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1 The bosonic a-model 

I have been asked to give a brief introduction to supersymmetric cr-models in 
two space-time dimensions. 

Let us recall first the properties of the bosonic cr-models. Let xII-, /-L = 0, 1 
be the two-dimensional coordinates. The fields 

¢i(x) i=l, ... ,N (1.1) 

are valued in a Riemannian manifold of metric Gij (¢), called the target space. 
The action is 

(1.2) 

A simple example can be obtained by starting from the free theory 

(1.3) 

and imposing the constraint 

(1.4) 

Solving for ¢N+1 we obtain an action of the form (1.2) where 

(1.5) 

is the metric on the sphere SN. 

Another well-known example is the chiral model given by the action 

(1.6) 

where U is a matrix' representation of a (usually compact) Lie group and tr 
denotes the trace. This also can be written in the form (1.2) by introducing 
parameters ¢i on the group manifold. 

A change of coordinates on the Riemannian manifold ¢i -t ¢'i, Gij (¢) -t 

G~j(¢')' where 
¢i = ¢i(¢'), 

, , 8¢k 8¢l 
Gij (¢ ) = 8¢'i 8¢,jGkl (¢), 

(1.7) 

(1.8) 

leaves the action (1.2) invariant. This reparameterization invariance gives 
the action a geometric meaning. Isometries of the metric of the Riemannian 
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manifold correspond to the internal symmetries of the model. Let us recall 
that an isometry is given in infinitesimal form by 

Djf.k + Dkf.j -
Djf.k 

o 
8jf.k - ri jk (¢ )f.i, 

where r i jk is the Levi-Civita connection 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.10) is Killing's equation. It should be obvious which are the isometries 
for the above examples of the spherical model and of the chiral model. 

It is often convenient to introduce light-cone coordinates in two dimensions 

(1.13) 

When written in light cone coordinates the action (1.2) is invariant under 
the transformation x± ~ x'+{x+),x- ~ x'-{x-) (in the Euclidean setting 
the light-cone coordinates become two complex conjugate coordinates z and 
z and the action is invariant under holomorphic transformations of these 
coordinates). A special case of this transformation is the scale transformation 
xJL ~ x'JL = AXJL where A is a constant. 

One can add to the action (1.2) the interaction 

where 
COl = -ClO = 1, coo = Cll = 0, 

(1.14) 

(1.15) 

(1.16) 

This interaction is usually called the Wess-Zumino-Witten (WZW) term [1] 
[2]. The entire action is invariant under reparameterization of the field man
ifold, which can be written in infinitesimal form as 

oBij (¢) - DiVj(¢) - DjVi{¢) . 
8iVj(¢) - 8jVi{¢) (1.17) 

O¢i - _Vi(¢) (1.18) 

oGij(¢) - DiVj(¢) + DjVi{¢). (1.19) 

The antisymmetric quantity Bij may not transform like a tensor when we go 
from one coordinate patch to another on the field manifold, but may change 
by a gauge transformation (1.17). If the manifold has a nontrivial topology 
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the WZW term may become multivalued and need to be multiplied by a 
quantized coefficient so that the exponentiated action in the functional path 
integral is single valued. 

Let us write the total action in light-cone coordinates 

It is easy to see that the corresponding equations of motion are 

iii . k 8+8_¢ + (r jk + H jk)8+q;8_¢ = 0, 

1 
Hijk (¢) = "2(8iBjk + 8jBki + 8kBij ), 

i.e. 
D+8_¢i = ° or D_8+¢i = 0, 

where D± are defined with the connection 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

which is not symmetric in j and k. The antisymmetric part of the connection 
is the torsion tensor (which in this case is totally antisymmetric in all three 
indices, when the upper index is lowered). One can say that the WZW term 
introduces torsion on the field manifold, the torsion being given by the curl 
of Bij as in (1.22). 

