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1 Introduction 

Recently a duality between superconformal field theories (SCFTs) in d dimensions and 

string or M theory compactified on anti-de Sitter (AdS) spaces of the form AdSd+1 X W has 

been proposed in [1] (see also [2-9]). Here W is a compact manifold which in the maximally 

supersymmetric cases is a sphere. A precise correspondence between the supergravity limit 

on the AdSd+1 side and an appropriate large N limit on the conformal field theory side has 

been formulated in [10, 11]*. According to [11] the correlation functions in the conformal 

field theory, which has as its spacetime Md, the boundary at infinity of AdSd+b can 

be calculated via the dependence of the supergravity action on the asymptotic behavior 

of its fields at the boundary Md. In particular, one can deduce the scaling dimensions 

of operators in the conformal field theory from the masses of particles in string theory 

(or M theory). Using this correspondence, the dimensions of chiral primary operators 

in four dimensional N = 4 super-Yang-Mills (SYM) were matched with the masses of 

Kaluza-Klein states on AdS5 x S5. Related works which appeared recently are [12-43]. 

In [17,24] a relation between several classes of four dimensional N = 2,1,0 conformal 

field theories and Type lIB supergravity (string) theory on orbifolds of AdS5 x S5 was 

proposed. The orbifolds .preserve the AdS5 structure and its isometry group SO( 4,2) 

which becomes the conformal symmetry of the four dimensional theory. The orbifold 

action on 8 5 breaks some or all the N = 4 supersymmetry. When the orbifold group r 
acts freely on S5 there is a limit where supergravity provides an applicable description. 

When the orb if old action is not free only the string theory description is reliable. Some 

of these N = 1,2 models were shown to be conformal [17]. The analysis of the one-loop 

and two-loop f3 functions of the general orb if old theories in [24] showed that they indeed 

vanish. Furthermore the analysis in [33] shows that these theories have indeed a fixed line 

(fixed hypersurface) at least in the large N limit. In the nonsupersymmetric models, the 

f3 functions need not vanish at finite N and they do not, as we will comment on in the 

discussion section. 

In this paper we will study the proposed duality by analyzing the Kaluza-Klein states 

of the supergravity theory on the orbifolds of AdS5 x S5 and relating them to the (chiral) 

primary operators of the (super) conformal field theories on the boundary. In the next 

section we will briefly review the relation between AdS supergravity (string) theory and 

SCFTs on the boundary of the AdS space. In particular we will review in detail the 

relation between the Kaluza-Klein harmonics of supergravity on AdS5 x S5 and the chiral 

primary operators of N = 4 SYM in four dimensions. In section 3 we will analyze the 

*See also [9] for the relation between bulk fields and boundary composites. 
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Kaluza-Klein harmonics of supergravity on orbifolds AdS5 X s5/r where r c SU(3) is a 

discrete subgroup. We will relate the Kaluza-Klein modes to the chiral primary operators 

of the N = 1 theory on the boundary of the AdS space. In . section 4 we will perform 

similar analysis when the orbifold group r c SU(2). In this case one gets an N = 2 theory 

on the boundary of the AdS space. However now the orbifold action is not free and one in 

general does not expect supergravity to provide an applicable description. Nevertheless 

we will still be able to relate the Kaluza-Klein modes to the chiral primary operators of the 

boundary N = 2 theory. This means that chiral information is still reliably encoded in the 

supergravity description. In section 5 we study a possible relation between Kaluza-Klein 

states and primary operators of the boundary CFT when the orbifold group r c SU(4) 

and the theory on the boundary is not supersymmetric. Section 6 is devoted to a summary 

of the results and discussion. 

2 SCFT / AdS Relation: N = 4 SYM In Four Dimensions 

In this section we will briefly review the SCFT I AdS relation proposed in [10,11]. One 

of the examples of this relation is between N = 4 SYM in four dimensions and Type 

lIB supergravity (or string) theory on AdSs X S5. This example will be of particular 

importance for us since orbifolds of this relation will be studied in next sections. 

The boundary Md of AdSd+1 is ad-dimensional Minkowski space with points at infinity 

added. The isometry group of AdSd+1 is SO( d, 2). It is also the conformal group on Md. 

The proposed duality relates string theory (or M theory) on AdSd+1 to the large N limit 

of SCFTs on its boundary Md. In the Euclidean version the boundary is Sd. Consider 

the maximally supersymmetric case, so that the internal space is also a sphere. Let cP 
be a scalar field on AdSd+1 and cPo its restriction to the boundary Sd. According to the 

SCFT I AdS relation cPo couples to a conformal operator [) on the boundary via fSd cPo[). 

When cP has mass m the corresponding operator [) has conformal dimension ~ given 

by 

(2.1) 

Irrelevant, marginal, and relevant operators of the boundary theory correspond to massive, 

massless, and "tachyonic" modes in the supergravity theory. If a p-form C on AdS is 

coupled to a d - p form operator [) on the boundary, then the relation between the mass 

of C and the conformal dimension of [) is given by 

(2.2) 
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The value of m2 in this formula refers to the eigenvalue of the Laplace operator on the 

AdS space. In the supergravity literature, the values that are usually quoted for p-forms 

are the eigenvalues ih,2 of the appropriate Maxwell-like operators. The relation of these 

to the dimension is given by 

(2.3) 

Formula (2.3) can be derived by repeating the analysis of [11] using the Maxwell type 

equations for the p-forms. Alternatively, one can use the definition of the mass via the 

quadratic Casimir of the SO( d, 2) isometry group of AdSd+1 as was done for AdS5 in [20]. 

