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Abstract 

We present a systematic study of N = 1 supersymmetric gauge theories which 
are in the Coulomb phase. We show how to find all such theories based on a simple 
gauge group and no tree-level superpotential. We find the low-energy solution for the 
new theories in terms of a hyperelliptic Seiberg-Witten curve. This work completes 
the study of all N = 1 supersymmetric gauge theories where the Dynkin index of the 
matter fields equals the index of the adjoint (p = G), and consequently all theories for 
which p < G. 
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1 Introduction 

The past four years have witnessed a tremendous progress in our understanding of strongly 
coupled supersymmetric gauge theories. The number of theories for which exact results have 
been established is ever growing since the initial breakthrough by Seiberg and Witten [1], 
who gave a complete solution of the N = 2 SU(2) theory, and by Seiberg, who described 
the low-energy dynamics of N = 1 supersymmetric QCD with varying number of flavors [2]. 

From these solutions the following basic picture emerges: there are six known phases of 
supersymmetric gauge theories: Higgs, confining, abelian Coulomb, non-abelian Coulomb, 
free magnetic and infrared free phases. The actual phase of a given theory usually depends 
on the size of its matter content. This size can be characterized by the relative value of the 
Dynkin index JJ of the chiral superfields compared to the value of the Dynkin index G of the 
vector superfields. 

In this paper we will focus on the N = 1 theories which are in the abelian Coulomb phase 
everywhere on their moduli spaces. We examine theories based on simple gauge groups and 

I 

no tree-level superpotential. We will argue that in order for such a theory to be in the 
Coulomb phase, the theory has to satisfy the index condition JJ = G. The essence of the 
argument can be summarized in the following: one expects the low-energy solutions of such 
a theory to be given in terms of an auxiliary Riemann surface, defined by a curve (which 
in most cases is hyperelliptic). The classical curve is smoothed out by quantum corrections, 
which are proportional to the dynamical scale A of the theory. We will show, that in the 
absence of a tree-level superpotential the condition for A to appear in the curve is JJ = G. 
Theories with an adjoint chiral superfield (the pure N = 2 theories) satisfy this condition, 
and we will give a complete list of other theories which do so as well. After restricting 
ourselves to these theories it is easy to actually find all of those which are in the Coulomb 
phase by checking the unbroken gauge group on a generic point of the moduli space. This 
way we obtain a complete list of N = 1 Seiberg-Witten t4eories based on simple gauge 
groups and no tree-level superpotential. For these theories we determine the Seiberg-Witten 
curves providing the solution for the low-energy effective gauge kinetic couplings by flowing 
to theories for which the curve is already known. 

This work completes the study of theories satisfying the index condition JJ = G. It has 
been known for a while, that confining theories with a quantum deformed moduli space have 
to satisfy this index condition [3, 4]. All such confining theories have been systematically 
analyzed in Refs. [3, 4, 5, 6]. We find, that if the matter content is in a faithful representation 
of the gauge group, then a JJ = G theory is confining with a quantum deformed moduli space. 
However, if the matter content is not in a faithful representation of the gauge group, then 
the theory is in the Coulomb phase, and the low-energy solution can be given in terms of a 
Seiberg-Witten curve. Therefore the low-energy dynamics of all theories with JJ = G has now 
been determined. Since all theories with JJ < G can be obtained from the JJ = G theories 
by adding mass terms for fields in vector-like representations, it is a straightforward task to 
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determine the low-energy behavior of all J-l < G theories as well. 
The paper is organized as follows. In Section 2 we review the basic properties of the 

Seiberg-Witten solutions and their applications to N = 1 theories. In Section 3 we give our 
general arguments which help us classify all N = 1 Seiberg-Witten t,heories based on simple 
groups and no tree-level superpotential. In Section 4 we give the actual low-energy solutions 
of these theories, and we conclude in Section 5. The derivation of the curves for the new 
theories is explained in Appendices A and B. 

2 Review of the Seiberg-Witten Solution and its Ap
plication to N = 1 Theories 

Seiberg and Witten showed how to employ electric-magnetic duality to obtain exact solutions 
to the low-energy dynamics of N = 2 theories [1]. The original example of SU(2) theory was 
subsequently generalized to other classical groups in Refs. [7-17]. An alternative derivation of 
these solutions using the confining phase superpotential method has been given in Ref. [18], 
while the connection to integrable systems has been described in [13, 14]. The dynamics of the 
low-energy theory following from these solutions has been analyzed in Refs. [19, 20]. Below 
we review the basic features of these solutions of the N = 2 theories, and the application of 
the Seiberg-Witten methods to N = 1 theories [21]. 

