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Abstract 

The performance of conjugate gradient schemes for minimizing unconstrained energy func

tionals in the context of electronic structure calculations is studied. The unconstrained func

tionals allow a straightforward application of conjugate gradients by removing the explicit or

thonormality constraints on the quantum-mechanical wave functions. However, the removal 

of the constraints can lead to slow convergence, in particular when preconditioning is used. 

The convergence properties of two previously suggested energy functionals are analyzed, and a 

new functional is proposed, which unifies some of the advantages of the other functionals. A 

numerical example confirms the analysis. 
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1 Introduction 

There is little need to motivate the interest of science in electronic structure calculations. The 

description of the chemical bond is probably the most celebrated success. Many other important 

properties of matter, such as for example the response to electric and magnetic fields, are also 

determined by the electronic structure. 

The many-electron Schrodinger Equation is well known, and describes the behavior of non-

relativistic electrons correctly. It can be solved analytically for some important special cases like 

a uniform potential, the harmonic oscillator, or the hydrogen atom. For real materials such as 

molecules or solids, where the potential is complicated, and several or even a large number of 

electrons are present, analytic solutions are not known. The numerical solution of the many-

electron Schroedinger equation in some external potential Vext(r) 

(1) 

becomes very demanding as the number of electrons Nel grows. Since the many-body wave function 

W ( r1, r2, ... r N.z) is represented in the product space of the single-electron positions r i, the number 

of degrees of freedom grows exponentially with Nel· A brute force approach is not feasible. 

Two different, but similar approximations to the many-particle Schrodinger equation have en-

joyed great success during the last three decades: The Hartree-Fock (HF) approach and Density 

Functional Theory (DFT) in the Local Density Approximation (LDA) . The Hartree-Fock equa-

tions were discovered in 1951 [1], and were readily embraced by the quantum chemistry community 

because they describe the chemical bond of molecules reasonably well, and also reproduce the ex-

perimentally known binding energies of many molecules better than DFT jLDA. Density Functional 

Theory was founded in 1964 [2, 3], and is in principle an exact approach. However, it buries all 
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the difficult many-body effects inside an "exchange-correlation" energy term Exc, which is proven 

to exist, but no simple and exact expression is known for it. In the Local Density Approxima

tion, this exchange-correlation term is approximated by a simple functional form, which depends 

on the local electron density only. The recently developed Generalized Gradient Approximations 

(GGA) [4] improve upon the LDA by including the gradient of the electron charge density into Exc· 

The resulting computational procedure is not substantially different from the LDA, but the results 

are in general more accurate, e.g. binding energies are comparable or better than those from HF 

calculations. 

Both HF and DFT /LDA reduce (1) to a single-particle problem, such that the individual 

particles are decoupled, and interact with each other only through an average effective potential. 

This simplifies the problem substantially, and renders calculations on real materials feasible. The 

DFT /LDA equations are somewhat simpler than Hartree-Fock, and allow for larger systems. These 

days, up to several hundred atoms can be treated within DFT/LDA[5]. Many algorithms have been 

proposed to solve the DFT/LDA equations (see, e.g. [6, 7, 8, 9, 10]), but the search for more efficient 

schemes is still an active field[ll]. 

2 Formalism 

From a computational point of view, the DFT /LDAT electronic structure problem is simply a 

minimization of a function in a large parameter space. This section will motivate the objective 

function, and give a brief introduction to the subject. 

The fundamental theorems of DFT are that a) the ground state energy of a quantum-mechanical 

system is a functional of the electron number density p( r) only, and b) the true ground state density 

minimizes this functional[2]. Although in principle the ground state energy E of an electron system 
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is a functional of p( r) only, in practice a "Kohn-Sham" expression[3] is used for accuracy reasons, 

involving single-particle wave functions J'ljli), i = 1, ... m. Restricting the system to be a spin 

compensated insulator with Nez electrons, the m = Nez/2 wave functions {J'Ijl)} correspond to 

orbitals occupied by electrons. The Kohn-Sham functional then reads 

(2) 

The electron number density p(r) is a scalar function of the spatial position r, and depends on the 

wave functions as 
m 

p(r) = 2 L J('ljliJr)J 2 
. (3) 

i=l 

The functional F[p] contains the ionic, exchange-correlation, and Hartree energy of the Kohn-

Sham functional [3]. Minimizing (2) seems straight forward, but is impeded by the orthonormality 

Fortunately, the first derivative of E with respect to the parameters J'ljli) is available: 

8E 
2HJ'Ijli) (4) 

8('ljliJ 

if 1 2 ~ 
--\7 + v 

2 
(5) 

v 1 3 8F 
r d r bp(r) Jr)(rJ . (6) 

This derivative does not take the orthonormality constraints into account. Both the Hamiltonian 

operator H and the potential operator V are in general Hermitian operators, but for simplicity will 

be assumed real and symmetric here. 