The massless graviton in the AdS supergravity couples to the dimension d stress-energy 

tensor of the SCFT. When the internal space W has continuous rotational symmetry, 

there are also AdS massless vector fields in its adjoint representation which couple to the 

dimension d - 1 R-symmetry currents of the SCFT. 

Consider the Type lIB superstring theory on AdS5 x S5 with a 5-form 'flux of N units 

on S5 and radius of curvature (gstN)L In the large N limit with gfMN = gstN fixed 

and large, string theory is weakly coupled and the supergravity description is applicable. 

The bosonic symmetry of this compactification of ten dimensional Type lIB supergravity 

is SO(4,2) x SO(6). In [1] it was proposed that N = 4 SYM in four dimensions is 

dual to string theory on the above background. The SO( 4,2) part of the symmetry of the 

supergravity theory corresponds to the conformal symmetry of the N = 4 superconformal 

theory. The SO(6) ~ SU( 4) part of the symmetry, which is the isometry of S5, is the the 

R-symmetry of the superconformal theory. 

AdS supergravity has multiplet shortening due to the internal symmetry generators 

of its superalgebra [44,45]. In the maximally supersymmetric case the Kaluza-Klein ex

citations of supergravity fall into short representations of supersymmetry with spins:::; 2, 

and their mass formula is protected from quantum and string corrections. They couple to 

chiral primary operators of four dimensional N = 4 SYM on the boundary. Chiral oper

ators are in short representa.tions of the superconformal algebra and their dimensions are 

determined in terms of the R-symmetry representation and cannot receive any corrections 

[46,47]. An N = 1 superconformal subalgebra of the N = 4 superconformal algebra has a 

generator, R, of the U(l)R symmetry. The dimensions of chiral operators are determined 

by their R charges 

dim(O) = ~R. (2.4) 

Since a bulk field <P with boundary value <Po couples to a conformal field 0 on the boundary 

via fSd <PoO, <Po carries opposite R-charge to that of O. Multiplet shortening in AdS 
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supergravity is expected also with a reduced number of supersymmetries [44,45] and we 

expect the mass formulas of the Kaluza-Klein excitations to be protected from quantum 

and string corrections. 

The spectrum of Kaluza-Klein harmonics of supergravity on AdS5 x S5 was derived in 

[48,49]. The Kaluza-Klein harmonics fall into irreducible representations of SU( 4). We 

will now review the families that contain fields with negative or zero mass. 

There is one family of spin-2 fields. The mass formula, in liN units, is given by 

m 2 =k(k+4), k 2: 0 . (2.5) 

The SU(4) Dynkin labels ofthe representations are (0, k, 0), and the corresponding SU(4) 

irreducible representations are 1,6,20', .... The k = 0 particle is the graviton that couples 

to the dimension 4 stress-energy tensor operator of the N = 4 SeFT theory. 

There is one family of vector fields that contains massless states with mass formula 

given by 

m 2 = (k - l)(k + 1), k 2: 1 . (2.6) 

The Dynkin labels are (1, k - 1,1) and the irreducible representations are 15,64,175, .... 

The massless vector bosons at k = 1 transform in the adjoint of SU(4) and couple to the 

SU(4) R-symmetry currents of the N = 4 SeFT theory. 

There are three families of scalar fields that contain negative and massless states. The 

first family has mass formula 

m 2 = k(k - 4), k 2: 2 , (2.7) 

with Dynkin labels (0, k, 0) corresponding to the irreducible representations 20',50,105, .... 

They couple to dimension ~ = k chiral primary operators of the N = 4 seFT theory* 

which were identified in [11] as the symmetrized traceless Tr( q>11 ••• q>ik) of the adjoint chi

ral superfields <I>i, i = 1,2,3. These operators indeed transform in the same symmetric 

traceless representations of SU(4) as the Kaluza-Klein particles (2.7). 

The second family has mass formula 

m 2 = (k - l)(k + 3), k 2: 0 , (2.8) 

*More precisely, since the 20' representation of SU(4) decomposes into representations of SU(3) x 

U(l)R as 20' = 64/ 3 + 6-4/ 3 + 80 then the 64/ 3 Kaluza-Klein states couple to chiral primary operators, 

the 6-4/ 3 couple to anti-chiral primary operator and the 80 couple to operators which are neither chiral 

nor anti-chiral. Nevertheless, since they all sit in the same N = 4 multiplet they are all protected from 

quantum corrections. 
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with Dynkin labels (0, k, 2) corresponding to the irreducible representations 10,45,126, .... 

They couple to dimension ~ = k + 3 chiral primary operators of the N = 4 SCFT theory 

Tr(Wa wa <Pl1 ... <pik) where Wa is the field strength chiral superfield [11] 

The third family has mass formula 

m 2 = k(k + 4), k2':O, (2.9) 

with Dynkin labels (0, k, 0) corresponding to the irreducible representations 1,6,20', .... 