Since N = 2 theories contain scalar fields in the adjoint representation, their classical 
moduli space has a submanifold with unbroken U(I) gauge symmetries. In general, in 
addition to the Coulomb submanifold, there is usually a subspace where the gauge group 
is completely broken. The Higgs branch does not receive perturbative or non-perturbative 
quantum corrections in N = 2, while the Coulomb branch is affected by both perturbative 
and non-perturbative effects. 

The low-energy Lagrangian of N = 2 theories can be characterized in terms of a single 
holomorphic function, the prepotential F. In the more interesting case of the Coulomb 
branch, the prepotential can be computed in terms of the original "electric" fields and their 
dual "magnetic" degrees of freedom. It turns out that both kinds of variables are necessary 
for a consistent description of the theory. 

The classical pattern of symmetry breaking by a field in the adjoint representation, 
G --t U(1Y, where r is the rank of the gauge group, persists in the quantum theory every
where on the Coulomb branch. Classically, there are points with a larger unbroken subgroup, 
when the VEVs of the adjoint field happen to coincide. Due to quantum effects there are 
no points of enhanced gauge symmetry, however, some states become massless on certain 
submanifolds of the moduli space. These additional massless states are indicated by singu
larities in the effective description. Since these massless particles carry magnetic charges, 
magnetic variables are more suitable for description of the theory near singularities. 
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Another indication that there are singularities on the moduli space is the presence of 
nontrivial monodromies. At large expectation values, the monodromy can be calculated 
using perturbation theory. The remaining strong-coupling monodromies are guessed using 
symmetry arguments and the requirement that the product of strong-coupling monodromies 
has to equal the monodromy at infinity. Knowledge of all monodromies, that is the singularity 
structure and the behavior at infinity is sufficient to determine the full form of a holomorphic 
quantity, in this case the prepotential F. 

The low-energy solution is obtained by introducing an auxiliary Riemann surface of genus 
equal to the rank of the gauge group. All holomorphic quantities can be computed as line 
integrals over this surface. This surface will also encode the singularity structure of the 
theory. In most cases, this surface turns out to be a hyperelliptic surface, which can be 
defined by an equation of the form: 

where P is a polynomial in x, Ui and A. The variables x and yare auxiliary parameters, 
while the u/s are the coordinates on the moduli space and A is the dynamical scale of the 
theory. Therefore, finding the exact low-energy action is equivalent to finding the polynomial 
P. From the curve described by P one can extract information about the dynamics of the 
theory. In particular, the effective gauge coupling, the metric on the moduli space and the 
spectrum of the BPS states can be calculated. 

For example, the simplest theory in the abelian Coulomb phase is N = 2 5U(2) with no 
hypermultiplets. In that case 

y2 = (x2 _ U)2 - 4A \ 

where U = ~Tr<1>2 and <1> is the adjoint superfield. This equation describes a torus, which 
is a surface of genus one. Any VEV of an adjoint field can be rotated into the Cartan 
subalgebra, which for 5U(2) means that (<1» = diag(a, -a) . . One needs also to introduce a 
dual scalar field aD. The above curve has three singularities, for u = ±A2 and u = 00. From 
the curve one can calculate the monodromies of the (aD, a) vector around the singularities. 
The monodromies are elements of the duality group, which acts on the vector (aD, a). The 
singularity at infinity is the perturbative singularity, while the two singularities at u = ±A 2 

occur at strong coupling. The non-perturbative singularities arise because of a monopole or 
a dyon becoming massless at these points of the moduli space. The charges of the massless 
fields are the left eigenvectors of the respective monodromy matrices. 

From the curve one can also compute a and aD as functions of the parameter of the moduli 
space u. These are determined as integrals over the periods, 'Yl,2, of the torus: aD = f,Y1 A, 

a = f72 A, where A is the so-called Seiberg-Witten differential. In the case of 5U(2), A ex: X
2
ydX. 

