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Abstract. In this paper, we use partial differential equation based analysis as a methodology for 
computer-aided cytology. We wish to accurately extract and classify the shapes of nuclei from noisy 
confocal microscopy images. This is a prerequisite to an accurate quantitative intranuclear (geno­
typic and phenotypic) and internuclear (tissue structure) analysis of cancerous and pre-cancerouse 
specimens. We study the use of a geometric-driven scheme for improving the results obtained by a 
nuclear segmentation method, based on automatic segmentation, followed by object reconstruction 
and interactive classification. We build a chain of methods that includes an edge-preserving image 
smoothing mechanism, an automatic (albeit non-regularized) segmentation method, a geometry­
driven scheme to regularize the shapes and improve edge fidelity, and an interactive method to split 

. shape clusters and reclassify them. 

Keywords: Cytology, Image processing, Segmentation, Dynamic surfaces, Level Sets, Differential 
geometry, Riemannian geometry, Surface evol_ution 

1 Introduction 

Cytology shows that the cells in a tissue become in­
creasingly heterogeneous in their structural proper­
ties during carcinogenesis, while histology shows in­
creasing disorganization of the cells. Furthermore, 
whether a pre-cancerous or cancerous lesion progresses, 
is stable or enters remission is likely to depend on the 
chemical and physical environment of the cell in the 
lesion [8] [10] [18] in addition to the internal properties 
of the cells. In order to understand these structural 
alterations, together with the molecular mechanisms 
underlying them, it is necessary to analyze the cells 
individually and within their natural tissue context. 
Since many of the structural and molecular changes 
occur within the cell's nucleus, the ability to segment 
ttJ.e individual nuclei in intact tissue is therefore an 
important and basic technical capability. 

To obtain quantitatively accurate measurements 
at the individual nucleus level, it is necessary to an­
alyze intact nuclei. Therefore, thick (> 20 micron) 
sections must be employed, which requires three­
dimensional (3D) (confocal) microscopic image ac­
quisition [29] followed by 3D image analysis. In or­
der to facilitate the segmentation of nuclei from im­
ages, it is usual to label the specimen with a fluo­
rescent DNA counterstain, because it produces very 
high contrast images containing high intensity nu­
clear regions versus low intensity non-nuclear (back-

ground) regions. Actual segmentation of nuclei can 
be obtained by either interactive or automatic al­
gorithms. Interactive methods, based on drawing 
around nuclei in sequence [6](21] or orthogonal [11] 
2D slices are superior in performance (defined as the 
fraction of nuclei correctly segmented) based on vi­
sual judgement of the results compared to automatic 
algorithms. However~ they are slow, typically taking 
minutes per nucleus and are thus limited in their 
practical application to situations where only lOs of 
nuclei require analysis. 

Automatic algorithms [3][9](21], on the other hand 
are much faster, enabling the analysis of lOOs to 
1000s of nuclei per study: The performance of the au­
tomatic methods is only high(> 90%) for specimens 
containing isolated nuclei. Performance significantly 
deteriorates for many cancer specimens, because the 
cells are structurally dominated by their nuclei leav­
ing little separating cytoplasm and thus the images 
show clustered nuclei. To overcome that limitation, 
our 3D segmentation approach combines the perfor­
mance of interactive algorithms by including visual 
inspection stages in the approach with the speed of 
automatic image analysis algorithms, enabling the 
correct segmentation of a high proportion of indi­
vidual nuclei in intact tissue. This approach greatly 
reduces user effort, while providing the same accu­
racy as the manual method for segmenting cell nuclei , 
stained with a fluorescent DNA dye. Although our 
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method outperforms the other methods mentioned 
before, some refinement is still necessary in terms of 
edge fidelity and segmentation of densely clustered 
specimens. 

Encouraged by the recent advances [13] [14] [15]­
[16] [28] [2] [22] [25] [17] in partial differential equation 
based image analysis tools, in this paper, we extend 
and apply some of those methods to confocal micro­
scope image analysis. The theme of this paper is 
to start with a governing equation that is expressed 
via an Euler-Lagrange of a functional and to show 
its many interpretations; these include tasks ranging 
from edge-preserving image denoising, shape extrac­
tion in 3D, curvature based min-flow to rid a given 
shape of its holes, and to split nuclear clusters in or­
der to re-classify them. Various forms of our equation 
are then implemented using the level set [20] meth­
ods and the efficient narrow-band versions [1][13] of 
it. 