The massless particle in this family (k = 0) is the dilaton. It couples to TrF2 in the 

N = 4 theory. The particles couple to dimension ~ = k + 4 chiral primary operators 

of the boundary theory Tra k F2 + ... where a is the complex scalar in the N = 2 vector 

multiplet (when viewing N = 4 as N = 2 with a hypermultiplet in the adjoint) [11]. 

The different towers of Kaluza-Klein harmonics are related by the action of the super

symmetry generators and can be organized in an N = 4 supertower [20]. For instance, 

the graviton, the 15 massless vector bosons and the scalars in the above three families in 

the representations 20',10,1 of SU(4) are in the same multiplet. 

3 N = 1 Supersymmetric Theories 

In [17,24] N = 1 SCFTs were constructed by studying D3 branes at orbifold singu

larities of the form R6 /r, where r c SU(3) is a discrete subgroup. The worldvolume 

theory is constructed by taking Nlfl D3 branes on the covering space and performing a 

projection r on the worldvolume fields and the Chan Paton factors [50-52J. Conformal 

field theories are expected when the representation of r acting on the Chan Paton factors 

is chosen to be the N-fold copy of the regular representation. In the framework of [1] this 

translates to the study of Type IIB string theory on an orbifold of AdS5 x 8 5 where the 

orbifold group acts only on the 85 factor. The 80(4,2) isometry of Ad85 is not broken 

and corresponds to the conformal symmetry of the SCFT on the D3 branes worldvolume. 

The 80(6) ~ SU(4) isometry of 8 5 is broken to U(l)R x r. The U(l)R factor is the 

R-symmetry of the boundary N = 1 D3 brane theory. The r factor becomes a discrete 

global symmetry of the D3 brane theory*. 

Consider first the Z3 orbifold example of [17] 

X 1,2,3 -+ e 2;; X 1,2,3 , (3.1) 

where Xi parametrize the R6 transverse to the D3 branes worldvolume. The gauge group, 

global symmetries and field content of the D3 brane theory is given in Table 1. 

*r is a symmetry of the quiver diagram description. 
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( 

SU(N) SU(N) SU(N) U(l)R 

Ui 0 0 1 a 
3 

Vi 1 0 Ei a 
3 

Wi Ei 1 0 a 
3 

Table 1: Field content of the N = 1 theory, where 

i = 1,2,3. The SU(3) global symmetry is broken by 

the superpotential. 

The orbifold (3.1) has a fixed point at the origin. Since the volume of S5 is not zero, 

the orbifold action is free and the resulting manifold is smooth. In the large N limit as 

specified in the N = 4 SYM theory in the previous section the supergravity description 

is applicable. If the relation between supergravity and SCFT of [1,11] holds also here we 

expect to find Kaluza-Klein harmonics of supergravity on AdS5 x S5/Z3 corresponding 

to the chiral primary operators in the N = 1 theory. In the following we will study this 

correspondence. We will analyze the Kaluza-Klein harmonics of the supergravity theory 

and the relation to chiral primary operators of the boundary SCFT. 

The Kaluza-Klein harmonics of supergravity on AdS5 x S5/Z3 are Z3 invariant states 

and can be obtained by a Z3 projection of the Kaluza-Klein harmonics on AdS5 x S5 
discussed in the previous section. Consider the scalar modes with masses given by (2.7). 

Let us explicitly check the relevant and marginal chiral primary operators in this family. 

The k = 2 Kalu~a-Klein particle in (2.7) transforms in the 20' of SU(4). Decomposing 

[53] the 20' into representations of SU(3) x U(l)R gives: 

20' = 64/ 3 + 6-4/ 3 + 80 • (3.2) 

We now have to perform the Z3 projection on (3.2). The 80 is invariant under the Z3 
projectiont . However these Kaluza-Klein modes are expected to couple to dimension 2 

operators. A dimension 2 chiral primary operator has R-charge+ ~ (2.4). Therefore 80 has 

the wrong R-charge to couple to a dimension 2 chiral operator and we do not expect any 

dimension 2 chiral primary operators in the boundary N = 1 SCFT. We expect dimension 

2 operators which are not chiral primary to couple to the the Kaluza-Xlein modes in the 

80 • In the N = 4 case, the 64/ 3 ,6_4/ 3 , and 80 in (3.2) sit in the same supermultiplet and 

therefore the masses of the 80 Kaluza-Klein states were protected; here there is no such 

guarantee. 

tThe Z3 acts on the 3 of SU(3) as (Xl, x 2 , x 3 ) -+ (e 2~i xl, e 2~i x 2 , e -~"i x 3 ). The 8 is made of 3 and 3. 
tThe sign of the R-charge assignments in the decomposition is merely a convention. 
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The k = 3 Kaluza-Klein particle in (2.7) which transforms in the 50 of 3U(4) should 

couple to a dimension 3 chiral primary operator. Decomposing the 50 into representations 

of 3U(3) x U(l)R gives: 

(3.3) 

The 10 is invariant under the Z3 projection, and this is the only part in the decomposition 

(3.3) with the correct R-charge to couple to a dimension 3 chiral primary operator. We 

therefore expect 10 dimension 3 chiral primary operators in the boundary SCFT and 

we identify them with the ten independent operators TrUil V i2 W i
3 symmetric in the ik 

indices. The antisymmetric parts have to be removed in order to form primary operators 

since they appear in the superpotential and its derivatives. 