The gauge coupling T = d::;~~U = ~:{, from which one can also establish the metric on the 

moduli space fa. 
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Many features of the Seiberg-Witten solution of N = 2 theories persist in N = 1 theories 
in the Coulomb phase. Intriligator and Seiberg pointed out that the U(l) gauge coupling, 
which is a holomorphic quantity, can be described by the methods used in N = 2 [21]. The 
dependence of the gauge coupling on the parameters of the moduli space can be found once 
a curve describing the theory is established. The gauge-kinetic term 

.c = ~ 1m J d2 Or,· . Wi wQ,j 47r ~J Q , 

where Tij is the effective gauge coupling matrix, whose eigenvalues are related to the effective 
gauge coupling and theta parameter of the kth U(l) factor by Tk = i4~ + !:!..h:.2

8 
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gauge coupling function Tij is not related by supersymmetry to the Kahler potential. Hence, 
no information about the Kahler potential is provided by the N = 1 solution. Likewise, 
there is no central extension of the N = 1 supersymmetry algebra which would incorporate 
BPS particles. However, one can learn about the charges of massless states associated with 
singularities. The monodromy around a singularity still encodes the information about the 
charge. These methods have been used in Refs. [21, 22, 23] to obtain solutions to several 
N = 1 theories in the Coulomb phase or to Coulomb branches of N = 1 theories with 
tree-level superpotential terms. 

3 Necessary Criteria for Seiberg-Witten Theories 

In this section we will show how to systematically find all N = 1 supersymmetric theories 
based on a simple gauge group and no tree-level superpotential, which are in the Coulomb 
phase. We will call such theories the N = 1 Seiberg-Witten theories. First we show that 
such theories have to satisfy the index condition f.1 = G mentioned in the introduction, and 
then decide which f.1 . G theories are actually in the Coulomb phase. 

3.1 The Index Condition 

We have seen in the previous section that the effective gauge kinetic function Tij can be 
identified with the period matrix of an auxiliary Riemann surface, usually a hyperelliptic 
curve y2 = P(x, Ui, A). The curve obtained in the limit A ~ 0 is singular everywhere 
on the moduli space reflecting the fact that turning off the gauge coupling will result in 
additional massless gauge bosons independently of the VEV s of the scalars, since there is 
no Higgs mechanism in the A ~ 0 limit. This singularity must be smoothed out by effects 
proportional to A, except at a submanifold where the singularity persists indicating the 
existence of additional massless states. The lesson which should be learned from this is that 
the dynamical scale A has to appear as a parameter of the full Seiberg-Witten curve to 
smooth out the classical singularities. In the absence of a tree-level superpotential coupling 
this requirement will severely restrict the matter content of the theory. 
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We now discuss the constraint which arises from requiring that the dynamical scale A 
appears in the Seiberg-Witten curve. This curve must respect all symmetries of the original 
theory. In particular, one can consider a U(l)R symmetry under which all fields <I>i carry zero 
charge. This symmetry is anomalous under the gauge group G, that is the G2U(1)R anomaly 
is non-vanishing. One can however restore this symmetry by promoting the dynamical scale 
A to a background chiral superfield [24]. The reason for this is that an anomalous U(l) 
rotation by an angle a acts like a shift 

on the (J parameter of the theory, where qi is the charge of the ith fermion under the U(l) 
transformation, and J-li is the Dynkin index of the ith fermion2. This means that the dynam
ical scale 

2 
b b -"'&'-+i8 A = J-l e g2(1') 

of the theory has charge Li J-liqi under the anomalous U(l) symmetry, where b is the coeffi
cient of the one-loop beta function. In the case of the U(l)R symmetry defined above, the 
fermions from the chiral superfield have charge -1, while the gauginos have charge +1, thus 
the charge of A b is G - J-l, where G is the Dynkin index of the adjoint representation, and 
J-l = Li J-li is the sum of the Dynkin indices of the matter fields. After assigning this charge 
G - J-l to the dynamical scale, one can require that the Seiberg-Witten curve is invariant (or 
at least covariant) under this anomalous U (1) R symmetry as well. 

Let us now consider the A ~ 0 limit again. In this limit we obtain the classical curve 
Pel(y, x, Ui) = O. Since we expect that the full curve defined by x and y describes a Riemann 
surface, we expect that Pel is not a homogeneous polynomial in x and y (which is true for 
every known solution). However this implies that x and y have to have zero R-charge as 
well. But now considering the full curve P(y, x, Ui, A) = 0 one can see that A can appear in 
a non-trivial way in the curve only if its R-charge is zero as well, implying that J-l = G. Note 
that all pure N = 2 theories without matter fields satisfy this condition, however the N = 2 
theories with hypermultiplets do not. The way these theories evade this constraint is that 
N = 2 supersymmetry automatically requires a tree-level superpotential coupling between 
the hypermuItiplets and the adjoint from the N = 2 vector superfield,_ which explicitly breaks 
the U(l)R symmetry used above. 

