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Introduction 

Since the observation of a power-law behaviour in the charge distributions, char
acteristic of critical phenomena 1• 2 , in proton induced reactions at relativistic en
ergies, the production of multiple intermediate mass fragments (IMF) 6• 

7
, typically 

3 ::; Z ::; 20, has been touted as a signature of the nuclear liquid-gas phase tran
sition 3

• 
4

• 5 • While this may be the case in peripheral reactions e.g. projectile or 
spectator breakup 8

• 
9

• 
10

• 
11

• 
12

• 
13

• 
14

• 
15

• 
16

• 
17

• 
18

, the situation becomes less clear when 
one looks at more central reactions. In particular, it has been shown that the dissi
pative binary mechanism 19• 

20
• 

21
• 22• 23 contributes 95% or more of the reaction cross 

section 22
• 23 • Yet, as long as the sources are thermalized, it has been shown that a 

characteristic signature for phase coexistence can be extracted from the charge distri
butions 24• 

25
. The situation is further complicated by the experimental observation of 

a significant contribution to the fragment yields from a third source formed between 
the projectile and target 26

• 
27

• 
28

• 
29

• 
30

• 
31

. Most of these observations were made using 
velocity plots (see for example ref. 27) which are useful in assigning a given particle 
to its primary source. This evidence points out the importance of dynamics in the 
entrance channel. Unfortunately, it tells very little about the intrinsic properties of the 
sources themselves. In particular, it does not disclosed the nature of the fragmentation 
process producing the detected "cold" IMF, i.e. at t --7 oo. 

In the following, we will consider two contradictory claims that have been advanced 
recently: 1) the claim for a predominantly dynamical fragment production mecha
nism 32

• 
33

; and 2) the claim for a dominant statistical and thermal process 34
• 35• 

36
• 

37
• 

38
• 39 • 

We will present a new analysis in terms of Poissonian reducibility and thermal scaling, 
which addresses some of the criticisms of the binomial analysis 33• 40• 41 . 
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Figure 1. Average LCP multiplicity (upper panels), IMF multiplicity (tipper left) and average 
transverse energy associated to LCP and IMF (bottom panels) as a function of the total transverse 
energy (left panels) and IMF multiplicity (right panels) for the Xe + Au reaction between 40 and 60 
MeV /nucleon. 

Dynamical fragment production 

To make a statement about the nature and mechanism of fragmentation, it is 
necessary to probe directly any competition, or lack thereof, between the emission of 
various particle species as a function of excitation energy. The task is then to find 
a global observable that best follows the increase in excitation energy or dissipated 
energy. IMF multiplicity, NIMF, and total transverse energy, Et have both been used 
to infer a decoupling between light charged particles (LCP) and IMF production 32

• 
33

• 

NIMF as global observable 

Recently, it was claimed by Toke et al. 32 that IMF production is predominantly 
a dynamical process. The evidence came by looking at different particle multiplicities, 
and their corresponding transverse energies, as a function of IMF multiplicity. 

The argument was made as follows. The multiplicities of neutrons (Nn) and light 
charged particles (NLcP ), represent a good measurement of the thermal excitation 
energy of the system, E*, as do the transverse energies of the LCPs, EfCP. Using N1M F 
as a global variable, a fast and simultaneous saturation of Nn, NLcP and EfCP was 
observed in the reaction Xe+Bi at 28A MeV 32

. This saturation occurs around NIMF = 
2-3. The authors conclude that, since most of the IMFs (up to 12) are produced after the 
saturation, there is a "critical" excitation energy above which the IMFs are produced 
without competing with the LCPs. This apparent decoupling of IMF production from 
that of the LCPs is interpreted as due to the onset of a dynamical process. 

