdnadded to the phase function
of interest. Regarding the arctangent, certain computer applications require thegnmerds to be pro
vided in one of the equivalent formats shown in Eqns. (17a) through (17c).

Since the arctangent and the complex logarithm are periodic funapjgrsis only determined to
within a multiple ofrtor 2rt Equation (17a) returng,(r) as a modulat function, while Eqns. (17b)
through (17d) returg,(r) modulo 2t This common aspect of interferogram analysis leads to the necessi
ty of phase unwrappingp remove the ambiguity caused by this loss of information, and to re-create a
continuous wavefront. Phase unwrapping is the subject of Chapter 13.

Regarding the Fourignverse-transform of Eq. (16), Nugent (1985) recommends the optional step

of shiftingthe filtered interferograrii(k) by +k to shift one of the symmetrifk) lobes to the zero-fre
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guency positiorbefore the inverse transform is performed. In so doing, the bandpass filter will be centered
on the zero-frequencgnd all or most of the tilt will be removethe diference here is mainly cosmetic. If
the carrieffrequency is precisely knowthen@,(r) may be recovered directly from the methods of Eqns.
(17a) through (17d)Vhenk, is known only approximatelyhe shift in the spatial-frequency-domain
reduces the amount of wavefront tilt addedytr), and potentially eliminates a ¢@ number of wrap

ping transitions caused by the moduforgconstruction ofp,(r).

Now that the mathematical framework has been established, the following two sections address issues
related to the practical application of the Foudtiansform methodlhe first section briefly discusses the-dis
crete Fourietransform (DFT), and the second addresses the selection of the-Houoran filter used in the
Fouriertransform method.
11.3.1The Discrete Fourier-Tansform

Interferogram measurements are generally collected on a square-grid, discrete domain.
Consequentlyall Fouriertransform operations required by the methods described in the previous section
are performed on this domain. In order to study the application of various Faomein filters, we
begin with the conventional definition of the discrete Fotrignsform (DFT) (Conte and de Boor
1980:277-83). For an arbitrary functi@qr), with r = (x, y), defined on the discrete, two-dimensiomdl,

x N domain, the Fourietransform operation is defined as

N-1 .
F{o()} =ok)= T 6(r)ewir (kI)E, (19
o
or, equivalently F {G(x, y)} = g(kx, ky) = N_1G(x, y)expgil—n(kxx + kyy)E. (19)
x=0
y=0

Here, uppercase functions denote the spatial domain, while their loase counterparts refer to the
domain of spatial-frequencieBhe position vector in the spatial-frequency doniaias defined incycles

The inverse transform is defined as

FH{o(k)} =G(r) =

1 &t 0 i2m C
NG g(k)expa W(k E)E’ (20)

0
0

Ky
ky
with an analogous expression fot{g(x, y)}. The coeficient 1N2 in the definition of the inverse trans
form guarantees that

FHr{c(n}} =a(r). (21)
Note: In many circumstances, computationfiteicy is greatly enhanced by the application of the so-
calledfast Fouriertransform(FFT). The FFTalgorithm optimizes the computation of the discrete

Fouriertransform, although mathematically it is identical to the DFT
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11.3.2Analogy Between the Continuous Fourierrdnsform and the DFT
The DFTis actually a special case of the continuous Fotrégrsform; considering it as such sim
plifies the description of filtering presented in the following section. For an arbitrary funtfiprefined

in thex-y plane, and periodic ir andy with periodN, the Fourier transform df(r) is

F{H(r E} } expgz—n( )gir (22)

In the conventional definition, theqamment of the exponential ik-r. Here, for analogy with the DFT

case, the coétient 2r/N has been extracted frokyp makingk equivalent tof in the common definition.
The combfunction helps to make the transition between the continuous and the discrete domains.

The comb function may be defined in two similar ways:

1, xOlIntegers o _
othewise © comb(x) = % &(x-n). (23)

n=-o0

comb(x) =
It is easily shown that the Fourigansform of the comb function in one dimension is
F{ comb(x z S(k=n) (24)

n=-o

Again, a comb function in the spatial-frequency domaidirect analogy extends to two dimensions where

comb(r) = comb(x,y) = i i 3(x - nx)é(y— ny) , (25)

and comb E i i 6(k —n) (26)

When the comb function is included in the Foutifansform, the continuous Fourigansform
integral reduces to the DFSUmmation in Eq. (18). By the Convoluti®heorem (Goodman 1988:10),
including the comb function with an arbitrary function in a continuous Fetieiesform produces the
Fouriertransform of the arbitrary function, defined only at discrete posititms.important result
enables us to simplify the discussion of bandpass and other filters applied within the transferm
method of analysis: the discrete Foutimnsforms follow their continuous counterparts, but are defined
only on a square-grid, discrete domain.
11.3.3Spatial-Frequency-Domain Filtering

Extraction of phase information using the Foutransform methods of interferogram analysis
requires the application of bandpass filters in the spatial-frequency domain. Selectioopsintiuenfilter

is a highly complicated process that may in fact require a case-by-case approach. Hmwvevalrof the
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most important filter characteristics can be identified and enumefdtedsection defines general criteria
for filter selection, and investigates the application of a Gaussian filter of arbitrary width.

11.3.3.1General Filter RequirementJ hree general filter requirements are discussed in this section.

1. Side-lobe isolation.
2. Use of symmetric, real filter functions.
3. Smoothly varying filter amplitude (optional).

Definet(k) as a filter function in the spatial-frequency domain) andt(k) are a corresponding
Fouriertransform pairwith T(r) defined in the spatial domain of measuremeéhe filter is applied by
multiplying the spatial-frequency spectrum by the frequency-shifted filter function.

1. Side-lobe isolationThe foremost goal of the filter is to isolate one of the side-lobes of the spa
tial-frequency spectrum, containietk—k ), or c*(k+k,), as described in Sectiod.B. These symmetric
lobes contain the phase information of inter€se magnitude and direction of the displacement is deter
mined by the spatial carriérequencyk,.

The minimum requirement for side-lobe isolation, recommended by some authors (Macy 1983,
Kreis and Juptner 1989) is a simpialf-plane filter displaced slightly from the central frequency to
transmit only one side-lobe. In this simple case, the high-frequency information (including noise) is pre
served in the measured phase data.

A different approach is to transmit only a bounded region centered on one of the side-lobes.
Examples of bounded filters are ttiecular (or elliptical) top-hatfilter and theGaussiarfilter, which,
although technicallyot bounded, decays rapidly toward zero over a short distance from the side-lobe
center In the displacement direction (parallelkig), the size is constrained by the separation of the side-
lobe and central-lob&his situation igirectly analogous to the design considerations of the physical spa
tial filter window in the PS/PDI (Section 5.10)here is no such filter size constraint in the complemen
tary (perpendicular) direction. In the direction, the maximum allowable size is constrained by the width
of the central lobe. Cleatamer filter widths allow the transmission of relatively more high-spatial-fre
guency information; but to avoid overlap, filter radiigar thanK|/2 should not be use&hen measure
ments are primarily concerned with only the lowest spatial-frequency aberrations,rawevyfilter can
be highly efective at significantly reducing noise.

When using a bounded filter function, the filter should be centered on the side-lobe peak-(i.e. cen
tered ontk,) to avoidintroducingphase errors into the calculatiMthenk, is not known in advance, it
may be determined approximately by searching the spatial-frequency spectrum for a peak absolute value
(or peak square-modulus), excluding from the search a small domain centered about the zero-frequency
peak. Of course, since the spatial-frequency spectrum is Hermitian, there will be two peaks, one of which
must be selected.
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2. Use of symmetric, eal functions.When selecting a filteit is helpful to remember that the
complex function of interes€(r) from Eq. (12), will be convolved with(r) by the filtering process(k)
must be carefully selected to ensure (@) does notntroducephase décts into the data. Requiring
T(r) to be symmetric and real (except possibly for a leading complex constant) imposes the requirement
thatt(k) also be symmetric and re@he simple half-plane filter described above is actually justge lar
rectangular window filter defined on the periodic domain and displaced from the central fredinency
top-hat and Gaussian filters are also symmetric filters displace# py

3. Smoothly varying amplitude. This optional requirement is imposed to redtinging introduced
by the filtering process. Filters with sharp features (high slope, or discontinuities) in the spatial-frequency
domain maycreatephase oscillations in the measurem@ntiscontinuity int(k), for example, may intro
duce alternating positive and negative lobesTiftd and, by convolution of(r) with thesealternating
lobes, cause ringing near any sharp feature in the data. Experience has shown that ringing plagues the us
of both the half-plane (rectangular) filter and the top-hat filtee Gaussian filter is a logical choice to
eliminate the ringing problem: its transform is also Gaussian and contains no alternating lobes.
11.3.3.2The Gaussian Filter

For this discussion, a Gaussian filter is defined in the continuous spatial-frequency domain in two
dimensions as

to(k) =& /", (27)

The radiux at which the X amplitude is reached is called thalth of the filter The two-dimensional
Gaussian filter is separable into a product of two one-dimensional filters defined for any two perpendicu
lar directionsA rotationally symmetricircular Gaussian filterwith two equivalent axes, may be defined.
In other cases, it may be desirable to defineltptical filter with two widths corresponding to the
“semi-major” and “semi-minor” axes.

It is easily shown in one dimension that the continuous Feumierse-transform of the Gaussian

filter tg(K) is also Gaussian. Neglecting leading Gioents not important to this discussion, we have

0 kfO
tg(k) = ex 0 T(x)Oex B—Q—g 28
o(k)= PE G0 0 a(X) Dexpl B (28)
The width in the spatial domaM/Tik is inversely related to the width in the spatial-frequency domain, as
expectedThis shows that aarrow Gaussian spatial-frequency-domain filter convolves the phase data
with abroad Gaussian function and vice versa.
The application of circular Gaussian filters in the Fottriznsform method of interferogram analysis

is illustrated in Fig. 3. Here, six filters of varying widths are separately used in the analysis of a simulated
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Detail of Fourier-transform (scaled for display)

K =10.0 cycles K = 12.5 cycles K = 15.0 cycles

Figure 3.lllustration of the Fourietransform method of single-interferogram phase-retriéis. simulated interfer
ogram (@) contains wavefront aberrations, noise, background variation, and bleAiShessian filter is applied to

the spatial-frequency-spectrum (b) to isolate one of the side-lobes. Here, for purposes of illustratidaresix filif

ters of varying radius are usékhe spectral width of the six filters is indicated by the concentric circles ift{p).
modulo 2t phase functions are shown in (c) through (h) for each filter width. Notice that &)-cycles wide, is

clearly overfiltered while (g) and (h) arenderfiltered, enabling the blemishes to cause serious phase errors that will
complicate the unwrapping process.
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interferogram patterhe 256x 256 pixel interference pattern contains numerous imperfections common
to experimental datdhe curvature of the fringes indicates imperfections in the underlying wavefront.
Both high-frequency random noise and a low-frequency additive background intensity are poesiemt.
ulate blemishes in the test optic or on the detgtiterinterferogram is multiplied by a randomly-generated,
high-contrast, mid-spatial-frequency pattern.

The interferogram is shown in Fig. 3(a) and a detail of the central portion of the spatial-frequency-
spectrum is shown in 3(b), logarithmically scaled for displég concentric dashed circles placed on the
first-quadrant side-lobe of Fig. 3(b) indicate the widths of sifediht Gaussian filters used in the analy
sis. For each filtetthe wrapped phasemap, calculated using the Fduamigsform method, is shown in
Figs. 3(c) through 3(h).

The phase-discontinuities on the wrapped phasemaps follow the fringes closely over the circular
measurement domain. Notice that in Figs. 3(c) through 3(e), where heavy filtering (a narrow filter) is
applied, the mid-spatial-frequency blemishes and the high-frequency noisteatieedy removed from
the analysis. In 3(c), with the strongest filtdre calculated phase clearly fails to match the curvature of
the wavefront seen in the raw fringe pattéts the filter width is increased in 3(f) through 3(h), more fre
guency information is preserved f&fts related to the blemishes are first clearly visible in 3(f). In 3(g)
and 3(h), the filtered region in the spatial-frequency domain begins to overlap both the central lobe and
the side-lobe. Here, the phase-slope between the discontinuities appears to be néistndae blem
ishes begin to create singular discontinuities in the phasemap. Observe the cusp created by the blemish
just to the left of the image cent&uch a cusp will create phase-unwrappinfjatifties when the con
ventional phase-unwrapping methods are applied.

One procedure for the implementation of the Fourmsform method of interferogram analysis,
using a Gaussian filtemay now be outlined (Procedure 2). Begin with a squdreN interferogram
Io(X, y). The Gaussian filter here defined in Step 5 may be replaced by any other suitablghéiterare

several nearly-equivalent representations of the arctangent application in Stepn@tively, it may be

represented by ta#{ Im[1;(x, y)], Rel,(x, Y)I}, tamr{ Im[1,(x, y)I/Re[l1(x, Y)1}, or Im{log[l11(x, )1} -
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Procedure 2: The Fourier-Transform Method
1. (i, j) = F{I,x )} (perform the FFTor DFT operation)

2. 10, ) =1G, j) * {1 — exp[-2 + j3)/22]} (define a copy of thedguency speatm; use a
Gaussian filter to eliminate central lobe)

3. (i i) = location of maximum off,(i, j)| (locate side-lobe peak: thermre two, pick one)

4. k=10 (define a Gaussian filter widt 10 cycles is arbitrar)

5. tgi, j) = exp[—(2 + j3)/kZ] (define the Gaussian filter)

6. c(i,j)=tgli —im j—Jm) * f(i, j) (to isolate one side-lobe, apply the filtehifted to
the location of the side-lobe maximum)

7. 1% y) = FYc(, j)} (inverse transform)

8. qx y) =tamyI,(x, y)} (determine phase)

For clarity Procedure 2 was written in an expanded form, with each term defined in a separate step.
All of the steps may be combined into drensform-filtertransformrepresentation, provided that the
position of the side-lobe maximum is known in advance.

Procedure 2a: Concise FourierTransform Method

1. @ y) = tam i F exp{ (-2 + (dmA/K2} * F{Iox V)]
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12.1 INTRODUCTION

The addition of computers and compttentrolled equipment into the fields of interferometry and
optical testing opens the door to a npawerful class of data-gathering and analysis methods known col
lectively asPhase-Shifting Interfemetry (PSI). This chapter introduces some of the basic and extremely
useful PSI algorithms and then describes a novel, versatile approach designed specifically to overcome
limitations of the first implementation of the EURS/PDI described in this thesis.

Although highly efective in some instances, single-interferogram analysis methods are fraught
with restrictions and limitations (Chaptet)1Because the single-interferogram techniques rely on the
location of “fringe-centers,” they are caught in a tradébefween precision and the desire for a high
number of sampled data points. Most of these methods can only operate under conditions of high wave
front tilt, where the addition of a spatial-carffegquency is required to remove phase ambiguities. In
other cases, the requirement is that there be no closed fringe cobarsonly one interferogram is
collected, additional information is required to determine the ova&gallor polarity of the wavefront
(i.e., concave or convex).

PSI overcomes many of the problems that plague single-interferogram analysis methods. PSI,
which was first described by Carré in 1966 and fully developed in the 1970s (Crane 1969; Bruning et al.
1974;Wyant 1975), utilizes theemporal domairio collect a series of interferograms where only the ref
erence phase of the interferometer is adjusted. Using the multiple interferograms, the wavefront phase is
recovered atach pointin the domain independently from its neighbdise addition of a spatial-carrier
frequency is not required, the necessity of finding fringe-center locations is eliminated, and the wavefront
polarity may be found unambiguoushkurthermore, using only the time-domain to find the phase at each
point enhances the potential for high-spatial-frequency measurement. Unlike the single-interferogram
techniques, PSI is capable of overcoming spatial variations in the detector response (sensitivity).

There are many available ways to implement the reference phase-shift required by PSI. One of the
most common is by translation of a mirror in one arm ofw@yman-Green or Mach-Zender interferometer
(Soobitsky 1986; Hayes 1989)he angle of a tilted, plane-parallel, transparent plate placed in the refer
ence beam can be adjusted to induce a path-length chagyget@&#d Shagam 197@&)ternatively a
small change of the optical frequency may be used in some cases to produce the required phase-change.
The method used in the ELRS/PDI is the translation of a grating through the beam of light, such that the
diffracted beams acquire a phase-shift relative tatickffracted,zeroth-order beam.

However the phase-shift is implemented, the analysis methods are.dinslamost convenient to
describe the measured interferogram intensity with two tersisitianar term and anodulatedor

phase-dependetgrm representing the fringes and their amplitude modulation.
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I(r,t)=A(r)+ B(r)cos[(p(r) +A(t)] . (1)
In Eq. (1), the relative phase-shift between the test and reference beams is absorbed into the time-depen

dent termA(t). When a finite number of images are recorded, and the system is held stationary during
measurement, the individual interferograms can be written as
In(r) = A(r) + B(r) cogo(r) + &y 2

The following sections of this chapter are dedicated to the phase-retrieval problem: dindling
given a series of recorded interferograitsere are limitless varieties of phase-shifting algorithms tai
lored to meet the specific demands of a wide range of experimental condisangntioned previously
each of these methods utilizes temporaldomain to achieve a relative phase shift between the test and
reference waves while all other experimental conditions are held stable.