The constraints can be treated by introducing a set of Lagrange multipliers Ei, i = 1, ... , m 

(also known as Kohn-Sham eigenvalues), such that (2) becomes a non-linear eigenvalue problem 

i = 1, ... ,m, (7) 
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where the operator H[p] depends on the solutions {1?/1)} through (3), (5), and (6). The standard 

procedure for many years has been to solve (7) with a fast, iterative eigensolver, then update p and 

H[p] by forming p from the m eigenvectors with the smallest eigenvalues E, and solve again, until 

"self-consistency" is achieved. For a large number of electrons, this scheme becomes unstable, and 

it is more efficient [7, 6, 8, 9] to directly minimize (2). 

A different, but simpler functional than (2) is the "non-selfconsistent" functional 

m 

Enon-scJ[{I?/1) }] = 2 L(?/JiiHJixedi?/Ji), (8) 
i=l 

in which the operator Hfixed does not depend on p. This functional represents simply an eigenvalue 

problem, and can be efficiently minimized by an iterative eigensolver, e.g. based on the Davidson[12] 

or Lanczos[13] schemes. However, these eigensolvers have not been designed to handle a matrix H 

that depends on the eigenvectors. 

In the following sections, the unconstrained functionals will be developed based on the non-

selfconsistent functional (8). This simplifies the presentation substantially. At first it seems like 

Enon-scf is a rather different problem than the original one (2). However, if just H[p] is updated as 

the {1?/1)} converge (i.e. at any instance pis consistent with {1?/1)} ), it retains one essential feature 

of the original functional: it yields the same first derivative, provided that the dependence of H 

on pis ignored when the derivative is computed. This means that the algorithms presented below 

are easily generalized to the "self-consistent" case by keeping H and {1?/1)} consistent. Where the 

differences between (2) and (8) become important, special mention will be made. 

An explicit representation ofthe wave functions {1?/1)} allows a compact matrix notation. Ex-

pan ding in terms of a finite set of N orthonormal basis functions {I (f?)}: 

N 

l?/li) = 2::::: Yiii'Pl) , (9) 
l=l 
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the orthonormality constraint can be expressed as 

(Im is the m X m identity) , (10) 

since column i of Y contains the expansion coefficients of 1'1/'i)- For simplicity, Y is assumed to 

be real. N varies depending on the basis set and the system under study, but for the popular 

plane-wave basis used in the subsequent test calculations, N typically ranges from 20 to 1000 times 

m. Thus Y is a (N x m) tall and skinny matrix. With the expansion (9) the operator fi turns into 

a matrix H, and the objective function (8) becomes: 

E_L[Y] = 2tr(YT HY), yTy = Im, (11) 

where the subscript ..L denotes that the Y are subject to orthonormality constraints. 

3 Minimizing the Constrained Functional 

All eigensolvers minimize (11) when they compute the smallest eigenvalues and corresponding 

eigenvectors. In particular the trace minimization algorithms [14] expose this concept explicitly. A 

straight forward use of e.g. the conjugate gradient algorithm is not possible, because the columns of 

Y have to be kept orthonormal during the iteration[8]. The inclusion of the constraint is not trivial, 

and many algorithms proposed in the literature do not exhibit some of the desirable properties of 

true conjugate gradients, such as quadratic convergence near the minimum[15]. Admittedly, the 

regime of quadratic convergence is never reached in practice, since the dimensionality of the search 

space (up to several millions) is orders of magnitude larger than the number ofiterations (a few 

hundred at the most). However, since most of the proposed algorithms cannot claim to progress in 

conjugate directions, it is questionable if the rate of convergence in the linear convergence regime is 
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as good as conjugate gradients. This has been pointed out in a recent paper by Edelman et al [16], 

who present a "correct" conjugate gradient algorithm with superlinear speedup near the minimum. 

