
LBNL·41343 

ERNEST ORLANDO LAWRENCE 
NATIONAL LABORATORY 

I 

BERKELEY 

Steady-State Solution-Adaptive Euler 
Computations on Structured Grids 

Scott A. Dudek and Philip Colella 

Computing Sciences Directorate 

January 1998 



DISCLAIMER. 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBNL-41343 

STEADY-STATE SOLUTION-ADAPTIVE 
EULER COMPUTATIONS ON STRUCTURED GRIDS 

*Scott A. Dudek, and **Philip Colella 

*Numerical Modeling Section 
McDermott Technology, Inc. 

Alliance, OR 

and 

** Applied Numerical Algorithms Group 
Lawrence Berkeley National Laboratory 

Berkeley, Ca 

January 1998 

This work was supported by the Office of Energy Research, Office of Computational and Technology Research, 
Mathematical, Information, and Computational Sciences Division, of the U.S. Department of Energy under Contract 
No. DE-AC03-76SFOOO98. 



AIAA-98-0543 

STEADY-STATE SOLUTION-ADAPTIVE 
EULER COMPUTATIONS ON STRUCTURED GRIDS 

Scott A. Dudek
Numerical Modeling Section 
McDermott Technology, Inc. 

Alliance, OR 

and 

Phillip Colellat 

Applied Numerical Algorithms Group 
Lawrence Berkeley National Laboratory 

Berkeley, CA 

Abstract 
A local solution-adaptive mesh refinement algo

rithm is used to produce steady-state flow results on 
structured grids for the two-dimensional Euler equa
tions. The solution is marched to steady state using 
an explicit, cell-centered, second-order unsplit multidi
mensional upwind method. Convergence is accelerated 
by local time stepping and a multigrid method. The 
flexibility and efficiency of the algorithm are shown by 
presenting three test cases, a variety of subsonic and 
transonic internal and external flows. 

Introduction 
An algorithm has been developed to compute 

steady-state solutions to the Euler equations using a 
multidimensional upwind method and local solution
adaptive mesh refinement on structured grids. 

The second-order unsplit multidimensional upwind 
method of Colella [1], as modified by Dudek and 
Colella for steady-state flows [2], is used to calculate 
the convective fluxes of the Euler equations. This 
method has been used in many contexts [3, 4, 5, 6], 
so it is well-tested and robust. 

The adaptive mesh refinement (AMR) algorithm 
allows computational resources to be utilized effi
ciently by placing refined grids only in areas in which 
they are needed. Thus, excess computations and mem
ory are not wasted. In addition, the AMR algorithm 
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gives great flexibility in problem solving, since it is not 
necessary to know beforehand where resolution will 
be needed. For instance, refinement around shocks is 
handled automatically, and the shock locations do not 
need to be known a priori. Thus, a simple base grid 
can be created and the AMR algorithm will ensure 
proper refinement where necessary. Since the grids are 
structured, the data structures are simply ordered, and 
optimization is straightforward, particularly on vector 
machines. 

The local adaptive mesh refinement method devel
oped by Berger and Oliger [7] uses a sequence of nested 
levels of refined structured grids. After a solution is 
computed on the hierarchy of meshes, an error esti
mate is calculated, and blocks of cells where this error 
is high are refined locally in an efficient manner to pro
duce a new hierarchy of levels. The solution is then 
computed on this new hierarchy and the process con
tinues. Originally developed in the context of hyper
bolic conservation laws in two-dimensions [3, 7], the 
algorithm has been extended to three dimensions [8], 
viscous two-dimensional flows on mapped grids [4], and 
incompressible flows [5]. 