The J-l = G condition is exactly the same as one gets for theories with a quantum deformed 
moduli space. The coincidence of these two conditions is not very surprising, since in both 
cases we are requiring that A appears in an equation involving the moduli in a non-trivial way. 
In the case of the quantum deformed moduli space we require that a term proportional to A 
appears on the right hand side of a classical constraint, while in the case of Seiberg-Witten 

2The Dynkin index is defined by TrTaTb = j.u5ab , where the T's are the generators of the gauge group in 
a given representation. 

5 



theory we require that A appears as a non-trivial modification of the class,ical Seiberg-Witten 
curve. 

One can argue for the necessity of the J.L = G condition in a different way as well. We 
are requiring that a Seiberg-Witten theory has unbroken U(l) 's on the generic point in the 
moduli space. It is however known [25], that for J1 > G the gauge group is completely broken, 
thus the J1 > G theories can not be in the Coulomb phase everywhere on the moduli space. 
If J1 < G, then a dynamically generated superpotential of the form Wdyn ex l:z is 

(IIi <I>ri) Zi-ii 
allowed by all symmetries of the theory, and such a superpotential is presumably generated 
either by instantons or by gaugino condensation. This superpotential pushes the fields to 
large expectation values and the theory has no stable vacuum. Thus, we expect the J1 < G 
theories to be generically in the Higgs phase, or at least have a Higgs branch with a runaway 
vacuum. Thus we again conclude that the only possibility for a theory to be in the Coulomb 
phase everywhere on the moduli space is when the index condition J1 = G is satisfied. 

We have established that a necessary condition for Seiberg-Witten theories is that the 
index condition J1 = G be satisfied. This restricts the number of candidate theories consid
erably. In the next subsection we show how to find the theories which are actually in the 
Coulomb phase. 

3.2 Flows 

We have seen in the previous section, that a necessary condition for a theory to be in the 
Coulomb phase is that it satisfies the index condition J.L = G. This requirement alone reduces 
the number of candidate theories to a finite set. In order to decide which of these theories 
is in the Coulomb phase we have to check whether there are unbroken U(l)'s on the generic 
point of the moduli space. 

However, in order to exclude a given candidate theory from being in the Coulomb phase 
one doesn't always have to consider the most generic point ori the moduli space. It is enough 
to find a flow which leads to a theory which is known not to be in the Coulomb phase. For 
example, consider the theory based on the exceptional group E7 with three 56 dimensional 
representations. This theory satisfies the J1 = G constraint. However, by giving a VEV to 
one of the 56's we get an E6 theory with 2· (27 + 27). Giving an expectation value to the 27 
breaks E6 to F4 , with the remaining field content being three 26-dimensional representations. 
Further breaking F4 by a VEV of 26 will give 50(9) with two spinors and three vectors, 
2·16 + 3·9. However, this 50(9) theory is known to be confining with a quantum modified 
constraint [3], and is therefore not in the Coulomb phase. This argument implies that the 
whole chain of theories, with matter content such that J1 = G, given below is excluded from 
being in the Coulomb phase. 

E7: [3· 56] (~) E6: [2·27 + 2· 27] (~ F4 : [3· 26] (~) 50(9) [2·16 + 3·9] (3.1) 
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Similarly, one could consider an E6 theory with n ·27 + (4 - n) . 27, where n = 0, 1,2,3,4. 
All of these theories will also flow to F4 with 3 . 26, so they are not in the Coulomb phase 
either. Indeed, it has been shown recently in Refs. [5, 6], that all of the above theories based 
on exceptional groups satisfying J1, = G are confining with a quantum deformed moduli space. 

In Tables 1-4 we list all theories that satisfy the J1, = G constraint and give the phase 
of the given theory. The first column gives the gauge group, the second column the field 
content and the third column the phase of the theory. Finally, the fourth column contains a 
reference to where the actual low-energy solution of the given theory can be found. One can 
see from Tables 1-4 that finding the Seiberg-Witten curves for the remaining N = 1 theories 
in the Coulomb phase completes the study of all J1, = G theories. 

