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Abstract 

The supersymmetric contributions to the Flavor Changing Neutral Current processes 

may be suppressed by decoupling the scalars of the first and second generations. It is 

known, however, that the heavy scalars drive the stop mass squareds negative through the 

two-loop Renormalization Group evolution. This tension is studied in detail. Two new 

items are included in this analysis: the effect of the top quark Yukawa coupling and the 

QCD corrections to the supersymmetric contributions to timK. Even with Cabibbo-like 

degeneracy between the squarks of the first two generations, these squarks must be heavier 

than rv 40 Te V to suppress tim K. This implies, in the case of a high scale of supersymmetry 

breaking, that the boundary value of the stop mass has to be greater than rv 7 Te V to keep 

the stop mass squared positive at the weak scale. Low-energy supersymmetry breaking at 

a scale that is of the same order as the mass of the heavy scalars is also considered. In this 

case the finite parts of the two-loop diagrams are computed to estimate the contribution of 

the heavy scalar masses to the stop mass squared. It is found that for Cabibbo-like mixing 

between the squarks, the stop mass at the boundary needs to be larger than rv 2 TeV. 

Thus, for both cases, the large boundary value of the stop masses leads to an unnatural 

amount of fine tuning to obtain the correct Z mass. 
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1 Introduction 

The origin of electroweak symmetry breaking (EWSB) and the subsequent gauge hierarchy prob­

lem [1] are two large mysteries of the Standard Model (SM). Supersymmetry (SUSY) [2] provides 

a promising solution to these problems, by both stabilising the weak scale against radiative 

corrections[3], and by naturally breaking the electroweak symmetry through the quantum cor­

rections of the superpartner of the top quark to the Higgs boson mass [4]. It is known, however, 

that generic weak scale values for the masses of the first two generation scalars give rates for 

many flavour violating processes that are in disagreement with the experimental observation. 

The measured value of .6..mK and detection limits for J-l ~ e,,(, and J-l ~ 3e, for example, require 

that the first two generation scalars be degenerate to within a few tenths of a percent if their 

masses are at the weak scale [5, 6]. Constraints from CP violation are generally even more severe. 

Understanding the origin of this degeneracy is the supersymmetric flavour problem. Attempts to 

resolve this puzzle without introducing any fine tuning include: using approximate non-abelian 

or abelian symmetries [7] ; communicating supersymmetry breaking to the visible sector by gauge 

interactions that do not distinguish between flavours [9]; squark-quark mass matrix alignment 

[8]; and raising the soft masses of the first two generation scalars to the tens of TeV range 

[10, 11, 12, 13, 14, 15, 16, 17]. 

The phenomenological viability and naturalness of this last scenario is the subject of this 

paper. To suppress flavour changing processes, the heavy scalars must have masses between a 

few TeV and a hundred TeV. The actual value depends on the degree of degeneracy and mixing 

between the masses ofthe first two generation scalars. As discussed in Reference [18], the masses 

of the heavy scalars cannot be made arbitrarily large without breaking colour and charge. This 

is because the heavy scalar masses contribute to the two-loop Renormalisation Group Equation 

(RGE) for the soft masses ofthe light scalars, such that the stop soft mass squared become more 

negative in RG scaling to smaller energy scales. This negative contribution is large if the scale 

at which supersymmetry breaking is communicated to the visible sector is close to the Grand 

Unification scale[18]. With the first two generation soft scalar masses ~ 10 TeV, the initial value 

of the soft masses for the light stops must be ~ (few TeV)2 to cancel this negative contribution 

[18] to obtain the correct vaccum. This requires, however, an unnatural amount of fine tuning 

to correctly break the electroweak symmetry[19, 20]. 

In this paper we analyse these issues and include two new items not previously discussed 

within this context: the effect of the large top quark Yukawa coupling, At, in the RG evolution, 

. that drives the stop soft mass squared more negative; and QCD radiative corrections in the 

.6..mK constraint [21]. This modifies the bound on the heavy scalar masses which is consistent 

with the measured value of .6..mK' This, in turn, affects the minimum value of the initial scalar 

masses that is required to keep the scalar masses positive at the weak scale. 

We note that the severe constraint obtained for the initial stop masses assumes that su­

persymmetry breaking occurs at a high scale. This leaves open the possibility that requiring 
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positivity of the scalar masses is not a strong constraint if the scale of supersymmetry breaking 

is not much larger than the mass scale of the heavy scalars. In this paper we investigate this 

possibility by computing the finite parts of the same two-loop diagrams responsible for the neg­

ative contribution to the light scalar RG equation, and use these results as an estimate of the 

two-loop contribution in an actual model of low-energy supersymmetry breaking. We find that 

in certain classes of models, requiring positivity of the soft masses may place strong necessary 

conditions that such models must satisfy in order to be phenomenologically viable. 

Our paper is organized as follows. In Section 2 an overview of the ingredients of our analysis 

is presented. Some philosophy and notation is discussed. Section 2.1 discusses the constraints 

on the masses and mixings of the first two generation scalars obtained from LlmK after including 

QCD corrections. It is found, in particular, that Cabibbo-like mixing among both the first two 

generation left-handed squarks and right-handed squarks requires them to be heavier than 40 

TeV. Section 2.2 discusses the logic of our RG analysis, and some formulas are presented. This 

analysis is independent of the LlmK analysis. Sections 3 and 4 apply this machinery to the cases 

of low-energy and high-energy supersymmetry breaking, respectively. Section 3 deals with the 

case in which the scale at which SUSY breaking is communicated to the SM sparticles is close 

to the mass of the heavy scalars. We use the finite parts of the two-loop diagrams to estimate 

the negative contribution of the heavy scalars. We find that Cabibbo-like mixing among the 

left-handed and right~handed first two generation squarks implies that the boundary value of 

the stop masses has to greater than rv 2 Te V to keep the stop mass squareds positive at the weak 

scale. This results in a fine tuning of naively 1% in electroweak symmetry breaking [19]. We also 

discuss the cases where there is 0(1) mixing among only the right or left squarks of the first two 

generations, and find that requiring positivity of the slepton mass squareds implies a constraint 

on the stop masses of rv 1 Te V if gauge-mediated boundary conditions are used to relate the 

two masses. This is comparable to the direct constraint on the initial stop masses. In Section 4, 

we consider the case where the SUSY breaking masses for the 8M sparticles are generated at a 

high scale (rv 1016 Ge V). In this case, the negative contribution of the heavy scalars is enhanced 

by a large logarithm. We consider various boundary conditions for the stop and Higgs masses 

and find that with 0(0.22) degeneracy between the first two generation squarks, the boundary 

value of the stop mass needs to be larger than rv 7 TeV. This gives a fine tuning of naively 

0.02%[19]. For 0(1) mixing between the left (right) squarks only, ~he minimum initial value of 

the stop is rv 4(2) TeV. In Section 5 the scale of supersymmetry breaking is varied between 50 

TeV and 2 x 1016 GeV. Uppers bounds on the amount of degneracy required between the first 

two generation scalars, that is consistent with positivity of the .light scalar masses, naturalness 

in electroweak symmetry breaking, and the measured value of LlmK, are obtained. These results 

are summarized in Figures 12 and 13. We conclude in Section 6. In the Appendix, we discuss 

the computation of the two-loop diagrams which give th.e negative contribution of the heavy 

scalars to the light scalar mass squareds. 
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2 Overview. 

The chiral particle content of the Minimal Supersymmetric Standard Model (MSSM) contains 

3 generations of 5+10 representations of SU(5). The supersymmetry must be softly broken to 

not be excluded by experiment. Thus the theory must also be supplemented by some 'bare' soft 

supersymmetry breaking parameters, as well as a physical cutoff, Msusy. The 'bare' soft su­

persymmetry breaking parameters are then the coefficients appearing in the Lagrangian, defined 

with a cutoff Msusy. It will be assumed for simplicity that the bare soft masses, mro, the bare , , 

gaugino masses MA,o, and a bare trilinear term for the stops, AtAt,O, are all generated close to 

this scale. The M8SM is then a good effective theory at energies below the scale Msusy , but 

above the mass of the heaviest superpartner. 

The physical observables at low-energies will depend on these parameters. If an unnatural 

degree of cancellation is required between the bare parameters of the theory to produce a mea­

sured observable, the theory may be considered to be fine tuned. Of course, it is possible that a 

more fundamental theory may resolve in a natural manner the apparent fine tuning. The gauge­

hierarchy problem is a well-known example of this. The Higgs boson mass of the SM is fine tuned 

if the 8M is valid at energies above a few Te V. This fine tuning is removed if at energies close 

to the weak scale the SM is replaced by a more fundamental theory that is supersymmetric[3]. 

One quantification of the fine tuning of an observable 0 with respect to a bare parameter Ao 
is given by Barbieri-Giudice [19] to be 

Ao a 
~(O; Ao) = (80 /0)/(8Ao/ Ao) = 0 aAo O. (1) 

It is argued that this only measures the sensitivity of 0 to Ao, and care should be taken when 

interpreting whether a large value of ~ necessarily implies that 0 is fine tuned [20]. It is not the 

intent of this paper to quantify fine tuning; rather, an estimate of the fine tuning is sufficient 

and Equation 1 will be used. In this paper the value of 0 is considered extremely unnatural if 

~(O; Ao) > 100. 

The theoretical prediction for ~mK (within the MSSM) and its measured value are an exam­

ple of such a fine tuning: Why should the masses of the first two generation scalars be degenerate 

to within 1 GeV, when their masses are 0(500 GeV)? Phrased differently, the first two gener­

ation scalars must be extremely degenerate for the MSSM to not be excluded by the measured 

value of ~mK. An important direction in supersymmetry model building is aimed at attempting 

to explain the origin of this degeneracy. 

One proposed solution to avoid this fine tuning is to decouple the first two generation scalars 

since their masses are the most stringently constrained by the flavou,r violating processes [10, 

11, 12, 13, 15, 16, 17]. In this scenario, some of the first two generation scalars have masses 

Ms ~ mz· To introduce some notation, ns (nlO) will denote the number of 5 (10) scalars of 

the MSSM particle content that are very heavy 4. Thus at energy scales E « Ms the particle 

4It is assumed that the heavy scalars form complete SU(5) multiplets to avoid a large Fayet-Illiopoulus D-
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content is that of the MSSM, minus the n5 5 and nlO 10 scalars. In the literature this is often 

referred to as 'The More Minimal Supersymmetric Standard Model'[13]. 