In principle, the analytic solution of Eq. (2) with its three unknowns requires that three or more
interferograms be included in the analysis. In most cases, numerous solutions exist; considerable research
has been dedicated to finding optimum methods of analysis in a variety of experimental coAdiéans.
of the most basic algorithms are presented here to demonstrate the available means of reducing-experimen
tal uncertaintiesThese methods, based on strict assumptions about the linear or non-linear phase-steps, are
here referred to as tl#mple techniquesn contrast, theomplextechniquegpresented in Section 12.4
make no such assumptions about the phase-sHigscomplex techniques are used exclusively in the

analysis of phase-shifted EURS/PDI data described in this thesis.

12.2 SIMPLE PHASE-SHIFTING TECHNIQUES

Three of the simple phase-shifting techniques are presented in this section, followed by a compari
son of theirsensitivities to phase-shifting calibration errdrkis discussion reveals how small refinements
in the analysis can greatly improve the ability of these techniques to overcome some experimental limita
tions, specifically phase-shifting calibration errors. Howgthés discussion also illustrates the inadequa
cy of these methods when faced walge or unpredictable calibration erroffie sections on the complex
phase-shifting techniques address these issues.
12.2.1The Four-StepAlgorithm

Thefour-step algorithm(Greivenkamp and Bruning 1992:510-513) is a good place to begin the
discussion of PSI analysis methods, because among available algorithms it is perhaps easiest to under
stand Assume that four interferograms are collected with a relative phase-gtéplmtween eacfihe

four interferograms may be expressed as
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I,(x) = A(x) + B(x) co (p(x)] = A(x) + B(x) cos[<p(x)]
12(x) = A(X) + Bx)cos ) + 3] = Ax) = B(x)sinf (] -
I3(x) = A(x) + B(x)cod @(x) + 1| = A(x) - B(x) cos[<p(x)]
14(x) = A(x) + B(x) cog ¢(x) + 3—2"] = A(x) + B(x)sin[@(x)]
Extractingg(x) from the set of measurements above is straightforward. One analytic solution is
o) =t 325 or )=t (1= 15,1, -1s) @
Oh—ls0

For clarity the spatial dependence of the interferogrgms implied, but not written explicitly here.
Notice that subtraction within both the numerator and denominator removes the statidd@ime com
ponentA(x), while division eliminates the multiplicative terfgx). In this way @(x) modulo 21, or ¢(x)
moduloTtis obtained.

Often thefringe modulatioror fringe contrasis of interest. Hergy(x) is defined as the ratio of the

amplitude of the modulated intensity to the (temporal-domain) average intensity at a given point

y(x)= % . (5)

It can be shown that in the Fe8tep algorithm, the modulation is

y(x)zzj(u—lz) (1= 13) | ©

I+l +l3+1,

12.2.2The Hariharan Five-StepAlgorithm

When more than three phase-shifted interferograms are collected, there exist multiple ways avalil
able to extracp(x) from the data analyticallyrhe Hariharan algorithmfor five steps (Hariharan 1987) in
particular chooses a solution with reduced sensitivity to phase-shift calibration errors. (Error analysis is
discussed in Section 12.3.he Hariharan method uses five images with a linedative phase-step
between frames. Definfeas a vector of phase-step values.

A= (=20, —a, 0,0, 20), (1)

11 (x) = A(x) + B(x) cod @(x) +A,] = A(x) + B(x)[cos@(x) cos2a +sing(x) sin2a]

1,(x) = A(x) + B(x) cof @(x) + A,] = A(x) + B(x)[cos@(x) cos2al +sing(x) sin2a]

100 = A + B(x)coa) + 8] = Alx) + B(x)cosalx) "
1,(x) = A(x) + B(x) cof @(x) + A,] = A(x) + B(x)[cos@(x) cosal ~ sing(x) sina]

15(x) = A(x) + B(x) cof @(x) + As] = A(x) + B(x)[cos@(x) cos2a —sing(x) sin 2a]

These expressions are combined to form

tengix) = 2sina (1, - 1,)

©)
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The optimum choice af occurs where the method is least sensitive to erraxs Differentiating the
right-hand-side of Eq. (9) with respectaoit is easily shown that the minimum of the derivative occurs
wherea = 102. With this quartercycle phase-step, the phase and modulation expressions are

(p(x)=tan_1D 2('2" ) D or ([(X —tan [2 ),2|3_|5_|l , (10)
| "5‘|1|]

3J4 —1,)7 + (1 + 15 - 215)°

2(|1+|2+2|3+|4+|)

and (11)

With a = 172, the first and last interferograms are nominally the same. Howevaeserve the insensi
tivity to calibration errors, this assumption is not imposed in the analysis. Notice again that subtraction
within the numerator and denominator removes the additive term, while the division eliminates the multi
plicative term.
12.2.3The Least-Squareélgorithm

One pragmatic approach is tleast-squags algorithm(Bruning et al. 1974, Greivenkamp 1984),
in which N = 3 interferograms are combined using arbitr&anown phase-shifté\lthough this method is
not optimized against linear phase-shift calibration errors in the same way that other methods are, by
allowing arbitrary phase-steps it proves to be the most versatile of the phase-shifting analysis algorithms
described herélhis versatility will be utilized by the complex techniques described in Section 12.4.

When the phase-shifts are known by some external means, application of this method is straightfor
ward. ForN measured interferograms, the phase-steps are

A= (D, Dy, ..., D). (13)

Then-th interferogram may be written in the conventional vead then expanded as follows:
1n(x) = A(x) + B(x) cof @(x) + A, | = a9 (x) + ay(x) cosA,, +a,(x)sinA, . (13)

Here, the phase-stepg have been separated from the unknown plpégeusing the definitions

(o (6) =AY
Cay(x) = B(x) cos@(x) . (14)
Baz (x) = -B(x)sin@(x)

These are the three unknowns for which we must solve. Since the phase-steps are knowf, dhd sin
cosA; terms are simply the scalar cfigients of the unknowi,(x) anday(x) in Eq. 13, and are identical
for all pointsx in the measurement domain.

Applying the method of least-squares separately at eachxpaoifi, the goal is to minimize the

error functionE2(x), defined as
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N
2 F2(y )=
E2=E (xi)=Z[|n(xi)—ao( ) —ay(x)cosA, —ay(x)sinA ] (15)
n=1
The error function is related to tfievariance where it is assumed that each measurei@q)tcontains
the same uncertainty

At eachx;, E2(x;) is minimized by diferentiating Eq. (15) with respect to the three unknoagns

a,, anda,. The resultant expression may be written in matrix form

[N 3 cosA, ZsinA, mo( )0 1, (%) -

%cosAn > cos® A, > cosA S'”An[uj"l E: %In cosAn[, (16a)

FEsinA, ScosA,snA, Zsin’A,  HRu(x )5 Bl,(x)sina, F
A(A)a(x)=b(x,A) . (16b)

Here,Z is a shorthand notation representing the sum oveX theasurements, withas the summation
index.The symmetric matribA(A), called thecurvature matrix depends only on the known phase-shifts,
while the vectob(x;, A) contains the measured interferogram dafd) may be calculated just once, yet
the calculation ob(x;, A) must be done separately at every point in the measurement ddimaisolu

tion for the codicient vectora(x;) requires inverting\(A), and pre-multiplying both sides of Eq. (16b).
a(x)=A"(A)b(x,A) (17)

When there are three or more unique phase steps, the rows will be independgw) anitl be invert

ible. Oncea(x;) is known, the phasg(x;)) and modulatiory(x;) are easily found. Over the whole domain,

cp(x):tan‘lg_a?—g)g or ¢x) = tan"Y[~a,(x), & (x)], (18)
and J(x) = VEC)+ 80 (19)

The sensitivity of the least-squares method withphase steps is discussed in Section 8.10.4.

12.3 LINEAR PHASE-SHIFTING CALIBRA TION ERRORS AND THE SIMPLE ALGORITHMS

One important source of measurement errors facing every type of phase-shifting analysis is phase-
step calibration erroré&\ny means used to generate the relative phase-shift is vulnerable to errors in the
step-increments induced by inaccuracies, non-linearities, and random noise in the components. For
instance, a stage that is perfectly repeatable and linear may be mis-calibrated by several percent; a stage
driven over relatively long distances by piezoelectric transducers may exhibit non-linearities; and the

finite precision of translation stages may introduce random errors into the positioning.
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Many of the simple analysis techniques attempt to compensate for and reduce sensitivity to phase-
shifting errors in a number of way#/hen the phase-errors are small, the phase-shift may be modeled
using a poweseries expansion about their intended valtibs. first-order model describes the ideal
phase-shift, plus a linear errdfote that the phasgepor phasencrements simply the discrete deriva
tive of the phase itselfhus, an error that inear in phase is equivalent tocanstantoffset (calibration
error) in the step.

Consider the éécts of a linear phase calibration error on the simple algorithms described in
Section 12.2Here, assume that the experimental phase-incramhéntelated to théargetphase increment

o by a constant tdete.
o =a+eg, (20)

making the phase steps
A=0,0,2d,...,na',...)=00a+¢g2a0+2,...,na+ng...). (22)
“Propagating” the small err@rthrough the FouBtep algorithm witta = 172 yields a phase error

AQ' = (@' — @ — constant) of
FourStep algorithm:  Ag' =1 cos(2¢)e - isin(4¢)e? + O[€®]. (22)

Notice that the phase error is periodic in multipleg ahd has first-order dependenceeoithis com

monly observed behavior is call&thge print-thoughbecause the fringe pattern (or harmonics of it) are
visible in the phasemap. (Section 8.1€ives an experimental example of fringe print-throughcpn

stant phase term withdependence was removed from Eq. (2) because it depends only on a cofistant of
set in the phase-step definition.

Similar analysis conducted on the Hariharan algorithm shows a vésyedif result.
Hariharan algorithm: ~ Ag' = 4sin(2¢)e® +O[e*]. (23)

While again the error is periodic in multiples@fthe dependence on the phase-step ernas now been
reduced to second-orddihis dependence is illustrated in Fig.The collection of one additional interfer
ogram (five instead of four) has improved the uncertainty of the phase recovery significantly

Note on Print-through. The significance of fringe print-through depends on several factors,
including the amplitude and spatial-frequency of the error tepmFrom the two examples presented, it
is clear that the spatial-frequency of the print-through is related to harmonics of the fringe\fgbgad.
high fringe density makes the spatial-frequency of the print-through much higher than the low-spatial-fre
guency of the aberrations of interest, then the print-through errors average to zero over a typical length
scale. In that case the significance of fringe print-through is greatly reduced. Unfortuhégelyeraging

cannot occur for low fringe densities. Hence print-through can be a very serious problem, and great care
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Figure 1.The efect of phase-step calibration
/ errors on the Hariharan method of phase-
retrieval. Designed to reduce sensitivity to cali
bration errors, the Hariharan method shows a
maximum error of approximately 0.01
(waves)for calibration errors below 3(er
step. Not shown in this figure is the periodic
04 . . . - - . . . , dependence of the measurement error on the
-45°-40° -30° -20° -10° 0° 10° 20° 30° 40045 wavefront phase.
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must be taken to eliminate it. Section 8.1@gorts experimental observation and elimination of fringe
print-through with EUVPS/PDI data.

Numerous phase-shifting analysis techniques have been developed to reduce sensitivity to linear
phase-step calibration errors (Creath 1986, Schmit and Creath 1992). Still other methods seek higher
accuracy by modeling non-linear phase-increments (de Groot X98#ysis in the temporal domain pro
vides insight into the behavior and facilitates the development of these advanced methods. By utilizing
more phase-steps, and by finding alternate analytical solutions, the number of possible phase-recovery
techniques is truly limitless.

Aside from the expense in time, collecting increasing numbers of interferograms for analysis is
beneficial in virtually all circumstances. In addition to the potential for compensation ofebts eff
phase-calibration errors, having more data helps reduces sensitivity to noise. KHosgareing phase-
step calibration errors, each additional phase-step introduces one more degree of freedom. In principle, it
requires a polynomial of ordeN 1) to model the behavior df arbitrary phase steps. Givéhinterfer
ograms, and\N unknown phase-steps, we are faced with a systedto8 variables, but onli{ equations
(A, B, andg are the extra three variables).

This is where the simplified models of the phase-step errors becomes nedessanyall phase-
step errors and carefully chosen phase-retrieval algorithms, fringe print-through can be minimized.
However if the phase errors are ¢g@r and unpredictable, then adding more interferograms to the analysis
may not overcome the problem. EWterferometry of the 20Schwarzschild objective, described in this
thesis, was faced with the latter circumstance;fargift approach, capable of utilizing data collected
with irregular phase-increments was requiredovel method, developed by the author to meet these

needs, is presented in Section 12.5.2.

12.4 COMPLEX PHASE-SHIFTING TECHNIQUES
The simple phase-shifting techniques impose a linear or non-linear phase-step model on the data

analysis. Optimization of these methods proceeds from the point of view that the incremental collection of
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more interferograms enables the compensation of more non-linear phase-stiftitsy Hbweveras stat
ed previouslywhen the phase-shift errors areggiaand unpredictable, the inclusion of more phase-steps
may not improve the analysibhis latter, difficult experimental circumstance arose in the BRS/PDI
research, and prompted the author to develop a complex phase-shifting technique that has been implementet
with great success.

Due to the limitations of the translation stages used to position the grating beam-splitter/phase-
shifting element, the phase-shifting steps were neither linear nor predictable. Errags as lau04
cycles, or 16% of the tgetTv2 phase increment, were routinely obsendatalysis using the simple tech
nigues is compromised by the presence of significant fringe-print-through (Section 8.10.4).

A separate approach to interferogram analysis in the presence of high phase-shift uncertainty is to
use the available data to determinehase-stepthemselves prior to or concurrently with the analysis of
the phase at each point. One stated advantage of the phase-shifting algorithms is their individual treatmen
of each point in the measurement dom¥t, while the phase functiagx) is local, the phase-steps
are global and in principle fatct all measurement points equaDetermination of the phase-steps must
be possible.

Formulated, as before, withinterferograms, antl unknownphase step4,

A=(Ag,05,+,4y), (24)

and then-th interferogram is written as
I,(x) = A(x) + B(x) cos[(p(x) +An] . (25)
At each domain point, there is a set\oéquations, witiN + 3 unknownsA, B, @, andA,, . . . ,Ay), making

direct solution impossible. Howevday utilizing all or a subset of the domain points (there are often hun
dreds of thousands), there exist a number of available strategies for deteAnbéetgrminingA is the key
to the complex phase-shifting techniques. Qheknown, application of the least-squares algorithm to
recover the phasgXx) is trivial.
12.4.1Global Least-Squares

One iterative method, described by Han and Kim (1994), seeks to minimize a global error function
with respect to the three unknowns at each point, and itese-shifts. Following the least-squares -algo
rithm of Section 12.2.3, the error function is defined individually for each domain point as

E2=E2(x)= %[h](xi)—ao(xi)—al(xi)cosAn —az(xi)sinAn]2 . (26)

n=1

Now, allowing the phase steps, to be chosen freglyglobal eror function E takes the form
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HereN; is the number of domain points used in this calculation. Because the phadg, stepsar as the
arguments of cosine and sine in Eq. (27), solution will requireralinear least-squasapproach. For

any given set of phase-shifis solution of the other three unknowns follows the linear least-squares algo
rithm described previoushand the global error function is easily calculated. Starting with an igitess

for the values oA (e.g.A,, = n1v2), the individual phase-shifts may be given small increments so as to
minimize E2 globally.

Because\, and@ appear together in thegument of the cosine in Eqg. (25), there is ambiguity in
the definition of azeo refeencephase pointThis indicates that there are infinite degenerate solutions
available. By defining the first phase positiorza®, Ap = 0, and defining all other phase steps with
respect to it, we can exploit this ambiguity and remove one degree of freedom from the calculation.
Solution proceeds as a minimizationgin an (N — 1)-dimensional space.

Global minimization should produce the optimum set of fit paramet#rough the authors of this
method claim successful minimization is easily accomplished, experience with the implementation of this
algorithm using a wide variety of minimization algorithms has shown otherwise. Inherent in Eq. (27) is a
high-degee of intedependencamong the individual phase-shiflg, leading to instability in the solution
algorithm. Changing one of the phase-shift parameters by a small amount requires that each of the others
must also be adjusted to minimize the error function. Perhaps if the initial guess is very close to the mini
mizing solution, then the problem can be made linear in the variatighisSeich considerations are
beyond the scope of this thesis. Otherwise, a superior method must be found.
12.4.2The Fourier-Transform Method of Phase-Shift Determination

With all other experimental conditions held fixed, the relative phase increments generated in phase-
shifting interferometry are easily and accurately discernible in the Falameain in the presence of a
spatial-carrieffrequency This section describes a novel yet very simple method of utilizing the spatial-
frequency-domain information to discover the individual relative phase-increments from a phase-shifting
series of interferogram3he application of this method and a comparison to other phase-shifting methods
of analysis are presented in Section 8.10.2.

Many interferometric techniques, including the PS/PDI, require the introduction of a spatial-carrier
frequencythat is tilt fringes. The PS/PDI acquires tilt as a by-product of the required beam-separation in
the image-plane. In additionll of the single-interferogram analysis methods discussed in Chdpter 1

require the introduction of a significant amount of tilt. For successful analysis, the Foangform
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methods of single interferogram analysis require the presence of a spatialfeagtiency to adequately
separate and isolate one of the information-carrying side-lobes.

As before, the expression for theh interferogram in a series may be written as

In(r) = A(r) + B(r) cog g(r)+An] = A(r) + B(r) cof @) + kT +A, | . (28a)

where Qr)=@p(r)+ ko . (28b)
Here, following the discussion of Sectioh.3, the general expression of the wavefront phase is represent
ed by three separate terms: flitontermA,, contains all constant fskts; alltilt components, including
the spatial-carriefrequency are collected itk ,[0; @y(r) is comprised of all of the higherdered aberra
tions that are of interest to the interferometric measurements. By this definition, the piston and tit compo
nents ofi,(r) are identically zero.

