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We consider polymers, modelled as self-avoiding walks with interactions on a hexago

nal lattice, and examine the applicability of certain Monte Carlo methods for estimat

ing their mean properties at equilibrium. Specificall:y:, we use the pivoting algorithm 

of Madras and Sokal and Metropolis rejection to locate the phase transition, which 

is known to occur at f3crit ~ 0.99, and to recalculate the known value of the critical 

exponent v ~ 0.58 of the system for f3 = f3crit· Although the pivoting-Metropolis 

algorithm works well for short walks (N < 300), for larger N the Metropolis criterion 

combined with the self-avoidance constraint lead to an unacceptably small accep

tance fraction. In addition, the algorithm becomes effectively non-ergodic, getting 

trapped in valleys whose centers are local energy minima in phase space, leading to 
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convergence towards different values of v. We use a variety of tools, e.g. entropy 

estimation and histograms, to improve the results for large N, but they are only of 

limited effectiveness. Our estimate of f3crit using smaller values of N is 1.01 ± 0.01, 

and the estimate for v at this value of f3 is 0.59 ± 0.005. We conclude that even a 

seemingly simple system and a Monte Carlo algorithm which satisfies, in principle, 

ergodicity and detailed balance conditions, can in practice fail to sample phase space 

accurately and thus not allow accurate estimations of thermal averages. This should 

serve as a warning to people who use Monte Carlo methods in complicated polymer 

folding calculations. The structure of the phase space combined with the algorithm 

itself can lead to surprising behavior, .and simply increasing the number of samples 

in the calculation does not necessarily lead to more accurate results. 
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Chapter 1 

Introduction 

We begin with a brief introduction. to this thesis and a broad outline of the main 

topics which will be discussed in more detail in the following chapters. 

The main objective of this thesis is to examine the applicability of Monte Carlo 

methods and standard numerical techniques to an apparently simple problem which 

contains some of the difficulties associated with other, more complicated problems 

- such as polymer folding - that are currently of interest in physics, biology and 

chemistry. The example we consider is the following: self-avoiding walks (SAW's) 

on a hexagonal lattice in two dimensions with a nearest-neighbor interaction. We 

define all of these concepts in Section 2.2, where we also define universality classes 

and critical exponents. 

Our example is important because it is a prototype of problems like polymer 

folding; in fact, there is an intimate connection between polymers and self-avoiding 
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walks. In Section 2.3 we describe some of the characteristics of polymers and introduce 

several models of polymers such as the Rouse and Zimm models (see Section 2.3.1). 

We then illustrate in Section 2.4 how certain self-avoiding walks can model certain 

kinds of polymers. 

In Section 3.2 we briefly summarize the probability theory that we need in our 

computations; we also give definitions of a Markov process and a Markov chain. 

Since the Rouse and Zimm models mentioned above are formulated as stochastic 

differential equations, we give an introduction to this theory and a rigorous definition 

of a stochastic differential equation in Section 3.3 and Section 3.4. 

For an arbitrary but fixed positive integer N, the interacting SAW's of length 

N on a hexagonal lattice form our system. Throughout much of the thesis we will 

be attempting to compute various "thermal averages" for this system, such as the 

average end-to-end distance. In Section 4.2 we define exactly what this means; we 

also define and discuss thermodynamics concepts such as the partition function, the 

free energy, and the entropy. 

The way we test the applicability of Monte Carlo methods to our system is by 

trying to locate the known phase transition which takes place for these interacting 

walks at a certain critical inverse temperature f3 = f3crit ~ 0.99. What is a phase 

transition, and what does "critical inverse temperature" mean? These concepts are 

defined in Section 4.3, where we also give an extended example of such a transition 

and discuss some of the difficulties encountered when one tries to model a phase 
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transition on a computer. 

How do we actually try to detect such a transition? The algorithm we use consists 

of Madras-Sokal pivoting combined with Metropolis rejection (see Section 5.2); this 

algorithm allows us to generate self-avoiding walks efficiently and to use these to 

estimate thermal averages. In addition to pivoting and Metropolis rejection, we also 

use various numerical techniques such as histograms (see Section 5.3) and entropy 

estimation (see Section 5.4) to help reduce the number of calculations and compute 

averages more accurately. 

Even for this seemingly simple system, we encounter a number of difficulties which 

are described in detail in Section 6.2. Two of these are unacceptably small acceptance 

percentages and trapping in valleys centered around local energy minima in phase 

space. 

Both of these problems occur for medium-length SAW's (SAW's with length N ~ 

300) and for inverse temperatures (3 near f3crit ~ 0.99. The histogram method is useful 

here since it allows us to use the data from one run at a given (30 to estimate the 

thermal averages for other values of (3 near (30 ; this considerably reduces the number 

of calculations necessary near f3crit· However, we cannot use this method to go too 

far away from the (30 at which the original run is done (see Section 5.4). 