The rest of the paper is organized as follows: in 
Section 2 we introduce the main equation and we 
outline its relevant features. In Section 3, we sum­
marize the automatic segmentation method that we 
employ. In Section 4, we interpret the main equa­
tion as an image processing algorithm and show its 

. application to confocal microscope image denoising. 
In Section 5 we examine the geometric interpretation 
of the model and show that it can be used for shape 
refinement and segmentation. In Section 6 we use 
variations of our main model for cluster classifica­
tion; specifically, we show how hole elimination can 
be performed via a curvature based flow, and finally 
we use a multiple interface version of our geometric 
model to extract the shapes of nuclei avoiding their 
merger. 

2 Geometric Model for Image Analysis 

In this section, we introduce a geometric model; var­
ious forms of this equation are used in this paper in 
order to implement our image analysis procedures. 
The method relies on estimating the motion of curves 
and surfaces that move in the normal direction with a 
given speed. Given a hypersurface 1(x) that is mov­
ing under speed F(x), we adopt the level set equation 
to represent its motion [20] [26][27]. In other words, 
we embed the hypersurface as the zero level set of 
a higher dimensional function 1/;(x), and write the 
following equation of motion by following chain rule: 

tPt + F I Vt/J I= 0, (1) 

with a given initial condition 1/J(x, t = 0) = 1/;0 • 

This model of curve and surface motion has been 
applied to the problem of shape modeling in [12] [4] [13] 
[15]. Imagine that one is given an image and the 
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problem is to extract boundary descriptions of all 
the shapes implicitly present in it. The approach in 
[13] is one of using a trial shape that propagates in 
the image domain and molds itself into the desired 
boundary. The speed function used to control this 
shape recovery process is a combination of constant 
inflationary speed, a geometry dependent speed that 
regularizes the final result, and an image-dependent 
speed. Specifically, the equation of motion is given 
by, 

1/Jt + g(1 - €H) I Vt/J I= o, (2) 

where g is a decreasing function of the image gradient 
and H is the mean curvature. An additional forcing 
term can be added to this equation to improve the 
accuracy in the presence of large variations in im­
age gradient. This is often realized by advecting the 
surface along an image dependent vector field [5][15]; 
the force field is synthesized in such a way that it al­
ways points in the edge direction. With this change, 
our equation becomes 

tPt + g(1 - €H) I Vt/J I -/3\l g. '71/J = o. (3) 

This equation is then solved with a user-defined ini­
tial condition. The key advantages of our geometric 
model over other shape recovery schemes is its topo­
logical adaptability, robust numerics, and very fast 
implementations [16]. 

3 Image Denoising 

Low level image analysis presents two basic require­
ments. One is to smooth all the homogeneous re­
gions that contain noise and the other is to retain 
in an accurate way the location of the boundaries 
that define the shape of the represented structures. 
In bio-medical imaging strong oscillations are due to 
different causes, in particular to the noise intrinsi­
cally present in the acquisition process. The appli­
cation of traditional pre-processing algorithms (mov­
ing average, median and Gaussian filtering) do not 
reduce the noise superimposed on the image while 
maintaining a good definition of the edges. 

We now show how we can use Eqn. (3) to do 
image processing. The basic idea is to delete the 
constant speed term and solve the equation with the 
noisy image as the initial condition, namely 

tPt = gH I Vt/J I +/3\l g. '71/J, ( 4) 

with 1/J(x, t = 0) = J0 (x). The first term in the above 
equation is a parabolic smoothing term and the sec­
ond is a hyperbolic term. The proposed model is a 
selective smoothing of the 3D image, where the edges 
are enhanced and preserved as much as possible. A 
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contrast function g allows us to decide whether a de­
tail is sharp enough to be kept. In our model, g is 
a smooth nonincreasing function of the initial image 
Io(:z:), namely 

g = g(IV'(G(:z:) ®lo(x))l) (5) 

where G(x) = is a Gauss kernel and the symbol ® 
denotes convolution. 