We have explored the above behaviour in a systematic study of Xe+Au reactions 
(similar to Xe+ Bi) at 40A, 50 A and 60A MeV. The data were taken in two different 
experiments at the NSCL using the MSU Miniball 41!" array and the LBL forward 
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array 42 • 43 • The right panels of Fig. 1 show the evolution of NLcP, EfCP and EfMF 
as a function of NIMF· The saturation is clearly present in both observables related to 
LCP. However, as the beam energy increases, the saturation point moves toward higher 
IMF mutiplicities. At 60A MeV, the saturation occurs at NIMF "'8. If one follows the 
interpretation mentioned above, one might be led to conclude that most of the IMF are 
produced before the saturation "critical energy" and that therefore the IMF production 
might be statistical and thermal in nature. In any case, the features shown in Fig. 1 
are sufficiently intriguing to warrant further study. 

To do so, we have performed a simulation using the SMM model 44
. We have 

considered the breakup of Au nuclei with a triangular excitation energy (E*) distri
bution ranging from 0.5A to 6.0A MeV (note that a fiat distribution does not change 
the conclusion but that a triangular one is closer to the impact parameter weighted 
behaviour of the cross section). The maximum average number of IMFs for this simu
lation is about 4, similar to the Xe+Bi case. Cuts on NIMF were done and are shown 
in the right panels of Fig. 2. Here, as in the experiment, we notice a fast and si
multaneous saturation of Nn, NLcP and EfCP. However, the fragmentation process 
is, by the nature of the model, of statistical origin. Inspection of the figure reveals 
that saturation occurs around NIMF=4, which corresponds to the maximum average 
number, (NIMF)max' In the model, the average value of NIMF increases withE* until 
(NIMF)max is reached at E;,.ax· Therefore, NIMF is, on average, a rough measure of 
excitation energy for NIMF < (NIMF)max· For values of NiMF > (NIMF)max' there is 
no increase of E*. 

For a given E*, the IMF distribution is characterized not only by its mean but also 
by its variance. Although (NIMF)max=4, Fig. 2 (right panels) shows that events with 
up to 12 IMF are present. Cutting on NIMF past its average maximum value probes a 
nearly constant excitation energy. This is nicely illustrated by the saturation of neutron 
and LCP multiplicities, which are also sensitive to E*. This is a general feature of any 
statistical model as pointed out by Phair et al. 45 • Note that the increase of EfMF with 
NIMF is due to the trivial autocorrelation between the two quantities. 

Returning to the data (Fig. 1, right panels), as the·beam energy increases, the 
excitation energy and IMF production increase. Therefore, ·in a statistical picture, the 
change in the "critical saturation energy" is due to the increase of excitation energy 
(dissipated energy) with beam energy, and correspondingly, to an increase of (NIMF)max 
with excitation energy. If, for a given reaction, IMF were produced dynamically, why 
should the "critical saturation energy" change with beam energy? 

Et as global observable 

The same authors have suggested 33 that the "evidence" for dynamical IMF pro
duction shown in the previous section might already be contained in the evolution of 
the same quantities (Nn, Nwp, EfCP, NIMF and EfMF) as a function of the total 
transverse energy, Et. Again, the authors have observed a fast and simultaneous sat
uration of Nn, Nzcp and EfCP as a function of Et, but a continuous increase of EfMF 
and NIMF· In their work (ref. 33, Fig. 2), they state, correctly, that if Et were a good 
measure of excitation energy, and the IMF were produced statistically, such saturations 
should not occur. Indeed, our statistical simulation (left panels of Fig. 2) shows that 
NLcP and EfCP increase monotonically with Et and, at no point, is EfMF greater than 
EfCP. Thus, the behaviour of the Xe+ Bi experimental results, if correct, cannot be 
explained by statistical models. 

In fact, saturations in N LCP and EfCP are not observed in comparable data for 
the Xe+Au reactions asshown in Fig. 1 (left panels). NLcP increases smoothly with 
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Figure 2. Average LCP and neutron multiplicities (upper panels), IMF multiplicity (upper left) and 
average transverse energy associated to LCP and IMF (bottom panels) as a function of the total 
transverse energy (left panels) and IMF multiplicity (right panels) for the breakup of Au nuclei in 
the SMM model. For details see text. 