There are only two possibilities for the phase of the J1, = G theories: confining phase 
or Coulomb phase. The confining theories all have a low-energy description in terms of 
composite gauge invariants satisfying a quantum-modified version of the classical constraints 
(the SU, Sp and SO theories in this class have been analyzed in Refs. [3, 4, 5], while the 
theories based on exceptional groups in Refs. [5, 6].) This solution is valid everywhere on the 
moduli space, and there is no phase boundary between the Higgs and the confining phases. 
This is possible, because the massless fermions are in a faithful representation of the gauge 
group, therefore any external source can be screened by the massless fields. One can also 
explicitly check that every J1, = G theory with chiral superfields in a faithful representation 
breaks the gauge group completely at generic points on the moduli space. Since at large 
expectation values the theory can be described entirely in terms of gauge singlet fields and 
there is no invariant distinction between the Higgs and the confining phase, one indeed 
expects confinement at strong coupling. Contrary, if chiral superfields are not in a faithful 
representation of the gauge group, some external sources can not be screened by the massless 
quarks, and there can be points on the moduli space where additional massless fields appear. 
Indeed, we find that in every case where the matter fields are not in a faithful representation, 
at large expectation values there are unbroken U(I) gauge factors and that the low-energy 
theory is in the Coulomb phase. One can see from Tables 1-4. that the only theories which 
are in the Coulomb phase besides the pure N = 2 theories (which are N = 1 theories with 
a chiral superfield in the adjoint representation) are SO(N) with N - 2 vectors, SU(6) with 

2§ and Sp(6) with 28. The other two theories in the Coulomb phase belong to the SO(N) 
series with N - 2 vectors, since SU( 4) with 4 B is equivalent to SO(6) with four vectors and 
Sp(4) with 3 B is equivalent to SO(5) with three vectors. 

One can easily see that these N = 1 theories are indeed in the Coulomb phase by 
considering the following flows: 

SO(N): (N - 2)0 -7 SU(2) x SU(2): 2 (0,0) 

SU(6): 2 § -7 SU(3) x SU(3): (0,0) + (0,0) 
Sp(6): 2 B -7 SU(2) x SU(2) x SU(2): (0,0,1) + (1,0,0) + (0,1,0). (.3.2) 

7 



SU(N) N(O+O) confining [2] 
SU(N) El+(N-1)0+30 confining [27] 
SU(N) El + 8 + 2(0 + 0) confining [.3] 
SU(N) Adj Coulomb phase [1, 7, 8] 
SU(4) 3El + (0 +0) confining [3, 4] 
SU(4) 4El Coulomb phase [26] 
SU(5) 2El+0+30 confining [3] 
SU(5) 28+8+0 confining [3] 
SU(6) 2El+ 40 confining [3] 

SU(6) §+3(O+0) confining [3] 

SU(6) §+El+2D confining [4] 

SU(6) 2§ Coulomb phase Appendix B 

SU(7) §+4D+2D confining [4] 

Table 1: The SU theories satisfying the index constraint /-L = G. The first column gives the 
gauge group, the second column the field content and the third column gives the phase of 
the low-energy theory. The last column gives a reference to where the low-energy solution 
of the given theory can be found. 

In the above flows the following fields have to get expectation values: in the SO(N) theories 

N - 4 vectors, in the SU(6) theory one § and in the Sp(6) theory one El. Such product group 
theories have been shown to be in the Coulomb phase in Refs. [21, 22]. The SO(N) series 
in (3.2) has been described in Ref. [26], while the remaining ·flows will enable us to find the 
Seiberg-Witten curves for the SU(6) and Sp(6) theories. The ·results are summarized in the 
next section, while the detailed derivations are presented in Appendices A and B. 

4 The N = 1 Seiberg-Witten Theories 

In this section we give the low-energy solution of the N = 1 Seiberg-Witten theories. Since 
the solutions to the theories with one adjoint (the pure N = 2 theories) are well-known, 
we refer the reader interested in these theories to the references given in the last column 
of Tables 1-4. Below, we give only the solution to the N = 1 theories considered in (3.2), 
and do not list all N = 2 examples. For these theories, we first give the high-energy field 
content and the unbroken global symmetries, then list the low-energy degrees of freedom 
which satisfy the 't Hooft anomaly matching conditions. Finally we give the curve for every 
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Sp(2N) (2N + 2)0 confining [28] 
Sp(2N) 8+ 40 confining [29] 
Sp(2N) CD = Adj Coulomb phase [12, 14] 
Sp(4) 28+20 confining [4] 
Sp(4) 38 Coulomb phase [26] 
Sp(6) 28 Coulomb phase Appendix A 

Sp(6) §+30 confining [4] 

Table 2: The Sp theories satisfying the index constraint J.1 = G. The first column gives the 
gauge group, the second column the field content and the third column gives the phase of 
the low-energy theory. The last column gives a reference to where the low-energy solution 
of the given theory can be found. 

theory which provides the low-energy solution for the effective U(l) gauge coupling. 