The k = 4 massless Kaluza-Klein particle in (2.7) should couple to a marginal operator. 

It transforms in the 105 which decomposes as: 

105 = 15'8/3 + 15'-8/3 + 24_4/ 3 + 244/ 3 + 270 . (3.4) 

We see that the 15' has the right R-charge to couple to a dimension 4 chiral primary 

operator, but it is not invariant under Z3. The 27 is invariant under Z3 but it's R-charge 

is not consistent with coupling to a dimension 4 chiral operator. So there are no Kaluza

Klein harmonics in this family that can couple to dimension 4 chiral primary operators 

and no such operators are expected in the boundary SCFT. 

In general w~ expect the Z3 invariance and the R-charge condition to restrict the value 

of k to be a multiple of 3. The Kaluza-Klein modes that survive in this family are 

m 2 = 3n(3n - 4), n = 1,2, ... , (3.5) 

and they couple to chiral primary operators of dimensions 

dim(O) = {3n, n = 1,2, ... } , (3.6) 

in the boundary SCFT. We can identify these operators as symmetric operator On = 

Tr(UVW)n. 

Consider next the scalar modes with masses given by (2.8). Again we will explicitly 

check the relevant and marginal chiral primary operators in this family. The Kaluza

Klein mode with k = 0 transforms in the 10 of 3U(4). We decompose the 10 into 

representations of 3U(3) x U(l)R as: 

(3.7) 
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The 12 is the only component that is invariant under the Z3 projection, and it is also 

the only component with the ~orrect R-charge to couple to a dimension 3 chiraloperator. 

In fact the 1 component will be invariant under any projection that preserves N = 1 

supersymmetry. This Kaluza-Klein mode couples to the relevant operator L:7=1 TrW~Wt 

where the index i enumerates the three gauge groups. This combination is dictated by the 

Z3 global symmetry. This operator is a linear combination of the gaugino bilinears. As 

expected, the gaugino bilinears will be dimension 3 operators in any such theory derived 

from the N = 4 by projection. 

The k = 1 states in (2.8) transform in the 45, which decomposes§ as: 

45 = 38/ 3 + 34/ 3 + 64/ 3 + 80 + 100 + 15_4/ 3 • (3.8) 

The 3 has the correct R-charge to couple to a dimension 4 chiral primary operator, but 

it is not invariant under Z3, while the 10 is invariant under Z3 but it has the wrong R
charge, so we do not expect dimension 4 chiral primary operators in the boundary SCFT 

coupled to Kaluza-Klein modes of this family. 

In general we expect Kaluza-Klein modes with 

m 2 = (3n - 1)(3n + 3), n = 0,1,2, ... (3.9) 

coupled to chiral primary operators in the SCFT with dimensions 

dim(O) = {3n + 3, n = 0, 1,2, ... } . (3.10) 

These operators can be identified as On = TrWa wa(uvw)n where we suppressed the 

sum on the different gauge groups and the indices of the matter multiplets. For n bigger 

than zero these operators transform in the representation constructed from the product 

of 10 with the 3n'th rank symmetric tensors. 

Consider now the. third family (2.9). The k = ° state, the dilaton, transforms in 

the 1 which is invariant under the Z3 projection. It couples to the marginal operator 

L:7=1 Tr F;' Evidently this result is independent of the choice of r, and the operator Tr F2 
will be marginal' in any theory obtained by r projection on the N = 4 theory. We only 

find one marginal chiral primary operator in this family, since all higher values of k couple 

to irrelevant operators. As before we expect Kaluza-Klein harmonics with 

m 2 = 3n(3n + 4), n = 0,1,2, ... (3.11) 

§There is a typo in ref. [53] in the decomposition of the 45 in Table 27, the 6 is repeated. 
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coupled to chiral primary operators in the SCFT with dimensions 

dim(O)={3n+4, n=O,1,2, ... }. (3.12) 

The graviton with k = 0 in the spin 2 family (2.5) is in the 1 of SU( 4) and is invariant 

under the Z3 projection and in general under any r c SU(4) projection. As mentioned 

previously it couples to the stress-energy tensor. 

The massless vector k = 1 in the spin-1 family (2.6) is in the 15 of SU( 4). Decomposing 

the 15 we find 

15 = 10 + 3-4/ 3 + 34/ 3 + 80 . (3.13) 

The 1 is invariant under Z3, and it has the correct charge to couple to the unbroken 

U(l)R current. The 1 component will be invariant under any projection that preserves 

N = 1 supersymmetry. The 80 is also invariant under Z3 and has the correct R-charge, 

these are the Z3 remnants of the broken SU(3). The currents to which they couple are 

not conserved, so there is no guarantee that the masses of these Kaluza-Klein states and 

the dimensions of the currents are protected from quantum corrections. 

It is straightforward to extend the analysis to other projections that preserve N = 1 

supersymmetry. The discrete, non-Abelian subgroups of SU(3) have been classified in 

[54]. Consider first the group D.(3), the group of cyclic permutations on three objects. 