Et, as does EfCP. Notice that EfCP is always larger than E[MF_ For the Xe+Au at 
50A MeV, the ratio E[MF j EfCP is always smaller than 0.3. This result is strongly at 
variance with the Xe+Bi data where the IMF contribute up to 80% to the total Et. The 
Xe+ Bi data are also very different from preliminary results of the Xe+ Au reaction at 
30A MeV (sister reaction of the Xe+Bi at 28A MeV) 46, 

47
, whose behaviour is similar 

to the data at higher energies in Fig. 1. 
The dramatic difference between the Xe+Bi and the Xe+Au data may be due 

to the experimental set-up used for the former experiment, the Dwarf Ball 48
, whose 

detectors are made of thin, 4mm, Csl(Tl). Such thin detectors have a punch through 
energy of 30A MeV for proton and alpha particles. While the thickness of these de
tectors is suitable for fragments, they are too small to stop LCPs in this beam energy 
range. If the punch through effect is not properly corrected, the total kinetic energy 
associated to LCPs will be severely underestimated. This, by construction, leads to a 
much larger percentage of the transverse energy carried by the IMFs at a given total 
Et. A detailed analysis of the Xe+Au systematic, and its comparison to Xe+Bi data, 
including a software replica of the Dwarf Ball, in under way 47

• However, it is already 
clear that the features presented in Fig. 2 of ref. 33 are due to an experimental artifact, 
rather than to dynamical decay. 

Statistical fragment production 

Another way of approaching the fragmentation process is to rely on methods that 
worked well at lower energies, and permitted the understanding of low energy particle 
evaporation and fission of a compound nucleus. At low energies, emission probabilities 
and excitation functions have been far more successful then kinematical variables at 
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suggesting whether the process is statistical (compound nucleus decay) or dynamical 
(direct reactions) 49

• 

The increase of fission probability as a function of excitation energy (directly re
lated to the temperature at low energies) can be cast in terms of a Boltzmann factor 
depending on the temperature and the fission barrier. The corresponding Arrhenius 
plots obtained from fission data are linear and cover a range from 2 to 6 order of 
magnitudes 49! 

Recently, similar behaviour has been found in multifragmentation data 24
• 

25
• 

34
• 

35
• 

36
• 

37
• 

38
• 

39
. 

It has been shown that the probability Pn of emitting n intermediate mass fragments 
(IMFs) can be reduced to the probability of emitting a single fragment through the 
binomial equation 34

• 
35

• 
36

• The extracted elementary emission probabilities p were also 
shown to give linear Arrhenius plots when log 1 I p is plotted vs 1 I .JE;. In going from 
reducibility to thermal scaling, the only assumption needed is that Et is proportional 
to excitation energy (or temperature). We should therefore include a few words on 
Et. From an experimental point of view, Et represents a measure of the total energy 
dissipated in the reaction. It can be written as follows 

Et = Ere-equilibrium + E;otation + E(low + E(oulomb + EJhermal (1) 

In other words, the thermal portion of Et is drowned in an ocean of other contri
butions, as is the thermal excitation energy itself! For example, if we take the SMM 
model, and try to reproduce the (NIMF)max of a given reaction, usually the Et (thermal 
Et) range is too small by a factor of at least 2. However, the important unanswered 
question is, is Et tracking the increase of thermal excitation energy? We believed that 
it does but this remains to be proven. 

In the hypothesis that the temperature T is proportional to .J£;, these linear Ar
rhenius plots suggest that p has the Boltzmann form p ex: exp( -BIT). This form holds 
for many different reactions from reverse to normal kinematics and almost over the com
plete intermediate energy range. Similarly, the charge distributions for each fragment 
multiplicity n and the experimental particle-particle angular correlation are also both 
reducible to the distribution of individual fragments and thermally scalable 24