There are, however, other possible and equally valid sources of fine tunings. The measured 

value of the Z mass is such an example [19]. The minimum of the renormalized Higgs potential 

determines the value of the Z mass which is already known from experiment. The vacuum 

expectation value (vev) of the Higgs field is, in turn, a function of the bare parameters of the 

theory. The relation used here, valid at the tree-level, is 

(2) 

It is clear from this Equation that requiring correct electroweak symmetry breaking relates the 

value of the soft Higgs masses at the weak scale, m'kJJ..LG) and m'k)J..LG) , to the supersymmetric 

Higgs mass J..L. A numerical computation determines the dependence of m'k" (J..LG) and m'kd (J..LG) 
on the bare parameters MA,o, mto and Ms. In the MSSM, the cancellation required between 

the bare parameters of the theory for it not to be excluded by the Z mass increases as the 

scale of supersymmetry breaking is increased. Typically, the bare mass of the gluino, stops, 

and the first two generation squarks must be less than a few Te V and ten Te V, respectively, for 

successful electroweak symmetry breaking not to be fine tuned at more than the one per cent 

level [19, 20, 17]. 

These two potential fine tuning problems- the supersymmetric flavour problem and that of 

electroweak symmetry breaking- are not completely independent, for they both relate to the 

size of supersymmetry breaking [17, 18]. Thus the consistency of any theoretical framework 

that attempts to resolve one fine tuning issue can be tested by requiring that it not reintroduce 

any comparable fine tunings in other sectors of the theory. This is the situation for the case 

under consideration here. Raising the masses of the first two generation scalars can resolve the 

supersymmetric flavour problem. As discussed in [17], this results in a fine tuning of m~ through 

the two-loop dependence of m'k" (J..LG) on Ms. There is, however, another source of fine tuning 

of mz due to the heavy scalars: these large masses require that the bare masses of the stops, in 

particular, be typically larger than a few TeV to keep the soft masses squared positive at the 

weak scale [18]. This large value for the bare stop mass prefers a large value for the vev of the 

Higgs field, thus' introducing a fine tuning in the electroweak sector. Further, this fine tuning is 

typically not less than the original fine tuning in the flavour sector. This is the central issue of 

this paper. 

2.1 t::..mK Constraints 

At the one-loop level the exchange of gluino$ and squarks generates a l::!..S = 2 operator. In the 

limit M3 < < Ms that we are interested in, the l::!..S = 2 effective Lagrangian at t.he scale Ms 

term at the one-loop level[17, 13]. 
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obtained by integrating out the squarks is 

aHMs) ( - - ) 
LeJ! = 216MJ C10 1 + C10 1 + C40 4 + C50 5 + h.c. . (3) 

Terms that are O(M'f/MJ) are sub dominant and neglected. We expand the exact result in 

powers of OLL,RR = SL,RCL,R1]L,R(m~ - m~)LL,RR/m~V,L,R' where m~v is the average mass of the 

scalars, and where 1]L,R is the phase and S L,R is the 1-2 element of the W L,R matrix that appears 

at the gluino-squark-quark vertex5 . This approximation underestimates the magnitude of the 

exact result, so our analysis is conservative[18]. The coefficients Ci to leading order in OLL, ORR, 

are 

C1 -2201L 

C4 2401LO~R 
C5 -4001LO~R· (4) 

The coefficient 61 is obtained from C1 with the replacement oiL -t O~R. The operators Oi are 

0 1 
Cia ;p J1. LIJ1.SL,a LI SL,b 

0 4 
- Jb 
dR,SL,adLSR,b 

0 5 
- Jb 
dR,SL,bdLSR,a (5) 

and 61 is obtained from 0 1 with the replacement L -t R. The Wilson coefficients, C1 - C5 , are 

RG scaled from the scale of the squarks, Ms , to 900 Me V using the anomalous dimensions of the 

operators, 0 1-05 . The anomalous dimension of 0 1 is well known [22] and is f-ldCI/df-l = asCI/n. 

We have computed the other anomalous dimensions and our result agrees with that of [21] (see 

this reference for a more general analysis of QeD corrections to the SUSY contributions to 

K - K mixing). These authors, however, choose to RG scale to f-lhad, defined by as(f-lhad)=l. 

The validity of the pertubation expansion is questionable at this scale; we choose instead to RG 

scale to 900 MeV, where a s (900 MeV) rv .4. The result is . 

where 

C1 (f-lhad) 

61 (f-lhad) 

C4 (f-lhad) 

C5 (f-lhad) 

K,I Cl(Ms ) 

K, 161 (Ms) 
1 

K,4C4(Ms ) + 3(K,4 - K,5)C5(Ms ) 

K,5 C5(Ms ) 

5In this paper only 1-2 generation mixing is considered. Direct L - R mass mixing is also neglected. 
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The effective Lagrangian at the hadronic scale is then 

D!; ( M s) ( (d) 2 ( d ) 2 - d d ( 8 ( ) Ceff = 216M§ -22 6LL Kl VI - 22 6RR Kl VI + 6LL6RR 3" 4K4 + 5Ks)V4 - 40KSVS) + h.c. . 

The SUSY contribution to the K - K mass difference is 

(~mK )SUSY = 2Re < KICefflK > . 

The relevant matrix elements (with bag factors set to 1) are 

< KIVslK > 

1 2 
3"mKfK 

(~+~( mK )2)mKf2 
24 4 ms +md K 

(~+ 112 (ms:Kmd) 2) mKfk 

(8) 

(9) 

(10) 

in the vacuum insertion approximation. We use [23] mK = 497 MeV, fK = 160 MeV, ms = 150 

MeV , (~mK )exp = 3.5x 10-12 MeV, and D!s(Mz ) = 0.118. This gives D!s(mb) = .21, D!s(mc ) = .29 

and Cl!s(900 MeV) = .38 using the one-loop RG evolution. Once values for (ns, nlO, 61L' 6~R) are 

specified, a minimum value for Ms is gotten by requiring that (~mK)sUSY = (~mK)exp. In the 

case that both 6RR =1= 0 and 6LL =1= 0, we assume that both the left-handed and right-handed 

squarks are heavy, so that (ns, nlO) = (2,2). In this case we require that only the dominant 

contribution to ~mK' which is rv 61L6~R' equals the measured value of ~mK' If 6RR =1= 0 and 

6LL = 0, we assume that only the right-handed squarks are heavy, and thus (ns, nlO) = (2,0). 

Similarly, if 6LL =1= 0 and 6RR = 0 then (ns, nlO) = (0,2). Limits are given in Tables 1 and 2 for 

some choices of these parameters. These results agree with Reference [21] for the same choice 

of input parameters. For comparison, the limits gotten by neglecting the QCD corrections 

are also presented in Tables 1 and 2. We consider 61L (6~R) = (i) 1, (ii) .22, '(iii) .1, and 

(iv) 0.04. These correspond to :(i) no mixing and no degeneracy; (ii) Cabibbo-like mixing; 

(iii) Cabibbo-like mixing and rv .5 degeneracy; and (iv) Cabibbo-like mixing and Cabibbo-like 

degeneracy. We expect only cases (i), (ii) and (iii) fo be relevant if the supersymmetric flavour 

problem is resolved by decoupling the first two generation scalars. From Table 2 we note that 

for' (ns, nlO) = (2,0), Ms must be larger than rv 30 TeV if it is assumed there is no small mixing 

or degeneracy (6~R = 1) between the first two generation scalars. 

The limits gotten from the mesaured rate of C P violation are now briefly discussed. Recall 

that the C P violating parameter E is approximately 

It:! rv 11m < KICeffl K > I, 
" V2~mK 

(11) 

and its measured value is lEI rv 11]001 =2.3xl0-3 [23]. In this case, the small value of € implies 

either that the phases appearing in the soft scalar mass matrix are extremely tiny, or that the 

6 



vRe( 6iL6~R) (ns, nlO) = (2,2) (ns, nlO) = (2,2) 

QCD incl. noQCD 

1 182 TeV 66 TeV 

.22 40 TeV 15 TeV 

.1 18 TeV 7.3 TeV 

0.04 7.3 TeV 3.1 TeV 

Table 1: Minimum values for heavy scalar masses Ms obtained from the measured value of flmK 

assuming MUM'!; « 1. The limits labeled 'QCD incl.' include QCD corrections as discussed in 

the text. Those labeled as 'no QCD' do not. 

Re(6~R) (6iL = 0) (ns, nlO) = (2,0) (ns, nlO) = (2,0) 

QCD incl. no QCD 

1 30 TeV 38 TeV 

.22 7.2 TeV 8.9 TeV 

0.1 3.4 TeV 4.1 TeV 

0.04 1.4 TeV 1.7 TeV 

Table 2: Minimum values for heavy scalar masses Ms obtained from the measured value of flmK 

assuming MUM'!; « 1. The limits labeled as 'QCD incl.' include QCD corrections as discussed 

in the text. Those labeled as 'no QCD' do not. The limits for (ns, nlO) = (0,2) obtained by 

6iL B 6~R are similar and not shown. 
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masses of the heavy scalars are larger than the limits given in Tables 1 and 2. In the case 

where the phases are 0(1), 1m < KI.ceffiK >rv Re < KI.ceffIK > and thus the stronger 

constraint on Ms is obtained from E and not tlmK' for the same choice of input parameters. 

In particular, the constraint from CP violation increases the minimum allowed value of Msby 
a factor of 1/v'2V2E "'12.5. This significantly increases the minimum value of the initial light 

scalar masses that is allowed by the positivity requirement. 

2.2 RG E analysis 

The values of the soft masses at the weak scale are determined by the RG evolution. In the DR' 

scheme [25, 26, 27], the RG equations 6 for the light scalar masses are, including the gaugino, A­

term and At contributions at the one-loop level and the heavy scalar contribution at the two-loop 

level [28], 

with'TJ = (3,2,1) for h = Hu, ie, i, respectively, and zero otherwise. For simplicity it is assumed 

that MA,o/aA,O are all equal at Msusy. The initial value of the gluino mass, M3,o, is then chosen 

to be the independent parameter. To avoid a large .Fayet-Illiopoulus D-term at the one-loop 

level, we assume that the heavy scalars form complete 5U(5) representations[17, 13]. We use 

5U (5) normalisation for the U (1) coupling constant and Q = T3 + Y. Finally, C~ is the quadratic 

Caismir for the gauge group GA that is 4/3 and 3/4 for the fundamental representations of 5U(3) 

and 5U(2), and 3/5Y/ for the U(l) group .. The cases (n5' nlO)= (I) (2,2), (II) (2,0), (III) (0,2) 

are considered. The results for the case (3,0) is obtained, to a good approximation, from Case 

(II) by a simple scaling, and it is not discussed any further. 