To increase the number of acceptances, we cannot simply do more iterations of 

the pivoting-Metorpolis algorithm. Because the algorithm becomes trapped in valleys 

in phase space, for different runs there is a convergence towards different thermal 
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averages (see Section 6.2). One way out of this difficulty is to do several runs; we can 

hope that in this way we might be able to explore a larger portion of phase space. 

The problem then arises as to how to put the results from the various runs together. 
J 

The entropy method is useful in helping to weight the thermal averages from 

various runs. However, it too has its limitations: the entropy estimations gives us 

an indication of which runs might be more important, but for long enough SAW's 

(length N > 800), we still cannot get accurate values of the critical exponent (see 

Section 6.3). 

Nevertheless, the entropy method does prove useful. We discover a direct rela-

tionship between our entropy estimate for a given run and the number of walks ra 

accepted after the Metropolis rejection step. The best results are obtained for rela-

tively short SAW's by doing several runs and using r a to weight the averages from 

the runs. Using these data, our estimates for the critical temperature and critical 

exponent are f3crit = 1.01 ± 0.01 and v = 0.59 ± 0.005. These are in good agree-

ment with the previous values f3crit ~ 0.99 (based on numerical work by Coniglio, et 

al. [14]) and v ~ 0.58 (from theoretical calculations, numerical work, and polymer 

experiments described in Section 6.4). However, the reason we are able to decide 

which size SAW's to use in these estimates of v and f3crit is that we already knew 

from previous work what the values of v and f3crit should be. Thus, our algorithm is 

only partially successful, and if we did not know the values of v and f3crit it would 

be extremely difficult to decide for which values of N the Monte Carlo method yields 
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accurate thermal averages. 

What do we learn from this? Even with supposedly simple interactions and a 

powerful algorithm such as pivoting with Metropolis rejection, it is not necessarily 

true that one can compute accurate thermal averages by Monte Carlo sampling. This 

should serve as a warning to people who use Monte Carlo in complicated polymer 

folding calculations. The structure of the phase space combined with the algorithm 

itself can lead to surprising and complicated behavior, and simply increasing the 

number of samples in a Monte Carlo calculation does not necessarily lead to more 

accurate estimates of thermal averages. 
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Chapter 2 

Self-Avoiding Walks and Polymers 

2.1 Introduction 

In this chapter we will give a short introduction to self-avoiding walks (SAW's), 

critical exponents and universality classes, and discuss various types of non-interacting 

and interacting walks. Then we will move on to a discussion of polymers, including 

the excluded volume and hydrodynamic effects and the effect of the quality of the 

solvent on the polymer, as well as the excluded volume and the E> point; we will 

also talk about several well-know models of polymers (for example, the Rouse and 

Zimm models), the assumptions which these models make, and their advantages and 

disadvantages. Finally, we will briefly discuss the connection between self-avoiding 

walks and polymers. 
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2.2 Self-A voiding Walks 

Most of the following discussion is based on Lawler [41] and Grimmett [27]. 

(-1,1) (3, 1) 

Figure 2.1: Hexagonal lattice with integer coordinates: compared with a lattice 
formed by regular hexagons (hexagons whose interior angles are all equal), our lattice 
is contracted by a factor of J3 in the y direction. 

We first begin with a few definitions. For two points x = (x 1 , ••• , xd) and y = 

a1,a2,a3 E Z, Pt = (0,2), P2 = (3,1), P3 = (-3,1), and hE {(0,0),(2,0),(-1,1)}. 

The hexagonal lattice is the graph consisting of the set 1i of all points (called vertices) 

in )R2 of the form a1p 1 + a2P2 + a3p3 + h together wit4 edges connecting all points 

x,y E 1i such that either i) d1(x,y) = 2 and d2 (x,y) = 0, or ii) d1(x,y) = 1 and 

d2 (x,y):::::: 1. This is illustrated in Figure 2.1. The square lattice is Z 2 with edges 

between two points X, y if dm (X, y) = 1; similarly, the cubic lattice is Z 3, again with 

edges between all x, y such that dm ( x, y) = 1. Two points x, y connected by an edge 

are called adjacent, and the edge between two such points is denoted by < x, y >. 

