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Abstract 

We investigate the effects of stochastically excited asymmetric disturbances on two

dimensional vortices. These vortices are maintained by the radial inflow of fixed cylindrical defor

mation fields, which are chosen so that both one-celled and two-celled vortices may be studied. 

We reduce the linearized perturbation equations to the form of a linear dynamical system with sto-

chastic forcing, i.e., dx/ dt = Ax + F~, where the columns of F are forcing functions and the 

elements of ~ are gaussian white-noise processes. Through this formulation we can directly calcu

late the stochastically maintained variance of the perturbations, the structures that dominate the 

response (the empirical orthogonal functions), and the forcing functions that contribute most to 

this response (the stochastic optimals). 

We find that for all cases the structures that dominate the transfer of energy from the mean 

flow to the perturbation field are close approximations to the global optimals, and that the struc

tures which account for most of the variance are close approximations to the the global optimals 

evolved forward in time to when they reach their maximum energy. For azimuthal wavenumbers 

in each vortex where nearly-neutral modes are present (k=l for the one-celled vortex and 

1 $; k $; 4 for the two-celled vortex) the variance sustained by the stochastic forcing is large, and 

in these cases we show that this variance may be greatly overestimated if the radial inflow that 

sustains the mean vortex is neglected in the dynamics of the perturbations. 

Through a modification of our technique we can also find the ensemble average eddy 

momentum flux divergences associated with the stochastically maintained perturbation fields, and 

we use this information to determine the perturbation induced mean flow tendency in the linear 
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limit. Examination of these results shows that the net effect of the perturbations is to cause down

gradient eddy fluxes for low wavenumbers in both vortex types, and to cause upgradient eddy 

fluxes for high wavenumbers. However, to determine how these eddy fluxes will actually change 

the mean flow, we must incorporate the local accelerations caused by the eddy flux diveregnces 

into the equation for the steady-state azimuthal velocity field to determine the deviation of the 

mean (symmetric) flow. From calculations of this type we find that the effect of the radial inflow 

can be crucial in determining whether or not the vortex is intensified or weakened by the perturba

tions: though the net eddy fluxes are most often down gradient, the radial inflow carries the trans

ported angular momentum back into the vortex core, resulting in an increase in the maximum 

windspeed. Thus we find that in most cases for the vortex flows we have studied, the net effect of 

stochastically forced asymmetric perturbations is to intensify the mean vortex. 
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1 Introduction 
In recent years the dynamics of asymmetric disturbances in effectively two-dimensional 

swirling flows has been studied extensively due to their role in understanding phenomena in 

intense atmospheric vortices such as hurricanes and tornadoes. Some of these applications to hur

ricane dynamics are the following: asymmetric disturbances to the storm potential vorticity field 

has been advanced as an explanation for the appearance of spiral rainbands (Guinn and Schubert, 

1993; Montgomery ,and Kallenbach, 1997), in contrast to the earlier gravity-wave theories (Kuri

hara, 1976); asymmetric dynamics is used to explain both long-and short-term deviations of the 

hurricane track from that prescribed by the surrounding flow (Willoughby, 1992, 1994; Smith and 

Weber, 1993); and the rapid decay of higher-wavenumber disturbances in the vicinity of the vor

tex core helps explain the robustness of these storms to adverse influences such as the beta effect 

and the shear of the environmental wind (Carr and Williams, 1989; Smith and Montgomery, 

1995). 

Asymmetric dynamics has long been of interest in the study of tornadoes since the realiza

tion that tornadoes sometimes contain se~eral smaller vortices within the larger vortex core, and 

that the greatest damage is often found in the paths of these smaller vortices (Fuijita, 1971). This 

phenomenon has been widely reproduced in both laboratory (Ward, 1972; Church, et al., 1979) 

and numerical models (Rotunno, 1984; Lewellen, 1993; Lewellen, et aI., 1997). Instability of the 

vertical and azimuthal velocity field in the core of the tornado has been offered as an explanation 

for the appearance of "multiple vortices" in numerous reports addressing the linear stability of 

inviscid swirling flows (Rotunno, 1978; Staley and Gall, '-1979, 1984; Steffens, 1988) and similar 
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flows with viscosity (Staley, 1985). The general result has been to find instability for a finite range 

of low wavenumbers for two-dimensional instabilities, and a larger range of higher-wavenumber 

instabilities for three-dimensional (spiral) structures which are identified as inertial instabilities 

(Leibovich and Stewartson, 1983; Emanuel, 1984). Interest in asymmetric tornado dynamics has 

been renewed by the discovery that three-dimensional models can sustain realistic tornado wind

speeds (Lewellen, et aI., 1997; Fiedler, 1998) while in the past axisymmetric models have not 

(Fiedler, 1993, 1994; Nolan and Farrell, 1998b). The higher windspeeds of the three-dimensional 

models have been associated with the simulated multiple vortices that appear in them, as Fujita 

(1971) himself anticipated for actual tornadoes. 

A feature common to virtually all previous studies of vortex dynamics and stability has 

been neglect of the radial inflow which must be present to sustain the mean vortex flow against the 

effects of dissipation. This omission is due to the additional analytical difficulties brought on by 

the effects of radial advection on the perturbations and the fact that the presence of radial mean 

velocities makes the problem inherently three dimensional in most cases, i.e., not susceptible to 

analysis with perturbations of the usual fonn F(r)ei
(k9 + mz + rot) . Nolan and Farrell (1998a) were 

able to overcome these obstacles by constructing mean vortex flows with radial inflow for which 

initially two-dimensional perturbations remained strictly two-dimensional, and then by allowing 

the radial structure function 'Of the perturbations to vary both temporally and radially. Two kinds 

of two-dimensional vortex flows were examined: one-celled vortices, where radial inflow pene

trates all the way to the axis and the vortex core is in solid-body rotation, and two-celled vortices, 

where the radial inflow does not penetrate to the axis and the vortex core is stagnant. A change in 

sign of the mean-flow vorticity gradient in the two-celled vortex allows for modal instability in the 

range of azimuthal wavenumbers 3 ~ k ~ 10, while the one-celled vortex was found to be stable 
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for all wavenumbers. Furthermore, with the use of generalized stability theory (Farrell and Ioan

nou, 1996) it was found that for both vortex types there could also be substantial transient growth 

in energy of optimally configured initial perturbations. Neglect of the dynamical terms associated 

with the radial inflow that sustains the mean vortex - the radial advection and the stretching terms 

- was shown to result in a large overestimate of the potential for transient growth in the one-celled 

vortex and also to destabilize azimuthal wavenumbers one and two in the two-celled vortex. 

Nolan and Farrell (1998a) also investigated whether or not the eddy momentum fluxes 

associated with transiently growing disturbances cause a net tendency toward increase or decrease 

in the maximum windspeed of the mean vortex. While in most cases the net effect of introducing 

a disturbance is to increase the kinetic energy of the mean flow, the opposite result can be found in 

both one- and two-celled vortices for wavenumbers that have nearly-neutral modes. In these 

cases, energy acquired from the mean flow during the growth stage of the disturbance was trapped 

in these nearly-neutral modes and ultimately lost to dissipation, rather than being returned to the 

mean flow. This effect was previously discussed by Smith and Montgomery (1995) in an analysis 

of evolving perturbations in an unbounded Rankine vortex, although they did not discuss the 

resulting effect on the mean flow. 

