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Polyelectrolyte solutions are modeled as freely tangent-jointed, charged 

hard-sphere chains and corresponding counterions in a continuous medium 

with pennmitivity E. By adopting the sticky-point model, the Helmholtz 

function for polyelectrolyte solutions is derived through the r-particle cavity

correlation function (CCF) for chains of sticky, charged hard spheres. The r

CCF, is approximated by a product of effective nearest-neighbor two-particle 

CCFs; these are determined from the hypemetted-chain and mean-spherical 

clo'sures (HNCIMSA) inside and outside the hard core, respectively, for the 

integral-equation theory for electrolytes. The colligative properties are given 

~ explicit functions of a scaling parameter r. that can be estimated by a 

simple iteration procedure. Osmotic pressures, osmotic coefficients and 

activity coefficients are calculated for model solutions with various chain 

lengths. They are in good agreement with molecular-simulation and 

experimental results. 

1. Introduction 

Natural and synthetic polyelectrolytes are distinguished by their high electostatic 

field and large molar mass'ofpolyions [1-3]. It is widely recognized that the behavior of a 

• To whom correspondence should be addressed. 
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polyelectrolyte in solution is very sensitive to the ionic environment. The electrostatic 

interactions often exert a dominant effect on a polyelectrolyte's thennodynamic 

properties. 

Extensive efforts have been made to develop theories and models for these complex 

systems. Prevailing theories of polyelectrolyte solutions are mostly based on the 

cylindrical-cell model [4,5]; this model describes a polyelectrolyte solution as an 

ensemble of equal cylindrical cells with a unifonnly charged rod-like polyion placed 

along the axis of each cell. Either the counterion-condensation fonnalism (CC), 

developed primarily by Manning [1,6,7], or the Poisson-Boltzmann approach (PB) [5,8] 

has been applied. However, Manning's oversimplified picture requires knowing a priori 

when the condensation occurs. Because Manning's results are independent of 

polyelectrolyte concentration, they are valid only at sufficiently low concentrations. PB 

theories provide a more detailed description of the small-ion distribution around the 

polyion. However, rod-like chains are not likely to reflect reality at experimentally 

interesting concentrations. The effect of chain connectivity on the small-ion distribution 

is also neglected. The error caused may be small only for highly charged polyelectrolytes 

in very dilute salt solutions [9]. Some revisions of PB have been made, e.g. the modified 

PB (MPB) by Outhwaite [10,11]. MPB theory embeds the classical Debye-Huckel mean 

electrostatic approach into the Bogoliubov-Bom-Green-Kirkwood-Yvon integral 

equation; this procedure provides a mechanism to correct approximations in the PB 

theory. Alternatively, integral-equation theory, using the hypernetted chain (lINC) and 

the mean-spherical (MSA) closures inside and outside the hard core, respectively [12,13], 

and computer-simulation methods [14,15], have also been adopted. Because those more 

sophisticated methods neglect polyion-polyion interactions, they are rigorous only at 

infinite dilution. 

Stretching of polyelectrolyte chains due to repulsion between backbone charges is 

not as intense as expected by most theories. The conformation of a polyion may not be 

strictly rod-like in many cases as discussed by Nagasawa et al [16]. Recently, using the 

MSA closure in the Wertheim-Ornstein-Zemike formalism, models have been developed 

by Kalyuzhnyi et al [17] and Blum et al [18] to study flexible linear polyelectrolytes. 
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However, no numerical results were given. In this work, we also adopt a flexible-chain 

model. Based on the sticky-point model of Cummings and Stell [19], the Helmholtz 

function for a polyelectrolyte solution is derived through the r-particle cavity-correlation 

function (CCF) for chains obtained from sticky charged hard spheres similar to those 

discussed by Zhou and Stell [20] and in our previous work [21]. The r-CCF is 

approximated by a product of effective nearest-neighbor two-particle CCFs. Blum's 

results [22-24] for electrolytes are used to determine those two-particle CCFs. Osmotic 

pressures, osmotic coefficients and activity coefficients are calculated and compared with 

simulation results. 