In particular, g(O) = 1, g(IV'(G(x) ® I0(x))l) 2:: 
0, and limrv(G(z)®Io(z}}l-= g(IV'(G(x)®Io(x))l) = 0. 
Typical forms of g(IV'(G(x) ® Io(x))l) are: 

-IV(G(c)®Io(c))l 

g(IV'(G(x) ® Io(:z:))l) = e ., (6) 

or 

1 
g(IV'(G(:z:) ® Io(x))l) = 

1 
+ IV(G(z)®Io(z))l" (7) 

"Y 

The smoothing works as follows: if IV'(G(x) ® 
10 ( x)) I is large, the flow is slow and the exact location 
of the edges will be retained. If IV'(G(x) ® Io(x))l is 
small then the flow tends to be fast thereby increas­
ing the smoothing process. Notice that the filtering 
model reduces to mean curvature flow when g( s) = 1. 
The second (hyperbolic) term in Eqn. (4) sharpens 
the edge information in the image; note that a simi­
lar observation was made in [23]. 

The only other parameter we have to fix is the 
variance of the Gauss kernel. We note that the min­
imal size of the detail is related to the size of the 
Gauss kernel, which acts like a scale parameter. In 

l!.t. fact the variance of G"(x) = J .. e- 4" corresponds 
to the dimension of the smallest structures that have 
to be preserved. 

Now we present some results. Figure 1(a) is a 
benign region of a breast cancer specimen, labeled 
with a fluorescent stain (propidium iodide) for iden­
tification of the cell nuclei. The lower bilayer of nu­
clei are in epithelial cells and are surrounding a duct. 
Figure 1(b) shows the result of solving Eqn. ( 4) with 
the image itself as an initial condition; Figure 2 and 
3 show the result of 3D edge-preserving smoothing 
on a confocal microscope image volume. 

4 Automatic Segmentation: A Summary 

In this section, we follow our previous and briefly 
summarize the automatic segmentation method to 
get a rough estimate of nuclear shapes. 

1. First a rough estimation of the nuclei size was 
calculated for every image, since that value was 
used in subsequent steps. A Hough Transform 
based algorithm was applied to estimate it. 

(a) (b) 

Figure 1: 2D edge-preserving smoothing and edge 
sharpening results; (a) 2D slice of the unfiltered Im­
age, and (b) Geometric image processing with /3 = 1 
and rr = 1. 

(a) 

(b) 

Figure 2: 3D edge-preserving smoothing and edge 
sharpening results; (a) Surface rendering represen­
tation of the unfiltered volume, and (b) Geometric 
image processing with /3 = 1 and rr = 1. 
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(a) 

Figure 3: Geometric image processing of an entire 
volume of cells. 

2. An adaptive, gradient-weighted thresholding al­
gorithm w~ used to separate nuclear areas from 
the image background. 

3. The binary image obtained after thresholding 
the initial image was filtered to remove small 
objects and to divide slightly touching clusters 
of objects. To do that, the image was eroded and 
then a background skeleton was calculated to 
find surfaces among the objects. Those surfaces 
were imposed on the original binary images, so 
they defined edges of slightly touching objects. 

4. The individual objects were labeled, interpolated, 
measured and converted into an object-type struc­
ture that contains the object measurements and 
both the binary and gray level information of 
each object. Then objects were linked in a hier­
archical ordered list. This object-oriented step 
reduced the amount of information to be han­
dled in the following steps. 

5. Objects were rendered and visualized using a 
software called da Vinci (Data Visualization'N 
Computer Interaction). The user went through 
the list of objects generated by the segmenta­
tion algorithm. All objects were originally un­
classified, so the user classified them as Nucleus, 
Cluster of Nuclei or Debris. Classification is per­
formed by clicking on a button. Divided nuclei, 
if any, were rejoined. 