4.1 SU(6) with 2§ 

SU(6) SU(2) U(l)R Z12 

A ~ 0 0 1 
S= A2 1 1 0 2 
T =A4 1 ITIIJ 0 4 
U=A6 1 1 0 6 

The Seiberg-Witten curve is 

[x3 _ (~(T2) + 22S4 _ SU)x _ 27 A12_ 
2 3 

(2S3U _ 107 S6 _ ~U2 _ ~S2(T2) +9(T3))]2 _ 214A24. 
27 4 2 

(4.1) 

A detailed description of this theory is given in Appendix B. 

4.2 SO(N) with (N - 2) 0 [26] 

SO(N) SU(N - 2) U(l)R 
Q o 0 0 1 

1 rn 0 2 
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SO(N) B=Adj Coulomb phase [10, 11, 14] 
SO(N) (0,N-2) Coulomb phase [26] 
SO(7) (1,4) confining [31] 
SO(7) (2,3) confining [32] 
SO(7) (3,2) confining [3] 
SO(7) (4,1) confining [.3] 
SO(7) (5,0) confining [3] 
SO(8) (3,2,1) confining [3] 
SO(8) (2,2,2) confining [3] 
SO(8) (4,2,0) confining [3] 
SO(8) (4,1,1) confining [32] 
SO(8) (3,3,0) confining [.3] 
SO(8) (5,1,0) confining [32] 
SO(9) (1,5) confining [32] 
SO(9) (2,3) confining [3] 
SO(9) (3,1) confining [3] 
SO(lO) (1,0,6) confining [32] 
SO(10) (2,2,0) confining [3] 
SO(10) (1,1,4) confining [3] 
SO(10) (2,1,2) confining [3] 
SO(10) (3,1,0) confining [3] 
SO(10) (2,0,4) confining [3] 
SO(10) (3,0,2) confining [3] 
SO(10) (4,0,0) confining [3] 
SO(l1) (2,1) confining [3] 
SO(l1) (1,5) confining [3] 
SO(12) (1, 1, 2) confining [3] 
SO(12) (2,0,2) confining [3] 
SO(12) (1,0,6) confining [3] 
SO(13) (1,3) confining [3] 
SO(14) (1,0,4) confining [3] 

Table 3: The SO theories satisfying J.l = G. The first column gives the gauge group, the 
second one the field content and the third one the phase of the low-energy theory. The last 
column gives a reference to where the low-energy solution of the given theory is described. 
We use the following notation for the field content: for an SO(N) group for N odd (s, v) 
denotes the number of spinors and the number of vectors, while for N even (s, s', v) denotes 
the number of the two inequivalent spinor representations and the number of vectors. We 
do not distinguish between SO(N) and its covering group Spin(N). 
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G2 4x7 confining [31 ] 
G2 14 = Adj Coulomb phase [15, 14, 17] 
F4 3 x 26 confining [5, 6] 
F4 52 = Adj Coulomb phase [14, 16, 17] 
E6 n x 27 + (4 - n) x 27, confining [5, 6] 
E6 78 = Adj Coulomb phase [14, 16, 17] 
E7 .3 x 56 confining [5, 6] 
E7 133 = Adj Coulomb phase [14, 16] 
Es 248 = Adj Coulomb phase [14, 16] 

Table 4: The theories based on exceptional groups satisfying the index constraint J1. = G. 
The first column gives the gauge group, the second column the field content and the third 
column gives the phase of the low-energy theory. The last column gives a reference to where· 
the low-energy solution of the given theory can be found. 

Note that in this example the anomaly matching conditions at the origin are not satisfied 
by the meson field M itself. The reason is that a number of monopoles become massless 
exactly at the origin, and- their contribution to the anomalies has to be taken into account. 
For details see Refs. [26, 30]. The Seiberg-Witten curve for this theory is: 

4.3 Sp(6) with 28 

Sp(6) SU(2) . U(I)R Zs 
A-z B 0 0 1 

Sij = Tr(JAJAj) OJ 0 2 
7ijk = Tr(JAiJAjJAk) [IIJ 0 3 

U = Tr(JA1JA2JA 1 JA2) 1 0 4 

The Seiberg-Witten curve is given by 

[X2 - (-72A S ((S2) + 12U) + ( - .!-.(T4) + 24U3 + ~U2(S2) + 
2 2 

+3U (ST2) + 1 (S3T2) ) ] 2 - 768A 24. (4.2) 

A detailed description of this theory is given in Appendix A. 
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5 Conclusions 