The present work will not discuss the constrained minimization, but follow the lines of St'lch et 

al [9], and eliminate the constraints by rewriting the objective function (11). 

4 Unconstrained Functional with Overlap Matrix Inversion 

The constraints in (11) can be removed by transforming to a set of vectors X spanning the same 

subspace: 

Y = xs-1/2 
' 

S=XTX 
' 

(12) 

but not necessarily being orthonormal. The overlap matrix S is a measure of the non-orthonormality 

of X. This approach has been used for electronic structure calculations before[9, 10], especially for 

order-N schemes[17, 18]. In terms of X the energy functional reads: 

Es-1 [X] = 2 tr(S- 1 XT H X) , (13) 

but now there are no constraints, and a standard optimization technique can be used to minimize 

Es-dX], which is a function of Nm variables. Since Nm can easily grow to several millions, 

conjugate gradients is the method of choice. 

Conjugate gradients needs two basic ingredients: the gradient of the objective function, and a 

rule how to do the line search. For Es-1 [X], the gradient is 

(14) 

· From the gradient, a search direction D (a N x m matrix) is computed according to ~.g. the 

Polak-Ribiere prescription[19]. Once D is picked, a line minimization is performed along D: 

minEs-dX(t)] = min2 tr(S-1(t)X(tf HX(t)) 
t t -

(15) 
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X(t) X+ tD 

S(t) X(tf X(t) . 

At this point, one should use the true energy functional (2) - suitably generalized to nonortho-

normal wave functiens X - to do the line minimization. However, it is more convenient and faster 

to minimize the non-selfconsistent functional Es-dX(t)] instead. Then, the line minimization 

becomes an inexact one. Our experience however shows that the inexact line search degrades the 

rate of convergence of the algo!:_ithm only negligibly. 

Even using the simpler non-selfconsistent functional, the line search is cumbersome, because 

one has to find the minimum of (15) by numerical methods, and for each trial step length itrial, 

s-1(ttrial) has to be computed. This is one of the main motivations for the approximate functionals 

presented later. 

In order to compare Es-1 [X] with the other functionals discussed below, it is useful to un-

derstand the rate of convergence with which a conjugate gradient scheme will minimize (13). For 

quadratic forms, one can find rigorous upper bounds ori the convergence rate of the conjugate 

gradient algorithm in the regime of linear convergence[20]. Linear convergence is observed when 

the eigenvalues are sufficiently spread out, and the number of iterations is much smaller than the 

number of distinct eigenvalues. Then, the error Pk in the objective function at iteration step k is 

bounded by: 

y'C- 1 
( )

k 

Pk ~ 2 y'C + 1 Po · (16) 

Here, cis the condition number of the Hessian matrix 1i associated with (13). When the eigenvalues 

are clustered, then the conjugate gradient algorithm may converge much faster than the above 

bound indicates. Indeed, in the absence of roundoff error, the algorithm will converge in k steps 

on a matrix with only k distinct eigenvalues. To get insight into the expected rate of convergence 
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near the minimum, we compute the eigenvalues of 1-{ following Ref.[18]. Since the eigenvectors 

y~o) corresponding to the smallest eigenvalues Ei, i = 1, ... m are known to minimize (13), one can 

choose them as the origin: 
N 

X._ y(O) + "'c(i)y(O) 
t- i ~ l l ' (17) 

l=l 

and express the deviation in terms of the full spectrum of the N eigenvectors of H. Inserting (17) 

into (13) yields to second order in the expansion coefficients c}i): 

m N 

Es-1 -Eo= 2 L L (Ek- Ei)(c~i)) 2 . (18) 
i=l k=m+l 

Notice that the sum over k covers the full spectrum beyond m, but the sum over i is just over 

the m eigenvectors with smallest eigenvalues. Since the E are labeled in ascending .order, we can 

immediately read off the smallest eigenvalue of 1-{ as 2(Em+l -Em) and the largest as 2(EN- E1). 

Hence the condition number c of 1-{ is determined by the ratio of H's spread and "gap": 

.c= (19) 
Em+l- Em 

For fast convergence, a large gap and a small spread are necessary. Because (EN -El) ~ (Em+l -Em), 

of course, c ~ 1. 