2 Supersymmetry in two dimensions 

In Minkowski two-dimensional space-time, Majorana-Weyl spinors transform 
as 

(2.1) 

(2.2) 

under Lorentz transformations of parameter l. Here + and - denote the two 
different chiralities. Vectors, e.g. vi = 8±¢i, transform as 

(2.3) 

(2.4) 

The (1,1) supersymmetry algebra has two fermionic generators Q+ and 
Q_ which satisfy 
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Other brackets vanish, e.g. [Q±, P±] = 0, etc. (In general, the notation (a? b) 
means that there are a fern ionic generators of positive and b of negative chi
rality.) A representation of the algebra in terms of fields can be obtained by 
introducing a superspace of bosonic coordinates x+, x- and fermionic (Grass
mannian) coordinates B+,fL. A superfield can be expanded 

where the coefficient (component) fields have obvious statistics and Lorentz 
properties. F(x) is a nonpropagating auxiliary filed, whose equations of mo
tion are algebraic, i.e. contain no derivatives of F(x). On superfields the 
supersymmetry generators are represented as 

(2.7) 

The "supercovariant" derivatives 

(2.8) 

anticommute with both Q's and satisfy 

1)~ = i8+, 1): = ia_, 1)+1)_ + 1)_1)+ = O. (2.9) 

The action can be written as a superspace integral 

(2.10) 

where the Grassmannian integrals can be defined, according to Berezin, as 

(2.11) 

In order to find the ordinary space-time Lagrangian one must perform the 
integration over the Grassmannian variables and eliminate the auxiliary fields 
by using their equations of motion. 

A convenient way to evaluate the action (2.10) in component form is to 
observe that the B integrations, in the form of B derivatives, can be replaced by 
supercovariant derivatives, because the additional x derivatives one introduces 
in this way integrate to zero upon x integration. So one can compute the 
Langrangian as 

(2.12) 

In doing the computation one must use the algebra (2.9) and the relations 

(2.13) 
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This method is especially convenient when the superfield satisfies superco
variant constraints, which is not the case here, but will be the case below (see 
Section 4, Eq. (4.10)). 

The result for the Lagrangian (2.12) is 

L == Gij8+qi8_¢J + iGij(tP~D_v4. + tP~V+vJ-) + 
. ki' ij. kli' +2zFkr ijtP+vr- + GijF F + 8k8IGijtP+tP_tP+vr-, (2.14) 

where r is the Levi-Civita connection and the covariarit derivatives on the 
spinors are defined by 

(2.15) 

Using standard formulas of Riemannian geometry the last three terms in 
(2.14) can be rearranged to give 

L = Gij8+qi8_¢J + iGij(tP~D_v4. + tP~D+tP~) 
1 i' k I + 2 /4jkltP + V4 tP - tP-

+Gij(Fi + irikz'l/J!tP~)(Fj + ir-!nntP~tP~}. (2.16) 

In either form (2.14) or (2.16) we see that the equations of motion for the 
auxiliary fields are 

F i + ·ri q/,k q/,l 0 z klo/+ 0/- = . (2.17) 

Using these equations the Lagrangian reduces to the first three terms in (2.16), 
which havean obvious geometric meaning, and the action is given by [3] 

I = J dx+dx-[Gij (8+qi8_¢J + itP~D-1/4 + itP~D+'tP~) 
1 i' k I 

+2 /4jkltP+ V4 tP- tP-]· (2.18) 

This model is invariant under supersymmetry transformations which, in 
superspace, are given by 

(2.19) 

where c_ and c+ are Grassmannian infinitesimal parameters. The action 
(2.10) was constructed with supercovariant derivatives so that this be true. 
In terms of component fields the transformations become 

6qi - ic_ tP~ + ic+ tP~, 
6tP~ - -c_8+qi - c+Fi, 6tP~ = -c+8_qi + c_P, 
6P -ic_8+tP_ + ic+8_tP+. 

(2.20) 

(2.21) 

(2.22) 
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The algebra of these transformations closes: the commutator of two transfor
mations 6 and 6' of parameters c± and c~ is a two-dimensional translation of 
parameter 2ic~c_, 2ic~c+. For instance, 

(2.23) 

One can shorten (2.20) to (2.21) by replacing the auxiliar fields by their value 
from the equations of motion, i.e. taking 

rnt.i 8 ,{..i ± ·ri nt.k nt.l 
Uo/± = -C=f ±o/ C±Z klo/+o/-· (2.24) 

The action is still invariant under (2.20) with (2.24). However now the algebra 
closes only on the mass shell, i.e. by use of the spinor fields equations of 
motion. 