There is extensive infrastructure for and experi
ence with adaptive mesh refinement in conjunction 
with multidimensional upwind methods. In fact, a 
C++ library of functions which are used in adaptive 
finite difference calculations has been developed and is 
widely used [4, 9]. The motivation for this research is 
to take this well-established multidimensional upwind 
method and adaptive mesh refinement machinery and 
to combine them into an algorithm which can produce 
efficient and accurate steady-state solutions on struc-



tured grids. 
This paper is a continuation of work begun by 

Berger and Jameson [10], who were the first to im
plement block-structured local adaptive mesh refine
ment on body-fitted mapped grids. We have modified 
and extended their work in a number of areas. They 
solved the two-dimensional Euler equations to steady 
state using the centered space differencing, Runge
Kutta time stepping algorithm of Jameson, Schmidt, 
and Turkel [14]. We advance the solution using an un
split multidimensional upwind method with local time 
stepping [2]. We also take advantage of multigrid con
vergence acceleration, both at each level of refinement 
and over the entire mesh hierarchy. In addition, the 
grid generation process has been simplified and auto
mated. Berger and Jameson required a fully refined 
grid at the finest level of refinement, from which all 
coarser grids were produced. Not only does this re
quire an a priori knowledge of the amount of refine
ment needed, but this procedure may be difficult and 
expensive for complex geometries. In our approach, 
creation of refined body-fitted grids only requires the 
coarse base grid, from which the refined grids are in
terpolated only to the extent that they are needed, 
rather than over the entire domain. Finally, Berger 
and Jameson applied their algorithm to a limited num
ber of non-lifting external flow test cases, using only re
finement ratios of two. Our algorithm has been tested 
on a wide variety of internal and external (both lift
ing and non-lifting) flows, using a variety ofrefinement 
ratios between grid levels. 

Governing Equations 

The two-dimensional time-dependent Euler equa
tions for inviscid fluid flow in integral form for a con
trol volume 0 with boundary ao are 

aa 1 Udx+ 1 F(U)·ndS=O, (1) 
t 0 Joo 

where n is an outward-pointing normal. The variable 
U is the array of conserved quantities (mass, momen
tum in z-direction, momentum in y-direction, and en
ergy), and F(U) = (F"(U), FY(U» is the vector of 
inviscid fluxes in the z- and y-directions: 

U(x, t) 

F"(U) 

2 

( 

pv ) puv 
pv2 +p . 

pvE + vp 

The density is denoted by p, the velocity in the x
and y-directions by u = (u, v), the total energy per 
unit mass by E, and the pressure p is given by the 
equation of state for a perfect gas, 

( (u2 +v2)) 
P = h - 1) pE - p 2 ' 

where 'Y is the ratio of specific heats. 

Multidimensional Upwind Method 

Consider a structured-grid cell (i, j) as shown in 
Figure 1. Let us define Ui~j to be a discrete approxima
tion to the average of the vector of conserved variables 
U over the cell at time tn: 

Ui~j = (F~. r U(x, tn)dx, 
',J J(i,j) 

where (Fi,j is the area of cell (i,j), and x = (z,y). 
Using this definition, we then discretize the integral 
equations (1) using a simple forward difference in time, 
to determine the value of the solution at time tn+l: 

+ F i - 1/ 2,j . ni-l/2,j 

+ Fi ,j+l/2 . ~,j+!/2 

+ F i ,i-l/2· ni,i-l/2) , (2) 

where A.t = tn+! - tn, n is an outward-facing area 
normal at the cell edges, and F is an approximation 
to the flux at the cell edge. 

The convective fluxes F . n are calculated by a 
version of the multidimensional upwind method of 
Colella [1], modified for steady-state flows by Dudek 
and Colella [2]. In this second-order two-dimensional 
Godunov method, a pair of edge states are extrapo
lated from adjacent cell-centers, taking into account 
the multidimensional nature of the flow. A Riemann 
problem is then approximately solved to uniquely de
fine a state at the cell edge, from which the fluxes are 
computed. 