2. Molecular-thermodynamic model 

Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere 

chains with chain length r and corresponding counterions in a continuum whose 

permmitivity is & , equal to that of the pure solvent. The monomer unit with size Um 

carries charge Zm e. The corresponding number density is Pm . Charges of polyions are 

compensated by small ions (subscript k) whose charge and number density are Zk and Pk, 

respectively. Electroneutrality requires that 

(1) 

By adopting the sticky-point model of Cummings and Stell [19] for each nearest 

neighbor pair, the Mayer function for a group of r segments corresponding to a polyion 

can be expressed as 

7-1 

fg!.7 = -1+ II (0" m 8(rij -0" m)~/12), 
i=] 

j=i+1 

= -1 + exp( -fi &~1"7 ), 

(2) 

rij > 0" m 

where ~ is a parameter measuring stickiness; &~~~.'7 is the attractive energy at distances 

beyond collision diameter Um . (In eq.(2), 8 is a Kronecker delta.) The r-particle total 

correlation function h ~Lr is related to the'r-particle radial distribution function g ~i"'7 

/ 

/ 

( 



through h(r) = g (r) - 1 : 
12"'r 12"'r 

(r) _ r-l ( ) 
h I2 ... r --1+ fI urn 8(rij -urn )A/12 , 

z=1 
j=i+l 

where A is' a distribution parameter related to sticky parameter C;. 

The degree of association a for the monomers is defined by 

(3) 

a=rPr / Pm =r(Pmy-l f-+ g11. .. r(rI2,r23, .. ·rr-l,r)drI2dr23 .. ·drr-l,r /r! (4) 

where P r is the density of chains. 
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To obtain the Helmholtz density A/V, we use its functional derivative with respect to 

the Mayer function for an r-particle group which is related to the r-particle CCF by 

tJ(f3A / V) _ r (r) , 
(r) - -PmY 12"'r (r12 ,r23 , ... ,rr-l,r) / r. 

8112 ... r 

(5) 

Integrating this equation yields [20,21] 

p[A(a) - A(a = 0)] _ j (r) (r) 
N - -c1 YI2 ... r(rI2,r23,· .. ,rr-l,r)d[a/ YI2 ... r(rI2 ,r23, .. ·,rr-l,r)] 

o (6) 

= -c1[a- jadlny fi ... r(rI2 ,r23 , ... ,rr_l,r)] 

C - Pm 
1- . r'o (7) 

where No and '0 are the total number and total-number density of monomers priOl~ to 

association including counterions. As usual, fFlIkT. 

The key to obtaining the Helmholtz function is provided by infonnation on the r

particle CCF for an r-mer chain. In principle, the r-particle CCF could be detennined by 

the inter-segment potential function (or the Mayer function) by integral-equation theory. 

However, at present this is not possible for polymers. Following our previous work [21], 

we propose to calculate the r-particle CCF as the product of two contributions: a chemical 

contribution (1- ay dependent on the degree of association, and a physical contribution 

expressed by the product of nearest-neighbor effective two-particle CCFs Y tr U = i + 1) : 



r-I 
y11 .. r (r12 ,r23 , •••• rr_l,r) = (1- aY n y t (ry) 

;=1 
j=;+1 
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(8) 

where superscript "ref' refers to the reference system without association. Using this 

approximation, we obtain the Helmholtz function, 

fJ[A(a)-A(a=O)] . 
= cl[a(r -1) + r In(1- a)] 

lVo . 
(9) 

However, this equation is of no use when a = 1. Therefore we propose an alternate 

procedure: we first calculate osmotic pressure II and then obtain Helmholtz function A by 

integration. 