5 Unconstrained Functional with. Approximate Overlap Matrix 

Inversion 

As has been pointed out in section 4, the inverse of S in the functional E 3 -1 [X] is undesirable. 

Assuming for the moment that the columns of X are almost orthonormal, s-1 is to first order in 

(S- I): 

s-1 ~ (21- s) . (20) 
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After shifting H by 1] to be negative definite, one can show[18] that the resulting functional 

Eu-s[X] = 2 tr((2I- S)XT(H -'I])X) (21) 

still has the "right" minimum. This means that the X minimizing Eu-s[X] span the same subspace 

as the X minimizing Es-dX] or the Y obtained by minimizing Ej_[Y]. In fact, at the minimum 

(21) automatically yields[18] a set of orthonormal X. With a proper choice of 1] (potentially a 

larger value) this holds also for the self-consistent functional, not just for the non-selfconsistent 

functional in (21). The intuitive reason for the automatic orthonormality of X at the minimum is 

that Eu-s[X] has built-in "forces" driving the X to become orthonormal; which in turn justifies 

the expansion (20). 

The aforementioned "forces" become evident when an expansion (17) of Eu-s[X] around the 

minimum is carried out as in section 4. To second order one obtains 

Eu-s- Eo (22) 

In addition to the first term (also present in (18)), there is the second term which drives the X 

to be of unit length, and the third term leading to orthogonality. Eq. (22) shows that the shift 1] 

should be at least 1] > Em to make all eigenvalues of the Hessian 1iu-s positive. For xCo) to be a 

global minimum of (21), 1] must be greater than the largest eigenvalue EN· 

To get fast convergence, TJ should be chosen such that the condition number of 1iu -s is as 

small as possible. In other words, the eigenvalues of 1iu -s from the second and third term should 

fall within the range of eigenvalues generated by the first term. The proper choice of 1] is: 

Em+l- Em + E < < EN- E1 

4 
m _ 1] _ 

4 
+ El . (23) 
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In case such an rJ exists, the condition numbers of 1-lu-s and 1-ls-1 are identical, and therefore 

the conjugate gradient algorithm converges at the same rate. A numerical example of this will be 

shown in section 8. 

The main advantage of Eu-s over Es-1 is the simplicity of the line minimization, which now 

does not involve an explicit inverse of S. Rather, the line minimization can be done exactly 

by finding the minimum of a fourth order polynomial (this is only valid for the non-selfconsistent 

functional). The order-N schemes prefer Eu-s because it does not involve a poorly scaling explicit 

matrix inverse. 

6 Improved Unconstrained Functional with Approximate Overlap 

Matrix Inversion 

As shown in section 5, the expansiOn (20) of the matrix s-1 to first order simplifies the line 

minimization, and automatically[18]leads to orthonormal vectors X. However, the Hessian matrix 

is altered, which could increase the condition number. The functional presented in this section 

maintains the simplicity of Eu-s but reduces the potentially adverse effects on the Hessian matrix. 

It has been proven[18] that the expansion of s-1 in (13) to even orders in (S- I) also yields a 

functional which has orthonormal X(o) at the minimum, but now-H has to be shifted to be positive 

definite. Furthermore, the X(0) at the minimum span the subspace in which E 5 -1 is minimal. 

Expanding s-1 to second order in (S - I) yields the first term of the functional 

E3I-3S+S2 = 2 tr((3I- 35 + S 2 )XT (H + 7]
1)X) + 2K tr((S- !)2

) • (24) 

Here, rJ 1 should be chosen to make H + rJ1 positive definite, and a second term with "' in front has 

been introduced to facilitate the minimization. Obviously, this new term will vanish at the minimum 
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when S = xr X= I, and for"' > 0 will drive the X to become orthonormal. At first it seems from 

the proof in Ref.[18] that there is no need for the second term in (24), since the X should become 

automatically orthonormal. Its need will become clear when the Hessian matrix 1-l31 _ 3s+S2 of (24) 

is discussed in the following paragraph. 

Using the expansion ( 17) of E 31_ 38 +S2 around the minimum as in section 4 yields: 

(25) 

Now the only second order term leading to orthonormality are due to the second term in (24). 