To prevent oscillations in the solution, the slopes 
used in this extrapolation are limited using the van 
Albada limiter [11]. Since we are interested in the 
steady state solution, a local time step is used. Each 
cell uses the maximum allowable time step based on 
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Figure 1: Structured Grid Cell (i, j) and Notation 

a CFL c~nstraint. In a.ddition, it has been found nec
essary to modify the Godunov method in regions of 
transonic shocks, where the use of the Godunov flux 
resulted in poor convergence. Therefore, an Enquist
Osher flux [12, 13] is used in transonic regions, where 
the smooth flux function results in better convergence. 
Finally, a blended artificial diffusion term of second
and fourth-differences is added to the flux to damp 
acoustic waves present in the solution of the Euler 
equations, which allows convergence to steady-state. 
The dissipation is of the form presented in Jameson, 
Schmidt, and Turkel [14] and does not affect the accu
racy of the method. 

Adaptive Mesh Refinement 

The adaptive mesh refinement method automati
cally places grid points in areas where they are deemed 
most necessary to adequately resolve relevant flow fea
tures. This allows efficient use of computational re
sources by providing sufficient resolution with a mini
mal number of cells. 

In this work, we use the local block-structured 
adaptive mesh refinement (AMR) method of Berger 
and Colella [3], with the appropriate modifications 
for mapped grids described by Bell, et. al. [15] and 
Steinthorsson, et. al. [4]. The AMR algorithm we 
use to solve the two-dimensional Euler equations for 
steady state flows on structured grids is described in 
detail by Dudek [16], so only the main points are re
viewed. 

Refined logically-rectangular regions are recur
sively embedded within coarser grids, covering groups 
of coarser cells which need refinement, until a desired 
solution accuracy is achieved. The discretization on 
the hierarchy of refined levels is an extension of the 
cell-centered multidimensional upwind algorithm de
scribed above for steady-state flows. To ensure conser-
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vation between levels of refinement, we enforce a flux 
matching condition at these interfaces. Additionally, 
a multilevel multigrid method is used to accelerate the 
solution on the grid hierarchy to steady state. This 
is a straightforward extension of multigrid for a single 
grid, except that the update step at each level consists 
of a multigrid sub-cycle between levels of refinement. 

Ferziger [17] argues that, for adaptive schemes, the 
truncation error should be driven to zero, since the 
truncation error acts as the source of the solution er
ror, and because it is more localized than the solution 
error. This is the strategy we have used, forcing the 
truncation error uniformly below a specified tolerance. 
Once the solution is obtained on the grid hierarchy, a 
measure of the local truncation error is computed in a 
manner similar to the approach of Berger and J ame
son [10]. Cells for which the truncation error estimate 
is above a specified tolerance are tagged, clustered to
gether and refined [18]. 

The refined body-fitted grid hierarchy is produced 
by fitting a bicubic spline to the base grid to create a 
smooth transformation between index space and phys
ical space. The spline is computed once, initially, and 
then used to interpolate finer grids from the base grid. 
Because the bicubic spline is C2, interpolated finer 
grids are sufficiently smooth to ensure that the grid 
does not adversely affect local truncation error esti
mates. 

After refinement, the solution is computed on the 
new mesh hierarchy, and the process continues until 
the error estimate for all cells is below the specified 
tolerance or a pre-defined number of levels of refine
ment is reached. 

Boundary Conditions 

The use of a fourth-difference dissipation results 
in a 13-point stencil for the operator. The boundary 
conditions are satisfied by the utilization of two rows 
of cell-centered "ghost" or "fictitious" cells outside of 
the grid interior. 

A grid's ghost cells will be filled differently depend
ing on the type of boundary with which they are as
sociated. For cells outside of the domain boundary, 
"physical" boundary conditions will be applied: solid 
wall, inflow, outflow, far-field, and periodic boundary 
conditions [2]. For grids which are embedded within 
the mesh hierarchy, there are two types of "interior" 
boundary conditions. If a grid abuts another grid at 
the same level of refinement, the ghost cells are merely 
copied from interior cells of the neighbor. If the grid 
does not abut a domain boundary or another grid at 
the same level, then the boundary conditions must be 
interpolated from the next coarser level. We use a 



quadratic interpolation along the coarse/fine bound
alles. 

Convergence Acceleration 

Two methods of convergence acceleration are used: 
local time stepping, and multigrid. 