Transient growth of asymmetric disturbances in a vortex is a close analog to the transient 

growth phenomen~n in linear shear flows originally demonstrated by Kelvin (1887) and Orr 

(1907). This analogy has been further elucidated in discussions and examples by Smith and Mont

gomery (1995), Kallenbach and Montgomery (1995), and Nolan (1996). While the potential for 

susbtantial transient growth of properly configured initial disturbances certainly exists, Montgom

ery and Kallenbach (1997) have argued it is exceedingly unlikely to occur since the typical opti

mal initial condition for growth is a disturbance that is a tight, reverse sprial in the opposite 
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direction of the flow, and there is no apparent mechanism to excite such disturbances in atmo

spheric vortices. Our work here will address this issue to some extent by exciting asymmetric per

turbations in our mean vortex flows with forcing functions that are unbiased is space and time, so 

that we will answer the question: what role do these transiently growing disturbances play when 

the forcing lacks the bias of a preferred spatial structure? While this analysis does not necessarily 

apply to atmospheric vortices where only certain types of disturbances may be introduced, it will 

lend considerable insight into the importance of including both radial inflow and transient growth 

in the analysis of asymmetric vortex dynamics. 

Section 2 gives an introduction to the analysis of linear dynamical systems when they are 

excited by a stochastic forcing term. Section 3 will describe the two-dimensional vortex flows 

under consideration and give a brief description of how the evolution governing perturbations to 

this flow can be reduced to the form dXk/ d t = Akxk for each azimuthal wavenumber k. Section 

4 describes the response of the vortices to the stochastic forcing, and Section 5 investigates how 

this response feeds back onto the mean flow of the vortex through eddy momentum fluxes. Dis

cussion of some of the important points are provided in Section 6, 'and conclusions are presented 

in Section 7. 

2 Stochastically Driven Linear Dynamical Systems 
An introduction to the theory of stochastic differential equations can be found in Gardiner 

(1985). Particular results for white-noise forcing have already been applied to the study of non

normal shear flows, as discussed above, by Farrell and Ioannou (1993, 1994), DelSole (1993), and 

DelSole and Farrell (1996). In the following paragraphs we follow the approach of these authors 

to solve directly for the response of a linear dynamical system driven by stochastic forcing with 
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white noise properties. 

We begin by assuming our perturbation evolution equations have been reduced to a non-

normal linear dynamical system in generalized velocity coordinates [defined below in (3.22) and 

(3.23); for examples of this process see Farrell and Ioannou, 1993c; Delsole and Farrell, 1996; 

Nolan and Farrell (1998a)]. Now we add to the system a random forcing term F~: 

dx 
- = Ax+F~ 
dt 

(2.1) 

The columns of the matrix operator F are a set of forcing functions, each separately driven ran-

domly by the elements of the vector ~(t). The elements of ~(t) are complex Gaussian white-noise 

processes, having zero mean and unit covariance: 

(2.2) 

(2.3) 

where the brackets refer to ensemble averages, and Oij is the Kronecker delta. The solution in time 

to (2.1) is: 

At ft A(t-s) 
x(t) = e x(O) + 0 e F~ds (2.4) 

The first term on the RHS of (2.4) refers to the evolution of the initial conditions, which decay to 

zero when all the eigenvalues of A have negative real part. Since this is true for all of the systems 

considered here we can ignore this term in subsequent analyses which focus on steady states 

achieved as t ~ 00. The second term is the accumulated effect of all of the forcings from t=O to 

the present time t. 

Recalling that in the generalized velocity coordinates the energy of the system E = x*x, 

one can directly solve for the ensemble average energy of the perturbations as a function of time: 



<Et) = <x*(t)x(t) 

= <fadS fa ~*FteAt(t-s)eA(t-S)F~ds) 
= Ft(fa eAt(t-S)eA(t-S)dS)F 

= Trace[FtBtF] 
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(2.5) 

where we have made use of the properties (2.2) and (2.3) of the forcing terms, and defined the 

Hennitian operator Bt as: 

B
t ft At(t-s) A(t-S)d = e e 5 

o 
(2.6) 

Thus we can see that the energy of the system depends both on the dynamics of the system as rep-

resented in A and on the structures and magnitudes of the forcing functions in F. It can also be 

seen that an eigenvalue decompostion of Bt will provide a set of functions ordered in the extent to 

which they would excite the system at time t as forcing functions, with their relative responses 

described by their positive definite eigenvalues. These forcings are referred to as "stochastic opti-

mals" (hereafter SOs). 

With some manipulation we can solve for the steady state solution of (2.5). Differentiating 

(2.6) with respect to the time t, we find a time evolution equation for Bt: 

t 
dB t t t - =I+AB+BA 
dt 

(2.7) 

where I is the identity matrix. We would like to find Boo without having to directly evaluate 

lim Bt. Since all the eigenvalues of A have negative real part, as t -7 00 the system achieves a 
t~oo ~ 

statistically steady state and the time rate of change must go to zero, so: 
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(2.8) 

An equation of this form is known as a Lyapunov equation, and can be solved by standard meth-

ods (Lefschetz, 1963; DelSole, 1993). Eigenvector decomposition of Boo provides the SOs for the 

system when it has reached a steady state. 

Through a very similar procedure we can find the structures that represent an ordered 

decomposition of the response of the system to the stochastic forcing, usually referred to as 

empirical orthogonal functions (EOFs). To find the EOFs, we need the full correlation matrix of 

the system; 

C~j = <XiU)xtU» (2.9) 

= <to ds J: eA(t-S)F~~*FteN(t-S)ds) 
= U:eAU-S)HeAtU-S)dS}j 

where we have written H = FFt. When F is unitary H = I; therefore all unitary forcing opera-

tors result in the same response. By differentiating (2.9) we obtain an evolution equation for the 

correlation matrix: 

(2.10) 

and we can also find the steady state solution in terms of a Lyapunov equation: 

(2.11) 

The decompostion of the full correlation matrix (2.9) into its Qrthogonal eigenfunctions is 

known as the Karhunen-Loeve (K-L hereafter) decomposition (Loeve, 1978), while the decompo-

sition of the space of forcing functions into orthogonal functions ordered by their contribution to 

the variance has been called the "back K-L decomposition" by Farrell and Ioannou (1993c). 
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Observe that when the forcing is unitary so that H = I the equations (2.8) and (2.11) for the SOs 

and the EOFs have a certain anti symmetry. On the other hand, when the dynamical operator A is 

normal the eigenfunctions of both Boo and COO reduce to the complete and orthogonal eigenfunc-

tions of A. In this case the response of the system can be entirely predicted and interpreted in 

terms of these eigenfunctions, or normal modes, of A. (In fact, each normal mode would behave 

like a stochastically forced damped harmonic oscillator, independently of the other modes). When 

A is not normal, as in the case of our vortex flows, the forcing functions and response functions 

differ in a manner similar to the least damped modes and the least damped modes of the adjoint 

operator At (for examples, see Farrell, 1988; DelSole and Farrell, 1996; or Nolan and Farrell, 

1998a). The fact that the EOFs of a non-normal system are distinct from the modes of the dynam-

ical operator has been addressed and discussed by North (1984). 