Inspection of Equation (12) reveals that in RG scaling from a high scale to a smaller scale the 

two-loop gauge contribution to the soft masses is negative, and that of the gauginos is positive. 

The presence 6f the large At Yukawa coupling in the RGE drives the value of the stop soft mass 

squared even more negative. This effect increases the bound on the initial value for the stop 

soft masses and is included in our analysis. In our analysis the top quark mass in M 5 scheme 

is fixed at 167 GeV. 

6An earlier version of the analysis presented in this manuscript did not include the one-loop hypercharge 

D-term in the RG equations. This has been corrected. This has not changed our conclusions though, since the 

numerical effect of this error is small. The authors thank B. Nelson for drawing our attention to this omission. 
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In the MSSM there is an extra parameter, tan /3, which is- the ratio of the vacuum expeca­

tions values of the Higgs fields that couple to the up-type and down-type quarks respectively. 

Electroweak symmetry breaking then determines the top quark mass to be mt = At! V2v sin /3 
with v rv 247 GeV. In our analysis we consider the regime of small to moderate tan /3, so that all 

Yukawa couplings other than At are neglected in the RG evolution. In this approximation the 

numerical results for h # i or ic are independent of tan /3. In the numerical analysis of Sections 

3 and 4 tan /3=2.2 is considered. In Section 5 tan f3 = 10 is also considered. 

In the case of low-energy supersymmetry breaking, the scale Msusy is not much larger than 

the mass scale of the heavy scalars. Then the logarithm rvln(Msusy/Ms) that appears in the 

solution to the previous RG equations is only 0(1). In this case the finite parts of the two-loop 

diagrams may not be negligible and should be included in our analysis. We use these finite parts 

to estimate the size of the two-loop heavy scalar contribution in an actual model. 

The full-two loop expression for the soft scalar mass at a renormalisation scale /lR is mJull (/lR) = 

m~R'(/lR) + mJinite(/lR) , where mk.,(/lR) is the solution to the RG equation in DR' scheme, and 

mJinite(/lR) is the finite part of the one-loop and two-loop diagrams, also computed in DR' 

scheme. The finite parts of the two-loop diagrams that contain internal heavy scalars are com­

puted in the Appendix and the details are given therein. The answer for these two-loop finite 

parts is (assuming an heavy scalars are degenerate with common mass M§) 

where the gaugino and fermion masses are neglected. Since we use the DR' scheme to compute 

the finite parts of the soft scalar masses, the limits we obtain on the initial masses are only 

valid, strictly speaking, in this scheme.- This is especially relevant for the case of low scale SUSY 

breaking. So while these finite parts should be viewed as semi-quantitative, they should suffice 

for a discussion of the fine tuning that results from ,the limit on the bare stop mass. For the 

case of high scale SUSY breaking, the RG logarithm is large and so the finite parts are not that 

important. 

Our numerical analysis for either low-energy or high-energy supersymmetry breaking is de­

scribed as follows. 

The RG equations are evolved from the scale Msusy to the scale at which the heavy scalars 

are decoupled. This scale is denoted by /ls and should be O(Ms). The RG scaling of the heavy 

scalars is neglected. At this scale the finite parts of the two-loop diagrams are added to mj//ls). 
We note that since the two-loop information included in our RG analysis is the leading O(M§) 
effect, it is sufficient to only use tree~level matching at the scale /ls. Since the heavy scalars are 
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not included in the effective theory below Ms and do not contribute to the gauge coupling beta 

functions, the numerical results contain an implicit dependence on the number of heavy scalars. 

This results in a smaller value for a3 (J.1s) compared to its value if instead all the scalars have a 

rv ITeV mass. This tends to weaken the constraint, and so it is included in our analysis 7. The 

soft masses are then evolved using the one-loop RGE to the mass scale at which the gluinos are 

decoupled. This scale is fixed to be J.1a=1 TeV. 

A constraint on the initial value of the soft masses is obtained by requiring that at the weak 

scale the physical scalar masses are positive. The experimental limit is rv 70 Ge V for charged 

or coloured scalars [24] . The physical mass of a scalar is equal to the sum of the soft scalar 

mass, the electro-weak D-term, the supersymmetric contribution, and some finite one-loop 

and two-loop contributions. As mentioned in the previous paragraph, in the effective theory 

below Ms the finite two-loop part from the heavy scalars is included in value of the soft scalar 

mass of the light sparticles at the boundary, defined at J.1R = J.1s rv Ms. The finite one-loop 

contributions are proportional to the gaugino and other light scalar masses, and are smaller 

than the corresponding logarithm that is summed in m;(J.1R). So we neglect these finite one­

loop parts. Further, the electroweak D-terms are less than 70 GeV. For the scalars other than 

the stops, the supersymmetric contribution is negligible. In what follows then, we will require 

that m; (J.1a) > 0 for scalars other than the stops. The discussion with the stops is complicated 

by both the large supersymmetric contribution, mr, to the physical mass and by the L - R 

mixing between the gauge eigenstates. This mixing results in a state with mass squared less 

than min(m; + mr, m;e + mn, so it is a conservative assumption to require that for both gauge 

eigenstates the value of m;i+mr is larger than the experimental limit. This implies that m;>~(70 

GeV)2-(175 GeV)2 = -(160 GeV)2. In what follows we require instead that m;i 2': O. This 

results in an error that is (160GeV)2 /2mii,o ~26 GeV if the constraint obtained by neglecting 

mt is ("V 1 TeV. For the parameter range of interest it will be shown that the limit on the initial 

squark masses is rv 1 Te V, so this approximation is consistent. 

We then combine the above two analyses as follows. The tl.mK constraints of Section 2.1 

determine a minimum value for Ms once some theoretical preference for the o's is given. Either a 

natural value for the o's is predicted by some model, or the o's are arbitrary and chosen solely by 

naturalness considerations. Namely, in the latter case the fine tuning to suppress tl.mK is roughly 

2/0. Further, a model may also predict the ratio M3 /Ms . Otherwise, Equations 1 and 2 may be 

used as a rough guide to determine an upper value for M3 , based upon naturalness considerations 

of the Z mass. Without such a limitation, the positivity requirements are completely irrelevant 

if the bare gluino mass is suffuciently large; but then the Z mass is fine tuned. Using these 

values of M3 and Ms , the RGE analysis gives a minimum value for the initial stop masses which 

is consistent with tl.mK and positivity of the soft masses. This translates into some fine tuning 

7This is the origin of a small numerical discrepancy of'" 10% between our results and the analysis of [18] in 

the approximation At = O. 
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of the Z mass, which is then roughly quantified by Equations 1 and 2. 

Finally, we remark that our analysis may also be extended to include models that contain a 

Fayet-Illiopoulos hypercharge D-term, eD, at the tree-level. The effect of the D-term is to shift 

the soft scalar masses, m~ ° --+ m~ ° = m~ 0+ lieD. In this case, the positivity analysis applies to , , , 
m;,o, rather than m;,o· 

3 Low Energy Supersymmetry Breaking 

In this Section we investigate the positivity requirement within a framework that satisifes both of 

the following: (i) supersymmetry breaking is communicated to the visible sector at low energies; 

and (ii) multi-TeV scale soft masses, Ms , are generated for some of the first two generation 

scalars. This differs from the usual low-energy supersymmetry breaking scenario in that we 

assume M~ »mLo. In the absence of a specific model, however, it is difficult to obtain from 

the positivity criterion robust constraints on the scalar spectra for the following reasons. At 

the scale Msusy it is expected that, in addition to the heavy scalars of the MSSM, there are 

particles that may have SM quantum numbers and supersymmetry breaking mass parameters. 

All these extra states contribute to the soft scalar masses of the light particles. The sign of this 

contribution depends on, among other things, whether the soft mass squared for these additional 

particles is positive or negative-clearly very model-dependent. The total two-loop contribution 

to the light scalar masses is thus a sum of a model-dependent part and a model independent part. 

By considering only the model-independent contribution we have only isolated one particular 

contribution to the total value of the soft scalar masses near the supersymmetry breaking scale. 

We will, however, use these results to estimate the typical size of the finite parts in an actual 

model. That is, if in an actual model the sign of the finite parts is negative and its size is of the 

same magnitude as in Equation (13), the constraint in that model is identical to the constraint 

that we obtain. The constraint for other values for the finite parts is then obtained from our 

results by a simple scaling. 

Before discussing the numerical results, the size of the finite contributions are estimated in 

order to illustrate the problem. Substituting Ms rv 25 TeV, a3(25 TeV) rv 0.07 and al(25 

Te V) rv 0.018 into Equation 13 gives 

2 2 ( Ms )2 omij ~ -(410 GeV) (n5 + 3nlO) 25 TeV (14) 

for squarks, and 

om~c ~ - ((n5 + 3nlO)(70 GeV)2 + (n5 - nlO)(100 GeV)2) (25iev) 2 (15) 

for the right-handed selectron. The negative contribution is large if Ms rv 25 TeV. For example, 

if n5 = nlO = 2 then om~c ~ -(200 GeV)2 and 8m~ ~ -(1.2 TeV)2. If n5 = 2, nlO = 0, then 

om~c ~ -(170 GeV)2 and om~ ~ -(580 GeV)2. 
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In this low-energy supersymmetry breaking scenario, it is expected that Msusy f'J Ms. In our 

numerical analysis we will set Msusy = Ms since the actual messenger scale is not known. The 

scale Ms is chosen to be 50 TeV. At the scale Ms =50 TeV the J..ls-independent parts of Equation 

(13) are added to the initial value of the soft scalar masses. The soft masses are then evolved 

using the RG equations (not including the two-loop contribution) to the scale Me= 1TeV. 