Local Time-Stepping 

When using the time-accurate multidimensional 
upwind algorithm, the time step f:l.t is the smallest 
allowable time step over the entire domain. Since f:l.t 
is determined by restricting the CFL number to be less 
than unity, it is controlled by the smallest cell. This 
results in extremely slow convergence to a steady-state 
solution, which can be traced to the low damping of 
high wave-number modes in cells where the effective 
CFL number is quite small. This feature makes the 
use of a multigrid convergence acceleration method 
·ineffective, since it requires good smoothing of high 
wave-number modes to be successful. This is espe
cially apparent for external flows, where the cell areas 
along the far-field boundary can be orders of magni
tude greater than those along the body. 

Furthermore, because the computed edge states de
pend on the time step, the convective fluxes are a func
tion of f:l.t as well as the conserved quantities un. That 
is, F = F(f:l.t, un). This dependence of the flux, and 
hence the steady-state solution, on the time step has 
disturbed some authors. They question the validity 
of a steady-state solution which depends on a global 
quantity, here the global time step. 

As a solution to both ofthe above problems, we use 
a local time step within the upwind method described 
above. This means that each cell has its own time step, 
determined by the CFL restriction for that cell. This 
destroys time-accuracy, but allows waves to reach the 
boundary more quickly. It also allows proper damp
ing of high wave-number modes which, when combined 
with the necessary artificial diffusion, allows an imple
mentation of multigrid to be successful. 

Furthermore, the use of local time steps means 
that the fluxes and hence the steady-state solution no 
longer depend on a global quantity. A local truncation 
error analysis shows that the scheme is second-order 
accurate in the local time and spatial steps. 

Multigrid 

In addition to local time-stepping, we accelerate 
convergence by use of a multigrid method over the en
'tire hierarchy of refined grids. This method is a cell
centered adaptation of a nodal-point method given by 
Almgren, et. al. [19]. In conjunction with this, we use 
a nonlinear multigrid method of the form presented in 
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the text of Wesseling [20] for the base level and for 
levels which have been created by refining by a fac
tor greater than two. These sub-niultigrid cycles are 
used as the relaxation method for levels on which it 
is used. Otherwise, a simple point relaxation ,given 
by (2) is performed. Fine-grid information is trans
ferred to coarser levels by simple volume-weighted av
eraging. Coarse-grid to fine-grid corrections are trans
ferred by piecewise constant interpolatio~. 

Results 

Steady-state results using the the adaptive mesh 
refinement multigrid algorithm described above have 
been computed. A test case was run for a transonic 
internal channel flow· over a 10% sine-squared bump. 
External lifting flows were modeled for subsonic flow 
over a NACA 0012 airfoil and for transonic ,flow over 
an RAE 2822 airfoil. 

For all of the results shown, a W multigrid cycle 
was employed for both the overall multilevel multi
grid cycle and the level multigrid sub-cycle. Four up
date steps were taken during the downward portion 
of the cycle, and two updates during the upward por
tion. This cycling strategy was found to provide opti
mal convergence. When the max norm of the residual 
for each of the conservation equations was reduced by 
ten orders of magnitude, we considered the solution 
to have reached convergence. In the discussion below, 
the term "work unit" is used to mean the amount of 
computational effort to update the solution one time 
step on the entire mesh hierarchy. 

Uriless stated otherwise, the values for the coeffi
cients of artificial dissipation are the same for all cases. 
On the finest multigrid levels, the coefficient of fourth 
difference dissipation is /t(4) = 1/64, and the coeffi
cient of second difference dissipation is /t(2) = 0 for 
subsonic flows, and /t(2) = 1/4 for transonic flows. 
These values were found to provide optimal conver
gence. For coarser multigrid sub levels, /t~;le = 0.05 
for both subsonic and transonic flows, and no fourth
difference dissipation is used. Furthermore, the CFL 
number is taken to be 0.5 for all cases, and the ratio 
of specific heats is that for air, 'Y = 104. 