Finally, we note that the average perturbation energy can be found from both the forcing 

matrix and the response matrix: 

(2.12) 

while the energy input from the stochastic forcing is: 

(2.13) 

when F is unitary and has rank N. 

3 Two Steady-State Vortex Flows and Equations for the Evo
lution of Asymmetric Perturbations 

In this section we briefly describe the one- and two-celled vortices whose dynamics we are 

going to study. We also derive equations of motion for two-dimensional, asymmetric perturb a-

tions and reduce them to the form of a linear dynamical system dx/ dt = Ax. For more details 
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and discussion see Nolan and Farrell (l998a). 

3.1 The one-celled vortex 

We wish to find a steady-state solution for the azimuthal velocity field sustained by a fixed 

cylindrical deformation field, which is analogous to the Burgers' vortex solution (Burgers, 1948; 

Rott, 1954) but is contained in a closed domain. We define a cylindrically symmetric radial veloc-

ity function that is fixed in time: 

U = U(r) (3.1) 

By continuity, we have: 

aw 1 a 
- = ---(rU) az rar 

(3.2) 

so that the vertical velocity field W(r, z) may be determined up to constant. Holding the U and 

W velocities fixed, we can write down a single advection-diffusion equation for the evolution of 

the axisymmetric azimuthal velocity VCr): 

(3.3) 

We use a cylindrically symmetric deformation field similar to the Burgers' vortex defor-

mation field, except that its support lies entirely within a cylinder of radius r=b=7. Furthermore, 

we require that the radial inflow velocity transitions very smoothly to zero as we approach the 

outer boundary, and is nearly zero for a substantial region near the outer boundary. Such a radial 

inflow function is given by: 

-Jlr U(r) = -are 
6 

(3.4) 

This function with a = 5.0 x 10-3 and f..l = 2.44 X 10-4 is shown in Figure 1a. This particular 

choice for a, in conjunction with a choice of v=O.OOl for the viscosity, sets the radius of maxi-
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mum winds rmax=1 for the well-known Burgers' vortex solution (see Burgers, 1948 or Rott, 

1954). Using this radial velocity field and an outer boundary condition on V such that the circula-

tion at the outer boundary rb = 21trb Vb = 21t (i.e., the circulation of the fluid at the edge of the 

domain is equal to 21t everywhere), (3.3) results in the solution shown in Figure lb. The vortex 

Reynolds number, as it is usually defined, is Rev = r b V b/v = 1000. This solution, which has 

r max= 1.0 and maximum azimuthal windspeed vmax=O. 71, is virtually identical to the Burgers' 

solution with the same parameters, despite the fact that the radial inflow velocity transitions to 

zero near the outer edge of the domain. The deformation (or negative horizontal divergence) of the 

radial velocity function is shown in Figure 1 c, while the radial gradient of the vertical component 

of vorticity is shown in Figure 1 d. 

3.2 Two-celled vortices 

A simple model of a two-celled vortex is created by defining the radial velocity U(r) to 

have inflow outside some radius, and outflow away from the r=O axis, with a stagnation point in 

. between: 

o r < 0.2 

0.02sin2(1tr~.~.2) 0.2<r< I· 

U(r) ( r-I) 0.035 COS1t 2.0 - 0.15 1 < r < 3 (3.5) 

2( r - 3) -0.05cos 1t 7.0 3 < r < 6.5 

o r> 6.5 

This radial velocity function is shown in Figure 2a. In previous work, Nolan and Farrell (l998a) 

used this radial velocity field and a viscosity of v=O.OOI to produce a two-celled vortex with a 

completely stagnant core (V == 0 for r<1.2); however, that vortex is unstable for azimuthaJ wave-
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numbers 3 ~ k ~ 10. Since we cannot study the stationary statistics of a linear dynamical system 

with an unstable operator A, we instead increase the viscosity until the vortex is marginally stable 

for all wavenumbers; this has the side effect of smoothing the resultant azimuthal velocity field so 

that it is non-zero in the vortex core. The smallest viscosity that stabilizes this two-celled vortex 

for all azimuthal wavenumbers was found to be v=O.0058. Applying our method with this higher 

viscosity, where again we have defined the circulation at the outer boundary r b = 21t, we find 

the azimuthal velocity profile shown in Figure 2b. In this case r max=2.19, and vmax=0.43. The 

associated deformation function is shown in Figure 2c, while the resulting vertical vorticity gradi-

ent is shown in Figure 2d. Outside r max the velocity profile is nearly that of a potential flow. A sta-

bility diagram for this modified two-celled vortex is shown in Figure 3, along with the stability 

curve for an identical azimuthal velocity profile with the radial inflow terms neglected in the per-

turbation dynamics. Neglect of the radial inflow which sustains the mean vortex circulation nearly 

destabilizes the two-celled vortex for azimuthal wavenumber k=l (decay rate 1. Ix 10-4), and does 

destabilize the vortex for k=2 and k=3. 

3.3 The evolution of vertical vorticity perturbations 

We restrict our attention to the dynamics of the vertical vorticity component S, in cylindri-

cal coordinates. This vertical vorticity component is assumed to have no variation in the vertical 

direction and its dynamics are governed by: 

(3.6) 

Now, we write each term in (3.6) as the sum of a radially varying mean and azimuthally, radially, 

and temporally varying perturbations: u = U(r) + u'(r, e, t), s = Z(r) + s'(r, e, t) , and 

similarly for v and w. We can then separate the solutions by writing them as a sum of harmoni-
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cally varying azimuthal waves, i.e., ~' (r, e, t) = I. ~k( r, t )eike 
,and so on for the perturbations 

k 

of U and v also. Substituting these forms into (3.6), we obtain for each wavenumber k a linear 

equation for the evolution of the radially and temporally varying vorticity function ~k(r, t) : 

(3.7) 

From here on we will use the convention that the terms Uk' Vk' ~k refer to 'complex amplitude 

functions of rand t only. 

As we can see from (3.7), when there is a non-zero background vorticity gradient (JZI(Jr, 

obtaining the evolution of the perturbation vorticity requires knowledge of the radial velocity per-

turbations. Following Carr and Williams (1989) and Smith and Montgomery (1995), we find the 

velocities by solving for the perturbation streamfunction: 

ike 
'II(r, e, t) = I. 'IIk(r, t)e 

k 

We choose as boundary conditions no normal flow at the outer boundary r=b, i.e.: 

Given the vorticity, the streamfunction may be found with a Green's function: 

b 

'IIk(r, t) = f Gk(r, p )~k(P, t)dp 

a 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

I , 



15 

The Green's function appropriate for this problem is 

2k ' 
r (k + 1 _ b2k - k + 1) 0 < < 

k 2k P P - r - p 
2kr b (3.13) 

p~r~b 

[see Carr and Williams (1989), with the inner boundary a set to zero]. 