Without it, a conjugate gradient scheme cannot be used to minimize E31_ 38+32, since there would 

be special directions in parameter space along which the objective function has vanishing first and 

second derivatives, but is not completely flat (as it is in the case of Es-1). As numerical experiments 

show, an attempted conjugate gradient minimization of (24) without the second term stagnates at 

a finite error: 

The line minimization for E31_ 3S+S2 is only slightly more effort than for Eu-s- Instead of 

a fourth order polynomial, now a sixth order polynomial needs to be minimized. To get fast 

convergence, "'should be picked analogously to rJ in (23) such as to minimize the condition number 

(26) 

In contrast to E 2i-s, the shift ry' of H can be picked without impact on the Hessian matrix near 

the minimum. Furthermore, there always exists a"' for which (26) is satisfied. The same need not 

be true for rJ in (23). Notice that only a single eigenvalue of 8"' is introduced to 1-l31_ 3s+S2 by 

the second term in (24), whereas in (22), there is a range of eigenvalues due to the orthonormality 

terms. 
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In case a proper shift 7J exists for Eu-s, and"' in E 31_ 3s+S2 satisfies (26), the two functionals 

should show the same rate of convergence. In practice, this is often the case if no preconditioning 

is used. It is especially under preconditioning where the differences between Eu -S and E31 _ 3s+S2 

become important (section 8). 

7 Preconditioning 

Preconditioning[20] accelerates the convergence of the conjugate gradient scheme by using a (Nm x 

Nm) matrix lC which, when applied from the left to the Hessian matrix 1t, brings the condition 

number of JC1t as close as possible to one. Preferably, the application of lC should not increase the 

operation count significantly. A simple and effective diagonal preconditioner[6] is known for the 

case when a Fourier basis is used in (9) to represent the wave functions. First, an approximate 

inverse K of H is constructed, and then an approximate inverse lC of 1t is deduced. 

When Fourier expanding the (not necessarily orthonormal) wave functions {I¢)} corresponding 

to X, 

(rl¢i) = :L>(i)(G)eiG·r ' 
G 

(27) 

the vector indices are ordered ascending with IGI, and the expansion is truncated at a suitably 

large I G I = Gmax. The Hamiltonian operator fi = - ~ \72 + V turns into a matrix: 

11 12 . -
HGG' = 2 G 8GG 1 + VGG'. (28) 

By construction, VGG' decays for large IGI or IG'I, so for large G, G', the "kinetic energy" term 

~IGI 2 8GG' dominates, and H is almost diagonal. This is exploited to construct an approximate 

inverse K of H which is essentially the one from Ref. [6]: 

8 
27 + 18x + 12x2 + 8x3 

GG' 27 + 18x + 12x2 + 8x3 + 16x4 
(29) 
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The parameter T determines the value of IGI for which the preconditioner K starts to become ex 

1/IGI 28GG'· For IGI 2 < T, the preconditioner in (29) approaches the identity, since the assumption 

of H being diagonal is not valid here, and it is better not to precondition. In practice, T is chosen to 

be the maximum "kinetic energy" ~ L:G IGI 2(x(i)(G)) 2 of all columns x(i) i = 1, ... m. This turns 

out to give a good estimate for the regime IGI 2 > T where the diagonal terms start dominating 

HGG'· In principle, K must be kept fixed during the course of the minimization to get truly 

conjugate directions. Numerical experiments show that T changes only little as the x(i) converge, 

and sacrificing exact conjugacy by adjusting K does not change the rate of convergence. 

With K as an approximate inverse of H at hand, the preconditioner K is constructed by 

replicating K onto the diagonal of K. This preconditioner reduces the condition number of 1t by 

compressing the spectrum of H. As a consequence, it becomes more difficult or even impossible 

to find a proper choice of TJ in Es-1 to satisfy the condition (23). At that point, the more liberal 

condition (26) gives the functional E3r-3s+S2 an advantage over E5 -1. The numerical example in 

section 8 will illustrate this. 

8 Numerical Example 

It is instructive to look at a simple, but relevant example for testing the statements of the preceding 

sections. Here, the performance of the conjugate gradient algorithm is studied for a diamond 

crystal. Only the valence electrons are treated, assuming the core electrons do not participate in 

the chemical bond. The ionic cores are represented by norm-conserving pseudopotentials [21] in a 

separable Kleinman-Bylander form[22]. The pseudopotentials are designed to give the same energy 

E as the real potential, but with a much smaller Fourier basis set. Since there are two atoms in 
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the unit cell with two valence electrons per spin for each atom, one needs to compute m = 4 wave 

functions. In the plane-wave representation, the matrix H has a size of N = 609. This is much 

smaller than typical problem sizes studied today, but it allows to use MATLAB and an explicit 

representation of H for numerical experimentation. 