For certain geometries of the target space, the (1,1) supersymmetry can 
be enlarged to a (2,2) supersymmetry (when the Riemannian manifold is a 
complex Kahler manifold) or even to a (4,4) supersymmetry (when it is a 
hyper-Kahler manifold). This is discussed in the next two sections. 

3 Complex manifolds 

In this section I discuss briefly those properties of complex manifolds which 
will be needed later [4]. An almost complex structure on a real 2n-dimensional 
differentiable orientable manifold is a tensor field J~ (t/J) such that 

i k i J kJ j = -6 j. (3.1) 

A manifold endowed with an almost complex structure is called an almost 
complex manifold. One defines the Nijenhuis torsion of J to be the tensor 
field 

where 8h is the ordinary partial derivative. It is remarkable that N is actually 
a tensor. When N vanishes, J is called a complex structure and the manifold 
a complex manifold. In this case it is possible to define in local patches n 
complex coordinates t/JO! and their complex conjugates t/JO! such that Jt/J = 
-it/J, J t/J = it/J. The transition functions between different coordinate patches 
are holomorphic functions of the coordinates t/J (anti-holomorphic functions 
of¢). 

If the 2n-dimensional manifold is a Riemannian manifold one can require 
the complex structure to satisfy 

G··Ji Jj - G ~J k l - kl, (3.3) 
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(invariance of the metric) and 

D Ji - 8· Ji + ri Jl Ji r' 0 k j = k j lk j - I jk = , (3.4) 

(the tensor J is covariantly constant) where r is the Levi-Civita connection. 
With these conditions the complex manifold is called a Kahler manifold. No
tice that the vanishing of the Nijenhuis torsion (3.2) follows from (3.4) and 
the symmetry of r, i.e. the absence of torsion on the Riemannian manifold. 

The Riemann tensor can be defined by considering the action of the com
mutator of two covariant derivatives on tensors. Using this definition and 
(3.4), one can easily show that the complex structure satisfies 

(3.5) 

In terms of the complex coordinates (3.3) implies that the metric satisfies 

GCl/3(¢, ¢» 
G ClP( ¢, ¢» 

GiiP (¢' ¢» = 0, 

- GpCl (¢, ¢», 

while from (3.4) one can derive that the two-form 

is closed, i.e. 

(3.6) 

(3.7) 

8Cl G/3,'Y = 8/3GQ'Y' 8iiG/3,'Y = 8'YG/3ii' (3.8) 

where 8Cl = 8j8¢Q, 8ii = 8j8¢Cl. These equations imply that one can find 
locally a real function K such that 

(3.9) 

n is called the Kahler form, and K is called the Kahler potential. K does not 
transform like a scalar from one patch to another and is defined only up to 
so-called Kahler transformations 

K(¢, ¢» -7 K(¢, ¢» + !(¢) + J(¢) (3.10) 

which leave the metric invariant. The Kahler potentials in two patches will 
in general be connected by a suitable Kahler transformation. 

If a Kahler manifold admits two complex structures J1 and .f2 which an
ticommute 

(3.11) 

then the product J3 = J1J2 satisfies all conditions (3.1), (3.3) and (3.4) and 
is also a complex structure. For instance 

(3.12) 
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Furthermore 

J2J3 = J2JIJ2 = _JIJ2J2 = Jl = _J3J2 

J3Jl = JIJ2Jl = _J2JIJI = J2 ...:.- _JIJ3. 

Zumino 

(3.13) 

So the tensors Jl, J2 and J3 satisfy (by matrix multiplication) the hyper
complex algebra of the quanternion units. The manifold is called a hyper
Kahler manifold; its real dimension is necessarily a multiple 4n of four. 

4 The Kahler and hyper-Kahler case 

If the scalar fields of a supersymmetric a-model are valued in a Kahler man
ifold, the Lagrangian of (2.18) is invariant under the transformation 

where we have omitted the target space indices. This is easy to see using the 
equations (3.3) to (3.5). As a consequence one can define a second supersym
metry transformation 

1<' A. = ,; c' ~/,I +,; c' ~/,I 1<' ~/,I a A.c' :r: F' c' u 0/ ~C_O/+ ~<-+If'-' u If'± = - ±o/c=F -. c±, (4.2) 

where the value of the new auxiliary field is taken to be 

F ,k _ _ ·rk ~/,II ~/,Im 
- Z 1m If' + If' _ . (4.3) 

With some algebra one can check that the two supersymmetry transforma
tions (2.20) with (2.24) and (4.2) commute (on the mass shell of the auxiliary 
fields). Thus the (1,1) supersymmetry is enlarged to a (2,2) supersymmetry 
[5] . 