Internal Flow 

An internal flow case was run for flow over a 10% 
sine-squared bump in the bottom of a channel. The 
physical domain is 0 ::; :z: ::; 3, 0 ::; y ::; 1, and is ini
tially covered by a mesh containing 48 cells in the flow 
direction and 16 cells in the transverse direction (see 
Fig. 2). The flow is initialized to the inflow boundary 
values of density and velocity, and the outflow value 
of pressure, which are chosen to prescribe an incoming 
Mach number. 



The inflow Mach number is 0.675, which results 
in transonic flow along the bump. During the course 
of the calculations, the base grid is refined twice, each 
time by a factor of four, as shown in Figure 3. A close
up of a portion of the domain is shown in Figure 4, 
which shows the stark contrast in grid density through
out the domain. In the area where a shock exists, much 
more refinement is needed, while in regions where the 
flow is relatively uniform, a more coarse grid is suffi
cient. The calculation on the four-level hierarchy used 
7488 cells, while a calculation using a uniformly re
fined mesh at the finest level of refinement (a 768 by 
256 grid) would require over 196,000 cells. Thus adap
tive refinement reduced the number of points needed 
by a factor of more than 26, resulting in a substantial 
savings in both memory and computations. 

Figure 5 shows the steady-state Mach number dis
tribution on the level hierarchy. (The hierarchy of 
levels is outlined by lines thinner than the contours.) 
The algorithm adaptively adds grid points in order to 
sharply resolve the shock. 

The convergence history for the max-norm of the 
density residual for each of the level hierarchies is 
shown in Figure 6. For the most refined hierarchy, 
it takes 972 work units (46 multigrid cycles) for the 
residual norm to drop ten orders of magnitude. Also 
sho~n in Figure 6 is a plot ofthe coefficient of pressure, 

C 
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along the bottom surface of the domain. The grid 
density around the shock results in its steep represen
tation. 

External Flow 

Two different external flow test cases were run: 
subsonic flow over a NACA 0012 airfoil and transonic 
flow over an RAE 2822 airfoil. For both cases, the ini
tial base grid is a single structured O-grid with a peri
odic boundary along the trailing edge. Each grid has 
32 cells in the radial direction and 64 cells in the cir
cumferential direction and extends to a circle with ra
dius of 20 chord lengths. The base grid is non-clustered 
since the adaptive refinement process will provide any 
needed clustering. The flow is initialized to the far
field values of density, velocity, and pressure, which 
are chosen to produce a specified Mach number at the 
far field. A circulation correction is applied at the 
far-field boundary in order to obtain the proper lift 
coefficient [21]. 

For the subsonic NACA 0012 case, the airfoil is 
at an angle of attack, a = 3°, and the far-field Mach 
number is 0.5. Calculations begin on the base grid and 
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Levels Cells CL CD 
1 2048 0.4077 0.01198 
2 3008 0.4254 0.00283 
3 5472 0.4311 0.00065 
4 24224 0.4325 0.00002 

Table 1: CL and CD: NACA 0012, a = 3°, Moo = 0.5 

three refinements take place as the adaptive process 
proceeds, with refinement ratios of two, two, and four, 
respectively. The evolution of the grids used in the 
adaptive process is shown in Figure 7. (Because of the 
density of grid points, the most refined level appears 
solid black.) The final hierarchy of grids consists of 
24,224 cells. Over 524, 000 cells would be required to 
obtain the same resolution using a fully-refined grid 
over the entire domain. 

The Mach number distribution is presented in Fig
ure 8. The grid hierarchy is outlined by lines thinner 
than the contour lines. The Mach number at the lead
ing edge is shown in Figure 9. The stagnation region 
is clearly defined. 

The coefficient of pressure, 

along the airfoil surface is presented in Figure 10. The 
coefficients of lift and drag are defined: 

where L is the lift force, D is the drag force, and A 
is taken to be the chord length, which in our cases is 
always unity. Table 1 shows the values of CL and CD 
for each level hierarchy in the adaptive process. Con
vergence is evident for both quantities as we refine, 
with CD converging to zero. At four levels of refine
ment, CL = 0.4325. Jameson and Yoon [22] calculate 
CL = 0.4231 for a mesh with 4096 cells. This compares 
best with our result for two levels of refinement. 