First we discuss the constraints the positivity requirement imply for h =1= tL or tR. In this 

case mJi is renormalised by Mi,o, M~, mJi,o and the initial value of TrYm2 = Dy,o. We find 

mJi (Me) = mLo + (0.243C~ + 0.0168C~ + 0.00156Y?)Mi,0 + CD X 1O-3liDy,0 

. . 2 1 3 2 
-(0.468C~ + .095C~ + .0173Yi )2(n5 + 3nlO) x 10- Ms 

-0.0174(n5 - nlO)li x 10-3 M~ 

-(n5 - nlO) ((-0.00058 + 0.0016(n5 + 3nlO))M~ - .925M1,0) li x 10-3
, (16) 

, where the strongest dependence on (n5, nlO) has been isolated. The coefficient appearing in front 

of Dy,o is CD = -6. The numerical coefficients in Equation (16) also depend on (n5, nlO) and the 

numbers presented in Equation(16) are for (n5, nlO) = (2,0). This sensitivity is, however, only a 

few percent between the four cases under consideration here 8. Requiring positivity of the soft 

scalar masses directly constrains mJi,O/ M~ and Mi,o/ M~. 
The value of Dy,o depends on the spectrum at the supersymmetry breaking scale, and is 

therefore model-dependent. To obtain model-independent constraints from the positivity re­

quirement, we therefore only constrain the combination '1111,0 = mLo + cDliDy,o. Only this 

combination appears in the weak-scale value for the scalar mass of h. The numerical effect is 

. small, since with Dy,o f'J O(mJi,O)' the coefficient of mJi,o is shifted from 1 to f'J 1 - 6. x 1O-3li. 
The positivity requirement in} for h =1= t or tC is given in Figure 1 for different values of 

n5 and nlO. That is, in Figure 1 the minimum value of mfi,O/Ms required to keep the soft 

masses positive at the scale Me is plotted versus M3,0/ Ms. We conclude from these figures that 

the positivity criterion is weakest for n5=2 and nlO=O. This is expected since in this case the 

heavy particle content is the smallest. We note that even in this 'most minimal' scenario the 

negative contribution to the masses are rather large. In particular, we infer from Figure 1 that 

for (n5 = 2, nlO = 0) and Ms f'J 25 TeV, 8m~c ~ -(190 GeV)2 for M3,0 as large as 1 TeV. In 

this case it is·the two-loop contribution from the hypercharge D-term that is responsible for the 

large negative mass squared. In the case (n5, nlO)=(2, 2), we obtain from Figure 1 that for Ms f'J 

25 TeV, 8m~c ~ -(210 GeV)2 and 8m~c ~ -(1.1 TeV)2 for M3,0 as large as 1 TeV. 

We now apply the positivity requirement to the stop sector. In this case it is not possible to 

directly constrain the boundary values of the stops for the following simple reason. There are 

only two positivity constraints, whereas the values of mJ (Me) and mJc (Me) are functions of the 

three soft scalar masses mJ,o' mJc,oand m1Iu,o. To obtain a limit some theoretical assumptions 

8This dependence is included in Figure 1. 
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Figure 1: Limits for mji,o/Ms from the requirement that the mass squareds are positive at the 

weak scale, for low-energy supersymmetry breaking. The regions below the curves are excluded. 

For the case (2,0), the limits for the other squarks are very similar to that for Q and are therefore 

not shown. 

must be made to relate the three initial soft scalar masses. 

The numerical solutions to the RG equations for tan /3=2.2 and (ns, nlO) = (2,0) are 

2 2 1 3 
-0.0303At + 0.00997 AtM3 ° + 0.322M3 ° + CD X - x 10- D yo , , 6 ' 

-0.0399(m~u,o + mfc,o) + 0.960mf,o - 0.000645cL MJ 

2 2 -2 3 
-0.0606At + 0.0199AtM3 ° + 0.296M3 ° + CD X - x 10- D yo , , 3 ' 

0.920mfc,o - 0.0797(m~u,o + mf,o) - 0.000492cR MJ 

2 2 1 3 -0.0909At + 0.0299At M3 ° - 0.0289M3 ° + CD X - x 10- D yo , , 2 ' 

+0.880m~u,o - 0.119(mf,o + mfc,o) + 0.0000719cHMJ. (17) 

The numerical coefficients other than that .of Ms do not vary more than a few percent between 

the different values for (ns, nlO), and thus this dependence is not shown. For Ms, we find that 

(CL,CR,CH) is (1,1,1), (3.62,3.84,4.59), (2.78,3.04,3.92), for (nS,nlO) = (2,0), (2,2) and (0,2), 

respectively. Also, CD = -6. We find from Equations 1 and 2 that to keep m~ fine tuned at less 

than 1 % (~ S 100) in each of the bare parameters, we must have: J-L~ 460 GeV; M3,O~2.3 TeV; 

mfo~1.7 TeV; ms~80 TeV and mlO~50 TeV for (ns, nlO) = (2,2). Finally, for other values of , . 

these parameters the fine tuning increases as 6. = 100 x in2/in5, where ino is the value of in that 

gives 6. = 100. 
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It is possible to show, using the fact that YHu + YQ + Yuc = 0, that the solutions in Equations 

17 are unchanged if we replace m;,o with m;,o = m;,o + CD X 1O-3YiDy,o and set Dy,o = O. In what 

follows then, we will use the posivitity analysis to constrain m;,o for the stops. We note though, 

that the difference between m;,o and m;,o is small, owing to the small coefficient appearing in 

front of Dy,o. In the remainder of this Section the tilde on m;,o will be removed to simplify the 

notation. 

To constrain the initial values of the stop masses we will only consider gauge-mediated su­

persymmetry breaking mass relations. From Equation 17 we see that to naturally break elec­

troweak symmetry a small hierarchy mfi,o > m7-Iu ,o is required. This is naturally provided by 

gauge-mediated boundary conditions 9. The relations between the soft scalar masses when su­

persymmetry breakipg is communicated to the visible sector by gauge messengers are [9] 

(18) 

Substituting these relations into Equations (17) and assuming At,o =0 determines mf(j.tG) and 

mfc(j.tG) as a function of M3,o, M~ and mfc,o. In Figure 2 we have plotted the minimum value of 

mlc,o/M3,o required to maintain both mf(j.tG) ;:::: 0 and mfc(j.tG) ;:::: o. 
Another interesting constraint on these class of models is found if it is assumed that the initial 

masses of all the light fields are related at the supersymmetry breaking scale by some gauge­

mediated supersymmetry breaking (GMSB) mass relations, as in Equation (18). This ensures 

. the degeneracy, as required by the flavour changing constraints, of any light scalars of the first 

two generations. This is required if, for example, one of ns or nlO are zero. Then in our previous 

limits of mj;,o for h i= i or ic, constraints on the initial value of mlc are obtained by relating mji,o 

to mlc,o using Equation (18). In this case the slepton masses provide the strongest constraint and 

they are also shown in Figure 2. This result may be understood from the following considerations. 

The two-loop hypercharge D-term contribution to the soft mass is rv Yi(ns - nlO)ala3M~ and 

this has two interesting consequences. The first is that for ns i= nlO, the resulting om2 is always 

negative for one of eC or L. Thus in this case there is always a constraint on mfc once gauge­

mediated boundary conditions are assumed. That this negative contribution is large is seen 

as follows. The combined tree-level mass and two-loop contribution to the selectron mass is 

approximately m~c,o - kala3M~ where k is a numerical factor. Substituting the gauge-mediated 

relation m~c,o rv aUa~mfc,o' the combined selectron mass is aUa~(mfc,o - k(a3/al)a~M~). Since 

the combined mass of the stop is rv mfc,o-k'a~M~, the limit for mfc,o obtained from the positivity 

requirement for m~c is comparable or larger than the constraint obtained from requiring that 

mfc remains positive. For example, with ns = 2, nlO = 0 and Ms rv 25 TeV, the right-handed 

slepton constraint requires that mic ° rv 1.1 TeV. For nlO=2, ns=O and Ms rv 25 TeV, £3 is , 

9In fact, low-energy gauge-mediated supersymmetry breaking provides "too much" electroweak symmetry 

breaking [29]. 
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Figure 2: Limits for mlc 0/ Ms from the requirement that the stop and slepton mass squared , 
are positive at the weak scale. The regions below the curves are excluded. Low-energy gauge­

mediated supersymmetry breaking mass relations between the light sparticles and tan f3 -:-2.2 

are assumed. 

driven negative and implies that mlc 0 rv 1 Te V. From Figure 2 we find that these results are , 
comparable to the direct constraint on mlc 0 obtained by requiring that colour is not broken. , 

The positivity analysis only constrains ml;,o/Ms for a fixed value of M 3,0/Ms . To directly 

limit the initial scalar masses some additional information is needed. This is provided by the 

measured value of ,6.mK. If some mixing and degeneracy between the first two generation scalars 

is assumed, parameterized by (8LL , 8RR) , a minimum value for Ms is obtained by requiring 

that the supersymmetric contribution to ,6.mK does not exceed the measured value. We use 

the results given in Section 2 to calculate this minimum value. This result together with the 

positivity analysis then determines a minimum value for mlc 0 for a given initial gluino mass , 
M 3,0. The RG analysis is repeated with Jls = M s , rather than Jls=50 TeV. We only present the 

results found by assuming GMSB mass relations between the scalars. These results are shown 

in Figure 3. The mass limits for other Ii are easily obtained from the information provided 

in Figure 1 and Table 2 and are not shown. From Figure 3 we find that for (n5, nlO) = (2,2) 

and M 3,0 less than 2 TeV, mlc,o must be larger than 8 TeV for ..j8LL8RR = 1, and larger than 

1.8 TeV for ..j8LL8RR = .22. This results in ,6.(m~, m~,o) of 2000 and 120, respectively. In this 

case both the squark and select ron limits for mlc 0 are comparable. The limits for other choices , 
for..j8LL8RR are obtained from Figure 3 by a simple scaling, since to a good approximation 

,6.mK rv 8LL8RR /Mj. For the cases (n5,nlO) = (2,0) and (0,2), the corresponding limits are 
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much weaker. In the case (ns, nlO) = (2,0), for example, only for ORR rv 1 does the selectron 

mass limit require that mi,c 0 rv1 TeV. The limits for a smaller value of 0 are not shown. , 
We conclude with some comments about how these results change if C P violation is present 

in these theories with 0(1) phases. Recall from Section 2 that for the same choice of input 

parameters, the limits on the initial stop masses increases by about a factor of 12. This may 

be interpreted in one of two ways. Firstly, this constrains those models that were relatively 

unconstrained by the t:l.mK limit. We concentrate on those models with ns = 2 and nlO = 0, 

since this case is the most weakly constrained by the combined t:l.mK and positivity analysis. 

The conclusions for other models will be qualitatively the same. We find from Figure 3 the limit 

mi,c ,0 > 1 Te V 10 is only true if ORR rv 0 (1). Smaller values of ORR do not require large initial stop 

masses. From the CP violation constraint, however, smaller values for ORR are now constrained. 