Neglecting for the moment the presence of the discretely sampled domain, the-transierm of

I,(r) will be simplified by expansion of the cosine term:
|n(r) - A(r) + B(r)co&{(po(r) + ko 0 +An] — A(r) +%B(r)ei[%(r)+kom+An] +%B(r)e—i[%(r)+kom+An] . (29)
1,(r) = A(r) + €2 c(r) ke + g7 (r)e ™o (30)
where C(r)=1B(r)e®®. (31)
and * indicates the complex conjugate.
The Fouriettransform of ,(r) isi,(k), given by
F{1,(r)} =ia(k) =a(k) + € c(k —k,) +e™ e (k +K,) . (32)
By the same assumptions made in SectibB tegarding the spatial-frequency contenA@9, B(r) and
o(r), a(k) andc(k) both peak about the zero-frequenéyrthermore, althougik) may contain high-fre
quency and low-frequency components, it is assumed ¢iibéin the vicinity ofk,. The presence of the
spatial-carriefrequency displacesandc* and creates a Hermitian distribution with a zero-frequency
peak and two side-lobes centered aliguand Kk, respectively

At the carrietfrequency
in(ko) = a(k,) +€“nc(0) +e e (2k,) . (33)
in(ko) is dominated by one of the side-lobes, and may be written as
in(ko) = €c(0). (34)

Equation (33) enables us to access the indiviglobbl phase-step4,, to within an arbitrary and unimportant

offset angle.
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A, = tan‘l[in(ko)], or A, = Im{ln[in(ko)]} , (35)

At this point, the individual phase-steps can be calculated and applied to the phase recovery as described
previously The additional additive phase angle determined by the complex coc(§&gamntay be absorbed

into the piston term in the analysis. Calculation of the individual phase-steps requires only that the
Fouriertransform be calculated at one point, the cafreguency

The following two sections introduce a method of catfiequency determination and assess the
quality of the approximation made in Eqgns. (34) and (35) and thet ef the discrete domain.
12.4.2.1Carrier-Frequency Determination

The Fouriettransform method of phase-shift determination requires knowledge of the-tarier
guencyk,. Experimentallythere are several ways of various complexity to deterkyjrfieom the data.

To implement these procedures, no wavefront aberration information is needed, and the entire interfero
gram is not required. If fact, these methods work best when only a sub-domain of the interferogram with
complete fringe-coverage is used.

The most direct carrifrequency determination method finkisapproximately by locating the
side-lobe peak in the spatial-frequency domain. In fact this required step is performed in thetfaosrier
form method of single interferogram analysis (Sectibi31When the side-lobe peak is located within
the discrete Fourigransform (DFT) spectrum, the uncertainty due to the discretization is one-half of the
discretization size — typicallyhis is 0.5 cyclesThis uncertainty can be reduced to any arbitrary size by
increasing the resolution of the discrete spatial-frequency domain in the calculation.

A second two-step method uses the measured wavefront slope to determine thierpreacy
First, the Fourietransform method of single-interferogram analysis is applied to a single interferogram in
the series and a modulat &vavefront phasemap is generated. Heavy spatial-filtering can be used to sim
plify this procedureAfter the phasemap is unwrapped, polynomial fitting procedures can be used-to deter
mine the components tft in thex- andy-directions. Let be the tilt vector defined as

t = (x-ilt, yHilt). (36)

Here, themagnitudeof t is defined as half of the peak-to-valley amplitude of the wavefront phase it
describes. In this cask, is easily found.

ko= 2t (37)

Howeverk, is calculated, there may be some uncertafggume that whilé is thetrue carrier
frequency attempts to calculate, yield the valuek' where

k' =k, +e. (38)
€ is a vector in the spatial-frequency domain of magnitude much lesk jhaine dependence of the
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phase determination @can be seen from Eq. (33), withreplacingk,:

in(k') =in(ko +€) = a(k, +€) +€nc(e) + & Anct (2K, +e) (39)
= elnc(e)
The approximations of Eqns. (34) and (35) are still valid, but withfardift leading constant. Depending
on ¢, the magnitude of(€) may be less that(0). The implications of this are discussed in the following
section.
12.4.2.2Error Estimation
The accuracy of phase-shift determination using the spatial-frequency-domain depends on the rela
tive amplitudes of the functioregk—k ), c*(k+k,), anda(k), neark = k,. The phase of interef, is
found in the coditient of c(k—k,) in Eq. (33) and is given approximately by Eq. (33)e error in this
approximation cannot be determined win{k) anda(k) are unknown. Howevegby examining the data
in a phase-shifting series an estimate of the error magnitude is easily made.
For an individual phase-step, the three quantifflesk), c*(k+ky), anda(k) plus theA,-depen
dent complex coétients found in Eq. (33) may be regarded as complex scalars, or vectors in the com
plex plane Assuming that all other experimental conditions are held fixed while the phase-shifting is
implemented, only the unit-magnitude di@énts ofc(k—k,) andc*(k+k,) are afected.To separate the
one term of interest from the other two, define two complex congtantdq.
p=e’nc(0)
g=alke)+e et (2,) (40a, b, c)
in(ko) =p+(q
p represents the phase of the side-lobe pgakthe magnitude of the additional components. In most
experimental situations of interest, it is safe to assumepthatg and that the phases pfandq are
independent.
Figure 2 shows a representatiorpdbr six 6C0-phase-steps in the complex plane. Only the resul
tant vectors are measurabldie lagest phase error (betweprand the measured valuei@i,)) occurs
whenq is perpendicular tp. Whenq is significantly smaller thap, the maximum magnitude of the error

in the measured phadd,, is approximately
8An=|pl/ldl - (41)

Since thedA,, depends on the ratio {gff to |p|, minimization of the error can occur in two waj.is
increased by ensuring that the calculated cafmdguency occurs at the peak value of the spatial-frequen

cy domain side-lobe(k—k,). |g| depends on the mid-spatial-frequency contert@) anda(k), and can
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only be minimized by guaranteeing that the spatial-carrie
frequency in use is of didient magnitude for this to be
true. Improvements in fringe contrast reduce the relative
magnitude of(k) and improve the ratio.

Although the magnitude afis unknown, it may be
estimated from the dat&he variation in the measured mag
nitude ofi,(ko) is related to the magnitude @fThis varia
tion is represented by the gray ring in FigTBe outer and
inner radii of the ring are determined by fifp« g} and
min{ |p — ql}, respectivelyi (ko) is maximum whem andq
have the same phase, and minimum whandq are 180
out of phaseThe limitation of this estimation is that for a
small sampling of phase-shift steps, there is no guarantee
the maximum and minimum valuesigfk,) will be

achieved.

|q|2%[max{|in(ko)|} —min{|in(k0)|}] . (42)

Combining Egns. (41) and (42), based on the measured data

the estimated uncertainty in any given phase-step is

_ [maxfin(o)]} - minfin(0)}] |

Phase-Shifting Interfemetry

— 1 eng(0)
p:alke)+e e (2k,)

—— in(ko) resultant

Figure 2.A complex-plane representation
of the side-lobe pegs for six phase-shit
ing steps of 60 The measured phase at the
carrier frequency(k,) is dominated by,

but is afected by the non-zero magnitude
of the other spatial-frequency-domain com
ponentsy. g causes errors in the phase-
determinationThe gray ring shows that the
maximum and minimum measured values
of i(k,) can be used to estimaie

(43)

20,2 galmeiteo} -l
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Phase Unwrapping

13.1 INTRODUCTION

Due to the periodic nature of interference fringes, and the absence of an absolute reference point in
phase, nearly all modern interferogram analysis phase-recovery methods are only capable of determining
the wavefront phase to within an arbitrary multiple af(@ccasionallyonly to within a multiple ofT).

This limitation does not, howeveestrict measurement to optical patHeaté&nces (OPDs) of less than
half of a wavelength: usuallyhere is sdicient information to reconstruct the original continuous wave
front from the available discontinuous data.

This chapter describes several approaches for solving this important inverse problem, and presents
two novel methods. One method is designed to overcome floailtidés presented by numerous, isolated
regions containing no valid data.second, very general and robust method is capable of operating in low
signal-to-noise applications and, where valid data exists, in isolated, discontiguous regions.
13.1.1Unwrapping Overview

For reasons addressed in Chapter 12, many phase-retrieval methods combine several separate inte
ference patterns and utilize a relation based on an arctangent to recover the wavefront phase. ©ther meth
ods, based on Fouridomain analysis, also utilize an arctangent.

In general, the calculated phagé) may be written as a functional, combiniNgeparately mea

sured interferogramd{, . . .,In}:

(p'(r):tan'l{F[Il(r),Iz(r),-n,IN(r)]} : 1)
Each point inp'(r) is related to the actual wavefrap(t) by an arbitrary number ofr@steps.@'(r) is

called amodulo 2rphasemagnd is related to the actual wavefront phag¢he relation
@(r) =9(r) mod 2m. 2)
Here the modulus function is defined as the remainder after tfesstanteger multiple ofi2less than or
equal tog(r) has been subtracted. Figure 1 illustrates this point in one dimension, showing both the origi
nal wavefront and the modulat2neasured wavefront.

Equation (2) forms the basis of one of the most important and often extrenfielyltdifiverse

problems in modern interferogram analysis: the modulpt#tasemap must be used to reconstruct the

(6m 3 o wrappediaw data o -0=>"°=°  Fjgure 1. Although the test wave

1| - - - @ unwrapped /O,O front is continuous (dz_;lshed line), the

(4 2 fed raw phase data from interferogram
o analysis is typically modulor® or

s moduloA. The goal ofphase unwrap

pingis to reconstruct the original con

tinuous wavefront from the raw data.

(2m 1

Phase (rad) [wavei]

0

Position
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a) (8m4-o0—o

0. wrapped(raw data) | o 5 0 ° Figure 2. Reconstruction of the test
_ 11 ---- (p':(p +m, unwrapped o wavefront from the wrapped raw data
(6 3400 O = o 5= requires that each point be incremented

by an integral number of wavelengthst(2
radians), to achieve a surface free of dis
continuities. (a) Based on the raw data
(black circles) the hollow circles repre
sent the available choices for each point
in the reconstruction. (Bhe calculated
increments are stored in the array

Position

m (radians) [waves)]

T T
Position

actual wavefront, such thefr) is the surface of least curvature, with itsdiscontinuities removed by
the reconstruction.

While an obvious approach may simply require the additiomait@os wherever a discontinuity is
detected, the problem becomes complicated in the presence of noise, or where the data exists in disjoint
regions Another source of diculty arises when the spatial-frequency of the fringes approaches the
Nyquist limit (Nyquist 1928), and the local wavefront slope exceeds individual stepsoatinuously
Such extreme cases, not discussed here, may regpiteri information and utilize the so-called Sub-
Nyquist Interferometry (SNI) methods developed by Grievenkamp (1987).

In each method presented here, the goal is to determine empirically the fun(cdidinat solves

o(r)=@(r)+m(r), wherem(r) = 2m(r), nOlntegers. (3)
Fig. 2 shows the role afi(r).
13.1.2Notation
A change of units simplifies our notation considerablsingwavelengthunits rather thamadians

to describe the wavefront phap@) and@'(r) enablesn(r) to take integer values. For this notation, Eqns.

(2) and (3) must be re-written as
@(r)=qr) mod1, 4

and ®r) = @(r)+m(r), m(r) Olntegers. )
The modulo 1 function retains only the fractional parpj, between 0 and Includingzero. Here'(r)

is referred to as theaoduloA phasemap
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13.2 SIMPLE UNWRAP METHODS

Under favorable circumstances, procedures for unwrappodulo 2t phasemapgor moduloA
phasemapsin wavelength units) are often very straightforward, iterative techniques. Complicated versa
tile and robust algorithms are often built on the careful application of the simple techiiigjsesection
presents several general unwrapping methods of increasing complexity and usefulness. First, a ene-dimen
sional treatment is presented and then is expanded to two dimensions. Next, the problem is generalized to
withstand the presence of noise and to include arbitrary “continuous” aperture 3tnapgsecific conti
nuity requirements are carefully described for each method.

As discussed in Section 13.1.1, the goal of phase unwrapping is to find the fun(c)iowhich is
used to reconstruct the smooth phaseg{apfrom the (potentially) discontinuous modw@hasemap
@'(r). From the previous section, the function is defined in the following iwayavelength units:

@(r) =@ (r)+m(r), m(r) Ointegers. (6)

One assumption of the following discussions is that we hagepniori knowledge of the uncertainty of any
individual data point relative to the others. Some phase-unwrapping methods utilize varied data-validation
techniques (Huntle§989, Quiroga and Bernabeu 1994, Stephenson 1994, Charette and Hunter 1996) to
eliminate spurious points or regions from further calculations. Here the assumption will badthaints
coexists with the rest of the data.
13.2.10ne-Dimensional Unwrapping

In principle, the discontinuities ip'(x) are limited to a finite number of points. Excluding these
points,@'(X) and@(x) are related by a (piecewise continuous) constdsetofand thus have the same deriv
ative. Numericallythe discontinuities ip'(x) are easily detected by examining the behavior of the discrete
derivative of@'(x), defined as

do _ 9(x+1)-¢(x)

= - = 7
o 1 @ (x+1)-@(x), wherex=0, 1, 2, (1)

For the purposes of this discussion, the tdamvativerefers to this discrete approximation. Discortinu

ities are present wherever the magnitude of the derivative exceeds a given threshold.

g
o

Figure 3. Modulo A raw phase
S e ==~ data@' and the discrete derivative

Phase [A]
o =
o o

doe'/dx as defined in Eq. (7) are
\/\ shown to illustrate the use of the
—_— e —_— ———>> derivative in locating the phase
/\ discontinuities.Where the magni
« 0.5 / \ tude of the derivative exceeds a

threshold value (e.g. 0.5 waves), a

discontinuity is detectedhe sign
-0.5 AN :
V of the derivative is also used in
— 1 the reconstruction.

Position
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Figure 3 shows the behavior @), ¢'(x), anddg'/dx, wheredg'/dx is defined on the discrete
domain, withx as the index of the pointvhere the magnitude of the derivative exceeds 0.5 (waves), a
discontinuity is present.he sign of the derivative reveals whether the step is up or down.

To construcim(x) from @'(x) andd@’/dx, one may scan across the domailNgfoints and increment

m(x) according to the following procedure.

Procedure 1: Basic One-Dimensional Unwrap
1. Loopifrom 1to N-1)

2. A= + 1) — @'(i) (horizontal discete derivativi
3. IF |A]>0.5THEN
4. mi+1 toN) - mi+21 toN)-— sign@,) (shift all points fom i+ 1to end of ow)
The sign function is defined as
0-1, x<0
sign(x) = Ho, x=0 . 8

BH, x>0

The arrow operation £” indicates:replace the quantity on the left with the quantity on the ridftis
operation is straightforward to perform on a compltarStep 4, all of the points im(x) thatfollow a
discontinuity are décted.The use of the sign function, defined in Eq. (8), implements an increasing
decreasingstep where appropriate.

Thethreshold valuen the magnitude of the derivative (here defined as 0.5 in Step 3) determines
the maximum allowable wavefront slope for proper reconstruction slope greater than this value is
identified as a discontinuity where the phase is wrapped.

Application Note. In experimental applications, one fact about this unwrap method is abundantly
clear: Procedure 1 is very vulnerable to bad datingle “error” can create an erroneoutsef in all of
the subsequent data. It is possible to incorporate several neighboring points into the derivative calculation
in order to overcome thefetts of a single spurious data point. In such cases, care must be taken to prop
erly handle discontinuities when they occur at the edges of a domain. Methods of this sort can also be
effective where the wavefront slope isgar

Another approach is to pre-filter the data before unwrapping, either in one- or two-dimensions.
Simplesmoothingor averagingdfilters should be avoided because they improperly smooth the necessarily
sharp 2t phase-discontinuities and may reduce their magnitude below the threshold required for detection.
Furthermore, smoothing causes a loss of high-frequency information that may be of interest. In the pres
ence of an isolated bad pointsmoothindilter will decrease the magnitude of thefdience by distribut
ing the magnitude among a neighborhood of adjacent points.

Some authors have recommended the median filter (Freiden 1981, Crennell 1993) as one capable
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of reducing isolatetbad pointswhile preserving the sharpness of the phase discontinuities. Since-a medi
an filter samples a small neighborhood of points and replaces the value at the center with the median
value of the group, it can bring an isolated bad point into agreement with its neighbors witdatingaf
adjacent pointsThis is a very important advantage of the median filter
13.2.2Two-Dimensional Unwrapping

Two-dimensional unwrapping is required for most interferogram wavefront analysis. It may-be con
sidered as the direct extension of one-dimensional unwrapping tamaleslumns of data. First, the
direction derivative is used to implement the horizontal row unwrapping of Procedure 1. In the absence of
noise, this ensures the continuityqih the x-direction only A second step then utilizes thalirection
derivative to increment entire rows. During the procedure, it may occur that the magnitudes of some dis
continuities become lger than 1.5. In these cases, the required increments (or decreshemt®come
greater than JAny row-incrementing routine must address this issue either by using multiple unwrapping
“passes” through the data or by sensing the magnitude of each required increment.

Note that for the purpose of phase unwrapping on a two-dimensional data getirdwtion is
chosen arbitrarilyClearly when the orientation of the unwrapping procedure is rotated hyt@#0Oresul
tant phasemap must be the same to within a constant multipléSeparately unwrapping in two orienta
tions can be used as a method of data validadi@memparison can be used to quickly identify problemat
ic regions.