• 
25

• 
37

• 

However, this approach has been meet with several criticisms. First, the binomial 
decomposition has been performed on the Z-integrated fragment multiplicities (IMF), 
typically associated with 3 :::; Z :::; 20. Thus, the Arrhenius plot generated with the 
resulting one fragment probability pis an average over a range of Z values. A second 
"problem" lies in the transformation from the excitation E* to the transverse energy 
Et. It was shown that if the width associated with this transformation is too large, 
than the linearity of the Arrhenius plots constructed with the elementary probability 
p would be lost in the averaging process 33 • While both binomial parameters p and 
m are individually susceptible to this problem, the product of the two, (n) = (mp) 
has been shown to be very resilient to the averaging process 33 • Finally, the fact that 
IMFs as a category can contribute a fair amount to E~, about 30% maximum for the 
Xe+Au reaction at 50A MeV, has been pointed to as a possible source of autocorrelation 
between p and yfE; leaving its interpretation questionable 40• 41 • 

In the following, we will present results from a new analysis 38 in which we look 
for reducibility and thermal scaling at the level of individual fragments of charge Z, 
and, at the same time, answer in a rather elegant way the above mentioned criticisms. 

Poissonian reducibility 

We analyze the fragment multiplicity distributions for each individual fragment 
Z value. This restriction has the rather dramatic effect of decreasing the elementary 
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Figure 3. The ratio of the variance to the mean number of Li, C, 0, Ne and Si fragments (open and 
solid symbols) emitted from the reaction 129Xe+197 Au at 50A MeV. The star symbols show the same 
ratio for all IMFs (3 :::; Z :::; 20). 

probability p, compared to that associated with the total IMF value, to the point where 
the variance over the mean for any Z is very close to one for all values of Et 36

• 
38(Fig. 

3). This means that the binomial distribution tends to its Poissonian limit. In this 
limit, the quantities m and p are not individually extracted, but it is rather the quantity 
(n) = (mp) that is obtained. The Poisson distribution is expressed as 

( ) n -(nz} 
Pn(Z) = nz e 

n! 
(2) 

where n is the number of fragments of a given Z and the average value (nz) is a 
function of Et. We can verify the ability of Eq. 1 to reproduce the n-fold probability 
distribution, Pn, for Li fragments in Fig. 4 (left panel). The symbols are experimental 
n-fold probabilities, while the lines are the probabilities obtained by introducing the 
experimental average values in Eq. 1. For all the reactions studied, Poissonian fits (Eq. 
1) were excellent for all Z values starting from Z =3 up to Z = 14 over the entire range of 
Et 38

. (nz) is now the only quantity needed to describe the emission probabilities Pn of 
charge Z. Thus we conclude that reducibility (now Poissonian reducibility) is verified 
at the level of individual Z values for many different systems. Moreover, reducibility 
is tested for each (Z,Et) combination. For example, in Fig. ;1, the reducibility is 
tested 40 times just for Z=3. Reducibility, binomial or Poissonian, is an experimental 
observation, demonstrating that fragment emission is a stochastic process. 

Thermal scaling 

In order to verify thermal scaling, we can first look at the ratio of one fold to 
the next, Pn+d Pn as in ref. 39. The results yield linear plots versus 1/ .J]t; as shown 
in Fig. 4 (right panel). However, these plots are not all independent; in fact, from 
Eq. 1, one find that Pn+d Pn = (n) jn + 1. Correcting the ratio by the trivial n + 1 
factor collapses all the curves into a single one, which follows nicely the line of the 
experimental average values. Consequently, we generate Arrhenius plots by plotting 
directly log (n) vs 1/.J]t;. The left panel of Fig. 5 gives a family of these plots for 
the Xe+Au reaction at 50A MeV, and Z values extending from Z=3 to Z=14. These 
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Figure 4. Left panel: The excitation functions Pn for lithium emission from the reaction 
129Xe+197 Au at 50 A MeV. The lines are Poisson fits to data. The ratio of one n-fold to the next is 
shpwn in the upper right panel and the appropriate scaling in the lower right panel. The line in the 
lower right panel is the experimental average number, (nz). 

Arrhenius plots are strikingly linear over factors of 10 to 60, and their slopes increase 
smoothly with increasing Z value. The overall linear trend demonstrates that thermal 
scaling is also present when individual fragments of a specific Z are considered. 