We have studied N = 1 supersymmetric gauge theories which are in the Coulomb phase on 
the entire moduli space. We have shown that theories based on a simple gauge group and no 
tree-level superpotential must satisfy the index condition J.1 = G, which is exactly the same 
as for theories with a quantum deformed moduli space. One can find the theories which are 
actually in the Coulomb phase by studying the flows of the theory. It turns out that all J.1 = G 
theories are either confining with a quantum deformed moduli space if the matter content 
is in the faithful representation of the gauge group or in the Coulomb phase if the matter 
fields are not in a faithful representation. The Seiberg-Witten curves for the new theories 
in the Coulomb phase can be found by studying the flows to the product group theories of 
Ref. [22]. This work, together with the results on confining theories with quantum-deformed 
moduli spaces, completes the solutions to all N = 1 theories with J.1 ::; G. 
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Appendix A Sp(6) with 28 

In this appendix we outline the derivation of the Seiberg-Witten curve for the Sp(6) theory 
with 2 a. As we already mentioned in Section 3, giving a VEV.to one of antisymmetric tensors 
breaks Sp(6) to SU(2)3 with precisely the field content that w~s considered in Ref. [22]. The 
curve describing the Sp(6) theory must therefore reduce to the curve for SU(2)3 in the 
limit of large VEVs. It turns out that considering this limit is sufficient for determining the 
complete curve. 

Lets us first describe the global symmetries of the theory and gauge invariant operators 
parameterizing the moduli space. 

Sp(6) SU(2) U(I)R Z8 
A· z t:l 0 0 1 

Sij = Tr(JAiJAj) rn 0 2 (A.l) 
1ijk = Tr(JAiJAjJAk) [IT] 0 3 

U = Tr(JA1 JA2 JA1 JA2 ) 1 0 4 
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where J is the two-index antisymmetric invariant tensor of Sp. Indeed, with this choice of 
operators the 't Hooft anomaly matching conditions (including the discrete anomaly match
ing conditions of Ref. [30]) are satisfied at the origin, once a U(l) vector field is included in 
the low-energy spectrum. 

We give a VEV to Al of the form (AI) = iv diag(0"2' W0"2, W20"2), where w = exp (27fi/3). 
The remaining field, A2, decomposes under SU(2) x SU(2) x SU(2) as 

Next, we express the invariants of the SU(2)3 theory [22], that is Mi = Q; and T = QI Q2Q3 
in terms of the- Sp(6) gauge invariants keeping only leading terms in l/v. The curve for 
SU(2)3 

y2 = [x2 - (AtM2 + A~M3 + AjMl + T2 - MIM2M3)]2 - 4AtA~Aj 

contains two combinations of invariants. We will now write the two combinations, Af M2 + 
A~M3 + AjMl and T2 - M l M2M3, in terms of Sp(6) invariants, where Ai is the characteristic 
scale of the i-th SU(2) factor. With the above choice of the VEV for A l , the scale matching 
relations between the Sp(6) scale, A, and the scales of the SU(2) factors are 

A4 = A8 A4 _ A8 A4 _ A8 
1 v4(1 _ w2)(1 _ W4)' 2 - V4(W2 _ 1)(w2 _ W4)' 3 - V4(W4 _ 1)(w4 _ w2) 

Since a curve can depend only on the field combinations invariant under global symme
tries, we need to introduce invariants under the global SU(2) symmetry, which will be the 
variables of the full Sp(6) curve. The connection between the global SU(2) invariants and 
the parameters of the SU(2)3 curve are 

A4A4A4 = _1_A24 
1 2 3 27vI2 ' 

AtM2 + A~M3 + AjMI = _~A8((S2) + 12U), 
72v 

T~ - MIM2M3 = 51:4v6 ( - ~(T4) + 24U3 + ~U2(S2) + 3U(ST2) + ~(S3T2)), 

where the SU(2) contractions are defined as follows' 

(S2) 

(T4) 

(ST2) 
(S3T2) 

s. . S· . €ilil €izi2 
~I ~z JJJz 

'T' T 'T' 'T' iIiI izi2 kIll kzlz i3k3 1313 .lili2i3 iIi2j3.l klkzk3.l h1213€ € € € € € , 

'T' T S idl iZj2 i3kl 13kz .lili2i3 jlizj3 klkz€ € € € , 

Tili2i3Tjli213SklkzShlzSmlmz X 

(€iIiI €izi2 €i3 kl €k211 €lzml €m213 _ ~€il kl €izh €i3ml €jlkz €i212 €13mz). 