Since D.(3) is a subgroup of the other non-Abelian subgroups of SU(3), it is easy to see 

that using these more complicated projections can only further restrict the list of relevant 

and marginal chiral primary operators. We have seen that TrF2 and TrWa wa are always 

dimension 4 and dimension 3 operators in these theories since they transform in the 1 of 

SU(3). The trilinear terms that we found in the decomposition of the 50 in eq. (3.3) are 

of particular interest. We saw that since the 10 of SU(3) is invariant under Z3 there were 

Kaluza-Klein states that were not projected out and coupled to chiral primary operators 

on the boundary. Under the group action of D.(3) one component of the 10 will be 

invariant1f• A brief inspection of Table I of [54] shows that the all the subgroups D.(3n2 ) 

will preserve these Kaluza-Klein states, while the other non-Abelian groups (D.(6n2 ) and 

E(m)) will not. 

llThis invariance is familiar from the SU(3)flavor symmetry of the quark model: the baryon octet has 

two states, A and EO, that are invariant under cyclic permutations of the three flavors, while the baryon 
decuplet has one such state, EO. 
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4 N = 2 Supersymmetric Theories 

In [17,24] N = 2 SCFTs were constructed by studying D3 branes at orbifold singu

larities of the form R4 Ir, where r C SU(2) is a discrete group. The groups r fall into 

the ADE classification. As in the N = 1 case, the worldvolume theory is constructed by 

taking Nlrl D3 branes on the covering space and performing projection r on the world

volume fields and the Chan Paton factors. Again conformal field theories are expected 

when the representation of r acting on the Chan Paton factors is chosen to be the N-fold 

copy of the regular representation, which translates to the study of Type lIB string theory 

on an orbifold of AdS5 x S5 where the orbifold group acts only on the S5 factor. The 

SO( 4,2) isometry of AdS5 is not broken and corresponds to the conformal symmetry of 

the SCFT on the D3 branes worldvolume. The SU( 4) isometry of the sphere is broken 

to SU(2)R x U(I)R x r. The SU(2)R x U(I)R factor is the R-symmetry of the boundary 

N = 2 D3 brane theory. The r factor is a discrete global symmetry. 

This orbifold acts only on four of the six coordinates transverse to the D3 branes 

worldvolume and there is a fixed plane of its action. This implies that the supergravity 

description is not valid even at large N. Nevertheless we will perform the analysis of 

the Kaluza-Klein spectrum and relate it to chiral primary operators of the boundary 

theory. The analysis suggests that chiral information is still encoded in the supergravity 

description. 

Consider first the A n - l case. The discrete group r = Zn acts as 

Xl --+ e 2:' Xl 

X 2 --+ e -~'" x 2 • (4.1) 

The gauge group, global symmetries and field content of the D3 brane theory is given 

in Table 2. 

First we consider the particles in the family (2.7). We explicitly check the relevant 

and marginal operators for k = 2,3,4 below. For k = 2, decomposing the 20' into 

representations of SU(2) x SU(2)R x U(I)R gives: 

If we now perform the Zn projection* of the SU(2) we find that the following components 

are invariant (labeled by SU(2)R x U(I)R): 

(4.3) 

10 



SU(Nh SU(Nh SU(Nh SU(N)n U(l)R 

Q1 0 0 1 1 0 

01 0 0 1 1 0 

Q2 1 0 0 1 0 

02 1 0 0 1 0 

Qn 0 1 1 0 0 

Qn 0 1 1 0 0 

CP1 Ad 1 1 1 2 

CPn 1 1 1 Ad 2 

Table 2: Field content of the N = 2 theory, the SU(2)R 
symmetry is not manifest in the N = 1 notation used 

here. 

At this point we need to identify the superconformal R-charge. To do this we make use 

of the fact that in N = 1 language there is an additional R-symmetry, U(l)J, which is 

a subgroup of SU(2)R. Under this symmetry adjoint chiral multiplets, q" have charge 0, 

while fundamental chiral multiplets, Q and Q, have charge 1. We can then identify the 

superconformal R-charge as: 

(4.4) 

One can check that this gives the correct charge assignments to the gauginos and the 

scalars (charges 1 and 2/3 respectively). The corresponding Rsccharges ofthe components 

in (4.3) are (0,4/3,-4/3,4/3). Thus 14 and 30 have the the correct Rsc-charges to couple 

to dimension 2 chiral primary operators. The 14 Kaluza-Klein mode can be be identified 

by its quantum numbers as the coupling to the Zn invariant chiral primary operator 

Ei=l Trq,;. The 30 Kaluza-Klein mode has to couple to a Zn invariant chiral primary 

operator with charges like QQ. The chiral primary operator is identifiedt as Ei=l QiQi. 

Note this chiral primary operator vanishes due to the F-term equations for U(N) gauge 

groups. We can also see that since the 14 came from the (1,1)4, it will be invariant under 

any projection r that preserves N = 2 supersymmetry, so Ei Trq,; will be a dimension 2 

chiral primary operator in any such theory. 

tWe would like to thank M. Schmaltz for pointing this out to us. 
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For k = 3 decomposing the 50 into representations of SU(2) x SU(2)R x U(l)R gives: 

50 = (1, 1h + (1,1)_2 + (1,1)6 + (1,1)_6 + (2,2)0 + (2,2)4 + (2,2)-4 

+(3, 3h + (3,3)_2 + (4,4)0 . 