The most basic procedure for two-dimensional unwrapping is outlined.l&doavsimplified nota
tion, an asterisk used as an index represents an entire row or column of the domain. For ¢'&tahce,

is the entire second rownd@’'(3,*) is the third column.

Procedure 2: BasicTwo-Dimensional Unwrap

1. Loopj from 1 toN

2. ImplementProcedure 1: on each rapi(*, j) (1-D unwrap
3. Choose a single columr3= X,, to use as guidefor vertical unwrapping

4. Loopjfrom 2 toN

5 Ay = 0%, J) — (X, i — 1) (vettical derivative
6. IF [a,| > 0.5THEN
7 me*, j) — m(*, j) - signgy) * floor (a,[) (shift row)

The function floorX) is defined as the greatest integer less than or equal to

The most significant limitation of Procedure 2 is that just one column is arbitrarily chosen as a
guide for the vertical unwrappings with the one-dimensional unwrapping of Procedure 1, a single bad
data point in this particular columnfedts the subsequent unwrapping of all of the rows.

Experience has shown that simple methods of filtering the derivative can substantially improve
unwrapping results in the presence of noise. If the row increment is based insteadwandbe veical
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derivativeacross the width of the arraynen many more points are considered, reducing feetgbf a
single bad data point. Howeyétris quite possible for one or several points very far in magnitude from
the neighboring values to strongly influence the average derivative.

A superior filter is the mediaiVhen themedian vetical derivativeis used, a lgje number obad
data points, or several points that are far from their neighboring values, wilfexittag calculated
derivative. In this waythe efects of bad data points do not propagate as easily into other rows.

A method for incorporating the median in the vertical unwrap is given in Procedure 3.

Procedure 3: Two-Dimensional Unwrap with a Median Filter
1. Loopj from 1 toN

2. ImplementProcedure 1: on each rapi(*, j) (2-D unwrap

3. Loopj from 2 toN

4, Ay = medianfp'(*, j) —@'(*, j — 1)} (median diffeencg
5 IF [a,| > 0.5THEN

6 m(*, j) — m(*, j) - sign@,) * floor(|a,]) (shift row)

13.2.3Unwrapping on Sub-Domains

Interferogram fringe patterns are often collected on a sub-region of a detectoCansgquently
the relevant regions containing phase information are sub-regions géadarilable domaim broad
class of versatile phase unwrapping algorithms accommodates the arbitrary positions and shapes of these
domains, and avoids the inclusion of points from outside of the valid sub-region.

In this section two methods are presented for addressing sub-domain unwrappifigst method
places strict requirements on the shape of the sub-region and is therefore limited in its applidability
second, more general method extends the capabilities of the first to a wider variety of sub-region shapes.

For the purposes of this discussion, the selection of the sub-domain of interest must be done prior
to the unwrapping calculatiomhis may be done in a number of ways: manual methods, involving user
interactive procedures, or automatic methods, in which an investigation of signal-to-noise or some other
relevant property helps to identify the sub-regions of valid datanentioned previouslsome calcula
tion-intensive methods are capable of validating datang the analysis. It is not be necessary to address
those methods here.

We can describe sub-regions of interest with the definition of a special binary fur(c)i@tross
the full domain of measuremeia(r) is used throughout this discussion.

1, Or Osub-region

o) = B) Or Osub-region ©

Sub-Domain Unwrapping: Method 1

This method places two requirements on the shape of the sub-region.
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Figure 4. This figure illustrates the requirements on the sub-domain unwrapping imposed by Procedure 4 of Method 1.
White squares belong to the sub-domain of interest. Row 6 isfdescontinuous. Likewise, rows 4 and 5 are discon
tinuous in (b)All of the rows of (c)re continuous, yet vertical connectedness is violated by rows 5 and 6, which share
no common columns. (dgtisfies both of the requirements and is a valid sub-domain for unwrapping by Method 1.

7 7

1.Row Continuity: The horizontal path between any two points in the same row within
the sub-domain must not include any points outside the dofrtzénis, the horizontal
rows of the sub-region must not be discontinuous.

2.Vertical ConnectednessAny two adjacent rows within the sub-domain must contain
at least one column in common.

Figure 4 illustrates these requirements.
Procedure 4 is a modification of the median-filtered two-dimensional unwrapping Procedure 3,
refined to include only points within the sub-domain definea(boy.

Procedure 4: Two-Dimensional Median-filtered Unwrap on a Sub-Domain
1. Loopj from 1 toN

2. ImplementProcedure 1, on each rapi(*, j) (1-D unwrap

3. Loopj from 2 toN

4 i* = {i| o(i,j)=1 AND ofi,j—1) =1} (vettical connectedne}s

5. IFi* #0 THEN (note: 0 denotes thempty set)
6 Ay = medianfp'(i*, j) — @'(i*,j — 1)} (median diffeenceg

7 IF |a,] > 0.5THEN

8 m(*, j) < m(*, j) - signgy) * floor(|a,[) ~ (shift row)

The symboll denotes thempty set
It is not necessaryo restrict the row-unwrapping of Step 2 to include only points within the sub-
region, points outside of the sub-region will be ignored by the ugerofStep 6. Between every pair of
adjacent rows, the median féifenced, calculated in Step 6 is based only on those pairs of points that
share a columrirhis is illustrated in Fig. 5The arrows indicate which pair of rows is being compared. In
the figure, the elements that would be used in the calculatidpare marked with an “X”. Note that if a
row contains no valid points of the sub-region, no calculation is performed. By the two requirements
above, it is clear that this only occurs at the bottom row and at the first empty row above the sub-region.
By invoking median filtering in Step 6, Procedure 4 is more resistant to noise than Procedure 3.

Figure 5.In Procedure 4, Step 6, the median dif
a) b) ference between two rows (a vertical derivatige)

1 XIX]X ::| 1 calculated using only points from columns com
X|X[X 2 X
3 3 X

N

mon to both rows. Here the arrows indicate which
two rows are being compared, and the “X” sym
bols mark the specific points that are used.

el B
>
>
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0(x): a discontinuous row

AR L

10— @ (X) without discontinuitiesse— @ (X) with discontinuities,-O- segments whdggdy > 1/2
05 /’W,ﬁ
0.0 m f

3.0

sub-region
definition

"wrapped"
moduloA

unwrapped phasemapsphasemaps

—— proper unwrap
-| —e—unwrap with errors due tiscontinuities

I

iy T ...... /

N
Figure 6. Row unwrapping in the presence of discontinuities can lead to unwrapping €h@idomain is defined
by the binary functiom(x), shown in the top plot(x) = 1 for points within the domaiffhe middle plot shows a
moduloA raw phasemap (dots), set to zero within the discontinuiffles.solid grey line shows what the raw
phasemap would be if the obstructions were remadWed.hollow circles indicate the places where magnitude of the
derivative exceeds 0.5, triggering a phase increment in the unwrapping algdtigaimottom plot compares the

unsuccessfully unwrapped phasemap (dots) thizghideal case (grey line). Here, errors are caused by phase-wrapping
occurring within the obstructiomndby the obstruction itself.

However the application of Procedure 4 is limited to special kinds of sub-regions. For example, i is inca
pable of properly unwrapping in the presence of row discontinuities; Fig. 6 illustrateSheing are two

kinds of errors that can be introduced when this procedure is followed in the presence of discontinuities.
One type of error arises when a phase-wrap oaeiting a discontinuityThe second type causes a phase-
step to be assigned (correctly or erroneouségause othe discontinuitywherever the magnitude of the
derivative exceeds 0.5 (waves); these points are indicated in the figure by hollow circles.

It is possible to improve Procedure 4 to identify and correctly account for horizontal diseontinu
ities. Therefore, sub-regions containing “holes” can be properly unwrappé&dmethod is outlined in
Procedure 5.

The less-restrictive sub-region requirements for Procedure 5 are as follows.

1.Row Continuity is required only of théirst row. The horizontal path between any two
points in first row of the sub-domain must not include any points outside of the sub-
domain.That is, the first row of the sub-region must be continuous.

2.Vertical ConnectednessAny two adjacent rows within the sub-domain must contain at
least one column in common. Furthiér rowis discontinuous, then each separate-con
tinuous part of the row must be vertically connected tgtheiousrow by at least one
point within the sub-domain.

These two requirements are illustrated in Figure 7.
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T

7 ] 11

Figure 7. Thesethree figures illustrate the requirements imposed on the sub-domain shape by Procedure 5. Row 1 of
(a)is discontinuous and so violates the first requiremenfTtib)segment on the left side of row 5 is not vertically
connected with the rows above it. B)th requirements are satisfiékhis illustrates how this method can successful

ly address surrounded obstructions in the centers of sub-domains.

Procedure 5 Two-dimensional Median-filtered Unwrap on a General Sub-Domain
1. Loopj from 1 toN
2. ImplementProcedure 1, on each rapi(*, j) (2-D unwrap

3. Loopj from 2 toN

4 ¢ = number of separate, continuous regions in @i j)

5 Loopk from 1 toc

6. i ={i | i O thekth continuous region of(*, j) = 1}

7 it = {i | O(iy, j) =1 AND ofiy, j — 1) = 1} (vettical connectedne}s
8 If it # 0 then

9. A= medianfp'(if, j) — @'(it, j — 1)} (median diffeence

10. IF |a,| > 0.5THEN

11. M, ) — My, j) — sign@) * floor (|ak]) (shift row)

There are a number of simple ways to count the separate continuous regions of a given row and
identify their endpoints, as required by Steps 4 and 6. Besides scanning the individual pixels, the discrete
derivative of the sub-region-defining functio(x, y) can be used. Recalling that 1 for points within
the sub-region and = 0 for points outside of the sub-region,

O 1, at the point before the start of a new continuous region
=o(x+1y)-o(x,y) = 1, at the last point of a continuous region . (10)
E 0, at any other point

do(x, y)
dx

Since this derivative is undefined at the edges of the domain, edge points must be considered.separately
This problem is easily averted by padding the rows with a leading and a trailing zero.

Step 6 identifies the x-indices of points within the ®&éparate, continuous regions, one region at
a time. It should be noted that these regions may be as small as one column wide. Step 7 then determines
which of these points can be used in the calculation of the mediaredife Dyk. If |Dyk| exceeds 0.5
(waves), then all of the points within the particular continuous sub-region of the row are incremented by

the appropriate integer to make the mediafedéhce less than 0.5 in wavelength units.

13.3UNWRAPPING ISOLATED BAD REGIONS: PHASEMAP CLEANING
The unwrapping procedures presented in the previous sections have various amounts of resistance

to noise in the raw phase data. By using filtered comparisons of adjacent rows, the more sophisticated
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procedures attempt to stem the vertical propagation of errors. Howevattempt is made to limit heri
zontal error propagation within the rowss a result, an imperfectly unwrapped phasemap may contain
isolated points, horizontal lines, or whole regions of data thathéftedby an integral number of wave
lengths away from a position that would provide the best agreement with adjacent data.

This very succinct procedure introduces a method that has been successfullyclesuutovrap

ping errors.

Procedure 6: Phasemap Cleaning

1. Break the interferogram intd rectangular tiles: name the individual tile domdhs
2. Loopnfrom 1 toN

3. m, = medianfpD,,)] (tile mediar)

4 A(Dy) = roundip(D)) — my] (point-by-point comparisgn

5. d = roundfn, — m,_9) (adjacent tile comparisgn

6. o'(Dy) = 9(D,y) —AD,,) —d (tile cleaning

First the interferogram is broken into individual til@sen each point in the domain is compared to the
tile median with the round) function. By definition, round{ returns the closest integerxoThe two-
dimensional arra}\(D,,) is non-zero at any point that f@ifs from the median by more than 0.5 waves.
Similarly, this tile is compared to an adjacentviously examinetile (represented symbolically by the
n-1 index), again using the roumjifunction to calculate the scaldrFinally, a new phase functiap' is
calculated for the tile.

One significant aspect of this procedure is the use of the pduad¢tion rather than a comparative
IF --- THEN statement to identify the points that are more than 0.5 waves from the median. Rounding,
which speeds-up and simplifies the procedure, is used again in Section 13.4 for Guided Unwrapping.

Refinements There are several refinements of the basic method that can improve the results signifi
cantly In the presence of high wavefront slopetjloy points at the edges of the tile mayfetfifsubstantially
from the mediawalue. For this case, two possible solutions are as follows. First, choose a small tile size,
or choose the length amddth of the tile based on the mean wavefront slope ix ey directions
respectively — small tile for high slop&nother approach is to calculate and subtract the mean tilt within
each tile, then calculate the median, repaibt@points, and, finallyreplace the tilt that has been
removed.This method makes the use ofger tile sizes possible.

Selecting the optimum tile size is a veryfidifilt matter Isolated points and lines are the easiest
problems to repaiHowevey when a whole region is collectively shifted, a small tile may become
engulfed. For example, the tile may fall completely within the shifted region, and the program may not
recognize its displacement from the adjacent phase vdlherefore, the optimum tile size must not be
smaller than any shifted regio. the same time, if the wavefront curvature igérthe tile must not

exceed the length-scale of wavefront variations under investigation. Otherwise, the curvature may impair

221



Phase Unwrapping

the proper calculation of the medidhe comparison of the median values of adjacent tiles is intended to
reduce the limitations of using small tiles. Iflaanedtile is compared to the previously-cleaned adjacent
tile, then the cleaning process becomes analogous to the simple unwrapping process, performed on the
tiles rather than on the individual pixels (i.e. the tiles beceuperpixels.

Another improvement on these methods is to be aware of which pdihis a tile belong to the
measurement domain and which points do not. Rectangular tiles will overlap irregular domain boundaries.
The exclusion of points that fall outside of the domain may yield a median value more characteristic of
the data within a tile.

A last approach is to perform the cleaning multiple times, usiferelitt tile sizes. Doing so, hew
ever runs the risk ointroducingunwrapping errors into a clean phaseniapreduce the likelihood of this
problem, two cleaning procedures can be perforimgxrallel and then compared for inconsistencies.

Special Note At this point, the “cookbook” nature of these unwrapping “recipes” is certairly evi
dent. Procedures and variations of procedures fill the literature, and there appears to be little agreement or
which is the most reliable, most computationalfjcegnt, and fastest method to use in arbitrary circum
stancesThe following sections on Guided Unwrapping seek to overcome these limitations by using an

entirely diferent approach that has proved the most successful inilteiferometry applications.

13.4 GUIDED UNWRAPPING

Unwrapping noisy data is perhaps the single most daunting task facing many interferogram analysis
applications, and it was certainly a significant problem for the Hitdfferometry experiments as
described in this thesi$he unwrapping procedures presented in the previous sections utilize adaptable
filtering methods to overcome some of the limitinfeefs of noiseThese methods inevitably fall short of
the mark and leave the unwrapped phasemaps with errors introduced by noiytelaats to clean the
unwrapped phasemaps improve the situation, but are not always reliable.

A completely diferent approach is the useapriori wavefront information during the unwrap
ping procedure. Obviouslif the final result is already known, the unwrapping is trivial. Howewben
the wavefront is known onlgpproximately then the information contained in the approximate wavefront
can be used tguidethe unwrapping procedure with great success. In the guided unwrap, all of the high-
frequency information in the raw data is preserved. Perhaps the most significant advantage of the guided
unwrap is its ability to unwrap in the presence of obstructed regions and regions containing no valid data.
Discontiguous sub-regions, for example, can be unwrapped without any special considerations. Unlike the
previous unwrapping methods, guided unwrapping is equally applicable to any one- or two-dimensional

domain because thereris relianceon neighboring data.
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The concept of guided unwrapping is used in Sub-Nyquist Interferometry (Greivenkamp 1987)
designed for cases in which the wavefront slope exceeds 0.5 waves per step (Nyquist limit), where con
ventional unwrapping methods fail. Here, a similar idea is exploited to overcome noise. Hoprithé
information is obtained is not important here. (Section 13.5 discusses a novel approach to ascertain the
approximate wavefront required for guided unwrapping.)

The most simple guided unwrapping procedures are described in Procedures 1a and.1b below
Suppose that tha priori wavefront information is contained in the functiofr) over the measurement
domain. Using the raw phase dagfa), the most simple guided unwrapping procedure utilizes the func
tion roundg) in a way that is similar to the phasemap cleaning procedures in Section 13.3 of this chapter

Procedure 1a: Guided Unwrapping
1.m(r) = round I (r) — @(r)] (difference punded to neast integey
2.0'(r) = @(r) + m(r) (adjust raw phasemap into aggment with the guigle

More succinctlythis procedure may be written in one single step.

Procedure 1b: One-Step Guided Unwrapping
1.¢'(r) = @(r) + roundr (r) — (r)]

As in the unwrapping techniques presented in the previous sections, integer (wavelength) steps are
added or subtracted from the raw data to produce the unwrapped phaseiejore, the functiom(r)

(Procedure la only) contains the required integer phase steps in wavelength units. Notice, tiav@ver

a) Properly guided unwrapping b) Guided unwrapping errors caused
by an offset error

o raw data (moduld)
— unwrappingguide I'(X)
3N\ — r(x) modA 3\
< guided unwrap
_|| # abad data point |
o 2\ o 2\
(%] o 0
] / ]
= 7, =
o - o
_ 9 _
P
A / o, A o.‘
— ’,/ ) 1 .o.
“‘ o offset{ . oo®
0 — 0 - —
Position Position

Figure 8. Guided unwrapping works successfully when the guide is approximately separated from the raw data by an
integral number of wavelengths, as shown in\(é)en there is a fractionalfeét, howeverthe proper increment for

the raw data becomes ambiguous. In (b) tigebis approximately 0.5 waves. Small variations in the raw data cause
the increment to fluctuate by one wave for adjacent pdiihis. kind of guided unwrapping error is addressed by
Procedures 2a and 2b.
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contrast to the previous methods these proceduresgaitentiorto the locations of the discrete phase-
wrapped steps present in the raw data. In fact it is not even necessafgrémiiiite between points that

are inside or outside of the measurement domain: points outside of the domain are not included in subse
guent analysis.