13 



Finally, we obtain the curve for 5p(6) theory in the large VEV limit by substituting the 
above expression into the 5U(2)3 curve: 

y2 = [X2 - (-7;v 6 ((52) + 12U)A8 + 518
1
4V6 [( - ~(T4) + 24U3 + ~U2(52) + 

3U(5T2) + ~(S3T2)) r -27~12A24. (A.2) 

After rescaling x -t x/(72v3) and y -t y/(5184v6 ) we obtain: 

y2 = [X2 _ (-72A8 ((S2) + 12U) + ( _ ~(T4) + 24U3 + ~U2(S2) + 
~ 2 

3U(5T2) + ~(53T2))]2 -768A24. (A.3) 

It is easy to check that symmetries prohibit modifications to this form of the curve. Since 
only SU(2) singlets can appear in the curve, any other allowed term would be of the same 
order in l/v and therefore a coefficient of any such terms must be zero. Thus (A.3) is the 
final form of the full Sp(6) curve. 

Appendix B SU(6) with 2§ 

We now present the derivation of the curve for the SU(6) theory with 2§. Similarly to the 
derivation of the 5p(6) case, we give a VEV to one of the tensors, which breaks SU(6) to 
SU(3) x 5U(3) with two bifundamental fields, which is the theory considered in Ref. [22]. 
The field content, global symmetries and independent gauge invariants are defined below: 

5U(6) SU(2) U(l)R Z12 

A- ~ 0 0 1 z 

5 = AIA2 1 O· 2 , 
(B.1) 

1ijkl = AiAjAkAl ITIIJ 0 4 
U = AfA~ 1 0 6 

The anomaly matching is satisfied for the low-energy spectrum including the gauge invariants 
and two U(l) vector multiplets. The 5U(6) gauge contractions for the invariants 5, T and 
U are given by 

5 1 AOI0203A~1~2~3 
62 1 2 €Ol0203~lfh~3' 

7ijkl 1 [AOI 0 2 0 3 A~1~2~3 A'Yl'Y2'Y3 AOI0203 S2 ( + )] 64 i j k 1 €Ol0203~J~2'YJ €~3'Y2'Y30J0203 - 9 €ij€kl €ik€jl , 

U 1 AO J 0 2 0 3 A~J~2~3 A'YJ'Y2'Y3 AOJ 0203 A(J (2(3 Ji~J~2~3 
144 1 1 1 2 2 2 €Ol0203~J~2'YJ €~3"Y2'Y30J02(J €h(2(3m~2~3· 
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Note the additional subtlety in the definition of T. T is a four-index symmetric tensor under 
the global SU(2). However, the gauge contraction defined above does not yield an irreducible 
tensor of SU(2). This contraction also contains an SU(2) singlet piece, which needs to be 
subtracted. 

We give a VEV to Ai of the form (A123) = (A456) = v with zero VEVs for all other 
independent components. The field A2 decomposes under SU(3) x SU(3) as 

The SU(3)2 theory has four invariants [22], Bi = det Qi and Ti = Tr(QiQ2)i, i = 1,2, which 
we now express in terms of SU(6) invariants. The SU(3) x SU(3) curve is 

y2 = (x3 - U2 X - U3 - A~ - A~)2 - 4A~A~, 

where Ai ,2 are the scales of the two SU(3) gauge groups, while U2 
U3 = ~(3BiB2 + ~T2Ti - i5sTt)· In terms of SU(6) invariants we have 

l(T? - IT2) and 
2 - 3 1 

_1_ (~(T2) gS4 _ SU) 
16v4 2 + 3 

U.3 ~ (2S3U _ 107 S6 _ ~U2 _ ~S2(T2) + 9(T3)) , 
64v 27 4 2 

where the invariants under the global SU(2) are defined as follows: 

Using the matching relations for the SU(6) scale, A, and the scales of the SU(3) groups 
A~ = A~ = A~2 we obtain the SU(6) curve in the large VEV limit: v . 

[ 
3 1 (9 2 11 4 ) A 12. 

X - 16v4 "2(T) + 3 S - su x - 2-;6 -

_1_ (2S3U _ 107 S6 _ ~U2 _ ~S2(T2) + 9(T3))] 2 _ 4 A 24. 

64v6 27 4 2 V 12 (B.2) 

After rescaling x --7 x/(4v2) and y --7 y/(64v6 ) the curve takes the form 

(B.3) 

As before, this is the final form of the full SU(6) curve because any modification allowed by 
the global symmetries is of the same order in l/v as the terms already present. 
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