For example, if ORR rvO.1 and 0(1) phases are present, then mi,c 0 >1 TeV is required. Secondly, , 
the strong constraint from E could partially or ~ompletely compensate a weakened constraint 

from the positivity analysis. This could occur, for example, if in an actual model the negative 

two-loop contribution to the stop mass squared for the same initial input parameters is smaller 

than the estimate used here. For example, if the estimate of the two-loop contribution in an 

actual model decreases by a factor of rv (12.5)2 and 0(1) phases are present, the limit in this 

case from E for the same 0 is identical to the values presented in Figure 3. 

4 High Scale Supersymmetry Breaking 

In this section, we consider the case in which SUSY breaking is communicated to the MSSM 

fields at a high energy scale, that is taken to be 11 M GUT = 2 X 1016 GeV. In this case, the 

negative contribution of the heavy scalar soft masses to the soft mass squareds of the light 

scalars is enhanced by rv In(MGuT /50 TeV), since the heavy scalar soft masses contribute to the 

RGE from M GUT to mass of the heavy scalars. It is clear that as the scale of SUSY breaking is 

lowered the negative contribution of the heavy scalar soft masses reduces. 

This scenario was investigated in Reference [18], and we briefly discuss the difference between 

that analysis and the results presented here. In the analysis of Reference [18], the authors made 

the conservative choice of neglecting At in the RG evolution. The large value of At can change 

the analysis, and it is included here. We find that for some pattern of initial stop and up-type 

Higgs scalar masses, e.g. universal scalar masses, this effect increases the constraint on the stop 

masses by almost a factor of two. This results in an increase of a factor of 3-4 in the amount of 

fine tuning required to obtain the correct Z mass. Further, in combining the positivity analysis 

lOFor GMSB relations only. The direct constraint on the stop masses is slightly weaker. 
llThis choice for the high scale is done to remain agnostic about any physics appearing between the Grand 

Unification scale and the Planck scale. This also results in a conservative assumption, since the negative two-loop 

contribution is smaller with Msusy = MauT. 
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with the constraints from the llmK analysis, the QCD corrections to the Flavour Changing 

Neutral Current (FCNC) operators has been included, as discussed in Section 2. In the case 

(ns, nlO) = (2,2), this effect alone increases the positivity limit by a factor of rv 2 - 3. The 

combination of these two elements imply that the positivity constraints can be quite severe. 

We proceed as follows. First, we solve the RGEs from MGUT to J-Ls where the heavy scalars 

are decoupled. At this scale, we add the finite parts of the two-loop diagrams. Next, we RG 

scale (without the heavy scalar terms in the RGEs) from J-Ls to J-LG using these new boundary 

conditions. Except where stated otherwise, the scales J-Ls and J-LG are fixed to be 50 Te V and 1 

Te V, respectively. 

For h i i, i e we find, 

2 i i 2 2 mho + (2.84C3 + 0.639C2 + 0.159Yi )M3,o + cDYiDy,o 

. . 2 1 3 2 
-(4.3~C~ + 1.92C~. + 0.622Yi )"2(ns + 3nlO) x 10- MS 

-0.829(ns - nlO)Yi x 10-3 M~ 

+(nS - nlO) (17.2M~,o + (.226 - O.Ol1(ns + 3nlO))M~) Yi x 10-3
. (19) 

These results agree with Reference [18] for the same choice of input parameters. The term pro­

portional to Dy,o, and the terms in the last line result from integrating the one-loop hypercharge 

D-term. In this case CD = -0.051. As in the previous Section, the numerical coefficients in 

Equation(19) depend on (ns, nlO) through the gauge coupling evolution, and the numbers in 

Equation(19) are for (ns, nlO) = (2,0) 12. Requiring the soft masses squared to be positive 

constrains m;,o = m;,o + cDYiDy,o. In Figure 4 we plot the val~es of rnA,o/Ms that determine 

rnA (J-La) = 0 as a function of M3/Ms , for h = ii, Qi' ui, di and ei- We emphasize that the 
results presented in Figure 4 are independent of any further limits that FCNC or fine tuning 

considerations may imply, and are thus useful constraints on any model" building attempts. 

For the stops, the numerical solutions to the RGEs for tan {3 = 2.2 are 

2 2 1 
-0.021At + 0.068AtM3,o + 3.52M3,o + CD 6" Dy,o 

-0.142(m~u,o + mfc,o) + 0.858mf,o - cLO.00613M~ 
2 2 -2 

-0.042At + 0.137 AtM3,o + 2.33M3,o + cDT Dy,o 

-0.283(m~u,o + mf,o) + 0.716mfc,o - cRO.00252M~ 
2 2 1 

-0.063At + 0.206AtM3,o -1.72M3,o + CD "2 Dy,o 

-0.425(mf,o + mfc,o) + 0.574m~u,o + cHO.00193M~ (20) 

where (CL' CR, CH) = (1,1,1), (3.57,4.92,5.15), (2.7,4.16,4.27) for (ns, nlO) = (2,0), (2,2) and 

(0,2), respectively. Also, CD = -0.051. The mixed two-loop contribution to the RG evolution is 

12The numerical results presented in Figure 4 include this dependence. 
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Figure 4: Limits for mli,o for different values of (n5, nlO) from the requirement that the mass 

squareds are positive at the weak scale, assuming a supersymmetry breaking scale of M GUT . The 

regions below the lines are excluded. 

ex: (n5 - nlO) and is not negligible. Thus there is no simple relation between the c's for different 

values of n5 and nlO. From Equations 2 and 1 we find that to keep m1 fine tuned at less than 

1% (~ ::; 100) in each of the bare parameters, we must have: J-l-;;; 460 GeVj M3,o-;;;300 GeVj 

mti ,o-;;;.87 TeVj m5,i-;;;16 TeVj and mlO,i-;;;lO TeV, for (n5, nlO) = (2,2). The fine tuning of the 

Z mass with respect to the heavy scalars is discussed in [17]. Finally, for other values of these 

parameters the fine tuning increases as ~ = 100 x m2 /m~, where mo is the value of m that gives 

~ = 100. 

As in Section 3, we rewrite Equations 20 in terms ofm~,o = m~,o+cDYiDy,o. This is equivalent 

to setting Dy,o = 0 in Equations 20, and relabeling m~,o -+ m~,o. In what follows, we use the 

positivity analysis to constrain m~,o. Since CD is small and Dy,o rv O(m2
), the difference between 

m~ 0 and m~ 0 is small. To simplify the notation, in the remainder of this Section we will also , , 
remove the tilde from m~ o. , 

As was also discussed in Section 3, some relations between m~,o' m~c,o and mk",o are needed 

to obtain a constraint from Equation(20), using mf(J-lG) > 0 and m~c(J-lG) > o. We discuss both 

model-dependent and model-independent constraints on the initial values of the stop masses. The 

outline of the rest of this Section is as follows. First, we assume universal boundary conditions. 

These results are presented in Figure 5. Model-independent constraints are obtained by the 

following. We assume that mku,o = 0 and choose At,o to maximize the value of the stop masses 

at the weak scale. These results are presented in Figure 6. We further argue that these constraints 
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represent minimum constraints as long as mku,o 2 o. To obtain another set of model independent 

constraints, we use the electroweak symmetry breaking relation to eliminate mk",oin favour of 

fJ,. Then we present the positivity limits for different values of [il Ms , where [i2 = fJ,2 + ~m1, 
and assume that mkd,o = 0 to minimize the value of fJ, 13. These limits are model-independent 

and are presented in Figure 7, for the case n5 = nlO = 2. We then combine these analyses with 

the limits on Ms obtained from .6..mK. We conclude with some discussion about the anomalous 

D-term solutions to the flavour problem. 

We first consider universal boundary conditions for the stop and Higgs masses. That is, we 

assume that mf,o = mfc,o = mku,o = rh5· In Figure 5 we plot for tan,8 = 2.2 the minimum value 

of rho I Ms required to maintain mf (fJ,a) > 0 and mfc (fJ,a) > O. This value of tan,8 corresponds to 

At (MauT ) = .88, in the case that (n5, nlO) = (2,0). For comparison, the results gotten assuming 

At = 0 may be found in Reference [18]. For n5 = nlO = 2 we note from Figure 5 that if Ms = 20 

TeV and the gaugino masses are small, the limit on the stop mass is mtc,o ~ 6.2 TeV. This limit 

is weakened to 6 Te V if M3 ,o;{;, 300 Ge V is allowed. Even in this case, this large initial stop mass 

requires a fine tuning that in this case is .6.. rv (6 TeV)2/m1 rv 4200, i.e. a fine tuning of ;{;'10-3 

is needed to obtain the correct Z mass. 

We now assume mku,o = 0 and choose the initial value of At,o to maximize the value of 

mf/fJ,a). The values of mf,o and mfc,o are chosen such that mf(fJ,a) > 0 and mfc(fJ,a) > O. We 

note that in this case the constraint is weaker because the At contribution to the RG evolution 

of the stop masses is less negative. These results are plotted in Figure 6. 

We discuss this case in some more detail and argue that the minimum value of mti,o obtained 

in this way will be valid for all mku ~ 0 and all At,o. Eliminate the At,o term by choosing 

At,o = kM3,o such that the At contributions to mf
i 
(fJ,a) is maximized. Other choices for At,o 

require larger values for mLo to maintain mf
i 
(fJ,a) = O. The value of k is determined by the 

following. A general expression for the value of the soft masses of the stops at the weak scale is 
-

mf(fJ,a) = -aA~,o + bAt,oM3,o + cM;,o +"', 

mfc(fJ,a) = -2aA~,o + 2bAt,oM3,o + dMi,o +"', 

(21) 

(22) 

with a, c and d positive. The maximum value of mf
i 
(fJ,a) is obtained by choosing At,o = bM3,o/2a. 