At this point, Procedures 1a and 1b contain one subtle oversight that can lead to unwrapping errors.
Figure 8 illustrates two examples of the guided unwrapping procedures given in Procedures 1a and 1b
above. Under ideal circumstances, shown in Fig. 8(a), the rawpia brought into the best possible
agreement with the unwrapping guidg). Figure 8(b), howeveillustrates a serious problem that occurs
when there is a fractionaffsetbetween the raw data and the unwrap guide. In this case, there can be
ambiguity in the unwrapping. Usuallyndividual data points are incremented to bring them as close to the
guide as possible; but when théset is close to 0.5 waves, small variations in the raw data can induce
differences of one wave in the guided unwrap.

Procedures 2a and 2b, beJawercome the édet problemThe solution presented here is to eom
pute the dket before the guided unwrap is performed. In the presence of noisy data this calculation
requires some filtering, and the median filter again proves very useful. Here, it is very important to restrict
r to points within the measurement domBinthis ensures that the medianfeliénce is a meaningful

value (not based on invalid data from outside of the domain).

Procedure 2a: Guided Unwrapping with Ofset Removal, Method 1
1.4 = mediad [(D) — ¢(D)] — round (D) —@(D)]} (calculate offsét
2.m(r) = round I (r) —@(r) —A4] (difference punded to neast integey
3.9'(r) = @) + m(r) (adjust into ageement with guide
An equivalent yet slightly more succinct implementation of Step 1 above usesdi@operation
to performthe rounding and subtraction in one sfElpere is, howeveine minor catch: the modulo oper
ation becomes non-periodicyat 0.Any problem this aspect of the modulo operation may cause may be

avoided by ensuring that the fdifence betweeh and@is positive-definite: a lgre numbet. may be

added td” during the modulo operation.

Procedure 2b: Guided Unwrapping with Offset Removal, Method 2
1.L = anyinteger greater than — nfifi(D) —@D)}  (e.g. choose 10,000)

2.A = mediad [L + (D) — ¢(D)] mod 3 (calculate offset
3.m(r) = round[ (r) —q@(r) —A] (difference ounded to neast integer
4.¢'(r) = @) + m(r) (adjust into ageement with guide

Both Procedures 2a and 2b may be simplified slightly by the combination of the last two steps into

one single step, as was done in Procedure 1b.
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13.5 FOURIER-TRANSFORM GUIDED UNWRAP

The guided unwrapping technique presented in Section 13.4 combines the desirable attributes of
simplicity, speed, and high-reliabilitf he dificulty lies in obtaining the priori approximation to the
unwrapped wavefront being measur€bis section presents a novel method of synthesizing the best
attributes of two existing methods to produce a new unwrapping procedure calfenittee-Transform
Guided Unwrap

In essence, the powerful spatial-filtering capability of the Fotrégrsform technique is used to
generate aa priori wavefront phasemap containing only low-spatial-frequency informatibren used
as an unwrapping guide for raw phase data generated by another means (e.g. phase-shifting), otherwise
difficult unwrapping procedures are greatly simplified. Depending on the degree of spatial-filtering used
in the Fouriettransform procedure, the presence of obstructions and blemishes can be easily overcome.
An outline of the main procedure and a note on its application are presented here.

Begin with a raw phasemagfr) and one recorded interferogra() (which may be from of a
series of interferograms).

Procedure 1: Fourier-Transform Guided Unwrap
1.Apply the Fourieitransform method (Sectiorl B) with heavy filteringto the interferograni(r).
This produces a wrapped phasengg(p).

2.Unwrap(pv(r) to produce the wavefront guidiér).
3.Apply guided unwrapping (Procedure 2b) to the raw @atausingl (r) as the guide.

Application Notes. Choosing the proper amount of spatial-filtering depends on three main attribut
es: the characteristics of the obscured regions, the amplitude and spatial-frequency of the noise present in
the interferogram, and the curvature of the wavefront undemtithtenough spatial filtering, isolated
blemishes nearly vanish; even obstructions that cut the measurement domain into multiple disjoint sub-
domainscan be overcome, because the underlying phase can be made continuous across the blemishes an
obscurationsWhen heavy filtering is applied, noise and other discontinuities are removed and unwrapping
the guided wavefront becomes very sim@ae cause for concern in the application of this method is the
presence of highly-curved sections of the wavefront under test. Even in optical systems of high-quality
regions of high curvature may be present at the borders of the measurement domain as a rizaattaf. dif
High-spatial-frequency components of small amplitude and low-spatial-frequency componenmgs of lar
amplitude ardothattenuated by heavy filteringhe result may be a wavefront guide that fails to approx
imate the wavefront under test in some regidie only straightforward solution in these cases is to
relax the filtering until the problem is alleviated. It may octuwevey that the relaxation required to

include allof the highly-curved wavefront componentsdoeshe advantages that this method provides.
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The problem of high wavefront curvature was identified in the discussion of single interferogram
analysis(Chapter 1). High curvature violates theonotonic phaseeguitementdescribed in Section 1.1.1
for single interferogram analysis and makes the application of filtering problematic. Hence the Fourier
Transform Guided Unwrapping Method is best suited to those cases for which the-transferm meth
ods of phase-retrieval are able to provide a low-spatial-frequency approximation to the wavefront under
study Where it is applicable, its strong advantages are that it is able to withstand isolated bad regions and
discontinuities in the sub-region and to preservénitja-spatial-frequency content of the raw data without

propagating phase-unwrapping errors throughout the data.
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14.1 INTRODUCTION

Aberration polynomials are used to describe the continuous shape of the deformations of an optical
wavefront, with respect to an ideal, often spherical, reference s¥hile.the shape of the aperture
under study often dictates the appropriate set of polynomials, it is generally advantageous to use an
orthogonalbasis set. Such a set of polynomials not only enables the decomposition of a wavefront into
experimentally meaningful constituent parts, but also facilitates numerical analysis of the measured data.

The most widely adopted representation for circular apertures is the basiZestiké cicular
polynomialsZ,| of n-th degree (Zernike 1934, Zernike and Nijobar 1954 Zernike polynomials are
only orthogonal for circular apertures. Other polynomial sets include ZeratkmTFischer et al. 1993),
Zernike-Mahajan (Mahajan 1994) for annular apertures, or Legendre polynomials for rectangular apertures.

This chapter presents the main representations of the aberration polynomials that are used to

describe the interferometrically-measured wavefront data.

14.2 ZERNIKE POLYNOMIALS

Much has been written about the derivation and utility of the Zernike circular polynomials (several
excellent references are Born andlf 1980:464-68, Malacara and d&¥é 1992, Carpio and Malacara
1994).This section presents, without proofs, only a brief overview of the most important aspects of the
Zernike polynomialsThere are many notation systems available for representing the Zernike pelynomi
als; this chapter describes the notation used throughout this thesis.

The Zernike polynomials are obtained from the following two properties (Bathi#/aid 952,
1954; Born and\Volf 1980:464):

1.0rthogonality. The polynomials are orthogonal over the unit circle. Usind<ttemecker

deltasymbolgy;,

21 % TT
ﬁkzﬁhwmwﬁ;ﬁm%u (1)

2.Rotation. The mathematical form of the polynomial is preserved when a rotation with a
pivot at the center of the circle is applied to the function. By this propkeycomplex
functionZ, may be separated into radial and azimuthal functions of the varjahledp
respectivelyas follows:

Z, = Ry(p)e"?. @)

nis the degree of the polynomial, anid the anguladependence parametgfis the mini
mum exponent of the polynomid® . n andl are either both even or both odd; tus lis
always even.

The radial polynomials satisfy the relations:
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R=R'=R. ®3)
"RR.pdo=~+ 5 4
JoRoRePaP = Sy O (4)
and can be generated by the expression
n-2m _ - _1\s (n—s)! n-2s
R (p)—Z( Y sl(m—s)!(n—m—s)!p ' ®)

s=0

Since the azimuthal functiom8? are already orthogonal, any ti&y polynomials will be orthogonal if
they do not have the sarhe

A set ofreal polynomialszl, may be written based on the complélx as

UL:%(ZL"'Z;I):RL(Q)COSKP, forl<0 ©

@%(4 —Zn") =R, (p)sinlg, forl>0’

21 Y _ Tt
,[;Io UpUgp dp dg= 5B 7)

Using the fact thah > 0 andn — lis even, modify the definition of the azimuthal componenitlpto

satisfying the condition

form UR.

mEnT_I,orI:n—Zm, (8)

now um= Aquq—Zm{gons}(n -2m)o . 9)

where sine is used for— 2m > 0 and cosine fon — 2m < 0. With the addition of a convenient numbering

system, these become the familiar Zernike polynomials.

14.3 NUMBERING CONVENTION AND COEFFICIENTS
Throughout the body of this text, the following conventions for the representation of Zernike poly
nomials are maintained.
« Numbering convention.An ordering system has been devised (CédReference Manual) to label the

Zernike polynomials using a single, positive intejger replace the pairr{, nt.
Z - AL (10)

In the description of low-spatial-frequency optical aberrations, it is common to specify a set of 37
Zernike polynomials (0 through 36lhe conventional ordering is shownTable 1. Figure 1 shows a

graphical representation of the first 37 Zernike polynomials.
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Table 1: Single index notation for the Zernike polynomials.

j (. m j (. m i (nm j (n,m)
0 0, 0) 9 3, 3) 18 (5, 3) 27 6, 4)
1 1, 1 10  (3,-3) 19 (5,-3) 28  (6,-4)
2 1,-1) 11 4, 2) 20 (6, 2) 29 (7, 3)
3 2, 0) 12 4, -2) 21 (6,-2) 30 (7,-3)
4 2, 2) 13 (5, 1) 22 7, 1) 31 (8, 2
5 2,-2) 14  (5,-1) 23 (7,-1) 32 (8,-2)
6 (3, 1) 15 (6, 0) 24 (8, 0) 33 9, 1)
7 (3,-1) 16 4, 4 25 (5, 5) 34 (9,-1)
8 4, 0) 17 4, -4) 26 (5,-5) 35 (10, 0)

36 (12, 0)

* Real quantities.The polynomials described astictly real quantities based on the 4™ from Eqns. (7)
and (9) As described in the following sections, the symfjab used to represent individual, real, Zernike
polynomials of the variablep (@), with p 00 [0, 1], ande O [0, 2r).

« Leading coeficients. There are two common conventions for the leadingfictexits of the Zernike
polynomials.Throughout this thesis, the leading daéénts of each Zernike polynomial are set to unity
— not including the individual coi€ients of the radial termg" that appear in each polynomial term.
The Zernike polynomials atgoundedn the range [-1, 1T his convenient definition allows the immedi
ate description of the magnitude of individual wavefront aberrations.

The second common convention in use sets the leadinficea®t equal to theariancesof the
individual terms (excluding the constastonterm.)That is,Z is defined with a leading cdefient that
satisfies

(Variancej)2 = 012 2.[;.[02]1212 pdpdp . (11)

Although this definition simplifies the calculation of wavefront variance when the Zernikié-coef
cients are known, it complicates the rapid interpretation of aberration magnitudes by the inclusion of
(mathematicallyirrationalcoeficients in each term.
14.3.1Vector Representation of Zernike Cdigiient Pairs

In several circumstances, pairing Zernike polynomials that share the same radial dependence is
extremely useful in the concise representation of wavefront aberraftuass especially true in the
description of systematic errors (Chapters 5 andt&yre the rotational orientation of a givefeet is
independent of the coordinate system used for measurefheotighout this thesis, a vector notation for
coefficient pairings utilized.

For example, wavefronilt andcomaare represented by the ciigent pairs &, a,) and &g, a7)
of the Zernike series respectively both cases, the two Zernike polynomials they modify have hae cos
dependence in the first term andsitependence in the second tefithis lends itself to a simple vector
notation as follows

Tilt, T = (a4, ay), and ComagC = (ag, ay). (12)
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Figure 1. A graphical representation of the first 37 Zernike polynomials (0 throughngbthe three square arrays

used to generate themis the radius arrag is the azimuthal angle defined courtéwckwise from the x-axis, anal

is the binary sub-domain-defining array which represents the unit circle on the rectangular grid. Points outside of the
sub-domain are undefinefidjacent to each Zernike term are the two-index and the single-index representations.
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14.AWAVEFRONT REPRESENTATION WITH THE VECTOR NOTATION

A wavefrontW(p, @) may be represented by a finite setMf-() Zernike polynomials.

<

W(p.0) =Y a,Z(p.9). (13)
=

On a discrete set of points {p,} or {( p,, @)} in an aperture domain, for each point we have
M
W(p,)=W, =% a;Z;(py). (14)
1=0
A more compacvtector notatiordescribes a point in the wavefront at posifgras a vector on a basis of

Zernike polynomials.

Ezo(Pn)E EBO E
W,=[aoau]g i [ orequivaently, W, =[Zo(p,) -+ Zu(pn)] g} L.
Faw

%M (Pn)E E

On the finite set oN points {p,,}, the wavefroniV,, may be written as a column vectBguation (15) becomes

(15)

oM O DZO(pl) ZM.(pl)EBO

C

I P L
0 oo L (16)

E

N
- 0
W H go(PN) Ly (pN)%M
The dimension of the matrix in Eq. (1i€)M x N.
Within this notation, there are now several “vectavs’can define: the wavefroi{ has a value
for each point in the domain; each Zernike polynomial t&ymay be represented as a vector across the
domain; for a given domain, there is a ve@#t defined on the finite Zernike polynomial basis, spanning

the space defined by the fifgt+1 polynomials; and there is a cfiegient vectora of M+1 elements.

W=[W - Wy, (17a)
A Ezo(Pl) ZM(pl)E

z;=[z(p) - Z(pn)], andz =5 : L F[Zo ], (17b)
Folpn) - Zu(en)H

a=[a - ay]. (17c)

Several of the above expressions may now be re-written in this compact vectortfermave

front representation from Eq. (16) becomes
wT=Za", orw=az". (18)
As usual, the superscriptindicates the transpose of a vector or matrix. In the conventional notation,the

orthogonality condition is
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N
Y Zi(Pn) Zc(Pn) O 8- (19)
n=0
In vector notation, the orthogonality condition may be written as
Z,Z¢ Odj. (20)

To study the variance of a given fit (Chapter 15), we require the definitioneftar normacross
the set ofN measured points.

N
IW|? =y wZ =wwT. (21)
n=1

14.5 REPRESENRATION OF THE ZERNIKE POL YNOMIALS ON A SQUARE GRID DOMAIN
The first step in the analysis of a digitized wavefront must be the establishment of a consistent coordi
nate system used in all stages of the analysis. Modern detector designs make the establishment of a rectang
lar Cartesian coordinate system a natural chéigpropriate to the Zernike polynomials on a circaper
ture will be a representation of thait circle within the chosen domain. Howeyany contiguous or dis
jointed domain(s) of points may be used once an appropriate coordinate system has been edthislished.
step may appear trivial, but there are subtleties in the procedure worthy of discussion. Carpio and Malacara
(1993) have suggested a method of representing the Zernike polynomials in Cartesian codrdaates.
method described here uses a direct representation of the polar coordinates on a square-grid domain.
Beginning with a squar x N domain of pointd, our goal is to establish three array variables
shared by all analysis procedurps®, ando. For each point i, p is the distance from the centéris
an azimuthal angle defined countdockwise from thex-axis, andb is a binary array describing which
points are in the unit circle & 1) and which points lie outside € 0).As an intermediate step, define the
array variables andy in the following way These array variables are linear and are bounded on the
range [-1, 1].

1
R (22)

Here * represents all columns (or rows) from Ntox andy are shown in Figure 2 for anx88 array
This very small array is used only to illustrate the method; the iBtvferograms studied in this thesis
actually occupy domain sizes from 22225 to 860x 860 pixels.

Many computer programming environments are capable of correctly rendering an arctangent into all
four quadrants, using botandy as input aguments, and yielding an angle moduto €omputer systems
without such capacity use thatio of y to x as a single input gument and angles are returned modulo
because sign information is lost in the division. In either @gaskould be defined in the straightforward
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+5/7
+1

+1

+5/7
+3/7
+1/7
-1/7
=37
-5/7
-1
horizontal, xg vertical, yg radius, pg azimuthal angle, ¢g obscuration map, og
xE[-1,1] yE[L1] pE0,V2] ¢ €10,27] 0={0,1}

Figure 2. Definition of p and¢ proceeds from the definition of the intermediate arsagady, illustrated in this
example of an & 8 square grid domain. In experimental applications, these arrays are typically hundreds of elements
wide and contain tens of thousands of domain points.

manney on the range [0,18.

¢=tan"*(y,x), typical modulo 2rtformat , (23a)
0= tan‘l%g alternate modulo Ttformat . (23b)

The definition ofp requires the most caréhe most simple definition qf is

p=Ax*+y. (24)

This definition will be modified below foeven-Narrays, .