The advantage of this procedure is readily apparent. For any given reaction, ther
mal scaling is verifiable for as many atomic numbers as are experimentally accessible 
(12 in this case). Futhermore, to generate this figure, Poissonian reducibility has been 
tested 480 times. This is an extraordinary level of verification of the empirical reducibil
ity and thermal scaling with the variable Et. 

Additionally, as discussed above, (nz) is free of any distortion due to averaging 
when going from E* to Et 33 • Also, because of the dominance of the zero fold probability, 
the average contribution of a particular Z to Et is very small, ::; 5%, thus minimising 
the risk of autocorrelation. Still, to be sure that there is no autocorrelation, we have 
repeated the analysis for Xe+Au at 50A MeV by: i) removing from Et all contributions 
from the specific Z (Ef) that we have selected (Fig. 5, middle panel). ii) by using 
only the Et of the light charge particles, Ef0 P (Fig. 5, right panel). In both cases, the 
Arrhenius plots remain linear for almost the entire range of Et, and (nz) changes by 
factors of 10 to 50. These results are similar to those obtained using the total Et. We 
conclude that the linearity of the Arrhenius plots is not due to autocorrelation but to 
a thermal/statistical emission process dominated by phase space. 

We have observed experimentally that the maximum values of the new Et scales 
(either Ef or Ef0 P) correspond to events in which fragments of a given Z (or all IMFs) 
are absent. Therefore, in our attempt to avoid autocorrelation by excluding from Et 
all IMFs (Ef0 P) or the Z value under investigation (Ef), we have introduced another 
kind of autocorrelation. For example, excluding from Et all fragments of charge Z to 
produce Ef necessarily requires that for those events where Ef ~ Et, the yield nz -+ 0. 
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Figure 5. The average yield per event of different elements (symbols) as a function of 1/..;E; for the 
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This produces the visible turnover of the Arrhenius plots in the bottom panels of Fig. 
5 (the same argument also applies to Ef0P). 

Finally, even though we have constructed the Arrhenius plots from three different 
Et scales, the slopes associated with these plots always become steeper with increasing 
Z values. This is what we would expect if the slopes parameters are related to physical 
fragmentation barriers. Moreover, the rate of change of the slopes with various Et 
scale is the same. This is shown in Fig. 6 where the various sets of barriers have been 
normalized to Z =6 from the full Et scale. 

Summary and Outlook 

In heavy ion reactions at intermediate energies, a complex dynamical behaviour 
is observed in the entrance channel. However, in order to understand the nature of 
the fragmentation process, one must rely on observables other than velocity plots, and 
their associated kinematic variables. 

The evolution of multiplicities of neutrons, light charged particles or IMF and of 
their corresponding transverse energies with NIMF or Et does not provide convincing 
evidence for the claim of a dynamical IMF production. In the first case 32 , the behaviour 
is a rather general one and is found in any statistical model. In the second case 33

, the 
anomalous features associated with dynamical IMF production are most likely due to 
an experimental artifact. 

Armed with observables that have have been successful for low energy nuclear re
actions, we have used the probabilities and excitation functions to probe the nature of 
the fragmentation process. Then-fold probabilities of individual Z values are shown to 
follow Poissonian distributions, and as such, are reducible. The experimental observa-
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Figure 6. Slopes of the Arrhenius plots, normalized to Z=6, for Xe+Au at 50A MeV as a function 
of Z using the indicated definitions of Et. 

tion of Poissonian reducibility means that IMF production is dominated by a stochastic 
process. Of course stochasticity falls directly in the realm of statistical decay. It is less 
clear how it would fare within the framework of a dynamical model without appealing 
for chaoticity or ergodicity. Futhermore, the thermal scaling of (nz) suggest that it has 
the Boltzmann form · 

(nz) ex e-Bz/T (3) 

It is important to recall that by considering individual Z values, one obtains Ar
rhenius plots free of distortion or autocorrelation. Additionnally, this form permits the 
extraction of a fragmentation "barrier" Bz for each Z. The behaviour described in Eq. 
2 is similar to that observed in the fission process of ref. 49. The emission probability 
of a given Z is controlled by its emission barrier and the temperature. 
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