The value of the stops masses at this choice of At,o are 

2( b
2 

2 mt fJ,a) = (c + 4a)M3,o + .. " (23) 

2 ( ( b
2

) 2 mt-c fJ,a) = d + 2- M30 + .... 
4a ' 

(24) 

An inspection of Equation 20 gives b = 0.068 and a = 0.021 for tan,8 = 2.2. In this case the 

'best' value for At,o is Af,o rv 1.6M3,o. It then follows that the quantity b2/4a = 0.055 is a small 

13Strictly speaking, this last assumption is unnecessary. Only the combination {.tk == {.t2 -mkd,o/ tan2 f3 appears 

in our analysis. Thus for mkd,o f: 0 our results are unchanged if the replacement {.t ---+ {.tH is made. 
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correction to the coefficient of the gaugino contribution in Equation 20. Thus the difference 

between the minimum initial stop masses for At,o = 0 and At,o= Af,o is small. Next assume that 

m1-
u

,o = o. Requiring that both mt(flG) = 0 and mtc (flG) = 0 determines a minimum value for 

m~,o and m~c,o· Now since the m1-
u

,o contribution to both the stop soft masses is negative (see 

Equation 20), the minimum values for mLo found by the preceeding procedure are also minimum 

values if we now allow any m1-
u

,o > o. 
We conclude that for all At,o and all m1-

u
,o 2': 0, the limits presented in Figure 6 represent 

lower limits on the initial stop masses if we require that the soft masses remain positive at the 

weak scale. Further, the limits in this case are quite strong. For example, from Figure 6 we 

find that if Ms rv 20 TeV and M3,o rv 200 GeV (so that M3,o/Ms rv10-2), then the initial stop 

masses must be greater than 3.5 TeV in the case that (n5' nlO) = (2,2) The results are stronger 

in a more realistic scenario, i.e. m1-",o > O. If, for example, m1-u,o rv m~c,o/9 the constraints 

are larger by only a few percent. In the case that m1-
u

,o = m~c,~ = m~,o' presented in Figure 5, 

however, the constraint on the initial ic mass increases by almost a factor of two. 

To obtain constraints on the initial stop masses we have thus far had to assume some relation 

between m1-u,o and m~c,o; e.g., m1-
u

,o = 0 or m1-u,o = m~c,o. Perhaps a better approach is to use 

the EW8B relation, Equation (2), to eliminate m1-
u

,o in favour of fl2. This has the advantage 

of being model-independent. It is also a useful reorganization of independent parameters since 

the amount of fine tuning required to obtain the correct Z mass increases as fl is increased. To 

obtain some limits we choose m1-
d

,o = 0 14 to minimize the value of fl2, and require that m1-
u

,o is 

positive. The minimum value of mic,o/Ms and mi,o/Ms for different choices of P/Ms are gotten 

by solving m~c(flG) = 0 and m~(flG) = o. These results are presented in Figure 7. In this Figure 

the positivity constraints terminate at that value of M3,o which gives m1-
u

,o = o. 
As discussed in the above, reducing the value of m1-

u
,o decreases the positivity limit on mii,o. 

Consequently the fine tuning of m~ with respect to mLo is also reduced. But using Equations 

20 and 2, it can be seen that decreasing mku,o while keeping mtc(flG) = 0 and m~(f-£G) = 0 

results in a larger fl, thus increasing the fine tuning with respect to fl. This can also be seen 

from Figure 7. We find, for example, that if M3,o/ Ms rv 0.01, the small value P/ Ms = 0.01 

requires mii,O/Ms rv .25. For Ms = 10 TeV, this corresponds to fl rv 100 GeV and mii,o 2': 
2.5 TeV. A further inspection of Figure 7 shows that for the same value of M3,o/Ms , a value of 

mf,o/Ms = 0.17 is allowed (gotten by decreasing m1-
u

,o) only if P/Ms is increased to .14. This 

corresponds to fl = 1.4 TeV for Ms = 10 TeV; this implies that ~(m~; fl) rv 930. We find that 

the limit on the initial stop masses can only be decreased at the expense of increasing fl. 

Finally, the limits become weaker if m1-",o < O. This possibility is theoretically unattractive 

on two accounts. Firstly, a nice feature of supersymmetric extensions to the 8M is that the 

dynamics of the model, through the presence of the large top quark Yukawa coupling, naturally 

leads to the breaking of the electroweak symmetry[4]. This is lost if electroweak symmetry 

14This assumption is unnecessary. See the previous footnote. 
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Figure 5: Limits for mol Ms from the requirement that the stop mass squareds are positive at 

the weak scale, for tan f3 = 2.2, At,o = 0 and assuming universal scalar masses at MGUT for the 

stop and Higgs scalars. The regions below the curves are excluded. 

breaking is already present at the tree-level. Secondly, the fine tuning required to obtain the 

correct Z mass is increased. From Figure 7 we infer that while reducing mk",o below zero does 

reduce the limit on the initial stop masses, the value of fJ, increases beyond the values quoted in 

the previous paragraph, thus further increasing the fine tuning of the Z mass. This scenario is 

not discussed any further. 

We now combine the positivity analysis of this Section with the results of Section 2 to place 

lpwer limits on the soft scalar masses. For given values of 6LL, 6RR, a minimum value of Ms , 

MS,min, is found using the results of Section 2. This is combined with the positivity analysis 

in Figure 6, to produce the results shown in Figure 8. We also show other limits gotten by 

assuming mkv.,o = mfc,o· These results, are presented in Figure 9. In Figure 10 we also present 

the stop mass limits for different values of fJ" and restrict to mk",o ~ 0 and ..j6LL6RR· 0.04. In 

all cases the heavy scalars were decoupled at MS,min, rather than 50 TeV, and so the positivity 

analysis was repeated. The value of At ° was chosen to maximize the value of the stop masses , 
at the weak scale. For completeness, the results for the cases (n5, nlO) = (2,0) and (0,2) and 

mk""o = 0 are presented in Figure 11. We repeat that the minimum allowable values for the stop 

masses consistent with mk",o > 0, gotten by setting mk",o = 0, are given in Figures 8 and 11. 
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Figure 6: Limits for mi,O/ Ms, mic,O/ Ms , from the requirement that the stop mass squareds are 

positive at the weak scale, for Msusy = MauT' tan {3 = 2.2 and assuming that mku,o = O. The 

value of At ° is chosen to maximize the value of the stop soft masses at the weak scale. The , 

regions below the curves are excluded. 
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Figure 7: Limits for mt,o/Ms , mtc,o/Ms , from the requirement that the stop mass squareds are 

positive at the weak scale, for (ns, nlO) = (2,2), Msusy = MGUT , tan f3 = 2.2, and different 

values of [1,/ Ms. The contours end at that value of M3,o/ Ms that gives mHu,O/ Ms = O. The 

value of At,o is chosen to maximize the value of the stop soft masses at the weak scale. The 

regions below the lines are excluded. 
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Figure 8: Limits for mi,o and mic,o, mec, aIid mL from the requirement that the mass squareds 

are positive at the weak scale while suppressing !:l.mK' It was assumed that Msusy = MauT' 
tan,B = 2.2 and that m~1L'O = O. The value of At,o was chosen to maximize the value of the stop 

soft masses at the weak scale. The heavy scalars were decoupled at the minimum value allowed 

by !:l.mK. The regions below the lines are excluded. 

We next briefly discuss some consequences of this numerical analysis. We concentrate on the 

case ns = nlO = 2, since this is the relevant case to consider if the supersymmetric flavour problem 

is explained by decoupling the heavy scalars. Other choices for ns and nlO requires additional 

physics to explain the required degeneracy or alignment of any light non-third generation scalars. 

From Figures 8 and 9 we find that for J6LL6RR = 0.22 and M3,o ::; 1 TeV, mi
i
,O;:;7 TeV is 

required. If instead we restrict both !:l.(m~; M§) and !:l.(m~; M3,o) to be less than 100, then we 

must have Ms;:; 10 TeV and M3,o;:; 300 GeV. To not be excluded by !:l.mK, we further require 

that J8LL8RR;:;.06. For this value of J6LL6RR = 0.06, a minimum value for mE ° of rvl.5-2.5 , 
TeV is gotten by rescaling the results in Figures 8 and 9 for J6LL6RR = 0.04 by an amount 

0.06/0.04. The range depends on the value of m~1L'O' with the lower (upper) limit corresponding 

to m~1L'O = 0 (m~c,o)' Thus !:l.(m~; mLo) rv 400 - 800. This fine tuning can be reduced only 
by either increasing M3,o-which increases !:l.(m~, M3,o) beyond 100-or by reducing Ms- which 

requires a smaller value for J8LL6RR. We conclude that unless J8RR6LL is naturally small, 

decoupling the heavy scalars does not provide a natural solution to the flavour problem. 
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Figure 9: Limits for mt: ° and mt:c ° from the requirement that the stop mass squareds are positive , , 
at the weak scale while suppressing D.mK' It was assumed that Msusy = MGUT, tan,B = 2.2 

and that m1£",o = m;c,o' The value of At,o was chosen to maximize the value of the stop soft 

masses at the weak scale. The heavy scalars were decoupled at the minimum value allowed by 

D.mK. The regions below the lines are excluded. 
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Figure 10: Limits for mlo and mlc ° from the requirement that the stop mass squareds are , , 
positive at the weak scale while suppressing t1mK, for (ns, nlO) = (2,2), VOLLORR = 0.04, and 

different values of p,. The contours terminate a~ m'k",o = O. It was assumed that Msusy = MCUT 

and tan {3 = 2.2. The value of At,o was chosen to maximize the value of the stop soft masses at 

the weak scale. The heavy scalars were decoupled at t~e minimum value allowed by t1mK' The 

regions below the lines are excluded. 
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Figure 11: Limits for mio, mic ° from the requirement that the stop mass squareds are positive , , 

at the weak scale while suppressing tlmK' for the cases (n5, nlO) = (2,0) and (0,2). It was 

assumed that Msusy = MCUT' tan,8 = 2.2 and that m~u,o = O. The value of At,o was chosen to 

maximize the value of the stop soft masses at the weak scale. The heavy scalars were decoupled 

at the minimum value allowed by tlmK. The regions below the lines are excluded. 

28 



To conclude this Section we discuss the constraint this analysis implies for those models which 

generate a split mass spectrum between different generations through the D-term contributions 

of the anomalous U (1) gauge symmetry[12, 16, 15]. In the model of set D of [15], there are two 5s 

at 7 TeV and 6.1 TeV and two lOs at 6.1 and 4.9 TeV, respectively, so that llmK is suppressed. 

These values must be increased by a factor of 2.5 to correct for the QCD enhancement of the 

SUSY contribution to llmK' as discussed in Section 2. To obtain a conservative bound on the 

initial stop masses from the positivity requirement, we first assume that all the heavy scalars 

have a common mass Ms = 2.5 x 5TeV= 12.5 TeV. (It would have been 5 TeV without the QCD 

correction~) Then assuming a weak scale value of the gluino mass that is less than 710 Ge V 

and setting mku,o = 0 (m~c,o), we find from Figure 6 (5) that ml,o ~ 2.1 (3.6) TeV is required. 