It is very important to decidehere the coordinate of a point resides within each square pixel. For
symmetry reasons, we choose tieaterof the squag as the locus of its coordinat@his choice main
tains both 99 rotational symmetry and reflection symmetry about the two axes, featsabdd- and even-
sized arrays diérently.

One fact is immediately:apparent in the even-N case there is no single pixel corresponding to the
origin, and no individual row or column corresponding toxther y-axis. This difference from the@dd-N
case does notfaict measurements in any significant way

Propertreatment of the points at the edges of the domain is the most important aspect of the defini

tion of p. With o defined as
1, p=<1
o=

0 p>0’ =

care must be taken to ensure that the non-zero pointexdénd to the edges of the domain. Based solely
on Eqgns. (24) and (25), this condition would not be met for the even-N arteyswo points at the cen
ter of any side have > 1 and would be excluded, leaving empty rows and columns along eacileege.

following “fix” compensates for this problem by adjusting the definitiop &r even-N arrays:

IF Nis even THEN p'Em_ (26)
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After this normalization, witlp redefined agp’, the

=
maximum value op along the edges is identicalbye. %
To illustrate the ditrences between the even ¢ “g
odd array definitions, Fig. 3 shows the appearanae ¢ %
for an 8x 8 and a 9% 9 domainAfter applying the S
“renormalization” ofEq. (26) to the even-sized arréye
included points ob (that is, the non-zero points) reach ! %
edges of the domain. %
14.5.1Note on Distortion z

The definition of the coordinate system variabl Even (8 x 8) 0dd (9 x 9)

p and¢ presents an opportunity to include compense Figure 3. The definition of the radius arrgy
depends critically on how the unit circle is defined,

for some geometrical systematic errors directly in the and care must be taken to ensure proper behavior at
the edges of the domainhis figure illustrates how

analysis. For example, the radial distortion related tc the ideal representation translates into symmetric

. . even-sized and odd-sized discrete domains. It is
geometry of a planar detector array in a spherical be important for the domain points to reach the edges
of the domain at the points whegye= 1. This condi
tion is guaranteed for even-sized arrays by making
the modification in Eq. (26).

(Section 5.12) can, in principle, be compensated for
automaticallyby re-defining the radial coordinape In
this particular case, a radial positipiin the Detector Coatdlinate Systernorresponds to a polar angi®)
in the sphericaBeam Coatlinate SystenBYy replacingp with y(p) in the coordinate system definition, all
measurements will automatically be made in the Beam Coordinate System.

This treatment is not required; coordinate transformations can be done after the data has been ana
lyzed. Howeverthis process can be simplified by building the transformation into the radial coordinate.
This is especially true of the representation of a measured wavefront using the Zernike polynomial series,

in which a coordinatand coefficientransformation in the presence of a non-linear radius is challenging.
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15.1 INTRODUCTION

Once the raw interferogram data has been processed and an unwrapped wavefront phasemap has
been produced, the wavefront may be interpreted as the composition of individual, constituent wavefront
aberrations. Reconstruction of the raw wavefront data from a limited number of these constituent aberra
tions also serves as a method of filtering the data to contain only the lowest-spatial-frequenecy compo
nents.The goal of this chapter is to describe several methods of wavefront analysis leading to the devel
opment of a novel, expedient variation of a well-established polynomial fitting technique.

The conventional measure of theodness of a fis based on the minimization of the functiph
defined as the ratio of the estimated variance to the parent variance times the number of degrees of free
domv (Bevington 1969:188)The parent variance is characteristic of the spread of the data aboutthe par
ent distribution, for which the estimated variance of the fit describes both the spread of the data and the
precision of the fit.

The individual uncertainty afachindividual data point,, is included in the definition of2. This
fact addssignificantcomplication to wavefront surface fitting computations if simplifying assumptions
are not made. For instance, the basis set of orthogonal polynomials on the measurement domain must be
defined to be orthogonal in the presence of a non-uniform weighting function based on these individual
uncertainties.

One simplifying assumption that is often appropriate in interferogram analysis is that the uncertain
ties of the phase measurements are equal to a coasiantss the measurement domain. (The domain is
defined to include only valid data point®here this assumption is applicable, the funcjgéis simply
proportional to the fit variandglefined in the following section].hus the method of wavefront surface fit
ting described in this chapter is essentially a minimization of the fit variance, based on the raw wavefront
data and an appropriate basis set of aberration polynofftiedschapter describes methods that are general
and may be applied to the orthogonalization of any arbitrary set of basis polynomials on a given domain.
15.1.1Note on Numbering Conventions

For consistency with the Zernike polynomial basis, all polynomial basis “veetg@siumbered
starting from 0; that isXg is the “first” polynomial of an arbitrary basigvhen polynomials up to and
including Xy, are used, then there avi-1 basis vectors. In regard to the Zernike basis, typically pelyno
mials Zy throughZzg are used to describe aberrations in imaging systéhese constitute the well-
known “first 37 Zernike polynomials.”

However on the discreteneasuementdomain, theN measured data points are numbered from 1 to

N. Thus, the position vectogs throughpy describe the measurement domain.
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15.2 MINIMIZING THE FIT VARIANCE
The process of wavefront surface fitting described here is based on minimizatioriitof the
variance The fit variance is defined for a measured wavefiireind a fitW' based on an arbitrarfmite
set of basis polynomials{}. The chosen setX;} may be any convenient set and need not be orthogo
nal. The following discussion is based on the method described by Fischer et al. (1993), and uses the vec
tor notation described in Chapter 14.

In general, surface fitting on a basis of polynomial functions may be represented as
W= ¢X; =cX’. 1)

The individual vectorX; range over the set &f measurement point$he set £} are the scalar polyro
mial coeficients and form the elements of the dmént vectorc. Over a discrete domain, where the fit

variance is defined (Bevington 1969:137) as

1 N 2 1 2

2 — T I

f=—" -W,) =———|wW'-Ww|". 2
N—M—lnzl(w’ h) N—M—l" " @

N is the number of points in the measurement domain,Mrd)(is the number of parameters used in the
fit W'.

Inserting the wavefront fit of Eq. (1) into Eq. (2), we define for convenience a scalar q&qrtiyor

tional to the variance (and also proportionak#y
~ 2
$=(N-M-1)s?cx" -w| . 3)
The minimization of? (or, analogouslyof S) is based on the selection of the optimum set of-coef
ficientsc. If a perfect fit were possibl&would equal zero. Since there will always be #edénce
between the measured wavefront and the wavefront reconstructed from$velfipe non-zeroThe

optimization thus requires finding a global minimumSafith respect to each cdient c,. This mink

mum occurs when the partial derivativeSfvith respect to eact is zero.

O:E:i
oc, 0c

-~ 2 -

ex™ -w" = z(ch —W)XI . 4)
Thus, for each k, XX = WX] . (5)
Equation (5may be generalized for dlas follows:

eXTX =WX, or o%co = WX . (6a)

l ~ ~
—XTX. (6b)
o

using the definition o
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As described earlieo is the (uniform) uncertainty of each data point in the measured wavéftent.
symmetric matrixx is called thecurvature matrixbecause it is related to the curvaturé&sgbr s2, or x?)
in coeficient space. For clarifyjeq. (6a) may be expanded and re-arranged in matrix form:
gKo_XE XM_XE Ego . gN_XE :
0 oot C ()
KoXm - XuXuHdwE VX0t
It is important to note that the curvature matrix haglependencen the measured dafBhe matrix
depends on thédomainof the data, but not on the measured vallies. measurements are contained in
W, on the right-hand-side of Eqns. (5) through THis fact may be exploited to improve computational
efficiency in situations where many separate wavefront measurements are performed on the same domain
Solving forc may proceed in one of three ways. One way is to assume that the polynoq}ials {
are orthogonal. If there are enough sampled points in the domain, this may be a good approximation; but
it can introduce significant errors, especially for the ficiehts of the higheordered polynomial terms.
A second method requires the inversion of the curvature matrix. Great care must be taken because such
inversions are notoriously ill-conditioned (Conte and de Boor 1980:249) and therefore extremely sensitive
to small changes in the input conditioibe third and most sound method is to perform a transformation
to a polynomial basis that is orthogonal over the domain, where the curvature matrix becomes diagonal,
and makes solution straightforwaiithis third approach is typically accomplished using the Gram-
Schmidt method (\Mhg and Silva 1980, Fischer et al. 1923) three methods are discussed in detail in

the following sections; error estimation is discussed in Section 15.6.

15.3 ORTHOGONAL BASIS ASSUMPTION
The minimization problem is particularly simple when the polynomi&ﬁ &re orthogonal over

the measurement domaifhe curvature matrix in Eqg. (7) becomes diagonal, and the solution is

C:EWXEZ WXLZ[_ 8)
HXo X" E

This is essentially thprojectionof the measured dat onto the orthogonal basis s&his approach
requires the fewest calculations, and computationally may be the fastest method to perform.
When the discretized domain is a close approximation to an unobstructed circular aperture and when
only the lowest-ordered terms are of interest, this method may work quite well. Hpespeience has
shown that significant errors should be expected for certain polynomial Warwere define a given term

asunbalancedf the sum (or integral) of the term over the domain is not zero; equivalsatly a term
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fails to meet the orthogonality condition that its scalar product with the (congistotterm is zero.

N
Z,25 %0, Orzzj(pn)io, whenj#0 O Z;isunbalanced. (9)
n=1

For example, consider a measured wavefvdntonsisting only of a non-zero constant (pistov@r the
domain.The solution ot in Eg. (8) would yield erroneous, non-zero ¢ioétnts for any term that is
unbalanced.

Specific polynomials that routinely causefidifilty are the cylindrically symmetric terms (defocus,
spherical aberration, etc.) and those wihoB 59 angular dependence. Because they do not match the
symmetry of the rectangularly gridded domain, these terms are usually unbalanced. Over an unobstructed
and symmetric aperture, the terms witbr 20 angular dependence (tilt, astigmatism, and carajsu

ally balanced and orthogonal because they match the symmetry of the domain.

15.4 MATRIX INVERSION METHOD
To solve forc using matrix inversion, post-multiply both sides of Eqns. (6b) or (7) by the inverse

of the matrix on the left-hand-side (the curvature matrix):

Al A A1 ~
czwx(xTx) . or c=o?WXe, (10)

4 01 oot aforo)t
using the definition 85a1=5? TXE =02(XTX) . (11)

The inversee of the curvature matrig is also a symmetric matriXhis matrix is called therror matrix
for its role in error estimation, described in Section15.6.

The reliability of the matrix inversion must be determined on a case-by-case basis. Great care must
be taken to ensure that the matrix is not ill-conditioned. Experience has shown that the matrix inversion
methods are typically unreliable, owing primarily to the fact that the aberration polynomials, defined on
the discrete domain, are not orthogofidle presence of thes@balancedolynomials leads to non-zero

off-diagonal elements iﬁﬁ(, making the matrix ill-conditioned.

15.5GRAM-SCHMIDT METHODS OF ORTHOGONALIZA TION
Beginning with a convenient set Bfarbitrary polynomials on the measurement domaij,{the
goal is to find an orthogonal basis setpolynomials {YJ—} and the transformation matrix between the
two. A measured wavefront is fit on the orthogonal polynomial basis to reduce the uncertaintiesdn the fit
ting procedure. Often, the orthogonal sé{{is only used as an intermediate part of the wavefront fitting

and the final results are given as a fioeit vectorc defined on the convenient basijI.
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{X;} convenienbasis c coeficient vector inX-space.
{Y;} orthogonalbasis, calculated fronx} b coeficient vector inY-space.

The Gram-Schmidt method of basis orthogonalization is recursive: each successive polypmnial
added to the previoug-{) polynomials in such a way that all of the terrygi{are mutually orthogonal.
EachY; begins withX;. Then a linear combination of the previous polynomials is found such that subtrac
tion from X; yields a new orthogonal polynomial.

It is worth reiterating that the new set of polynomials and the accompanying transformation matrix
are determined only by tldomainof the data, and not by the measured wavefibfhile the determina
tion of the new basis may be computationally intensive, this basis set and transformation matrix may be
calculated once and stored for future, rapid application to a series of related measurements.

Two Gram-Schmidt methods are presented herierigi§ only in the way the transformation
matrix is determined. In both, the transformation matrix is developed in parallel with the calculation of the
new orthogonal set: the individual projections become the elements of the transformationTimeadtrix.
method which appears in the literatureafWf and Silva 1980, Fischer et al. 1993) requires that this-lower
triangular transformation matrix be inverted (typically by the method of back-substitution) to determine
the coeficients of theoriginal polynomials from those of theeworthogonal polynomials. In a newore
efficient approach introduced here (Section 15.5.2), the projections are used to develop the inverted
matrix directly.
15.5.1Gram-Schmidt: Conventional Method

The orthogonalization process begins with the definition
Yo =X (12)

Then each successive teMis projected onto the new basis and the subtraction of this projection from

X; yields a new orthogonglolynomial; the individual projections become the elements of a transforma

tion matrix.
-1y T i1y T
Y =X -§ —L=2v. =X, - L > v, j>0. (13)
XN T T

The of-diagonal elements of this transformation matrix may be read directly from Eq (13), as the scalar

coeficients ofY . As an intermediate step we define the malrjwith off-diagonal elementB;s.

_X)Yg

a7
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j-1
This allows us to write Yj=X;- Z DjsYs. (15)
s=0
These two basis sets form equivalent representations of an arbitrary waVéfront

W=k by (16)

Since the set of polynomialsq} is orthogonal, we may apply Eqg. (8) to fihdsubstitutingo for c and

Y] for X]’
b:EWYi WY“TAZE (17)
HIYol Ivul™E

Finding the codicientsc requires back-substitution. Beginning with Eq. (16) in matrix form,

0o 0O
Vo0 X0 P O - othv, C
0.0_0.0 . C
o:oo g Pe Pa 00 Ontp (18a)
BwE XwB O - : . mE
B:)MO DMl DMM—l OH
YT=XT-DY". (18b)

UsingD to represent the matrix with the elemedfsandl as anM x M identity matrix, Eq. (18b) can be

solved forY:
YT=(+D) X" =GX". (19a)
Here, the transformation matrix is defined as
G=(1+D)™. (19b)
Substituting Eq. (19a) into Eq. (16), the damiénts are related by
c=b(l +D) ! =bG. (20)
Here again, care must be taken in the inversion to ensure that the matrix is not ill-conditioned.
15.5.2A More Expedient Method
A more expedient method proceeds in the same way as the Conventional Method, presented above.
The diference is in the way the transformation matrix is developed from the projedi@ngansforma
tion matrixG enables us to determine the orthogonal polynomi¢fsffom the arbitrary setX;}, and

also provides a means to rapidly transform ficiehts of {Y j} to coeficients of {Xj}. The definition and

utility of G are shown in Egns (19) and (20). Expanding Eq. (tf®a)a summation,

. (21)
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To begin, the first polynomials of each basis are made equivalent, as bé®ffest diagonal
matrix element is set to 1to reflect this equality
Y, = Xo. (22)
Ggo = 1. (23)
Recursively as before, the next polynomia{§> 1 are formed from X4}, subtracting the projection of

onto the previously calculated/{.;}.

XY XY
Y =X -F 2y, =X, - L > v, j>0. (24)
T T

However since we are interested in keeping the expression in term§}ofde substitute the previously

calculatedy g into Eq. (24), as follows:

X DS GstXtDT
2B x P B 0 ox,
V=X - 2t j>0. (25)

O
27 N RxET

[Iv 4P is simply a constant that can be calculated once for ®akhile on paper this may loakore

complicated than the Conventional Method, it is in fact very straightforward to implement in a computer
program. Utilizing matrix row-arithmetic, we have a procedure as follows.

Performing row-arithmetic (Step &5 the {;} polynomials are calculated enables us to calculate
the transformation matrix directlyithout subsequent back-substitutidn.improve computational &f
ciency the norm of each of the polynomiadg should be calculated only once and stored for repeated
future use.

For wavefront fitting, the co@€ientsb of {Y;} are determined as before, from Eq. (17). Ntve
computation of the cotientsc of {X;} requiresno matrix inversionSinceG is determined directlyfrom
the orthogonalization procedure, Eq. (19a) can be used to compute the orthogonal basis polynomials from
the original basis and Eq. (20) allows the ioefts of {X;} to be determined from the cdiefents of {Y}.

Procedure: Expedient Gram-Schmidt Othogonalization

1.600 =1
2.Loop j from 1 toM

4. Loopsfrom 0 to (-1)

S. Ys=[GClrowsXT

X;Yd
2

vl

o

[G]rowj < [G]rowj - [G]rows
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15.6 WAVEFRONT FITTING ERROR ANALYSIS

In general, interferogram wavefront surface fitting error analysis proceeds along several fronts. One
goal is to describe the success of a reconstructed-wavefront fit in accurately representing the Aaw data.
second issue is specifying the agreement among a series of similar measurements, and third is understant
ing the inherent limitations on the measurement precision, based on the known or measured uncertainties
in each element of the systehis particular section addresses only the quality of the polynomialwave
front fitting, based on a measured wavefront phasemap and a given or a calculated basis of polynomial
functions. First, the general approach, applicable to any of the previously described methods, will be
explained; the error estimation is significantly simplified in those analysis methods that employ the Gram-
Schmidt orthogonalization.

The most convenient starting point is to determine the uncertainties in the fittifigientfb of
the orthogonal basisYﬁ}. Following the conventional method of error propagation with Gaussian error
distributions, the estimated uncertaimsjl in an individual fitting codfcient bj is given by a sum of

squares of the individual uncertainty contributions of each point in the measurement domain.