3.4 Reduction to a linear dynamical system in generalized velocity coordinates 

We would like to find the linear dynamical system in matrix form which governs the evo-

lution of the perturbations. We discretize the domain by assigning the values of the radial func-

tions to evenly spaced points from r = 0 +!l.r to r = b - !l.r , each point separated by a distance 

!l.r. This converts the continuous radial functions into vectors of length N = (bl !l.r) - 1 . For all 

calculation spresented here we use !l.r=O.5 so that N=139. We express all derivatives as matrix 

operators corresponding to the usual centered-difference approximations, with the exception that 

the finite difference operator used for the advection term is one-sided, representing a second-order 

upwinding advection scheme. We must also express the Green's function operation (3.12) as a 

matrix operation, i.e.: 

(3.14) 

Finally, the vorticity evolution equation (3.7) is put in matrix dynamical system form with 

only the time derivative on the L.H.S.: 

(3.15) 

with: 

1-
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·k ·k -1 2 -1 k2 - 2 T k = - UDup -z Q + (DZ)z R Gk + S + v(D + R D - R ) (3.16) 

Where we have written D for the matrix representing the finite-difference derivative with respect 

to r, Dup for a similar but upwinded deriviative operator, R for the radius, and S for the "stretch-

ing" term aw laz. We must also incorporate into these difference operators additional boundary 

conditions on the vorticity, which we choose to be: 

(3.17) 

This condition minimizes the effects of the outer boundaries on the interior dynamics. 

The kinetic energy of each perturbation is: 

(3.18) 

where the overbars refer to azimuthal averages of the real parts of the complex functions. We 

define an energy metric operator M such that the energy of our discretized linear dynamical sys-

tern is written E = ~*M~. For each azimuthal wavenumber k the energy metric can be formu-

lated from (3.18) 

By the additional transformations: 

M
1I2 ,.. 

xk = k ~k 

(3.19) 

(3.20) 

(3.21) 

the system is converted into generalized velocity coordinates, so that the dynamics are expressed 

in the canonical form: 
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(3.22) 

(3.23) 

In this section we will use the techniques described in section 2 to solve directly for the 

variance of stochastically driven perturbations in our one- and two-celled vortices. We will also 

use the K-L decomposition and back K-L decomposition to find the structures that contain most 

) 

of the variance (the BOFs), and also the forcing functions that result in the most variance (the 

SOs). The effect of inflow velocity on the variance is also shown. 

4.1 Response to stochastic forcing of the one-celled vortex 

Figure 4 shows contour plots of the vorticity and streamfunction fields of the primary SOs 

for k=l and k=2 in the one-celled vortex, which contribute 66% of the variance and 24% of the 

variance, respectively. These perturbations are fairly similar and have two important features: 

first, they are structures that spiral back against the flow of the vortex, and second, they are dis-

placed from the core of the vortex, with their maximum vorticities and streamfunctions near r=5. 

These two features are indicative. of how a perturbation must be initially configured so as to max-

imize the energy it acquires from the mean flow, as has previously been demonstrated by Nolan 

and Farrell (1998a) for vortex flows with radial inflow. Such perturbations must spiral back 

against the vortex flow so that they are everywhere locally tilted back against the shear of the 

mean flow, and they must lie outside the vortex core so that they will be not be swept into the vor-

tex core before they can maximize their wave-mean flow interactions. 

This. point emphasized by comparison with Figure 6ab which shows the vorticity and 
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streamfunction fields for the k=1 global optimal for the one-celled vortex. The global optimal is 

the perturbation that grows the most in energy (in this case, by a factor of 181), and its growth is 

one measure of the potential for wave-mean flow interaction in a particular mean flow. The strong 

! 

similarity between the stochastic optimal and the global optimal shows that the extent to which 

stochastic forcing excites transient growth of perturbations is closely related in this example to the 

extent to which the forcing projects onto the global optimals. 

We can also find the dominant perturbations structures that result from the stochastic forc-

ing as described above in section 2. This system response depends on the structure of the forcing 

functions in the columns of the matrix F, as shown in (2.9), but it is the same for all unitary F. 
\ 

When F is unitary we are forcing all scales equally in energy. Using such a unitary set of forcing 

functions and normalizing the rate of energy input to one [see (2.13)], Figure 5 shows the primary 

EOFs for k=l and k=2 in the one-celled vortex, which represent 98% and 43% of the variance, 

respectively. For the same reasons that the primary SOs were very similar to the global optimals, 

these structures are very similar to the realizations of the global optimals which are shown in Fig-

ure 6cd. The realizations of the global optimals are the structures that the global optimals become 

when they obtain their maximum energy as they are deformed by the mean flow. This maximum 

energy is achieved when the vorticity has been arranged into the most coherent structure possible, 

an arrangement which maximizes its associated flow field and therefore its kinetic energy. The 

strong similarity betwen the EOFs and the realizations of the global optimals again emphasizes 

that the transfer of energy from the mean flow to perturbations is dominated by excitation of the 

global optimals. Furthermore, the fact that the k=l primary EOF represents so much (98%) of the 

variance is caused by the close similarity between the realization of the global optimal and the 
\, 

least damped mode [see Nolan and Farrell (1998a)]; when growing structures reach their maxi-
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mum energy, their energy is trapped in the nearly-neutral least damped mode, which in this case 

has a decay rate of 2.0xlO-3. For higher wavemumbers the realiztions of the global optimals and 

the least damped modes are not similar in structure. 

4.2 Response to stochastic forcing of the two-celled vortex 

Figure 7 shows the primary SOs for k= 1 and k=3 in the two-celled vortex, which represent 

61 % and 98% of the contribution to the variance, respectively. These structures are very similar to 

the SOs for the one-celled vortex, with the exception that they have vorticity in the vortex core, 

due to the fact that voriticity is being advected outward from the center axis as well as inward 

from the outer boundary. We again see the similarity between the SOs and the global optimals, 

shown for k=3 in the two-celled vortex in Figure 9ab. Note however that in this case of the two

celled vortex, both the realizations of the global optimals and the EOFs for this wavenumber are 

not like the symmetric, coherent structures that we saw above for the one-celled vortex, but rather 

they are very close approximations to the least-damped modes (not shown), which are structures 

that sustain themselves by converting mean-flow vorticity to perturbation vorticity. Thus, instead 

of being sheared over by the mean flow, the global optimal evolves into a nearly-neutral structure 

that persists for long times. Further discussion of this point may be found in Nolan and Farrell 

(1998a). 

The primary EOFs for k=l and k;'3 in the two-celled vortex, as shown in Figure 8, repre

sent 76% and 98% of the variance under unitary stochastic forcing. They again have structures 

similar to the realizations of the global optimals, which are shown for k=3 in Figure 9cd. There

fore we conclude that the wave-mean flow interactions are dominated by the excitation of the glo

bal optimals in the two-celled vortex as well. 