This leads to ll(m~;m~o) ~ 580 (1700). To obtain a better bound, we repeat our analysis using , 
n5m~+3nlOm~O = ((7 TeV)2+(6.1 TeV)2+3 x (6.1 TeV)2+3 x (4.9 TeV)2) x (2.5)2. It is possible 

to do this since only this combination appears in the RG analysis for (n5, nlO) = (2,2). We find 

(assuming mku,o = 0 and the gluino mass at the weak scale is less than 710 GeV) that ml,o ~ 2.4 

TeV. In the model of [16], 6RR ~ 6LL ~ 0.01. To obtain a limit on the initial stop masses, we 

use the bound obtained from either Figures 8 or 9 for 6RR = 6LL ~ 0.04, and divide the limit by 

a factor of 4. By inspecting these Figures we find that this model is only weakly constrained, 

even if mku,o rv m~,o' We now discuss the limits in this model when 0(1) CP violating phases 

are present. To obtain the minimum value of Ms in this case, we should multiply the minimum 

value of Ms obtained from the llmK constraint for 6LL = 6RR = 0.04 by 12.5/4; dividing by 4 

gives the result for 6LL = 6RR = 0.01, and multiplying by 12.5 gives the constraint on Ms from 

t. The result is Ms~ 23 TeV. Next, we assume that M3,o is less than 300 GeV, so that the value 

of the gluino mass at the weak scale is less than 710 GeV. This gives M3,o/Ms :S 0.013. Using 

these values of M3,o and Ms , an inspection of Figures 5 and 6 implies that ml,o must be larger 

than 3.9 TeV to' 6.9 TeV, depending on the value of mku,o' This gives .D.(m~; mr,o) ~ 2000. In 

the model of [12], M3,o/Ms ~ 0.01 and mj,o/Ms ~ 0.1. Inspecting Figures 5 and 6 we find 

that these values are excluded for (n5' nlO) = (2,2) and (0,2). The case (2,0) is marginally 

allowed. The model of [12] with (n5, nlO) = (2,2) and At = 0 was also excluded by the analysis 

of Reference [18]. 

5 Using Finetuning to Constrain 8 

In this section, we vary the messenger scale, Msusy , between the GUT scale and a low scale rv 

50 TeV, and restrict the boundary values ofthe stop and gluino masses so that EWSB is not fine 

tuned. This gives us an upper limit to 6 if we require both positivity of the stop mass squareds at 

the weak scale and suppression of llmK' In other words, we determine the values for (6, Msusy) 

which are allowed by the following requirements: 1. Suppression of the SUSY contribution to 

llmK by making the mass of the first two generation scalars, Ms , large. 2. Positivity of the 
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stop mass squareds and 3. Fine tuning in electroweak symmetry breaking does not exceed 1% 

or 10% (i.e., both .6.(m~, mi,o) and .6.(m~, M3,o) are smaller than either 100 or 10). 

An upper limit to 0 satisfying the above requirements is obtained as follows. For a given 

Msusy we compute, using Equations 1 and 2, the boundary values of the stop mass, m£ max' , 
and the gluino mass, M3,max, such that both .6.(m~, m~,o) and .6.(m~, M3,o) are equal to some 

maximum value .6.max which is chosen to be 100 or 10. 15 Substituting these values of the bare 

stop16 and gluino masses into the expression for the weak-scale value of the stop mass squared, 

we determine the maximum value of Ms , MS,max, such that the stop mass squareds at the weak 

scale are positive. Using this value for Ms and the analysis described in Section 2.1, an upper 

value to 0 is gotten from the .6.mK constraint. This value of 0 and Msusy then satisfies the 

above-mentioned three requirements. This can be seen as follows. For the given Msusy , if 0 is 

larger than this limit, then to suppress .6.mK, Ms has to be larger than Ms,max. But, then to 

keep the stop mass squareds positive at the weak scale, the boundary value of either the stop or 

the gluino mass has to increase beyond mi,max or M3,max respectively, leading to .6.(m~, mi,o) or 

.6.(m~, M3,o) larger than .6.max , i.e., increasing the fine tuning in EWSB. 

We show the limits on ..jOLLORR as a function of Msusy for the case (n5 = 2, nlO = 2) 

in Figures 12. In the top of Figure 12, m1-u,o = 0 is assumed. GMSB relations between the 

stop and Higgs masses are assumed in the bottom of Figure 12. For both cases, .6.max = 100, 

tan,8 = 2.2 and 10 are considered. For other choices for .6.max , the upper limit to 0 roughly 

scales as V.6.max /100, since both ml,max, M3 ,max and therefore Ms,max scale as ..j .6.max . 
In the case of G MSB mass relations, the boundary value of the Higgs mass and the stop 

masses are comparable for high Msusy. Since m1-u,o results in a negative contributon to the 

stop mass squared, this tends to reduce the stop mass squared at the weak scale as compared 

to the case m1-u,o = o. Then, from the above analysis, we can see that Ms,max and, in turn, the 

limit on 0 is smaller for the GMSB case as compared to the case m1-u,o = O. This can be seen 

15In computing the A's, tan (3, in addition to mku (mz), should be regarded as a function of the bare parameters. 

However, this additional contribution to the A's is small for tan{3 ~ 2 and also makes the magnitude of A larger. 

We neglect this dependence which is a conservative choice. 
16Strictly speaking, we should translate the upper bound on m~.,o into an upper bound on mto using m~.,o = 

m~.,o +CD ¥t. Dy,o + ¥t. (D, i. e., to that combination appearing in the positivity constraint. Instead, we use the same 

bound for both m~.,o and m~.,o. This is reasonable, since CD is generally small (~0.05), and Dy,o ....., 0(m2
). In any 

case, this effect is in the opposite direction for t and tc. In the case that (D =I- 0, a slightly larger (0(30%» value 

for 8 may be allowed as compared to (D = O. This is because if (D < 0, the maximum value for m~c,o is larger than 

mt~ . This, in turn, allows for a larger value of Ms, and hence 8. Naturalness considerations limit I(DI, though. 
,max 

The EWSB relation for m~, Equation 2, contains a term linear in (D. Requiring that A(m~, (D) < 100 implies 

that I(DI;:;;;(D,max == (900 GeV)2. Thus for a high scale of supersymmetry breaking, the upper bound on m~c,o 

may be increased to mt~c 0 ....., mt~ + -32 (D,max ....., -35mt~ , while maintaining A(m~, mt~C 0) = A(m~, (D) = 100. , ,max ,max I 

This roughly translates into an increase of ....., .j5f3 = 1.3 in the limit to 8. The actual limit will be smaller, 

since with this choice of sign for (D, the positivity constraint for the left-handed stop is now stronger. It is thus 

reasonable to require that the maximum value of m2
t-. 0 be comparable to mt~. . 

1., 1,max 
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by comparing the top and bottom of Figure 12. 

In Figure 13 the limits on ORR and OLL for (ns = 2, nlO = 0) and (ns = 0, nlO = 2) are shown, 

respectively. We assume m~u,o = 0 and consider tan,8 = 2.2 and 10. If we choose D.max to 

be 100, then we get a constraint on 0 (0 ~ 0.5) only for high values of Msusy. So, we choose 

instead D.max to be 10. 

We have checked that, for tan f3 = 10, the limits on the boundary value of the stop mass 

from requring positivity of the mass squared at the weak scale do not differ by more than a few 

percent from the case tan,8 = 2.2 (for the same values of the gluino and heavy scalar masses). 

However, the fine tuning of EWSB for the same gluino and stop mass is smaller for tan f3 = 10 

as compared to tan f3 = 2.2. This is because, for tan f3 = 10, At is smaller than in the case 

tan,8 = 2.2. Hence the sensitivity of the weak scale value of m~u to m~,o and M3,o is smaller. 

Also, the tan2 f3/(tan2 ,8 - 1) factor in Equation 2 is smaller, further reducing the sensitivity 

of m~ to m~,o and M3,o. In other words, for tanf3 = 10, ml,max and M3,max are larger so that 

Ms,max and, in turn, the limit on 0 is larger. This can be seen in Figures 12 and 13. 

6 Conclusions 

In this paper we have studied whether the SUSY flavor problem can be solved by making 

the scalars of the first and second generations heavy, with masses Ms (~few TeV) , without 

destabilising the weak scale. If the scale, Msusy , at which SUSY breaking is mediated to the 

SM scalars is close to the GUT scale, then the heavy scalars drive the light scalar (in particular 

the stop) mass squareds negative through two-loop RG evolution. In order to keep the mass 

squareds at the weak scale positive, the initial value of the stop (and other light scalar) soft 

masses, mii,o, must typically be ~ 1 TeV, leading to fine tuning in EWSB. We included two new 

effects in this analysis: the effect of At in the RGEs which makes the stop mass squareds at the 

weak scale more negative and hence makes the constraint on the initial value stronger, and the 

QeD corrections to the SUSY box diagrams which contribute to K - K mixing. 

Some results of our analysis for Msusy = MGUT can be summarized as follows. We restrict 

the gluino mass (at the weak scale) to be less than about 710 GeV, so that the fine tuning of m~ 

with respect to the bare gluino mass, M3,o, is not worse than 1%. This requires that M3,O~300 

GeV. We also assume that m~u,o = 0 to maximize the value of the stop masses at the weak 

scale. We find that if JOL~ORR = 0.22 then Ms ;:::: 40 TeV is required to be consistent with 

D.mK. With these assumptions, this implies that for M3,o less than 1 TeV, mli,o > 6.5 TeV is 

needed to not break colour and charge at the weak scale. Even for JOLLORR = 0.04, we find 

that we need Ms ~ 7 TeV. This implies that ml,o > 1 TeV is required if M3,o :::; 300 GeV. This 

results in a fine tuning of rv 1%. For OLL = 1 and ORR = 0, we find that Ms ~ 30 TeV and 

mlo > 4.5 TeV. For OLL = 0.22 and ORR = 0, we find that Ms ~ 7 TeV and mlo > 1 TeV. For , , 
OLL = 0 and ORR = 1, we find that Ms ~ 30 TeV and mlc ° > 2.5 TeV. The constraints are , 
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Figure 12: Maximum value for (OLLORR)1/2 that is consistent with ~(m~, M 3,0) < 100, 

~(m~, mz 0) < 100 and (~mK )SUSY < (~mK )exp- Two boundary conditions are considered: , 
mt-u,o = 0 (top) and gauge-mediated relations (bottom). Two values for tan,8 are considered. 