The Zn projection leaves invariant 

(4.5) 

(4.6) 

The corresponding Rsc-charges are (2/3,-2/3,2,-2,2,2/3), thus 16 and 32 have the correct 

Rsc-charge to couple to a dimension 3 chiral primary operator. From their quantum 

numbers we see that they couple to :Li=l Tr<P¥ and :L~l (Qi-l <PiQi-l - Qi<PiQi)' The 
choice of the latter is dictated by the need to remove derivatives of the superpotential in 

order to get a primary operator. Since the 16 came from (1, 1)6 we see that :Li=l Tr<P¥ will 

be a dimension 3 operator in any theory obtained by a projection that preserves N = 2. 

For k = 4 decomposing the 105 into representations of SU(2) x SU(2)R x U(l)R gives: 

105 = (1,1)0 + (1,1)4 + (1,1)_4 + (1, l)s + (1, l)-s + (2, 2h + (2,2)_2 

+(2,2)6 + (2,2)-6 + (3,3)0 + (3,3)4 + (3,3)-4 + (4, 4h + (4,4)-2 

+(5,5)0 . 

The Zn projection leaves invariant 

(4.7) 

(4.8) 

The corresponding Rsc-charges are (0,4/3,-4/3,8/3,-8/3,4/3,8/3,0,8/3), thus Is, 34 , and 50 
have the correct Rsc-charge to couple to a dimension 4 chiral primary operator. From their 

quantum numbers we see that they couple to :Li=l Tr<P;, :Li=l (Qi-l <P:Qi-l - Qi<P7Qi) 

and :Li=l (Qi-l Qi-l - QiQi) 2 respectivelyt. We see again that Tr<p4 will be a dimension 4 

operator for any choice of projection that preserves N = 2. In general we expect Kaluza

Klein modes with masses (2.7) will couple to dimension k chiral primary operators in the 

boundary SCFT. 

Next we consider particles in the family (2.8). To explicitly check the relevant chiral 

operator for k = ° we decompose the 10 into representations of SU(2) x SU(2)R x U(l )R: 

10 = (2,2)0 + (3,1)_2 + (1, 3h . (4.9) 

+Note that one can recast the chiral primary operators in a different form by adding appropriate 

powers of lower dimension chiral primary operators. 
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The Zn projection leaves invariant 

(4.10) 

The corresponding Rsc-charges are (-2/3,2), thus 32 has the correct Rsc-charge to co~ple 
to a dimension 3 chiral primary operator. The corresponding operator is Ei=l TrW~Wt, 
and we see that it will be di~ension . 

3 with any projection that preserves N = 2. 

For k = 1 we decompose the 45 as: 

45 = (2, 2h + (2,2)_2 + (3,1)_4 + (1,3)4 + (3,1)0 + (1,3)0 + (3,3)0 

+( 4,2)_2 + (2, 4h . 

The Zn projection leaves invariant 

(4.11) 

(4.12) 

The corresponding Rsc-charges are (-4/3,8/3,0,4/3,4/3), thus the 34 has the correct Rsc
charge to couple to a dimension 4 chiral primary operator. The corresponding operator is 

E~l TrW~ Wtq>i. Again this result is completely general as long as N = 2 supersymmetry 

is preserved. In general we expect Kaluza-Klein modes with masses (2.8) to couple to 

dimension k + 3 chiral primary operator in the boundary SCFT. 

Now consider particles in the family (2.9). For k = 0· we get the relevant operator 

Ei=l TrF? Again the Zn projection on the only relevant representation, 1, is trivial, a 

result that holds independent of the projection r. We expect Kaluza-Klein modes with 

masses (2.9) to couple to dimension k + 3 chiral primary operator in the boundary SCFT. 

Finally consider the spin one family (2.6). The only relevant mode is the massless 

mode which is in the 15 of SU(4). Decomposing the 15 we find 

15 = (1,1)0 + (2, 2h + (2,2)_2 + (3,1)0 + (1,3)0 . ( 4.13) 

The Zn projection leaves invariant 

10 + 10 + 30 , (4.14) 

corresponding to the currents of the unbroken SU(2)R x U(l)R symmetry and one extra 

Zn invariant current which is a remnant of the broken SU(2) symmetry. As above the 

the currents corresponding to the unbroken R-symmetry will be dimension 3 under any 

projection that preserves N = 2 supersymmetry. 
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It is straightforward to extend the analysis to the Dn and En orbifolds. Since Zn is 

a subgroup of Dn , Es, and E7 , we further restrict the list of relevant and marginal chiral 

primary operators. Also, the form of the generators of the Es singularity (Icosahedral 

group) [55] dictates the same list of operators as Es and E7 • In going from the An - 1 to 

Dn we find that the 3 no longer has an invariant component, while the 5 still does. So 

there are no analogs of the chiral primary operators: Qi(J>iQi - Qi-l (J>iQi-b and Qi(J>;Qi

Qi-l(J>~Qi-l' Under the En projections neither the 3 nor the 5 have invariant components, 

so we also do not have an analog of the (Qi-lQi-l - QiQi) 2 operator. 