N E 00 f0 N oo, of

% =2 OrEwH e 2w @9)

0, is the estimated uncertainty in the measurement of an individual wavefront point. By a previous
assumption (Section 15.1), the individual uncertainties are considered to be equivalent andoeguad to
the domain of valid data poinfEhe partial derivative may be evaluated from Eq. (10), modified foxd

YT, Heree is evaluated forY;}, the basis under consideration.

b= W\?(\?T\?)'l =o?WYe, with e=0?(V7V) g (27) and (28)

Oob; O_ 1

WH— — z €iY(Pn) (29)

Substituting Eq. (28nto Eqg. (26), the expression for the uncertainties reduces considerably:

1 M M M M
gj = _2 Z Z jksjmzYk pn pn : Z Z ksjmakm . (30)
k=0 m=0 k=0 m=0

Recalling the definition of the curvature matoixor the basis Yj},
=L (9Ty
o= ?(Y v), (31)

and the fact that the error matgexs the inverse of,
) M M M
Oy, ZXSjkzsjmakm:zsjkajkzsjj, (32)
k=0 m=0 k=0
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o2 =g, =0 %\? v) 151 (33)

When the measurement uncertaiatgf each point is unknown, it may be estimated from the variance of

the fit (Bevington 1969:154) as follows.

1
op=0? =8’ = —— W =W, (34)

As before N is the number of points in the measurement domim1j is the number of parameters used
in the fit, andw' is the wavefront fit reconstructed from the dmént vectorb. Combining Egns. (33)
and (34), the estimated uncertainty in an individual fit focieht bj is

O.2 _8 _"W' W" Y Y
b ~ N-M-1 (35)

Up to this point, the orthogonality of the polynomial basis has not been considered; thus the error
estimation method up through Equation (34) is generally applitalaley polynomial basis and any set
of fit coefficients.When {Y;} is an orthogonal basis, then the curvature matrand its inverse the error
matrix € are both diagonal, making the matrix inversion trivial. Equation (33) reduces to these equivalent

expressions.

ol o 1 wewp 1 VW]
j T T —M— 2
YT [ Ny MLy

O (36)

Here, the estimated uncertainties in the fit fioeits of the orthogonal basis polynomials are easily cal
culated. Howevetrthe orthogonal basisv{ } is often used only as an intermediate step in the calculation

of the fit coeficients of the more convenient basbst, from which the orthogonal basis was calculated.

Since the transformation between the two bases is known, calculation of the estimated uncertainties in the
original basis codtients is verystraightforwardG is determined during the calculation of the orthogonal
basis. From the definition @, Eq. (19a),

M
c=bG O Cj = z kajk . (37)
k=0

Using the method of error propagation and the fact@laas no dependence on the measured wavefront,

M M
2 _
%rgw%ﬂ 2,8¢ %)

From Eq. (10b§k is known in terms onj}. This is easily converted to{{}:
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M
DT T >

M
Z G|kX

From this expression, the uncertainties in the fittingfmdefts of the convenient basis are easily calculated.

247



248



V. CONCLUSION

249



250



Conclusion

CONCLUSION

It is widely agreed in the lithography community that at-wavelength interferometric testing is a fun
damental requirement in optical system evalua#ianadvances in circuit fabrication technology press the
field toward shorter wavelengths and etighter optical tolerances, nowhere are the metrology chal
lenges now as great as for E\After several years of work in the development of Eldiérferometry as
a part of the ongoing research in EUMography and related technologies, the success and utility of this
research have been amply demonstrated.

Following initial measurements of high-resolution EBkésnel zoneplate lenses which revealed
the limitations of the conventional point flifction interferometera novel, more sophisticated and
improvedphase-shiftingpoint diffraction interferometer was developddhe latter design was implement
ed for the at-wavelength measurement of a lithographic-quality EM\Schwarzschild objectivahese
studies showed nearly ttéiction-limited characteristics of the low-spatial-frequency wavefront aberra
tions, accompanied by a high density of mid-spatial-frequency defects in the multilayer coatings.

Overcoming experimental di€ulties necessitated the development of several new interferogram-
analysis phase-retrieval methods. Problems in controlling the phase-increment used in phase-shifting
analysis were overcome by the development of a novel approach, called Foeiflee Transform
Method of Phase Shift Determinatidrhis general method improves the accuracy of phase-shifting-analy
sis considerably by using the phase of the Fouldanain first-order peak to determine the relative phase-
increments, eliminating the common problem of fringe print-through.

The presence of the defects posed significant complications for the data analysis, especially the
phase-unwrappind.he concept of guided unwrapping used in sub-Nyquist interferometry was successful
ly adapted to this problem in a novel approach calledrtheier-Transform Guided UnwrapFirst, a low-
spatial-frequency approximation to the unwrapped wavefront is found using the fi@nmsorm method
with strong spatial-filteringThe approximation is filtered strongly enough to bridge obstructions or local
ized regions of invalid datdhe approximate wavefront is then used gslideto properly unwrap the
raw phase data, preserving all of the original high-spatial-frequency content.

A third new technique is a variation of the well-established method of Gram-Schmidt orthogonal
ization used for wavefront surface fitting to the Zernike circle polynoniiais.improvement enables the
calculation of an important polynomial basis transformation matrix without the necessity of performing a
matrix inversion operation.

Used in the rapid alignment of the interferometiee Fourier-TransformAlignment Methodlevel

oped and implemented by the author simplifies thigcdlf task of positioning a 100-nm pinhole onto the
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center of a sub-200-nm focused E¥am. Using the measuredfdittion pattern, or an interferogram

recorded by the CCD, the Fourieansform is rapidly computed, scaled, and displayed, revealing the
intensity pattern of test and reference beams in the image-jéthea continuously-updating displathe

two beams can be positioned much more easily than is possible without this tool.

In an efort to evaluate the performance of the interferometer and to characterize the error sources,
measurement precision was investigated in a variety of ways. Each individual experiment was designed to
isolate (as well as possible) théeets of a single component of the system or of a specific measurement
configuration.These experiments reveal that the most significant contributors to measurement uncertainty
are the 100-nm-scale reference pinholes used to generate the spherical reference waetimedsure
ments that sought iatentionallyinduce random errors by displacing the reference pinhole far from the
optimum position were only able to create small RMS wavefrofardifces, on the order of 0.02 waves.

Every other component performed significantly better than this.

The pinholes are the most critical elements of the PS/PDI, and the ultimate performance will be
limited by their quality Measurement uncertainties show that the quality of the reference wafexisdf
by the aberrations of the optical system under Tésts, the importance of adequate spatial filtering
increases with the magnitude of the aberrations in the test sydtéme. time these experiments were
conducted, adequately small reference pinholes were not availablpinholes used were not smaller
than 130 nm; yet studies here indicate that the optimum pinhole size for providing adequate spatial-filter
ing without sacrificing intensity transmission should be below 100 nm.

As a qualitative verification of accurgdhe Schwarzschild objective was used in a series of imaging
experiments. Favorable comparisons of the resolution-test-pattern images with the predicted performance
indicate that the systematic measurement errors must be small in comparison to the measured wavefront.

The first direct quantitative measurements of significant chromatic aberrations near the 13.4-nm
peak wavelength of the Schwarzschild objectivaultilayer coatings demonstrate both the importance
and sensitivity of at-wavelength inspection. Interferometric wavefront measurements provide detailed
guantitative information about broad areas of the surface in ways that high-accuracy reflectometry cannot.

Futur e work. While the development of high-accuracy and high-precision EltBrfferometric
capability may meet or exceed the requirements of Ewgraphy its existence cannot guarantee that
optical fabrication and multilayer deposition technologies will rahelr target specifications. One of the
most challenging issues is the mid- to high-spatial frequency roughness present in the substrates and mul
tilayers, causing an unacceptable amount of scattering.

As part of this dissertation research, studies have been made to evaluate the relative merits of dif
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ferent configurations of the PS/PDI interferometdrese studies include estimates of the relatifieief-
cies.With the required development of high power Esdrces for lithography may come the opportuni

ty to createn situ EUV interferometry allowing precision focusing and system alignment to be performed
on a production-level tool in a fabrication environmdttte high eficiency of the PS/PDinterferometer

the accuracy it provides, and the ease and reliability of the data analysis relative to competing designs
make the PS/PDI a candidate for suchrasituinspection tool.

The concurrent development of state-of-the-art visible-light interferometry capable of achieving
measurement tolerances in the same range asifieiferometry (Sommagren 1996a, 1996b) meets the
current need for a test that can be performed during the optical fabrication process and before the deposi
tion of multilayer coatings. Eventuallgomparisons of EUVNd visible-light measurements of the same
optical systems will yield substantial information about the properties of the multilayer codéngse
investigations of this thesis indicate that at-wavelength testing will probably never be displaced entirely:
the multilayer response depends critically on wavelength and other properties that cannot be reliably mea
sured with visible-light.

There are several important areas of research that require more careful investigations, beyond the
scope of this thesigccuracy is by far the most prized attribute of an interferometric sySteendevel
opment of routine null-testing (via two-pinhole tests, or by other means) to quantify the systematic error
contributions and to establish the accuracy limits is an essential component of reliable interferometry and
must be integrated into future interferometer designs.

Further investigations of pinhole fidiction, both experimental and theoretical, are essential to the
continued development of point filiction interferometrylt may be discovered that some absorber mate
rials simply function better than others in generating the reference Mlawe controlling the thickness of
the absorber may be a way to achieve high wavefront quality where small pinholes are unavailable.
Determining the optimum pinholes size for the measurement of optical systems whiljti¢A than 0.1
is another challenging area of reseathkcompromise between transmitted intensitgvefront quality
and fabrication issues yields many unanswered resgaegtions.

Continued development of the PS/PDI spatial-filter window-and-pinhole geometry may yield
improved measurement schemes suited to a variety of optical systems. Certain design optimizations can sim
plify the experimental apparatus or facilitate the identification and removal of geometrical systematic errors.

Relevant to the adaptation of the PS/PDI to a compactpssma EUVsource are experiments
that investigate the relationship between measurement uncertainties, noise, and flux requirbasmts.

experiments can be performed using the synchrotron source with limited exposure times.
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Conclusion

Closing remarks. It is my sincere hope that the investigations presented in this dissertation will
establish a framework for future research on the PS/PDI or related interferoffie¢essudies of Chapter
5, in particularare intended to identify the most important systematic measurerfemnts éf a way that
is as general and accessible as possiliie.material presented here may aid in identifying the most
important design issues for the application of the PS/PDI to the measurement of an arbitrary optical sys
tem — be that an EU¥ptical system with sub-nanometer fabrication tolerances, or a radio telescope
with square-meters of collection ar&de new methods of interferogram analysis and wavefront surface
fitting are very general and may find useful application in a wide range of interferometric systems.
Independent of the status of EUithography as a candidate technology for mass-production, the
research described here may create new opportunities for the evaluation of high-resolution systems at
short wavelengthThe high degree of coherence that has been demonstrated in these measurements also
reflects favorably on future experiments with coherent E&lliation using a high-brightness synchrotron

light source.
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A.1 EUV OPTICAL CONSTANTS
The EUVregion of the spectrum (nominally 5-20-nm wavelength, or 50-200 eV) is characterized

by high absorption in all materialin empirical understanding of the interaction of Eliht and matter
begins with the complex index of refraction. Since the index is close to unity for all materials across the
EUV spectral range, a convenient notation is used:

n=1-0+if (1)
0 andp are real, empirical constants that have been measured and tabulated for a vast range of materials,
over a broad range of wavelengths (Henke et al. 1892presents theefractive componertf the index,
andf is theextinction coefficientrelated to the absorptivity of the materitlhe propagation of plane-
wave monochromatic light within an isotropic and homogeneous material may be expressed fer an arbi
trary polarization component as a scalar electric field amplidscillating with angular frequenaey

and initial field amplitudeE,.

E(r,t) = E,e (k) )

The phase velocity may be expressed in terms of the magnitude of the wavkevseaddhe complex
index of refraction

v =2-6__ ¢ 3
ek n 1-8+ip 3
Thus k:%n=%(1—6+iﬁ). (4)

Using the translational invariance of the plane wave field, perpendicular to the propagation direction, we
definek in thex-direction and define = x%. Thus, k[ = kx, and we have a one-dimensional representa

tion of the field

E(r,t) = E(x,t). (5a)

E(xt) =E, expEt—i g.ot —%(1—5+ iB)x% (5b)
= E, exp| it +i 2% x| expf ~i 22 x| expl - 2 x| (5¢)

= E, exp(~ict) expli 27 (1~ 8)x| exp[~ 22| . (5d)

A is the free-space wavelengffhe extinction in material is described by the electric field intensity
2
1(x) =nE(x,t)]" =1(0) exp[—%Bx] . (6)
The 1£intensity transmission depth, absorption lengthis
Xy = Iabs =—- (7)

An analogous depth may be defined to describe the length of material required to produce a phase change
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Figure 1.Optical properties of elemental solids at 13.4 nm wavelength (92.9b¥)ndex of refractiom is defined
in terms of the refractivegal component 1 -8 and the absorptivémnaginaty componentf. The absorption length

laps defined as the &fntensity transmission depth, is inversely relatefl.to



Appendix

Table 1.Optical properties of selected materials commonly used in &iplications at 13.4 nm wavelength.
Material density p [g/cm] o B laps[NM]

Ag 10.5 0.110161 0.0772735 13.8

Ni 8.902 0.051499 0.0716041 14.9

InSb 7.31 0.064686 0.0699965 15.2

In 7.31 0.070171 0.0682527 15.6

Sb 6.691 0.054474 0.0655745 16.3

Co 8.9 0.066056 0.0653061 16.3

Cr 7.19 0.066673 0.0381981 27.9

Ge 5.323 0.005387 0.0318920 334

SizNy 3.44 0.025675 0.0091366 116.7

Mo 10.22 0.076553 0.0073536 145.0

C* 2.2 0.037853 0.0067466 158.1

Si 2.33 0.000069 0.001821 585.5

Be 1.848 0.010844 0.0017982 593.0

O* 1.43x10°3 0.000026 0.000019 89524.7

No* 1.25¢10°3 0.000023 0.0000068 155741.6

* Carbon density is given for graphite. Oxygen and nitrogen densities are for the gas-phase at TP

of 2rirelative to vacuum propagation. By inspection, from Eq. 5(d) this phase length is given by

A
phase = a : (8)

Xon

Figure 1shows the real and imaginary components of the index of refraction for a wide range of ele
mental solids at 13.4 nm wavelength (92.5 eV). Several materials commonly used apglidstions are

highlighted in the figure, and are listedTiable 1, also for 13.4 nm wavelength.

A.2 EUV OPTICAL SYSTEMS

In general, optical imaging systems function by generating an optical path-lerigthrdié
between rays travelling separate paifigere are numerous strategies employed in generating the path-
length-diference; the most important to consider rafeactive, eflective,anddiffractive systemsThis
brief section addresses the application of these strategies tavalRlengths.

Refractive optics exploit the dé&rence of the refractive index of one material relative to another
(or to vacuum) to achieve an optical path-lengtlfedéince. Because of the strong absorption at EUV
wavelengths for all materials, refractive optical systems pay much too high a price in intensity attenuation
to achieve a small change in path lengtfith the exception of a few limited cases (including phase-shift
ing elements), refractive optics at EWavelengths are not feasible.

Reflective elements for EUWptical systems fall into two main categorigkncing incidence
optics, which exploit the phenomenatofal external eflection and multilayer optics, which function by
creating a resonant standing-wave field in a thin-film stack.
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Glancing incidence optical systems are widely used in,EB0¥ X-ray and hard X-ray applica
tions. They possess several advantages for special applications and are invaluable components-of synchro
tron beamlines. Often comprised of thin substrates bent or polished into a curved profile, glancing inci
dence optics exploit the high EU¥flectivities that can be achieved when the glancing angles ef inci
dence are limited to a narrow range above zero. Since the real part of the index of refregsthan
onefor many materials in this ergr regime, the phenomenon of high glancing-incidence reflectivity is
most easily understood asadal internal eflectionbut with the light propagating in vacuum or. air

Below thecritical angleof incidenced,, defined from the plane of the interface, very high reflectivi
ties may be achieveé, is the angle at and below which the incident field does not propagate imedhe
um, but rather propagates along the interface. For &tutl/X-ray materials for which and3 are small,

0. = (29)12 9)

By distributing the incident light over lge surface areas, glancing incidence optical systems demon
strate strong advantages in high-incident-power applications such as synchrotron betindipesfiles of
the optical surfaces are vulnerable to thermal expansion, making cooling an issue of critical importance. By
watercooling the optical substrates and holders, heat from the absorbed power can be removed.

Multilayer-coatings designed for high-reflectivity at ne@mrmal incidenceare the key enabling
technology that has led to the development of Hithégraphy as a viable candidate for the @i gener
ation of circuit fabrication and beyonthese systems rely heavily on state-of-the-art optical surface figur
ing and polishing, and on the development of an optical-coating deposition capability that meets-the extra
ordinarily strict tolerances inherent in these systéfasmultilayercoatings provide the freedom to design
very sophisticated lge-scale optical systems with high-resolution overgeléield of view as is required
in lithographic applications. Some important properties of multilayers are addreggmabimdixA.3.

While glancing-incidence reflective optics dominate high-incident-power applications, multilayer
systems are currently being developed to address the requirements of lithodiightngsolution EUV
applications are now dominated byfdittive optics such as Fresnel zoneplate lenses. Created holograph
ically or, more commonlyby taking advantage of other high-resolution lithographic techniques such as
electron-beam lithographthese patterned elements typically function as the hologram of a simple singlet

lens.The principles of Fresnel zoneplate operation are describgpendixA.4.