6. Objects classified as clusters of nuclei were di­
vided into individual nuclei using a watershed­
based algorithm. The strategy was as follows: 
first we calculated the Vector Distance Trans­
form of the binary object. Then we Gaussian­
filtered the distance and applied a morphologi­
cal pead extraction based in the gray-scale im­
age reconstruction algorithm. These peaks were 
used as makers for the watershed. We used t!:te 
original gray values as the flooding surface for 
the watershed, so the watershed accurately de­
lineated the surface of minimum intensity be­
tween nuclei. 

7. After cluster segmentation,- the resulting object 
were measured and linked to the input list, and 
the user classified them again. 

5 Segmentation and Shape Refinement 

As shown in Figure 4(a), the resulting surfaces from 
our automatic segmentation algorithm can be quite 
coarse with a lot of "voxelization". In addition, the 
shape boundaries shown may also be a little away 
from the true edges. We wish to correct this by refin­
ing the shapes using the geometrical flow introduced 
in previous sections. To that end, let us revisit Eqn. 
(3), from the geometrical point of view of achieving 
boundary detection. 

Assume that the surface S is a particular level 
set of a function 'ljJ : [0, a] x [0, b] x [0, c] _. R. In 
other words, S is a set of points at which the func­
tion '1/J is equal to a given constant. The embedding 
function '1/J can therefore be considered as an implicit 
representation of the surface S. 

It is easy to prove that if a surface S evolves 
according to 

(8) 

where .N is the unit inward normal and F is a real 
function, then the level set function '1/J obeys the fol­
lowing evolution rule 

'1/Jt = FI\7'1/JI; (9) 

see [20] [26] for details. 
In order to smooth a surface, we can let the 

speed F be equal to its mean curvature H. The flow 
decreases the total curvature and has the property of 
"smoothing out" all the high curvature regions on the 
surface, i.e. local variations [7]. However, this flow 
will also destroy useful surface features if run long 
enough. One of the main issues concerning this flow 
is if there is a natural stopping criterion for an op­
timal shape refinement. Several methods have been 
proposed in the past, one that adds a term to force 
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(a) (b) 

Figure 4: Shape refinement; (a) Zero level set of the 
signed distance function computed on the rough seg­
mentation of a cluster of cells, and (b) Geometric 
segmentation with f3 = 1 and u = 1 

the solution to remain close to the initial data (19), 
and the authors in (14) have studied a scale depen­
dent stopping criteria implemented via a min- max 
curvature flow. In the present context, the stopping 
condition is given by the g function. So, the surface 
moves according to the equation 

St = gH.iJ. (10) 

We now rewrite Eqn. (3) without the constant 
speed term here: 

1/Jt- gH I \11/J I -/3\lg · \11/J = o, (11) 

where f3 is a non-zero constant. The first term smooths 
the surface while keeping it close to the edges and the 
second term, /3\1 g · \11/J, attracts the surface closer to 
the edge map. The initial condition 1/;(x, t = 0) is 
given by the signed distance function computed off 
of the binarized image obtained from a rough seg­
mentation. The result of applying this flow on a 
coarse binary segmentation is shown in Figure 4. 

6 Interactive Cluster Segmentation 

As mentioned in the introduction, in some cancer 
specimens, the cells are structurally dominated by 
their nuclei and the resulting images show clustered 
nuclei. From our segmentation standpoint this means 
that there is not enough delinieating image gradient 
information to tell two adjacent nuclei apart. There­
fore, we have to now consider the problem of seg­
menting a cluster into a set of isolated nuclei. In 
this section, we are going to examine how to split 
the cluster into single cells and then consider how to 
reconstruct the exact shape of each cell. The easiest 

way to split the cluster is to use the morphological 
operator of erosion. In the PDE parlance, this can be 
achieved via the level set flow on the cluster surface 
under a speed F = -1, namely 

1/Jt = IV1/JI; (12) 

reader is referred to (24) for related work. Unfortu­
nately the structure of a cluster is not always com­
pact because it can contain several holes inside. There­
fore the erosion flow acts like a shortening flow for 
the external boundaries, but it expands the inter­
nal holes thereby corrupting the basic shape itself. 
To prevent this effect we have to first eliminate the 
holes. We can achieve this task by performing a clos­
ing operation, in the sense of the mathematical mor­
phology, by a flow that provides sequentially a dila­
tion and an erosion effect. In the context of level set 
flow, the closing operation is achieved by considering 
two flows, F = 1 to obtain dilation and subsequently 
F = -1 for erosion. 