A direct diagonalization of the full matrix is first performed to get the spectrum shown in 

the inset of figure 1. The smallest four "occupied" eigenvalues are grouped into ': smaller single 

eigenvalue and a triplet. They are well separated from the larger, "unoccupied" eigenvalues. This 

gap is critical for achieving fast convergence, since it affects the condition number of the Hessian 

according to (19). 

The starting guess for the conjugate gradient procedure is generated by diagonalizing a 27 by 

27 submatrix from the upper left corner of H, and selecting the smallest four eigen pairs. The 

other (609-27) components of the start vectors are filled up with 0.001 *rand() to ensure that the 

full spectrum is represented in the starting guess. The resulting vectors are orthonormalized with 

the MATLAB orth() command. 

Without preconditioning, all three functionals E 8 -1, Eu-s, and E 31 _ 38+S2 should exhibit 

similar convergence rates when minimized with a conjugate gradient algorithm. According to 

Eq. (23), the functional E2s-I should perform best for 2.01 :::; TJ :::; 15.41. Likewise, from (26), 

E 31_ 3S+S2 should give best performance for 0.11 :::; "' :::; 15.05. Figure 1 shows the number of 

iterations to reach an error of 10-13 as a function of rJ (for E 2s-I) and"' (for E31_ 38+8 2). Since 

E 8 -1 has no free para,meters, it is represented by a horizontal line corresponding to 48 iterations. 

As is obvious from Fig. (1), as long as the parameters TJ and "' are chosen within the intervals 

given by (23) or (26), all three functionals lead to the same rate of convergence. Once TJ or "' are 

outside these intervals, the condition numbers of the Hessian matrices for E2s-I and E31_ 3s+S2 
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increase, and the convergence slows down. 

Under preconditioning, convergence is more rapid (Es-1 converges in 16 instead of 48 iterations), 

but the functionals E2s-I and E 31_ 3S+S2 now show more sensitivity to the choice of TJ and "' (Fig. 

2). The parameter T for the preconditioner (29) has been set to T = 4 (the physical units are 

Rydbergs) in order to be sure the same, fixed preconditioner is used for all functionals. No shift rJ 

exists for which E2s-I converges as fast as Es-1. In contrast, for "'= 0.4 ... 1.0, E 31 _ 3s+S2 shows 

the same performance as Es-1. 

9 Conclusion 

Three different variants of unconstrained energy functionals, E s-1, E2s _I, and E 31 _ 3s +S2 for 

electronic structure calculations have been studied comparatively. The rate of convergence for a 

conjugate gradient minimization of those functionals is discussed. While Es-1 does not require any 

shift parameters and performs best under preconditioning, it has the disadvantages of a tedious 

line minimization and an explicit inversion of a (small) matrix. The functional E2s-I, which 

has been previously used for order-N calculations[18], is found to be sensitive to the choice of 

its free parameter TJ, and, under certain circumstances, does not achieve optimal performance 

under preconditioning. A new functional E31_ 3S+S2 is proposed which is less sensitive to its shift 

parameter "'' while avoiding the complicated line minimization of Es-L 
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Figure 1: Number of iterations to reach an error of 10-13 in the objective functions. On the 

abscissa are the shift parameters rJ or rt, for a conjugate gradient algorithm performed on the energy 

functionals Es-1, Eu-s, and E31_ 3s+sz. No preconditioning is performed. The inset shows the 

spectrum of the matrix H. According to (23) and (26), the rate of convergence should be the same 

for all functionals if 2.01 < TJ < 15.41 and 0.11 < rt, < 15.05. 

Figure 2: Number of iterations to reach an error of 10-13 in the objective functions. On the 

abscissa are the shift parameters TJ or rt, for a conjugate gradient algorithm performed on the energy 

functionals Es-1, Eu-s, and E3I_ 3s+sz. The preconditioning results in better performance, but 

also in increased sensitivity to the choice of the parameters TJ and rt, for Eu -s and E31 _ 3s+sz. 
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