A.3 REFLECTIVE MUL TILA YER COATINGS FOR EUV
Multilayer reflection is a resonance phenomenthen the wavelength, angle, and polarization of
the incident field match the resonance conditions determined by the bi-layer period, layer thicknesses and
optical properties of the two materials in the multilaptrong EUVreflectivities may be achievedyen
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though the materials arhighly absorptivéStearns et al. 1993At resonance (peak reflectivity), a stand

ing wave is formed matching the period of the multilay&ypically the node is formed within the
absorptive material and the anti-node within the less-absorptive material. Conditions for high reflectivity
exploit the index of refractiodifferencebetween two materials; the best multilayer material pairs are
those for which index diérence is lage yet neither material is highly absorptivée materials pair that

has been most widely used for EW¥arnormal-incidence multilayers near 13-nm wavelength are
molybdenum and silicon.

The very resonance properties that enable multilayers to function at normal incidence with high
EUV reflectivity also subject them txtremesensitivity to fabrication error$Vhen the conditions for
resonance are not met, the reflected intensitiesufOf equal or possiblgreaterimportance to high-per
formance imaging systems is the change of phase experienced by the reflecteswiaseribed in this
appendix, even small changes in the multilayer period;gpacing can have a dramatic impact on the
reflected phase in systems designed fdratifion-limited performance.

To illustrate this extreme sensitivityhe dependence of the reflected intensity and phake.4ihm-
wavelength light were calculated and are shown in Fig. 2. (The reflection-phase isrelativato the
phase at peak reflectivijyThese simple calculations are based on the method described by Bovoland
(1980:51-70) for periodically stratified media, with 40 Mo/Si layer paithough the individual layers are
approximately only 15 atoms thick, and interfaciafudifon cannot be avoided, the naive assumption of
perfectly abrupt interfaces made in these calculations does not change the outcome significantly

The optimal layer thicknesses were determined empirically by the author based on normal-incidence
reflectivity, using the optical constants recommended by Erik Gullikson (personal communidatemdi
vidual layerthicknesses were 4.125 nm of Si and 2.722 nm ofTMe.total bi-layer period, is 6.847
nm, and the ratig of Mo thickness to the total bi-layer thickness is 0.39F& peak normal-incidence
reflectivity is calculated to be 71.8%.

In the top row of Fig. 2, the multilayeeflection properties are shown near normal incidence.
Dependence on wavelength, layer thickness, and angle are skaidgrepresents a uniform, fractional
change in layer thickness about the optimal valile. most significant phasefegt that is evident in
these plots is the reflected phase changerafdians that occurs as the parameter under consideration
passes through resonandeross the resonance peak, the phase-dependence is nearly linear with an
approximate slope af divided by the width of the peak.

Two useful empirical formulas describe the phase-dependence near peak reflectivity
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Figure 2.1deal reflection properties of Mo/Si multilayer mirrors at normal incidence and ih@idence for 13.4 nm
wavelength. Optical properties and layer thicknesses are given in the text.
» Dependence of the reflected phgsan incidence anglé:
@ [waves]= 1.24x103 62 [ded?]. (10)
» Dependence of the reflected phgsen layer thickness errdxd/d,:
¢ [waves]= —7.49 Qd/d,). (1)
Equation (10) is given to demonstrate the magnitude of the angular phase dependence near normal
incidence. For most practical purposteag normal-incidence mirrors are of little use reflective imag
ing systemsnustcontain a finite angle of incidence and a range of angles related to the curvature and size
of the surfaces.
The first two graphs of the second row of Fig. 2 model the behavior of thd%ig¢arning mirror
that deflects light vertically toward the object plane of the Schwarzschild objebtieelesign angle of

incidence is 46.2 and the Mo/Si mirror has 20 layer paifbe polarizing property of this mirror is evi
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dent in the lage diference between theer- a) Constant surface position

pendicular(TE) and theparallel (TM) compe
nent reflectivitiesThe last graph of the lower
row shows the dependence of the reflectivit
[ ]
I

and the full-width at half-maximum bandwid

(AM) on the number of layer pairs.

A.3.1 Fabrication Tolerances b) Constant substrate position

The tight wavefront tolerances of litho
graphic-quality EUMmaging systems place
extremely high demands on the fabrication ¢
N

the optical substrates and on the deposition

- i

the multilayers. Small layer thickness errors

Figure 3.Two models for studying multilayer reflectivjtyel
evant to fabrication and metrolagi)When the top surface is
measured with visible-light interferometajter multilayer
deposition, this model isolates the reflected phaeetsfseen

known before multilayer deposition, this model is useful in
tributions of the geometric path-length-chan¢ setting layer thickness tolerances: Here the geometric path-

length change and the reflected phase change are combined.
with the change in phase upon reflection tha

become multiplied by the number of layer pe

to create lager efects. It is an important and

occurs when the layer thickness is varied.

Consider two related models to describe thisatfThese are shown in Figs. 3(a) and 3(b) First,
the constant surface positiomodel assumes that the position of the top-most layer surface is fixed in
space. Here the measured phase variation with changing layer thickness is the same as the empirical
expression given in Eq. L)L The relevance of this model comes from the comparison of visible-light and
EUV interferometric measurements of the same optical sy$tétin.the assumption that the visible-light
measurements are sensitive only to the position of the top surface féhendié between the two mea
surements is related to the thickness-dependent pHastsdhat are only observaldewavelengthwith
EUV light).

Second is theonstant substrate positionodel.When interferometric characterization is per
formedprior to the deposition of the multilayers, then the final surface profile may be inferred from the
predicted multilayer coating thickne§shickness errors in this model contribute both a geometric path-
length changandthe thickness-dependent phase chafpe.net phase changds thus the sum of a
geometric componenyqometricand the reflected-phase component. Rdui-layers of a multilayer with

period lengtid,, the optical path length changes by twice the height of the stack on reflection. Defining

262



Appendix

Ad as the change from the optimal thickndgsand removing a constant phase term gives
Pgeometriclwaves] = N (Ad)/A. (13)
The reflected phase is described by Ed).(Combining these gives the net phase change
@ [waves] = N (Ad)/A —7.49 (d/d,). (14)
d, is roughlyA/2 — the empirical value calculated earlieAi$.957. Inserting this into Eq. 13 gives
¢ [waves] = (1.02R —7.49) QAd/d,) = (N—-7.5) @d/d,). (15)
This important result has the following implications. First, the geometric and the reflection-compo
nents partially compensate each otlteey are nearly balanced whiis seven or eight bi-layers.
Typically, 40 layer pairs are used. In that cageraves]= 33.4 (Ad/d,), and the contribution from the
geometric term is roughly 5.5 timesdar than the reflection terfthe second, serious implication of this
result is the tight tolerance it places on the layer thicknesses. Here, for phase changesN&X3 than
thickness must be controlled #0.15%.To achieve\/50, the thickness must be controlled:h06%.At

this point in time, it is not entirely clear that such tolerances are achievable, or even measurable.

A.4 FRESNEL ZONEPLATE LENSES

The Fresnel zoneplate lenses used in Elpgplications and studied interferometrically in this thesis
are essentially binary holograms of simple singlet lenses. Consisting of a patterned absorber layer on a
thin support membrane, these elements operate in transmission and behave similarly to their conventional
refractive counterpart3he zoneplate consists of a circularly symmetric pattern of alternating transparent
and opaque concentric ringéhe ring spacing decreases with increasing radius, and ligtstotiéfd by the
zoneplate is directed toward or away from one single point on axexedhf for each difacted order

Several excellent sources exists with descriptions of zoneplate, thebayior and fabrication
(Sussman 1960, Hecht 1987:445-3#is appendix is intended to provide only a few important highlights,
following the notation of Hecht (1987). Consider a zoneplate designed for point-to-point infdmgirahject
distancepy and image distanag are on opposite sides of the screen where the zoneplate is defirsed.

Figure 4.Fresnel zoneplate lenses operate bfyatifion,
performing the indispensable role of a simple refractive lens
in many EUVand X-ray applications where other high reso
lution elements are unavailable. Essentially consisting of a
cylindrical grating, the alternating pattern of transparent and
opaque zones form a series of cogiey and diveging dif-
fraction ordersThe figure shows the definition of the object
and image distances used in the zoneplate description.

primary
image point
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a) b)

1

Fresnel
zoneplate lens

order-sorting
aperture (OSA

Figure 5.(a) A Fresnel zoneplate lens filécts light into a series of congeng and diveging diffraction orders. Only
orders -1 through +3 are shown. Besides the “fnadiied” zeroth-ordereven orders are absent. (b) Because of the
overlapping orders, imaging applications usually require the use of an order sorting aperture that, if placed appropri
ately, can be used to transmit only the first-order cogivney light.
geometry is shown in Fig. Zhe individual zones are defined tofditt the diveging light from the object
point to the primary image point in such a way that the light transmitted throughpeattone addn
phase Mathematicallythis requirement indicates that the path-lengtieidihcebetween each open zone is
A; including the opaque zones, the path lengflerdifice between adjacent zones/%s

(Pm * rm) — (Po * ro) = MA/2. (16)
With the zone radii defined &, clearlyp,, = (oo + RypY2andr,, = (1o + Ry)¥2 Assuming that the

zoneplate radius is much smaller than the object and image distances and keeping only the first two terms

in the expansions @, andr, gives the relation

O ad
Lo lo-m (17)
go r0H Rm
Under plane-wave illumination, the object distapgés extended to infinityf is defined as the primary

focal lengthrg, and the radius of the-th zone is

Ra=mfi\. (18)

Thus the zone placement radii are proportional to the square-rootair a given optical design, the
main constraint on the size of the zoneplate is often dictated by the resolution limit of the zoneplate fabri
cation technique.

One important dference between the fidéictive zoneplate and the conventional lens is the pres
ence of numerous diction orders, as shown in Fig. 5(@palogous to the difaction from a linear grat
ing, a series of orders is fidcted into diferent directions; but in the case of the zoneplate, these multiple
orders form a series of congéng and diveging beamsThe focal lengths  of the various beams occur
at positive (conveing) and negative (divging) harmonics of the primary focal length.
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fm= fi/m, formO[[D2, -1, 1, 2]} and f = o. (29)
For a binary zoneplate, the evenfdiftion orders are absent.

When the zoneplate is used as a concentrating element designed to focus light to a certain point,
other orders besides the first-order may often be igntret;intensities are significantly less than that of
the focused order at the primary focal position. Howameimaging applications, the various orders may
suffer significant overlap, causing confusion in the recorded infageactical remedy for this problem is
the judicious placement of amdersorting apeture (OSA) as shown in Fig. 5(bY¥hen combined with
an opaque central stop, as shown in the figure, the @&8Abe placed in such a way that only the first-
order beam is transmitte@ihe available space, @arorking distancebetween the OSAnd the primary
focus may be smaller than is apparent due to the thickness of thpidie and the desire to provide as

much longitudinal room near the focus as possible.

A.5 FRINGE CONTRAST AND MODULA TION
The contrast modulation,or visibility of a fringe pattern can be defined in several wakisse terms
are used interchangablnd the definitions used in this thesis are presentedAeomvenient descrip
tion of an interference pattern separatesstagonar intensity j from themodulated intensityg| with
implicit spatial variation. Given a relative phabdetween the amplitudes, the spatially varying intensity is

|=|A+|BCOS¢)_ (20)

Since the intensity is non-negative, the average magnitulgecah never be less than thatlgfWhen
the electric field amplitudes of two interfering wasgsandEp are known, then neglecting the leading

coeficients, the intensity can be written as
| =|Ec + Ep|” =|Ecf +|Ep|” +2EcEp|cos®. (21)
Hence, by equivalence to Eq. (20),
| =|Ec]* +|Ep[ and I =2]EcEp). (22)

Thefringe modulatiory is defined as the ratio of the modulated to the stationary intensities:
I
VEI—B 0o, 1. (23)
A

Following Michelson, the fringeisibility or contrastis defined (Born antlVolf 1980:267) as

C= I max ~ I min

+1 (24)

Imax min

which, for the representation of the interferogram in Eq. (20), becomes
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e -eey, @

identical to the fringe modulation.

A.6 FOURIER-TRANSFORM METHOD OF FRINGE CONTRAST DETERMINA TION

Fringe contrast plays an important role in the signal-to-noise ratio of the interferometric data (see
Section 8.1). As a quantitative indicator of data quality (or system alignment), it is important to establish
a consistent contrast measurement method. One simple method proposed here and applied throughout thi
thesis uses Fouriglomain analysis of the data to quickly compare the intensities of the zeroth- and first-
order frequency components of the recorded intensity

The application of this method closely parallels the Fotr@grsform method of interferogram
analysis, described in Chaptdr. The goal here is to determine the relative intensities of the zeroth- and
first-order components of the spatial-frequency spectrum so that the fringe contrast may be found.
Parsevab Theorem is invoked to relate theegy contenbf the spatial and spatial-frequency domain rep
resentations of the interferogram.

This method follows the spatial-frequency domain description of the interferogram presented in

Section 1.3.The interferogram is represented as
I(r)=A(r)+B(r)cod @(r) -k, ], with A, Bp OR . (26)
For the purposes of this discussion, the following simplification is useful:
I(r) = A+Bcoq@(r) -k, @] (27)
A andB here are not actually constant, but may be considered to have only low-spatial frequency attributes.

To facilitate the Fouriedomain representation of the interferogram, the cosine may be separated as follows:
I(r)=A+3 Be'®)gkal +1 Be ek = At c(r)eo + 7 (r)e kol (28)
where c(r)= 1B, (29)
and * indicates the complex conjugate. By inspection, the Fetugiesform of the interferogram may be
written
i(k) =a(k)+c(k —ko) +c (k +ko), (30)
wherea(k) is approximately equal tad(k).

Now, similar to the Fourietransform method, the zeroth- and first-order peaks are isolated from the

rest of the spectrum, but here #reegy contentvithin a spatial-frequency radiusis the quantity of interest.

266



Appendix

The same assumptions about the separability of the peaks are made as with thedmicen method of
interferogram analysis. By Parsegdlheorem (Born antVolf 1980:385, Goodman 1988:10), the zeroth-

order components of the spatial and spatial-frequency domains are related.

[1APdr = J'|a(k)|2dk. (31)
Within Kk, the approximate relationship holds
A200 [la(k)dk, (32)
|k|<k

and the constant of proportionality is simfdly. A is found from the square-root of the expression in Eq.

(32). The first-order term is now found in a similar manr@nce again invoking Parsesrheorem,

ﬂ% 890" or = [l ak. (33)
This allows us to wite ~ (38)° [or= lo(k)P ok = [lefk - Ko)| "k (34)
|K]<k [k=Ko|<k

To within the same constant of proportionality asAdfdr), B can be found

0 C
BO22|  ([le(k — ko) dkE. (35)
%\\k—ko\« E

The factor of two comes from the definition®find from the fact that the eggrin the first-order is
divided equally between the equivalent symmetric peaks in the spatial-frequency domain.

Since, by assumption, the three components of the spatial-frequency spectrum are separable, the
expressions foA andB can be re-written usingk). The ratio ofB to A gives the scalaglobal fringe contrast

for an interferogram.

(1) dk
[k=Kq|<k

ik)|” dk
\ [k[<k

contrast = 2 (36)

This expression is easily implemented on a compUging the standard mathematical Fast Fourier
Transform (FFT), locating the first-order peak (i.e. determikig)gproceeds by searching for the maxi

mum absolute value in a region that excludes the central, zero-frequencyupeaklusion radius of 30

cycles was chosen for typical EURS/PDI interferograms but would befdient if a smaller sub-region of

the data were being evaluated. Depending on the combined characteristics of the illuminating beam and of

the test optical system, a small radius must be chosen thageslaough to encircle nearly all of the
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zeroth- or first-order components in the spatial-frequency domaiavoid overlap, this radius must not be
larger than half of the “distance” between the first-order peak and the central frequesmiys of ten

cycles was chosen for these Esterferometry experiments.

A.7 READING ZERNIKE COEFFICIENT PLOTS

Throughout this thesis, wavefront phasemap data is represented using fibetsebdf the first 37
terms of the Zernike polynomial series, representing the best fit surface to thissdégacribed in
Chapter 14, each term represents one orthogonal aberration polynomial component. Of the first 37, there
are seven cylindrically symmetric terms and fifteen pairs of terms that share the same radial dependence
but have co(p) and sinfng) angular dependence.

Figure 6 is designed to serve asegfor identifying the various polynomial terms from the Zernike
coeficient plots. For the PS/PDI data, the first four Zernike polynomial components are the position-
dependent terms which depend only on the measuremenbaod the optic under testhese are the
piston, tilt,anddefocuscomponents, and they are typically excluded from the graphs.

Note that there is no significance to the line that connects the individual points in the plot-Its pres

ence only aids in distinguishing one point from the next.

36
560
46
36

D D
< ™

coma
coma
coma

piston

x-tilt

y-tilt
spherical aberration
spherical aberration

defocus
0° astigmatism
45° astigmatism
X-coma
y-coma
spherical aberration
astigmatism
astigmatism
astigmatism

Zernike coefficient}]
>
b
L

spherical aberration
spherical aberration

0.0

LA L S R AL I L L B SO L L L I
0 5 10 15 20 25 30 35
Zernike polynomial number

Figure 6.Key to Zernike coditient plots. Here the named and unnamed components of a Zernike polynomial series are
identified on the graph. Individual terms and pairs of terms that share radial dependence are identified by the grey vertical
bandsThe Zernike polynomials are described in Chapteftid.line connecting the individual points of the discrete set

has no physical significance.
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