(10) 

Considering that association takes place at tangent position, rij = Um ,we have 

p[n(a)-n(a=O)] [ ~ 8InY[t(CTm )] 
~~~--~--~=-acl r-l+ ~ 

(0 . ;=1· OIn(o 
j=;+1 

(11) 

where C1 is defined by eq.(7). When a = 1, the osmotic pressure is then expressed as 

[ 

r-I 8lny~f (d )] 
pn=pn(a=O)-cl(o r-l+ L IJ m 

;=1 81n(0 
j=;+1 

(12) 

Substitution of eq.(12) into eq.(10), followed by integration, yields the residual 

Helmholtz function A r (relative to ideal gas at same temperature and density): 

PA r PA rea = 0) r-I ref ( . 
--=C2 -CIC2 L1nyy (CTm )+[C2 -1-clc2(r-l)]ln( (13) 

lV lVo ;=1 
j=i+1 ...-/ 

where N and , are the total number and the total-number density of polyions and 

counterions. Osinotic coefficient (J and activity coefficient ycan be expressed by 



and 

{ [ 

r-l 81ny~f (0" )J} 
¢ = C2 ¢(a = 0) - C1 r -I + L y m 

i=1 81n'o 
- j=i+l 

pAr pn 
lnr=--+--I N , 

3. The effective nearest-neighbor cavity correlation function 
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(15) 

(16) 

To obtain thermodynamic properties for polyelectrolyte solutions from eqs. (12), (15) 

and (16), we need the cavity correlation function and its derivative with respect to 

number density of the reference system, i.e, the charged hard-sphere mixture without 

association including counterions. For that system, the distribution functions can be 

calculated from Blum's MSA theory[22-24]. 

The direct correlation function at a ij for ions i and j is expressed by 

aijZ.Z. 
Cr(O":':) = I } 

I} lJ 4trO" .. 
lJ 

where cry = Oi +OJ; a~ is the Bjerrum length defined by 

pe2 
aij =--

& 

The pair correlation function at a ij is expressed by 

'2 = LPI0"7 
I 

(17) 

(18) 

(19) 

(20) 

where 1 counts all the monomers prior to association including counterions. Both Dn and 

a j depend only on scaling parameter r (refer to eqs.(B-45,56,59) in ref.[24]). They are 

estimated by the following iterative procedure [23,24]: 

4 r 2 = a ij L PI ( 1 ) 2 (z I _ _ tr-,-Pn;....O"-,-i J 2 

I l+rO"I 2V 
al) 

V=1-tr'3 /6 (22) 
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(23) 

I Piaizi 

p = I 1 +ral 
n 3 ~ 

1+~ I Pial 
2V I l+ ral 

(24) 

Because Pn is small, it can be omitted in eq.(21) without significant error. Eq.(21) is then 

rewritten, 

P z2 
4r2 = a 2" I I Of (l+ral)2 

Compared with eq.(22), eq.(25) is much more convenient to yield r. 

We adopt the hypemetted-chain closure (HNC) inside the core, 

Yij(r) = exp[hij(r) - cij (r)] 

(25) 

(26) 

Because of continuity, the effective nearest-neighbor cavity correlation fimction at 

tangent yijf(am ) ,as well as the correspondhtg derivative with respect to density, can be 

obtained from eqs.(17) and (19): 

olnyijf(am ) ~3 7ia~~2(2~3+V) ---"--- = -+-.;;.:;.....=--~--
oln~o V2 4amV3 

oaj a~zj(l+2ra;) or 

o~o =- 2r2(l+raj )2 . o~o 

(27) 

(28) 

(29) 

(30) 

Pertinent thermodynamic properties can therefore be explicitly expressed as 

fimctions of scaling parameter r. 
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4. Results and discussion 

We calculated the osmotic pressures, osmotic coefficients and activity coefficients 

for several polyelectrolyte solutions. Monomer unit size and charge are: U m = O.857nm 

and Zm = -1. Charges of polyions are compensated by those of counterions with size 

U c =O.857nm and charge Zc =+1. .At present we consider only salt-free systems; 

number densities of monomer units and counterions are therefore the same: Pm = Pc. 

Stevens and Kremer [25] have published corresponding molecular-dynamics (MD) 

simulation results for such flexible linear polyelectrolyte. solutions. Instead of a hard

sphere potential, in their work, the excluded volume was included via a Lennard-Jones 