4.3 Sustained variance and the effects of radial inflow 

The total varianced sustained by the stochastic forcing of the system can be be found as in 
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(2.12). In flows with strong shear, this variance greatly exceeds that estimated by equating the . 

energy input to the modal dissipation which, assuming all modes are stable and equally excited 

(as in the case of unitary sets of forcing functions F), would be: 

(4.1) , 

where the Ai are the eigenvalues of A, N is the dimension of the system, and the rate of energy 

input has been normalized to be equal to one. Such a calculation is correct for a dynamical system 

with a normal operator A (such as a set of damped harmonic oscillators), but it is incorrect for 

non-normal systems such as those representing fluid flows with shear. In this case the sustained 

variance is usually much greater than that computed from (4.1), and in fact Iouannou (1995) 

showed rigorously that the correctly computed variance (2.12) is always greater than that esti-

mated from the dissipation rates of the modes: 

(4.2) 

with the equality occurring only when A is normal. The increased variance in shear flows such as 

ours is due to transiently growing disturbances which acquire energy from the mean flow. 

Figure 10 shows the variance under stochastic forcing functions that are unitary (and nor-

malized to one unit of energy input per unit time) as a function of azimuthal wavenumber in the 

one- and two-vortices. For each vortex we have plotted the variance in three different cases: 1) the 

variance computed from (4.2); 2) this same variance but with the radial inflow terms [5 and -

UDup in (3.16)] neglected in the perturbation dynamics; and 3) the variance of an "equivalent 

normal" system, i.e., that calculated from (4.1). For both vortices the actual variance is about an 

order of magnitude larger than the equivalent normal variance at all wavenumbers. Secondly, with 

the exceptions of k=4 and k=5 for the two-celled vortex, in all cases the variance is larger when 
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the radial inflow is neglected, although only by a small percentage for b 1 in the one-celled vortex 

and b5 in the two-celled vortex. 

We now wish to further evaluate the impact of radial inflow on the variance. We will do 

this in two steps: for each vortex, we will vary the relative magnitude of the radial inflow field 

over a range of values from half its original strength to twice its original strength. Then, for each 

value of the strength of the radial inflow, we first recalculate the resultant steady-state azimuthal 

velocity field. For stronger radial inflow fields, the vortex will be tighter and more intense; for 

weaker radial inflow the vortex will be broader and weaker. Then, we will calculate the sustained 

variance of the perturbations, and the same variance with the dynamical terms associated with 

radial inflow (the advection and stretching) eliminated. For each case we also show the variance 

of an equivalent normal system. The results for k=1 and k=2 in the one-celled vortex are shown in 

Figure 11. For k=l, we have a remarkable result: the variance of the wavenumber one perturba

tions is over two orders of magnitude less in the presence of radial inflow than without it. The 

variance with the radial inflow included is itself about two orders of magnitude larger than the 

variance of an equivalent-normal system (with infloW). For k=2, the variances with and without 

inflow are nearly equal, but we also see that the variance declines as the strength of the radial 

inflow is increased, and that both of these are ten times larger than the equivalent normal variance. 

The results for k=1 in the two-celled vortex are shown in Figure 12a. Again, the variance 

is much larger than that of an equivalent-normal system, and the variance declines with increasing 

radial inflow. Results for k=8, shown in Figure 12b, are quite similar to the k=2 (and for all higher 

wavenumbers) case for the one-celled vortex shown in Figure 11 b: the variance is only slightly 

suppressed by radial inflow and the magnitude of the variance itself is very small as compared to 

the energy input per unit time, which has been normalized to one. 
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5 Momentum Fluxes and Mean Flow Deviations 
We have established that stochastic excitation of asymmetric disturbances in the vortices 

we are studying leads to excitation of transiently growing perturbations that contribute greatly to 

the sustained perturbation variance, and that the effect of including the dynamically consistent 

radial inflow that sustains the mean flow is to suppress these perturbations and their associated 

variance. However, this does not directly address how these perturbations affect the mean flow 

itself. Just as we found the steady state variance of the perturbations, we will now solve for the 

steady-state eddy momentum flux divergence associated with the perturbations, and then use these 

eddy flux divergences to compute the tendency produced by these fluxes in the mean flow. 

5.1 Evaluation of mean eddy momentum fluxes in a stochastically forced vortex 

We would like to determine the mean eddy momentum flux divergence as a function of 

radius that is generated by a perturbation field driven stochastically as in (2.1). Recall that the 

eddy momentum flux divergence (which is equal to the local acceleration of the mean flow) at 

radius r is: 

a la-2- '1. 
atV(r, t) = -r2a,(r u'v') = -u'(r, t)S'(r, t) = -4[u*(r, t)S(r, t).+ S*(r, t)u(r, t)] (5.1) 

The results over the whole domain for the averaged eddy fluxes can then be written in terms of the 

diagonal elements of a correlation matrix: 

(5.2) 

where u and S now refer to the full vector representations of the radially varying perturbation 

velocity and vorticity functions for each azimuthal wavenumber. 

We desire a way to find the steady-state eddy fluxes. We define a <;orrelation matrix for 

vorticity zt such that: 
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(5.3) 

By comparison to (2.5) it is easy to see that we can solve for the steady state vorticity correlation 

matrix ZOO by exactly the same procedure we used to find COO ; the result will depend on the time 

evolution operator T in vorticity coordinates rather than the operator A in generalized velocity 
( 

coordinates. Farrell and Ioannou (1995) showed that any second-order moment of an arbitrary 

correlation matrix derived from arbitrary operators L}, L2: 

(5.4) 

can be found in terms of the operators and the correlation matrix (2.9) itself: 

(5.5) 

Recalling that the perturbation radial velocities can be found by operating on the vorticity with an 

operator based on the Green's function, we can use this result to find the steady state solution for 

the eddy flux divergence matrix yt: 

(5.6) 

where U = -ikR-1 Gk is the operator that obtains the radial perturbation velocities from the vor-

ticity. Since the eddy flux divergence at each radius only depends on the local values of the veloc-

ity and vorticity [from (5.1)], the ensemble-averaged eddy flux divergence as a function of radius 

lies on the diagonal of the correlation matrix yoo . 

5.2 Eddy flux divergence in the one-celled vortex 

The mean eddy flux divergence for stochastically maintained perturbations in the one-

celled vortex is shown in Figure 13 for azimuthal wavenumbers k= 1, 2, and 16. For the lower 

wavenumbers we see that the net effect of the perturbations is to decelerate the flow in the vicinity 
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of the radius of maximum winds 1'= 1, i.e., there is a downgradient momentum flux on average. For 

all wavenumbers k > 8 the net effect is to accelerate the flow in the vicinity of the radius of maxi

mum winds, as shown in this case for k= 16, so that there is on average an upgradient flux of 

momentum for azimuthal wavenumbers k > 8 . 

The reasons for this difference between the low- and high-wavenumber cases has previ

ously been discussed to some extent by Nolan and Farrell (1998a) in the examination of the total 

eddy flux divergence over the lifetime of individual perturbations. It wao;; found that whether or not 

the net momentum flux of a particular disturbance was upgradient or downgradient depended on 

the existence of nearly-neutral modes at that wavenumber (i.e., how close to zero was the real part 

of the eigenvalue of the least damped mode) and the extent to which these perturbalioJ?s excited 

such modes. If they did, their energy would be trapped in the mode so that energy acquired from 

the mean flow through transient growth would not be effectively returned to the mean flow, result

ing in a net downgradient momentum flux. If the energy is not trapped in this manner then most of 

the energy of the perturbation will eventually be returned to the mean flow, resulting in a net 

upgradient momentum flux. Our results here are therefore a generalization of those previous 

results to the case where all perturbations are excited equally. 