5 N onsupersymmetric Theories, 

Examples of N = 0 candidates for CFTs in the large N limit can be constructed 

by considering orbifold singularities of the form RS If, where f C SU( 4) is a discrete 

subgroup, and the orbifold group acts only on the S5 factor of AdS5 x S5.· As before, the 

SO( 4,2) isometry of AdS5 is not broken and corresponds to the conformal symmetry of 

the boundary CFT, while the the' SU(4) isometry of S5 is broken to f which becomes a 

discrete global symmetry of the CFT. 

Consider for example the Z5 orbifold example of [17] 

(5.1 ) 

The gauge group, global symmetries and field content of the D3 brane theory is given in 

Table 3. 

As in the N = 2 case the orbifold group has a fixed plane and we do not expect the 

supergravity description to be valid even at large N. Unlike the supersymmetric cases we 

also do not a priori expect the masses of the Kaluza-Klein harmonics to be protected from 

quantum and string corrections. However, there is still the possibility that dimensions 

of certain primary operators in the the N = 0 boundary CFT do not receive quantum 

corrections, and that the AdS leFT correspondence generalized to the N = 0 theories 

will imply that masses of certain Kaluza-Klein modes do not receive quantum corrections. 

With this in mind we will now carry out some examples of an analysis similar to that of 

the previous sections. In order to get the Kaluza-Klein harmonics on the supergravity side 

we will project those of AdS5 x S5 on Z5 invariant states*. The results are summarized 

in Table 4. 
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SU(N)i SU(N)i+1 SU(N)i+2 SU(N)i-2 SU(N)i-l 

<Pi,i+1 0 [] 1 1 1 

<Pi,i+2 0 1 [] 1 1 

<Pi Ad 1 1 1 1 

'1hi+l 0 [] 1 1 1 

'l/Ji,i-l 0 1 1 1 [] 

'l/Ji,i+2 0 1 [] 1 1 

'l/Ji,i-2 0 1 1 [] 1 

Table 3: Field. content .of the .N = 0 theory, where Zs 

cyclicly permutes the gauge groups. <p's are scalars and 

'l/J's are fermions. We have not -listed the conjugates of 

the bifundamental fields. 

In order to construct the primary operators of the .N = 0 boundary CFT we have 

to remove dependences on the derivatives with respect to the fields of the Yukawa and 

quartic couplings. We expect Yukawa couplings for each triangle with two fermion lines 

and one scalar line in the quiver diagram description of the model, and quartic couplings 

for each square with four scalar lines [17,24]. 

Consider the invariant Kaluza-Klein states. There are four invariant states from the 

k = 2 modes in (2.7) that transform in the 20' of SU(4) and should couple to dimension 

2 primary operators. Since the 20' is made of two 6's of SU( 4) we should construct 

primary operators bilinear in the scalars. We have Tr<p~, Tr<Pi;i+1 <Pi+1,i, Tr<Pi,i+2<Pi+2,i where 

<Pi is the adjoint scalar of the i-th gauge group and <Pi,j is the scalar associated with the 

line connecting the i,j nodes of the quiver diagram. The above operators (and also in . 

the other examples below) have an implicit summation on the different nodes i in order 

to make them Zs invariant. We do not seem to see a possible fourth primary operator 

of dimension 2 in the theory. This suggests that the number of invariant Kaluza-Klein 

states is larger than the number of primary operators in the boundary CFT. This is 

not too surprising in view of the fact that we lack here the chirality constraint which was 

important in the supersymmetric case. We will see more examples of this in the following. 

There are 10 invariant states from the k = 3 modes in (2.7) that transform in the 50 

of SU(4) and should couple to dimension 3 primary operators. Since the 50 is made of 

three 6's of SU(4) we should construct primary operators from three scalars. An obvious 

one is Tr<pr. Others can are made of <Pi,i+1, <Pi+1,i, <Pi,i+2, <Pi+2,i. Also in this case we have 

more invariant Kaluza-Klein states than the number of primary operators in the boundary 
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CFT. Similarly there are 21 invariant states from the k = 4 modes in (2.7) that transform 

in the 105 of SU(4) and should couple to dimension 4 primary operators. Since the 105 

is made offour 6's of SU(4) we should construct primary operators from four scalars. 

One of them is Tr4>t and as before the rest are made from the other scalars. Clearly we 

have more invariant Kaluza-Klein modes than primary operators. 

Consider now the invariant Kaluza-Klein states of (2.8). There are two invariant states 

from the k = 0 modes that transform in the 10 of SU(4) and should couple to dimension 3 

primary operators. Since the 10 is made of two 4's of SU (4) we should construct primary 

operators bilinear in the fermions. There are two such independent primary operators 

Tr'l/Ji,i+1 'l/Ji+l,i, Tr'l/Ji,i+2'l/Ji+2,i where 'l/Ji,j is the fermion associated with the line connecting 

the i, j nodes of the quiver diagram. There are 9 invariant states from the k = 1 modes 

that transform in the 45 of SU(4) and should couple to dimension 4 primary operators. 