The outstanding convergence characteristics pro
vided by multigrid are shown in Figure Ii, where the 
con"ergence history of the max norm of the density 
equation residual for each of the level hierarchies lead
ing up to the final hierarchy are presented. For the 
four-level hierarchy, 1852 work units (28 multigrid it
erations) are needed to drop the residual norm by ten 
orders of magnitude. 

The second external flow case run was an RAE 
2822 airfoil at· 3° angle of attack. The far field Mach 
number is 0.75, which results in transonic flow. This 
is AGARD Test Case 06 [23]. 



Levels Cells CL CD 
1 2048 1.062 0.04968 
2 3776 1.089 0.04612 
3 8384 1.093 0.04473 I 
4 17984 1.093 0.04447 

Table 2: CL and CD: RAE 2822, a = 3°, Moo = 0.75 

The computations are begun on the base grid 
shown in Figure 12. This grid is refined three times, 
each time by a factor of two. The four-level hierarchy is 
shown in Figure 13, with a close-up of the leading-edge 
region shown in Figure 14. The total number of cells 
used is 17, 984, while a fully refined grid at the highest 
level of refinement would require about 131,072 cells, 
a savings of over a factor of seven. This compares fa
vorably with the most dense grid used in the AGARD 
study, which consisted of 20,480 grid points, all at the 
same level of refinement. Using less grid points, we are 
able to get higher resolution in the areas where it is 
needed without the need for a priori clustering. 

Figure 15 displays steady-state Mach number con
tours for the final level hierarchy. The coefficient of 
pressure along the surface of the airfoil is shown in 
Figure 16, which is in good qualitative agreement with 
the results presented in AGARD report 211 [23]. The 
converged values of the coefficients of lift and drag are 
shown in Table 2. On the four-level hierarchy, the 
values are CL = 1.093 and CD = 0.04447, both in 
good agreement with the AGARD results. The con
vergence history of the max-norm of the density resid
ual is shown in Figure 17. For the four-level hierarchy, 
3624 work units (61 multigrid iterations) are needed 
to drop the residual norm by ten orders of magnitude. 

Conclusions 

A local block-structured adaptive mesh refinement 
algorithm has been used to compute solutions to the 
two-dimensional Euler equations on structured grids. 
A multi-dimensional upwind algorithm was used to 
march the solution in time. Both local time stepping 
and multigrid were used to accelerate convergence. 

Test cases were run for both internal and exter
nal flows. The results show that the use of adaptive 
mesh refinement significantly reduces the number of 
cells needed for proper resolution of the flow without 
inhibiting convergence of the solution to steady state. 

Furthermore, the use of adaptive mesh refinement 
changes the well-established grid generation paradigm 
and in fact simplifies the grid generation process. Tra
ditionally, the creation of a structured grid system for 
complex domain proceeds as follows. First, a grid is 
generated with clustering in regions where it is felt 
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that refinement is necessary to resolve a flow feature 
such as a boundary layer or shock. It may take several 
iterations with a grid generator before an acceptable 
grid is produced, in terms of skewness and smoothness. 
Then the flow simulation is run. If the flow parame
ters are changed, such as the Mach number or angle 
of attack, a grid with different clustering will likely be 
required. 

With adaptive mesh refinement, this process is sim
plified considerably. Initially, a relatively coarse base 
mesh can be produced with little or no clustering. 
Typically, this is not difficult to generate. Any cluster
ing needed to resolve the solution is automatically gen
erated by the adaptive algorithm. If the flow param
eters are modified, the same base mesh can be used. 
The error estimation and adaptive process will deter
mine where to place refined grids. 
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Figure 3: Three-Level Hierarchy, 10% Sine-Squared Bump, Minflow = 0.675 
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