The value of At,o was chosen to maximize the value of the stop masses at the weak scale. 
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Figure 13: Maximum value for OLL, ORR that is consistent with ~(m~, M 3,o) < 10, ~(m~, mf,o) < 
10 and (~mK )SUSY < (~mK )exp. It was assumed that mk",o = o. Two values for tan (3 are 

considered. The value of At,o was chosen to maximize the value of the stop masses at the weak 

scale. 
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weaker for smaller values of 8. In a,realistic model, m1-
u

,o might be comparable to mfo and the , 
constraints on m£ ° in this case are stronger. This is also discussed. We note that independent , 
of the constraint from K - K mixing, our analysis can be used to check the phenomenological 

viability of any model that has heavy scalars. We also discuss the phenomenological viability of 

the anomalous D-term solution, and find it to be problematic. 

We then considered the possibility that Msusy = Ms. In this case, there is no RG log 

enhancement of the negative contribution of the heavy scalar masses to the light scalar masses. 

For this case, we computed the finite parts of the two-loop diagrams and used these results as 

estimates of the two-loop contribution of the heavy scalars to the light scalar soft mass squareds. 

We then combined these results with the constraints from K - K mixing to obtain lower limits on 

the boundary values of the stops. As an example, we assumed gauge mediated SUSY breaking 

boundary conditions for the light scalars. If n5 1= nlO then one of the select ron masses, rather 

than the stop masses, provides the stronger constraint on mf ° once gauge-mediated boundary 
" 

conditions are used to relate mec,o and mL,o to m£;,o' Some of our results can be summarized as 

follows. We restrict the gluino mass at the weak scale to be less than about 2.3 TeV, again to 

avoid more than 1% fine tuning of m~ with respect to the gluino mass. For ..j8LL8RR = .22 we 

find that m£;,o ~ 1.4 TeV is required. The fine tuning of m~ with respect to the stop mass is 

"" 1.5% in this case. For the cases 8LL = 0 and 8RR = 1, and 8LL = 1 and 8RR = 0 we find that 

m£,o ~ 1 TeV. As before, the constraints on m£,o for smaller values of 8 are weaker than"" 1 TeV. 

Again, we emphasize that the constraints in an actual model of this low-energy supersymmetry 

breaking scenario could be different, and our results should be treated as estimates only. We 

also briefly discuss the C P violating constraints from f, and find that these limits increase by a 

factor of"" 12 if 0(1) phases are present. 

Finally, in Section 5 the scale of supersymmetry breaking is' varied between 50 Te V and 

2 x 1016 GeV. Uppers bounds to 8, that are consistent with positivity of the light scalar masses, 

naturalness in electroweak symmetry breaking, and (~mK )exp, are obtained. These results are 

summarized in Figures 12 and 13. 
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8 Appendix: Two-loop calculation 

In this Appendix we discuss the two-loop contribution of the heavy scalar soft masses to the 

light scalar soft masses. These contributions can be divided into two classes. In the first class, 

a vev for the hypercharge D-term is generated at two-loops. The Feynman diagrams for these 

contributions are given in Figure 14 and are clearly rv alai. These diagrams are computed in 

a later portion of this Appendix. In the other class, the two-loop diagrams are rv a;' These 

have been computed by Poppitz and Trivedi[30]. So, we will not give details of this computation 

which can be found in their paper. However, our result for the finite parts of these diagrams 

differs slightly from theirs and we discuss the reason for the discrepancy. When one regulates 

the theory using dimensional reduction [25, 26] (compactifying to D < 4 dimensions), the vector 
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field decomposes into a D-dimensional vector and 4 - D scalars, called E-scalars, in the adjoint 

representation of the gauge group. Thus the number of Bose and Fermi degrees of freedom in 

the vector multiplet remain equal. The E-scalars receive, at one-loop, a divergent contribution 

to their mass, proportional to the supertrace of the mass matrix of the matter fields. Neglecting 

the fermion masses, this contribution is 

om; = -~(~ + In47r - I')(n5 + 3nlO)M~. 
47r E 

(25) 

In our notation D = 4 - E. Poppitz and 'Ifivedi choose the counterterm to cancel this divergence 

in the M S scheme, i. e., the counterterm consists only of the divergent part, proportional to 1/ Eo 

When this counterterm is inserted in a one-loop E-scalar graph with 8M fields (scalars) as the 

external lines , one obtains a divergent contribution to the 8M scalar soft masses (the 1/ E of the 

counterterm is cancelled after summing over the E adjoint scalars running in the loop). Poppitz 

and 'Ifivedi use a cut-off, Auv, to regulate this graph, giving a contribution from this graph that 

is: 
2 ~ i 1 (aA)2 2 2 m i = - L...,,(n5 + 3nlO)CA- -- MslnAuv 

A 16 7r 
(26) 

with no finite part. We, on the other hand, choose the E-scalar mass counterterm in the M S 
scheme, i.e., proportional to 2/E - I' + In47r (where I' ~ 0.58 is the Euler constant) and use 

dimensional reduction to regulate the graph with the insertion of the counterterm. This gives a 

contribution 

m~ 
~ 

~ i 1 (l:¥A)2 2(2 )2 - L...,,(n5 + 3nlO)C A- -- Ms - - I' + In47r E 
A 16 7r E 

~ i 1 (l:¥A)2 2( / ) = - L...,,(n5 + 3nlO)C A - - Ms 2 E - 21' + 21n47r . 
A 8 7r 

(27) 

In the first line the first factor of (2/E - I' + In47r) is from the counter-term insertion, the second 

factor is the result of the loop integral, and the over-all factor of E counts the number of E-scalars 

running in the loop. In the MS scheme, i.e., after subtracting 2/E - I' + In47r, we are left with 

a finite part17 proportional to -I' + In47r. The remaining diagrams together give a finite result 

and we agree with Poppitz and 'Ifivedi on this computation. Our result for the finite part of the 

two-loop diagrams (neglecting the fermion masses) is 

m;,Jinite(/l) = -~ (In(47r) - I' + ~2 - 2 -In (~!) ) 
x ~ (aA;I')) 2 (ns + 3nlO)c;.M~ (28) 

whereas the Poppitz-'Ifivedi result does not have the In( 47r) - I' in the above result. The com­

putation of the two-loop hypercharge D-term, which gives contribution to the soft scalar mass 

17The same finite part is obtained in the MS scheme,regulated with DR' . 
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Figure 14: Mixed two-loop corrections to the scalar mass. Wavy lines, wavy lines with a straight 

line through them, solid lines, and dashed lines denote gauge boson, gaugino, fermion and scalar 

propagators, respectively. The double-line denotes the hypercharge D-term propagator. 

squareds proportional to alas and ala2 (i.e., the "mixed" two-loop contributon) is discussed 

below in detail. 

Two-loop hypercharge D-term 

We compute the two-loop diagrams of Figure 14 in the Feynman gauge and set all fermion 

and gaugino masses to zero. It is convienent to calculate in this gauge because both the scalar 

self-energy and the Dy-term vertex corrections are finite at one-loop and thus require no counter­

terms. We have also computed the two-loop diagrams in the Landau gauge and have found that 

it agrees with the calculation in the Feynman gauge. The calculation in the Landau gauge 

requires counter-terms, is more involved, and hence the discussion is not included. Finally, 

in the calculation a global SU(5) symmetry is assumed so that a hypercharge D-term is not 

generated at one-loop [17, 13]. 

The sum of the four Feynman diagrams in Figure 14 is given in the Feynman gauge by 

(29) 

where the trace is over the gauge and flavour states of the particles in the loops. If the particles 

in the loop form complete 5 and 10 representations with a common mass M s , the sum simplifies 

to 
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The functions II, hand 13 are 

II (m2
) / 

dD P / dD k 1 (2p - k)2 1 
(21f)D (21f)D (p2 - m2)2 k2 (p - k)2 - m2' 

(31) 

12 (m2) / 
dD p / dD k 1 k2 - k . p 1 

(21f)D (21f)D(p2_ m2)2 k2 (p-k)2' 
(32) 

13 (m2
) 

/ 
dDk 1 / dDq 1 

(21f)D (k2 - m2)2 (21f)D q2 - m2· 
(33) 

We now compute these functions. 

Evaluating II 
After a Feynman parameterization and performing a change of variables, II = J1 + J2 , where 

(34) 

and 

(35) 

After some algebra we find that 

2) r(3 - D) ( 2)D-3 2D ( / / ) ( ) 
J1(m = (41f)D m D/2_1 B 2-D 2,3-D 2, 36 

J2(m2) = r~~~~) (m2)D-3x (4B(3-D/2, 2-D/2)-4B(2-D/2, 2-D/2)+B(1-D/2, 2-D/2)), 

(37) 

where B(p, q) = r[p]r(ql/r(p + q] is the usual Beta function . 

. Combining these two results gives 

I (m2) = r(3 - D) (m2)D-3 1 - D B(3 - D/2 2 - D/2) 
1 (41f)D D-2 ' . 

Evaluating 12 

_ / dD P / dD k 1 k2 - k . p 1 
(21f)D (21f)D (p2 - m2)2 k2 (p - k)2 

(4~)Dr(3 - D)(m2)D-3 B(D/2, 1- D/2). 

Evaluating 13 

/ 
dDk 1 / dDq 1 

(21f)D (P - m2)2 (21f)D q2 - m 2 

_ ( i r(2 _ D /2)(m2)D/2-2) ( i r(2 - D /2) (m2)D/2-1) 
(41f)D/2 (41f)D/2 D/2 - 1 

__ 1_(r(2 _ D/2))2 1 (m2)D-3. 
(41f)D D/2 - 1 
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We may now combine II, 12 and 13 to obtain 

4Il(m2
) - 4I2(m2) + 13 (m2

) 

(7:;~;3 x (4 (~-_~B(3 - D/2, 2 - D/2) - B(D/2, 1- D/2)) r(3 - D) 

- D/ 1 r(2 - D/2)2). 
2-1 

Writing D = 4 - t and expanding in t gives 

In the MS scheme the combination 2/t + In(41f) - ry is subtracted out. The finite piece that 

remains is 

(16~2)2 (6 - ~1f2 + 2(ln(41f) - ry) - 41nm2) m 2
• 

Thus in the M S scheme 
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(40) 

(41) 
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