Since the 45 is made of two 4's and a 6 of SU(4) the primary operators are bilinear in the 

fermions and linear in the scalars and again we seem to see that there are more invariant 

Kaluza-Klein modes than primary operators. 

The dilaton k = 0 in (2.9) and the graviton k = 0 in (2.5) are not projected out and 

couple to the relevant operators Tr F2 and T/-Lv' 

6 Summary and Discussion 

In this work we studied the relation between (chiral) primary operators of (super) 

conformal field theories in four dimensions constructed in [17,24] and the Kaluza-Klein 

states of supergravity on orbifolds of AdS5 x S5. This generalizes the relation between 

the chiral primary operators of N = 4 SeFT and Kaluza-Klein states of supergravity on 

AdS5 x S5 found in [11]. We obtained the Kaluza-Klein modes in the orb if old models by 

projecting those of supergravity on AdS5 x S5 on r invariant states where r is the orbifold 

group. In Table 4 we summarize the results. In the N = 0 we saw more Kaluza-Klein 

states than primary operators. 

Note that even in cases where the supergravity description is not applicable we see 

that chiral information is still reliably encoded in this description. The fact that BPS 

information is obtained correctly even when the supergravity description is not valid is 

already a known phenomenon. For instance, when considering gauge theories via wrap

ping the fivebrane of eleven dimensional supergravity (M theory) on a Riemann surface 

in order to obtain N = 2 supersymmetric gauge theories in four dimensions [56] there 

are points in the N = 2 moduli space where the Riemann surface degenerates and the 
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R SpIll 

20' 0 

50 0 

105 0 

10 0 

45 0 

1 0 

15 1 

r An Dn En Z3 ~(3n2) 

N 2 2 2 1 1 

~ 

2 14/ 3,34/ 3 14/ 3 14/ 3 - -

3 12,32 12 12 102 12 

4 18/3,38/3,58/3 18/3,58/3 18/3. - -

3 32 32 32 lz 12 

4 38/3 38/3 38/3 - -

4 10 10 10 10 10 

3 10,10,30 10,30 10,30 10,80 10, 10, 10 

Table 4: Kaluza-Klein harmonic projections. The projec

tions are labeled by rand N, while for the SU( 4) repre

sentations, the spin and scaling dimensions are also listed. 

For N = 2 the invariant components of the representa

tions are labeled by SU(2)R x U(l)R.c, for N = 1 by the 

number of components and U(l)Rsc, and for N = 0 by the 

number of components. The notation =f. ~(3n2) refers to 

the other non-Abelian subgroups of SU(3), ~(6n2) and 

~(m). 
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=f. ~(3n2) Z5 
1 0 

- 4 

- 10 

- 21 

12 2 

- 9 

10 1 

10 3 



eleven dimensional supergravity description is not valid. Nevertheless the spectrum of 

BPS particles is obtained correctly. The basic reason is that the BPS spectrum is pro

tected from quantum corrections and the BPS mass formula continues to hold even when 

extrapolated to regions where supergravity theory does not provide a good description .. 

Similar phenomenon occurs for N =,1 supersymmetric gauge theories in four dimensions 

that are obtained via wrapping the fivebrane on a Riemann surface [57,58]. In our case 

we see another example of this phenomenon, since the spectrum of chiral operators is 

protected from quantum corrections. A deeper analysis of this is still lacking. 

The results of this work can be generalized in a straightforward way to orbifolds of 

AdS7 x S4 and AdS4 x S7 that lead to six and three dimensional SCFTs respectively 

[37,39]. 

Note that in our analysis we have not seen Kaluza-Klein modes that correspond in the 

boundary SCFTs to the Yukawa couplings that arise from the superpotential of the N = 4 

theory upon projection. The reason being that these Yukawa couplings do not correspond 

to primary operators. They should however play an important role. The orbifold theories 

have a vanishing one-loop ,B-function [17,24]. If the Yukawa couplings vanish then the 

two-loop ,B-function will not not be zero, in fact the two-loop ,B-function will be positive 

and these theories will be infrared free theories, that is, they will be conformal but trivial. 

Thus, it would be important to carefully analyze these couplings and their effect on the 

higher loop ,B-functions. 

It is interesting to note that for the N = 0,1 cases we can easily see that the fixed line is 

only present in the large N limit unless we modify the Yukawa couplings with N dependent 

corrections that vanish as N -+ 00*. In the N = 1 cases where we have a Leigh-Strassler 

type argument [59,17] such a modification is guaranteed to exist. Consider the N = 0 

case. The vanishing of the one-loop Yukawa ,B-function [60] works for a U(N) gauge group 

because there is a cancelation between Yukawa contributions, which receive a counting 

factor N from the N fundamentals, and a gauge contribution which is proportional to 

the Casimir of the the fundamental, N/2. Of course the U(1) sub-group is infrared-free, 

so the fixed point can only occur for the SU(N) theory, but then the cancellation fails at 

next-to-Ieading order in l/N since the Casimir of SU(N) is (N2 - 1)/2N. It would be 

important to show that a modification of the Yukawa couplings and a fixed line at finite 

N exist also in the N = 1 theories. 

·We would like to thank C. Vafa for a discussion on this point. See also a discussion in [33]. 
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