5.3 Eddy flux divergence in the two-celled vortex 

The mean eddy-flux divergence under stochastic forcing in the two-celled~vortex is shown 

in Figure 14 for wavenumbers k=l, k=4, and k=8. The results for all three wavenumbers in this 

case are similar to the low-wavenumber results above in that the flow is being decelerated in the 

vicinity of the radius of maximum winds at r=2.19. However, the flow is being accelerated inside 

the radius of maximum winds, so that the mean momentum flux is inward rather than outward 

(but still downgradient). This result is similar to what was found by Lewellen et. al. (1997) in their 

.' 
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three-dimensional numerical simulations of a tornado vortex: the effect of the multiple vortices on 

the larger-scale flow was to transport angular momentum inward. The result for k=8 is different 

from the lower wavenumbers shown in several ways: first, the local accelerations are orders of 

magnitude smaller; second, the location of the maximum flow deceleration is at a slightly smaller 

radius, at r=2.0; thus the deceleration at rmax=2.19 is even smaller still; and third, there is a sus-

btantial positive acceleration just outside the large negative acceleration in the vicinity of r max. 

Thus for higher wavenumbers there are eddy momentum fluxes both outward and inward from the 

radius of maximum winds. 

5.4 Resultant mean flow deviations . 

The two preceeding sections have shown us the ensemble-average acceleration to the 

mean vortex flow caused by a stochastically maintained perturbation field. However, this does not 

directly tell us what we really want to know, which is the change in the mean vortex flow resulting 

from these accelerations. This is because the mean vortex flow is experiencing the same advection 

due to the radial inflow and dissipation as the perturbations, as described by (3.3). Positive or neg-

ative perturbations to the symmetric azimuthal velocity function will be both advected into the 

core and smoothed by diffusion. Let us write the total perturbed symmetric flow as: 

VCr, t) = V + V'(r, t) (5.7) 

where V is the steady-state soultion to (3.3), and V' is its deviation. Substituting (5.7) into (3.3), 

and including the effects of the eddy flux divergences of the stochastically maintained perturb a-

tions, we have an equation for the evolution of the symmetric perturbations: 

~V' + U~V' + UV' = .v( a2 

V' + !~V' - V'J- ~ uk~k at dr r -:\ 2 'rar 2 £oJ 
or r k = I 

(5.8) 

where the summation is over all the wavenumbers under consideration. In this report we will only 
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consider one wavenumber at a time. Once the ensemble average eddy flux divergence has been 

found from (5.6), 'we may solve for the ensemble-average solution for the mean flow deviation in 

. a manner similar to the solution of (3.3) [see Nolan and Farrell (1998a)] by setting the time rate of 

change of VI to zero. 

Figure 15 shows the ensemble-average mean flow deviation caused by stochastically 

maintained perturbations for k=I and k=2 in the one-celled vortex. For k=I, we see that the mean 

flow is increased for r> 1 and decreased for r<I. This is somewhat suprising, since the local effect 

of the perturbations is to decelerate the flow at r= 1, as shown in Figure 13a. However, a closer 

examination of Figure 13a shows a small positive acceleration of the mean flow much farther out

side the core of the vortex, in the vicinity of r=6. This positive anomaly is advected into the vortex 

core and amplified by conservation of angular momentum. Thus the effect of this small positive 

acceleration at large radius is to cause a substantial positive mean flow deviation at r=2 and to 

almost completely eliminate the effects of the large negative acceleration in the vortex core. 

For k=2, the effect of positive accelerations at larger radius (see Figure 13b) is even more 

pronounced, such that the average mean flow deviation is positive . everywhere, with a maximum 

near r= 1.2, i.e., very close to the radius of maximum winds. Results for all higher wavenumbers 

were similar. Thus it appears that the presence of radial inflow has a substantial impact on how 

stochatically maintained perturbations ultimately effect the mean flow. To emphasize this point, 

we have recalculated the mean eddy flux divergences and the resultant average mean flow devia

tions in an identical one-celled vortex with the radial inflow eliminated. The results, shown in Fig

ure 16, are strikingly different from before. Firstly, the predicted accelerations and mean flow 

changes are orders of magnitude larger than when the inflow was included. Secondly, we see that 

the ultimate effect of the perturbations for both k=l and k=2 is to decrease the maximumwindp-
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seed and to increase the radius of maximum winds, i.e., to make the vortex broader and less 

intense. 

The average mean flow deviations for k=l and k=8 in the two-celled vortex are shown in 

Figure 17 (where the effects of radial inflow have again been included). We see that for k= 1, the 

mean flow deviation is negative near the radius of maximum winds at r=2.19 and positive inside 

the vortex core. This result is very similar to what one might expect from examination of the aver

age eddy flux divergence previously shown in Figure 14a. For k=8, however, we see that the aver

age change in the mean flow is positive for all r! This again indicates the important effect of the 

radial inflow: small positive impulses outside the vortex core are carried inwards and intensified, 

so that the net effect on the mean flow is to increase the maximum windspeed. 

The eddy momentum fluxes and resulting average mean flow deviations in the two-celled 

vortex recalculated without radial inflow are shown in Figure 18. The results here are analogous to 

what we saw for the one-celled vortex without radial inflow: for the lower, nearly unstable wave

mumber k= 1, the eddy flux divergences and mean flow deviations are orders of magnitude larger; 

for k=8, the formerly positive everywhere mean flow deviations are now negative in the vicinity of 

rmax· 

6 Discussion 
6.1 The least damped mode as a determining factor in the stochastic dynamics 

While a variety of linear perturbation dynamics have been observed in the preceeding sec-

tions, the results of stochastic forcing of our two vortex types can generally be separated into two 

cases: 

Case I: the stochastic forcing excites transient growth of initially upshear-tilted perturba

tions which are sheared over by the mean flow, reach their maximum energy when they have 



28 

evolved into a large-scale structure, then are sheared over further and give their energy back to the 

mean flow. While a small amount of energy is lost to dissipation along the way, almost all the ini

tial disturbance energy and the energy acquired from the mean flow during the growth phase are 

returned to the mean flow through upgradient eddy momentum fluxes. In this case the input 

energy of the stochastic forcings ends up in the mean flow and the vortex is intensified. 

Case II: again, the stochastic forcing excites transient growth; however, in this case the 

decay rate of the least damped mode is extremely small (for example, the least damped mode 

decay rate is 2.1 x 10-3 for k= 1 in the one-celled vortex and 9.3x 10-4 for k=3 in the the two-celled 

vortex) and these modes are also similar in structure to the coherent structures that the transiently 

growing disturbances become when they reach their maximum energy. The transiently growing 

disturbances then project strongly onto the least damped modes and their energy is trapped there; 

in other words, the least damped modes interact with the mean flow vorticity gradient so that they 

sustain themselves and are not sheared over by the mean flow. In this case, disturbance energy 

"accumulates" in the nearly-neutral modes and the energy is not returned to the mean flow, but is 

instead lost through dissipation very slowly over long times. Since the disturbances are never 

sheared over to cause upgradient momentum fluxes, only down gradient momentum fluxes occur 

and the vortex is weakened. 