If one does not want to use the equation of motion of the auxiliary fields 
one can complete the tr~nsformation (4.1) by 

(4.4) 

where 
(4.5) 

and (4.2) by 
8'F' = -ic'-8+l/J'- + ic~8_l/J~. (4.6) 

Using (4.1) and (4.4), the two equations of motion (2.17) and (4.3) go into 
each other . 

. Notice that the inverse ofthe relation (4.4) between F and F' has the same 
form 

(4.7) 
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Also, comparing with (3.2), we see that 

k k 1 k 
M lm - M ml = '2 N lm (4.8) 

which vanishes for a complex structure. Therefore M~m is symmetric in l, m. 

The (2,2) model can be formulated more symmetrically by introducing 
from the beginning all four supersymmetry generators. This was indeed the 
first example of a geometric formulation of nonlinear a-models [6]. In a su
perspace of coordinates x+, x-, 8+, 8_, 8+, 8_, the generators and the 
supercovariant derivatives satisfy 

[Q±,Q±]+ [Q±, Q:r]+ = 0 [Q±, Q±]+ = 2P±. 

Q± i 8 - 8:r8±, 
- 8 -
Q± = i 88:r - 8:r8±, 

88:r 

V± i 8 + 8:r8±, 
- 8 -

(4.9) V± = ,i 88:r + 8:r8±. 88:r 

A "chiral" superfield (necessarily complex) satisfies 

(4.10) 

These constraints can be solved by observing that the four combinations 
y± = x± + i8:r8:r and 8:r are annihilated by V±, so that we can take 

The superspace action takes the extremely simple form 

I J dx+dx-d8+d8_d8+d8_K(~a, ~a) 
- J dx+dx-Gap (8+cPa8_cP/3 + 8_cPa8+cP/3) + ... , 

GaP = 8a8pK, (4.12) 

where the dots denote additional terms involving also fermions (see [6]). It is 
easy to see that the action is invariant under the Kahler transformation (3.10). 
It should be noticed that (4.9) to (4.12) parallel very closely the formulas 
for the N = 1 (four Majorana components) supersymmetry in four space
time dimensions. Indeed the present model can be obtained by dimensional 
reduction from the four-dimensional model, simply by assuming that all fields 
are independent of the two space coordinates x 2 and x 3

• This is especially 
clear if the four-dimensional theory is formulated using the van der Waerden 
two-component spinor notation. 



10 Zumino 

If the manifold admits 'more than one complex -structure, one can define 
more supersymmetries. For the hyper-Kahler case 

8a¢> 

8a'l/J± 
8a Fa 

where a = 1,2,3. Here 

'l/J± = ±Ja'l/J±, 
Fa = F + iM[Ja]'l/J+'l/J_, 

(4.13) 

(4.14) 

the omitted target space index structure being obvious. The three new aux
iliary fields are related by 

Flk + F2k = i(8 J3k _ a J3k ).1,2mo l.1l 
I m m I 'fI+ 'fI- (4.15) 

plus the two equations obtained by rotating cyclically the indices 1, 2, 3. The 
three supersymmetries 8a commute with each other and with the original 8 
of (2.20) to (2.22). Thus the algebra of the four super-generators is now 

[Qa,Cl]+ = 28ab f, (4.16) 

where a = 0, 1, 2, 3 and QO is the generator of the original supersymmetry 8. 
The (1,1) supersymmetry has been enhanced to a (4,4) supersymmetry [5]. 

Just as a natural way to understand the Kahler N = 2 supersymmetry 
model in two dimensions is to relate it to the N = 1 model in four dimensions 
[6]' the N = 4 model in two dimensions can be obtained by dimensional 
reduction from the N = 1 in six, or the N = 2 in four. The N = 1 in 
six dimensions has been studied in [7] [8], where a more detailed description 
of hyper-Kahler manifolds was given than we have done here, and the six 
dimensional Lagrangian (on the auxiliary shell, no other is known) was written 
out explicitly. Various dimensional reductions can be obtained from it. 