In practice however, the dilation operation has 
to be performed carefully in order to avoid the merger 
of two close but distinct clusters thus complicating 
the problem further. For that reason, we use a more 
sophisticated flow for hole elimination. This elimi­
nates holes and is bounded by the convex hull of the 
original cluster. Specifically, the flow is given by 

1/Jt = min(H,O.O)IV1/JI. (13) 

This flow in 2D has been used recently in (14) in the 
context of image denoising and for surface smoothing 
in (15). We have simply replaced the Euclidean cur­
vature that was used for 2D image processing with 
the mean curvature in 3D. The main feature of the 
flow is that it allow the inward concave regions to 
grow outwards, while suppressing the motion of the 
outward convex regions. Thus the evolving shape al- . 
ways remains inside the convex hull: The holes are 
thus subject to a mean curvature flow while the outer 
shape converges to its convex hull. In Figure 5 we 
show a 2D example of hole elimination via min( K, 0) 
flow and in Figure 6, we show the result of hole elim­
ination in a cropped sample of a nuclear cluster. 

We notice from Figure 6 that hole elimination 
sometimes compromises the shape detail. In other 
words, the cell shapes stray away from high image 
gradients. We amend the loss in accuracy by solving 
our shape refinement equation, i.e. Eqn. (3), for a 
few time steps. Note that the image based compo­
nent in the equation - the g function - is computed 
from the enhanced image. This procedure results in 
a -cluster that is devoid of any holes and close to the 
"true" edges present in the image; the shape after 
this step is shown in Figure 7. 
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(a) Original shape (b) Motion under 
min flow 

Figure 5: 2D example of hole elimination with a 
min(K, 0) :Bow. Note that the outer shape converges 
to its convex hull. 

(a) 

(b) 

Figure 6: Hole elimination: (a) zero-level set of the 
refined shape. The volume has been cropped to re­
veal two internal holes. (b) The shape after 10 iter­
ations of the min flow. The holes disappear, but the 
shape looses detail. 
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(a) 

Figure 7: The refined shape without holes after the 
geometric flow processing. 

6.1 Multiple interface ftow 

After the hole removal and shape refinement we can 
proceed to shrink the cluster until single nuclei emerge 
as topologically distinct objects. The main point of 
this section, is how to grow them back to their orig­
inal shape while maintaining their distinct identity. 
If we propagate the individual (nucleus) shape mod­
els according to Eqn. (3), they will be attracted to 
image edges but will merge into a cluster upon col­
liding with each other. That is exactly the behavior 
we wish to avoid. ~stead, we would like the individ­
ual shapes to grow· and segment the nucleus shapes, 
touch in areas where there is not enough delineating 
image gradient information, but never merge. 

A similar problem arises when one tries to study 
the motion of multiple interfaces propagating in the 
same domain [27). We follow the same idea here in 
order to build a scheme that moves shapes in a dis­
tinct manner. First, we build a separate level set 
function for each shape. Next, each shape is ad­
vanced to obtain a trial value for each level set func­
tion with the following geometrical flow 

8¢i '\1</Ji 
at = 'V(g(I'V Io I) '\I IV ¢i I), (14) 

where </>i is the level set function for the i-th shape. If 
two regions collide based on the trial function values, 
the value of the actual function is changed by consid­
ering the values of other level set functions. Merger 
can be avoided by a simple max operator. FUrther 
details can be found in [27). 

We now present the result of cluster reclassifi­
cation. Figure 7 shows the initial cluster (without 
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(a.) 

(b) 

Figure 8: The refined clusters after processing with 
the multiple interface flow; (a) three distinct shapes 
after the erode operation; (b) three different cells 
have been recognized and segmented. 

holes) that we know from visual inspection contains 
three nuclei merged into one. Figure 8(a) is the result 
of shrinking the shape until it splits into three sepa­
rate parts. These shapes are then evolved separately 
under the same image based g function using the 
multiple interface update rules; the result is shown 
in Figure 8{b). The three shapes shown in different 
colors segment three distinct nuclei. 
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