In this latter case, the sustained variance can be orders of magnitude larger than in Case I. 

From examining these two cases we gain more insight into why the presence of radial inflow has 

such a substantial effect on the results: including the effects of radial inflow has the stablizing 

effect of increasing the decay rates of the least damped modes for the cases of k= 1 in the one

celled vortex and k=1, k=2, and k=3 for the two-celled vortex. 

Similar observations and analysis have been reported for stochastic forcing of linearized 
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disturbances for examples such as unbounded constant shear flows (Farrell and Ioannou, 1993a), 

plane Couette and Poiseuille flows (Farrell and Ioannou, 1993b), and for barotropic and baroclinic 

dynamics in mid-latitude jets (Farrell and Ioannou, 1995;·DeISole and Farrell, 1996). 

6.2 Discussion in context with recent results regarding tropical cyclones 

As mentioned in the introduction, asymmetric disturbances have received considerable 

attention in connection with tropical cyclone dynamics, with much of the emphasis on how these 

disturbances affect the tropical cyclone track and on their relationship to spiral bands. However, 

asymmetric dynamics have also been considered as a mechanism for hurricane intensification, 

originally by Pfeffer (1958) and more recently by Challa and Pfeffer (1980), Pfeffer and Challa 

(1981), Carr and Williams (1989), Montgomery and Kallenbach (1997) and Montgomery and 

Enaganio (1997). In this last report the authors used a three-dimensional quasigeostrophic model 

to demonstrate how coherent potential vorticity anomalies, injected in bursts so as to model epi

sodic convection, are sheared over by the larger-scale vortex flow and ultimately cause upgradient 

momentum fluxes. 

While the works dted above have focused specifically ori tropical cyclones, the previous 

reports by Nolan (1996), Nolan and Farrell (l998a) and this report have attempted to generalize 

the phenomena of asymmetric vortex intensification to a wider class of vortices sustained by con

vergence and also to a wider class of asymmetric forcings. One major distinction between our 

work and most of the works cited in the introduction and above [except Carr and Williams (1989)] 

is that both our mean vortex flows transition to a potential (llr) vortex outside of the radius of 

maximum winds. A potential flow has no vorticity, so there is no mechanism for the propagation 

of waves away from the vortex. The azimuthal wind fields of huricanes generally have a slower 

decay with radius, such as l/r1l2, which allows for the existence of waves on the associated mean 
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vorticity gradient. Such waves, sometimes called "vortex-Rossby waves" were examined by 

Montgomery and Kallenbach (1997), who explained their dynamics and showed how downshear 

tilted disturbances alway propagate away from the core of the vortex. In our case, however, there 

are no such waves in the potential flow region and the phenomenon of wave momentum and 

energy transport away from the vortex does not occur. However, M.T. Montgomery has pointed 

out (1997, personal communcation) that there may be vortex-Rossby waves occuring within the 

parts of the mean flow that do have mean vorticity, and that these waves may influence the com

plex structures of the eddy flux divergence fields as shown in Figure 13 and Figure 14. This 

remains for further study. 

7 Conclusions 
In this report we have extended the earlier analysis of Nolan and Farrell (1998a) to exam

ine the response of a vortex with radial inflow to random forcing'by asymmetric disturbances. The 

results have shown that under stochastic forcing that is unbiased in space and time, the previously 

identified global optimals playa dominat role in the transfer of energy from the mean flow to the 

perturbations. For stable wavenumbers where nearly-neutral (i.e., almost unstable) modes are 

present, the variance excited by the stochastic forcing and amplified by wave-mean flow interac

tions can be very large. This variance is greatly overestimated if the effects of the radial inflow 

that sustains the mean flow are neglected in the dynamics of the perturbations. 

For all but the lowest, stable wavenumbers in both one- and two-celled vortices the net 

effect of the eddy momentum fluxes associated with the stochastically maintained perturbations is 

to intensify the vortex, i.e., to increase the maximum windspeed. We also note the important 

observation that this effect is enhanced by the presence of the radial inflow, and that neglecting the 

dynamical effects of the radial inflow in these vortices produces quite opposite results in some 

/ 
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cases. Thus we have shown that even when there is continuous excitation of perturbations that are . 

favorably configured for transient growth (and therefore cause down gradient momentum flux), the 

radial inflow which sustains the mean vortex will help to ensure that the net effect of these distur-

bances will be to cause (on average) upgradient eddy momentum fluxes and to intensify the vor-

tex. 

The two-dimensional vortex flows with radial inflow that we have constructed are cer-

tianly crude models of intense atmopsheric vortices, and our analysis neglects all three-dimen-

sional dynamics which may be important. We have, however, shown how disturbances which are 
/ 

either generated within the vortex itself (such as mesoscale bursts of convection in tropical 

cyclones), or are carried into the vortex core by the convergent radial inflow (such as boundary-

layer turbulence in the surrounding environment of a tornado), can contribute to the intensification 

and maintenance of these vortices by causing upgradient momentum fluxes and transferring their 

kinetic energy to the mean flow. In the future, we plan to extend this type of analysis to three-

dimensional perturbations in more realistic, three-dimensional or axisymmetric representations of 

intense atmospheric vortices. 
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Figure Captions 

Figure 1. Profiles of radial and and azimuthal velocity for the one-celled vortex: a) radial velocity; 

b) azimuthal velocity; c) negative horizontal divergence (stretching); d) vorticity gradi

ent. 

Figure 2. Profiles of radial and and azimuthal velocity for the two-celled vortex: a) radial velocity; 

b) azimuthal velocity; c) negative horizontal divergence (stretching); d) vorticity gradi

ent. 

Figure 3. The real part of the least damped mode as a function of ~imuthal wavenumber (stability 

diagram) for the two-celled vortex; 0' s: with the radial inflow effects included in the per

turbation dynamics; x's: with the radial inflow effects negelected. 

Figure 4. Stochastic optimals (SOs) for k=l and k=2 in the one-celled vortex: a) k=l vorticity; b) 

k= 1 streamfunction; c) k=2 vorticity; d) k=2 streamfunction. Their fractional contribution 

to the variance is listed at the top of each plot. 

Figure 5. Empirical orthogonal functions (EOFs) for k=l and k=2 in the one-celled vortex: a) k=l 

vorticity; b) k=l streamfunction; c) k=2 vorticity; d) k=2 streamfunction. Their fractional 

representation of the variance is listed at the top of each plot. 

Figure 6. The global optimal and its structure at the moment of maximum energy (realized global 

optimal) for k=l in the one-celled vortex: a) GO vorticity; b) GO streamfunction; c) RGO 

vorticity; d) RGO streamfunction. 
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Figure 7. Stochastic optimals (SOs) for k=1 and k=3 in the two-celled vortex: a) k=1 vorticity; b) 

k= 1 streamfunction; c) k=3 vorticity; d) k=3 streamfunction. Their fractional contribution 

to the variance is listed at the top of each plot. 