potential. Nevertheless, our predictions coincide well with simulation results. This 

favorable comparison implies that the electrostatic potential plays a dominant role in 

polyelectrolyte systems. 

- this work 
-1 • MD -.... b -3 I: 

CS 
bO 

-5 ..9 

-7 

-7 -5 -3 -1 
log (Pmu3) 

Fig.I. Density dependence of the osmotic 

pressure with r = 16. 

- this 
-1 • MD -.... b 

I: -3 
CS 
bO 

..9 -5 

-7 

-7 -5 -3 -1 
log (Pmo) 

Fig.2. Density dependence of the osmotic 

pressure with r = 32. 

In Fig. 1 , the osmotic pressure is plotted as a function of monomer density with chain 

length r = 16. Comparison with simulation results is also shown. Calculated results agree 

almost perfectly with simulations. Two scaling regimes are found where fJfI - Pm 0 
. At 

lower density, lFI.O, close to lF9/8 experimentally found by Wang and Bloomfield [26] 

and predicted by Odijk's scaling theory [27]. At higher density, above a crossover value 

p mu 3 = 0.08, lF2.I, close to tF9/4 as experimentally observed [26]. The scaling 
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behavior in the higher density regime is also close to that of semidilute solutions of 

neutral polymers, implying that counterion condensation takes place at higher density. 

Because the charges of the polyion are screened, the polyions are nearly neutral polymers. 

Our model is also valid at very low concentration, lower than the minimum 

concentration required for accurate experimental measurement. The low-density limit for 

n is PH = Pm (1 + 1 / r), as obtained by Stevens and Kremer [25]. 

For chain length r = 32, similar 

behavior is shown in Fig.2 but with 8= 1.1 at this work 

low density and 8=2.2 at high density. The 

scaling relation for r = 64 is shown in Fig.3 

where 8=1.0 at low and 8=2.2 at high 

density. All scaling parameters reported here 

-.. .... 
b 

-1. MD 

t::::: -3 
~ 

/:)/) 

..9 -5 

agree well with those predicted from .. 7 

simulation studies and with experimental -7 

data. Agreement between calculated osmotic 

-1 

pressures and simulation results is again Fig.3. Density dependence of the osmotic 

near perfect. Moreover, osmotic pressures pressure with r = 64. 

depend only, weakly on chain length. Crossover densities between two regimes also 

depend weakly on chain length. Our results indicate that polyions may adopt a stretched, 

rodlike chain conformation at low concentrations and an expanded, random chain 

conformation at high concentration; in the latter case, counterions condensation may 

occur. 

Fig.4 and Fig.5 show osmotic coefficients and activity coefficients for chain length 

r=32. For the former, there is a little discrepancy between our results and those of 

Stevems and Kremer [25] in the low-density, limit. The discrepancy may be due to 

statistical errors in MD simulations. No data are available for comparison of our activity 

coefficients. Our results show that the chain length has almost no effect on activity 

coefficients or osmotic pressures. 
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this work 

• MD 

-4 -2 
log(c mlM) 

o 

Fig.4. Concentration dependence of 

the osmotic coefficient with r = 32. 

3 

1 

-1 

-6 -4 -2 
log(c mlM) 

o 

Fig.5. Concentration dependence of 

the activity coefficient with r = 32. 
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The results obtained here suggest that our model can predict thermodynamic 

properties for polyelectrolyte solutions. It can serve as a basis for the development of 

more realistic models; particular attention must be given to the effects of counterion size, 

charge and Bjerrum length. Studies toward that end are in progress. 
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