5 Chiral supersymmetries 

In two dimensions one can formulate various supersymmetric models which 
have only supersymmetry generators of given chirality [10]. For instance, using 
a superspace of coordinates x+, x- and {}_ and using the superfield 

one can write the action for the chiral model (1,0) with torsion 

I J dx+dx-d{}_(Gij(Cf» - Bij(Cf»)V+Cf>i8_Cf>j 

(5.1) 

J dx+d~-[(Gij(¢» - Bij(¢»)8+¢>i8_if>i + iGij(¢»'l/J~D-'l/J~], 
D_ ~ 8_·q4. + t~ kI8_¢>k'l/J~, (5.2) 
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where the connection is t~ kl = r j
kl - Hjkl as in (1.24). 

In absence of torsion, if the manifold admits a complex structure and is 
Kahler, the (1,0) model can be elevated to a (2,0) model by a procedure 
analagous to that we employed above to go from (1,1) to (2,2). In presence 
of torsion the complex structure must satisfy 

(5.3) 

where Di is the covariant derivative with torsion. It is easy to see that in 
complex coordinates this implies 8pGo:'Y - 80:Gf3"r = -2Ho:f3"r, Ho:p; = 0, so 
that the manifold is not Kahler (which would require Ho:P'Y = 0). With a 
little algebra one can show that the metric can be written locally as G 0:(3 = 
80:)((3 + 8(3Xo:. The (2,0) model with torsion is specified by the superspace 
action [11] 

(5.4) 

(for the Kahler case, i.e. no torsion, Xo: ex: 80:K(iP, <1»), and the constraints 

(5.5) 

The (1,0) model can be coupled to a fermionic multiplet of negative chi
rality [10], by using the spinor superfield 

A_(x+,x-,IL) = )._(x+,x-) +8_F(x+,x-). . (5.6) 

One can make the model more interesting by assuming that this superfield 
belongs to a representation V of a gauge group, A~(A = 1, ... , P), with 
gauge field A/~(iP), and introducing a metric GAB(iP). Then we can add to 
the action given in (5.2) the action· 

In component form the total action is 

I = J dx+dx-[(Gij - Bij)8+¢i8_q} + iGij'lj;~b_'l/4 
. A B 1 i' AB +zG AB)._ V' +)._ + 2"FijAB'Ij;+ '1/4).-).-], (5.8) 

where the field strength and gauge covariant derivative are 

FijAB {8iAj - 8jft + [Ai, Aj]-)AB (5.9) 

Ai~ A/B + ~GACGBC'i' V' l C = 8+<5B
c + A/~:8+¢i. (5.10) 
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In general Gij , Bij and Ai ~ are independent external fields. In the particular 
case in which the gauge group is the structure group of the field manifold 
(tangent space group) the indices A,'B, ... becomes the tangent space indices 
a, b, . .. , Aiab = wiab and F';.j ~ = ~/b' so the present model reduces to the 
model (1,1) with torsion described earlier, but now in tangent space notation. 

There exists also an interesting modification of the (2,2) model described 
earlier, where the superfield satisfies the chirality constraints (4.10). It is the 
(2.2) twisted model [14] where the superfield X satisfies the twisted chirality 
constraints 

(5.11) 

A general classification of (2,2) models with torsion is given in [9], where 
an off shell formulation can be found. 

6 Concluding Remarks 

The qualitative lesson to be learned from the above discussion is that the 
number of supersymmetries is intimately related to the geometric structure 
of the target space manifold: more geometric structure corresponds to more 
supersymmetries. 

The list of publications in the present article is very incomplete. A variety 
of other supersymmetric u-models can be constructed (see, e.g., [12], [13]). An 
excellent review up to 1986 is that of S. Mukhi [15] which contains numerous 
references. He also discusses the cancellations of ultraviolet divergences due 
to supersymmetry and some of the relevance to string theory. After 1986 the 
literature on th~ subject has exploded and no comprehensive review is known 
to me. I would like to mention only two relatively more recent references, [16] 
and [17], on the ultraviolet divergences respectively of the (4,0) model with 
torsion and of the (2,2) model without torsion. These papers contain also 
numerous references. 
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