Figure 8. Empirical orthogonal functions (EOFs) for k=1 and k=3 in the two-celled vortex: a) k=1 

vorticity; b) k= 1 streamfunction; c) k=3 vorticity; d) k=3 streamfunction. Their fractional 

representation of the variance is listed at the top of each plot. 

Figure 9. The global optimal and its structure at the moment of maximum energy (realized global 

optimal) for k=3 in the two-celled vortex: a) GO vorticity; b) GO streamfunction; c) RGO 

vorticity; d) RGO streamfunction. 

Figure 10. The sustained variance in the a) the one-celled vortex and b) the two-celled vortex under 

stochastic forcing as a function of azimuthal wavenumber: 0' s - the standard variance; x' s 

- the same variance with the radial inflow effects neglected; +'s - the equivalent normal 

variance of the vortices with inflow. The variance without inflow is not shown for k=2 

and k=3 because the vortex is unstable without inflow for these wavenumbers. 

Figure 11. Perturbation variance sustained under unitary stochastic forcing in the one-celled vortex 

as a function of the strength of the radial inflow, calculated with (o's) and without (x's) 

the dynamical terms associated with radial inflow, and also for an normal system with the 

same spectrum (+'s): a) for k=l; b) for k=2. 

Figure 12. Perturbation variance sustained under unitary stochastic forcing in the two-celled vortex 

as a function of the strength of the radial inflow, calculated with (o's) and without (x's) 

the dynamical terms associated with radial inflow, and also for a normal system with the 
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same spectrum (+'s): a) for k=l; b) for k=8. 

Figure 13.Mean eddy flux divergence caused by perturbations sustained by stochastic forcing in 

the one-celled vortex: a) for k= 1 ; b) for k=2;c) for k= 16. 

Figure 14. The ensemble-average eddy flux divergences associated with the stochastically main

tain~d perturbations in the two-celled vortex: a) for k= 1; b) for k=4; c) for k=8. 

Figure 15. The resulting average mean flow deviat~ons caused by the stochastically maintained 

eddy flux divergence in the one-celled vortex: a) k= 1; b) k=2. 

Figure 16. The average eddy flux di~erences and resultant mean flow deviations in the one-celled 

vortex, recomputed with the radial inflow eliminated: a) average eddy flux diveregnce, 

k= 1; b) average mean flow deviation, k= 1; c) average eddy flux divergence, k=2; d) av

erage mean flow deviation, k=2. 

Figure 17. The average mean flow deviations in the two-celled vortex caused by the stochastically 

maintained perturbations: a) for k=4; b) k=8. 

Figure 18. The average eddy flux diverences and resultant mean flow deviations in the two-celled 

vortex, recomputed with the radial inflow eliminated: a) average eddy flux diveregnce, 

k=4; b) average mean flow deviation, k=4; c) average eddy flux divergence, k=8; d) av

erage mean flow deyiation, k=8. 
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Azimuthal wavenumber 

The real part of the least damped mode as a function of azimuthal wavenum
ber (stability diagram) for the two-celled vortex; o's: with the radial inflow 
effects included in the perturbation dynamics; x's: with the radial inflow 
effects negelected. 
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Stochastic optimals (SOs)Jor k=l and k=2 in the one-celled vortex: a) k=l 
vorticity; b) k=l streamfunction; c) k=2 vorticity; d) k=2 streamfunction. 
Their fractional contribution to the variance is listed at the top of each plot. 
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Empirical orthogonal functions (EOFs) for k=l and k=2 in the one-celled vor
tex: a) k=l vorticity; b) k=l streamfunction; c) k=2 vorticity; d) k=2 stream
function. Their fractional representation of the variance is listed at the top of 
each plot. 
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The global optimal and its structure at the moment of maximum energy (real
ized global optimal) for k= 1 in the one-celled vortex: a) GO vorticity; b) GO 
streamfunction; c) RGO vorticity; d) RGO streamfunction. 
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Stochastic optimals (SOs) for k=l and k=3 in the two-celled vortex: a) k=l 
vorticity; b) k=l streamfunction; c) k=3 vorticity; d) k=3 streamfunction. 
Their fractional contribution to the variance is listed at the top of each plot. 
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tex: a) k=l vorticity; b) k=l strearhfunction; c) k=3 vorticity; d) k=3 stream
function. Their fractional representation of the variance is listed at the top of 
each plot. 
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Figure 9· The global optimal and its structure at the moment of maximum energy (real
ized global optimal) for k=3 in the two-celled vortex: a) GO vorticity; b) GO 
streamfunction; c) RGO vorticity; d) RGO streamfunction. 
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Figure 10 The sustained variance in the a) the one-celled vortex and b) the two-celled 
vortex under stochastic forcing as a function of azimuthal wavenumber: o's -
the standard variance; x's - the same variance with the radial inflow effects 
neglected; +'s - the equivalent normal variance of the vortices with inflow. The 
variance without inflow is not shown for k=2 and k=3 because the vortex is 
unstable without inflow for these wavenumbers. 
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Figure 11 Perturbation variance sustained under unitary stochastic forcing in the one
celled vortex as a function of the strength of the radial inflow, calculated with 
(o's) and without (x's) the dynamical terms associated with radial inflow, and 
also for an normal system with the same spectrum (+'s): a) for k=l; b) for k=2. 
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Varance VS. inflow, +=normal only, o=w~h inflow, x=w~hout, k=1 dr=O.05 a=O b=7 nu=0.0058 
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Figure 12 Perturbation variance sustained under unitary stochastic forcing in the two-. 
celled vortex as a function of the strength of the radial inflow, calculated with 
(o's) and without (x's) the dynamical terms associated wi.th radial inflow, and 
also for a normal system with the same spectrum (+'s): a) for k=1; b) for k=8. 
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Figure 13 Mean eddy flux divergence caused by perturbations sustained by stochastic 
forcing in the one-celled vortex: a) for k=l; b) for k=2; c) for k=16. 
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Figure 14 The ensemble-average eddy flux divergences associated with the stochasti~ 
cally maintained perturbations in the two-celled vortex:.a) for k=l; b) for k=4; 
c) for k=8. 
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Figure 15 The resulting average mean flow deviations caused by the stochastically main
tained eddy flux divergence in the one-celled vortex: a) k=l; b) k=2, 
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Figure 16 The average eddy flux diverences and resultant mean flow deviations in the 
one-celled vortex, recomputed with the radial inflow eliminated: a) average 
eddy flux diveregnce, k=l; b) average mean flow deviation, k=l; c) average 
eddy flux divergence, k=2; d) average mean flow deviation, k=2. 
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Figure 17 The average mean flow deviations in the two-celled vortex caused by the sto
chastically maintained perturbations: a) for k=4; b) k=8. 
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Figure 18 The average eddy flux diverences and resultant mean flow deviations in the 
two-celled vortex, recomputed with the radial inflow eliminated: a) average 
eddy flux diveregnce, k=4; b) average mean flow deviation"k=4; c) average 
eddy flux divergence, k=8; d) average mean flow deviation, k=8. 
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