The coordination number l of a lattice is the number of edges connected to each 

point on the lattice: for a square lattice, l = 4, for a cubic, l = 6, and for a hexagonal, 

l = 3. A path is an alternating sequence of distinct vertices and edges x0 , e0 , x 1 , e1 , 
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..• , en-I, Xn with ei =< Xi, Xi+I >; the length of such a path is n, and the path is 

said to connect x 0 to Xn· A circuit is an alternating sequence of vertices and edges 

Xo, eo, XI, ei, ... , en-I, Xn, en, Xo such that Xo,eo, ••• ,xn-I is a path, and en is the 

edge between x0 and Xn· We can view a two dimensional lattice as a subset of ~2 : a 

plaquette is the subset of ~2 enclosed by a circuit of minimal length. For example, 

on the hexagonal lattice such circuits are of length 6 and plaquettes are hexagons; on 

the square lattice, these circuits h.ave length 4, and plaquettes are squares. 

A self-avoiding walk of length N is a sequence of points w0 , WI, ••• , WN E zd such 

that Wi =f. Wj for 0 < i < j ~ N. lwi - wil = 1 if we are on a square or a cubic 

lattice; on a hexagonal lattice in two dimensions this distance can be either 2 or .J2 

(see Figure 2.1). Now, let A(l, N) be the number of SAW's for a given land N: what 

can we say about A? If we allow self-intersection, the number of such walks is zN, so 

A( l, N) < zN; since the SAW cannot go back to the point it most recently visited, 

A(l, N) < l(l-1)N-I. Also, if we only take non-negative steps in each direction, then 

this will generate an SAW, and there are (r ~ l )N of these (where f y l is the smallest 

integer greater than y). Thus, A( l, N) ;:::: ( f ~ l )N. 

Suppose B(N) is some function of N. We define B(N) X eN to mean 

lim lnB(N) = 1 
N-+oo N ln( C) 

We can then say the following about the behavior of A(l, N) for large N: 

(2.1) 

Theorem 1 3r E [ r ~ l' l - 1] such that A( l' N) X TN where T' which is called the 

connectivity constant, depends on the lattice and the dimension. 
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See Lawler (41] for the proof. 

So the number of SAW's grows exponentially with the length N. Well, not quite. 

The above theorem does not tell us the whole story: it only says that A( I, N) = 

rNr(N) where limN ..... oo(r(N)]~ = 1. The conjectured behavior of this r(N) (called 

the enhancement factor) is as follows: 

N-r-t d < 4 

r(N) = (lnN)-a d = 4 (2.2) 

c d>4 

where Cis a constant independent of N, a= ~' and 1 is the susceptibility exponent 

which depends only on the dimension of the latticed (ford= 1, 1 = 1; d = 2, 1 = ~~; 

d = 3, 1 = 1.16) and not on the lattice's detailed structure. 

What happens if we require the SAW to return to the origin (i.e. w0 = wN)? 

Let the number of such SAP's (self-avoiding polygons) 1>e B(l,n). Hammersley [28] 

proved that 

It is also conjectured that 

B(l,N) x rN 

B(l, N) "'N-6 
A(l, N) '""' . 

(2.3) 

(2.4) 

although this has not yet been proven. The exponent 8 is one example of what 

· are called critical exponents (J in Equation 2.2 is another example), each of which 

describes the behavior of some function of our SAW's as the length N approaches 

oo; see Section 4.3 for a more in-depth discussion of these exponents. Although the 
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connectivity constant r is the same for both SAW's and SAP's, for SAP's there is no 

enhancement factor r(N); in fact, r(N) in Equation 2.2 comes from the fact that the 

ends of an SAW are less "constrained" by self-avoidance than the more central parts 

of the walk (see de Gennes [15] for more details). 

In the next few paragraphs, we will be talking about other critical exponents 

of SAW's defined in terms of averages of some quantities (such as end-to-end dis

tance). Before doing this, we should specify what probability measure we will be 

using to compute these averages. There are two cases to distinguish: interacting and 

non-interacting SAW's. We can define non-interacting walks as those for which the 

measure is the uniform measure: in other words, each SAW has equal probability. For 

interacting SAW's, we need to define what exactly an interaction is. One way this 

can be done is as follows: if the points in an SAW of length N are labelled x0, ... ,xN, 

we count the number NNN of pairs (xi, Xj) (where i + ~ < j) that share a common 

edge on the lattice; we then give this SAW a probability exp(f3NNN) where /3 is a 

numerical parameter (see Section 4.2). There are other definitions of the interaction 

which involve, for example, counting the number of pairs (xi, xi) which can be con-· 

nected by a path with two edges on the lattice. We refer the reader to Section 5.2 for 

more detailed examples of such interactions. 

In addition to the 8 defined above, we can also examine other critical exponents 

which describe both interacting and non-interacting SAW's. For our discussion, the 

most important of these concerns the average of the squared end-to-end distance of 
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the SAW< lwN- w0 l2 >. The mean square displacement exponent vis defined by 

(2.5) 

where the measure used in the average<> depends on whether the SAW's are inter-

acting or not. 

If we allow self-intersections, then v = ~· For interacting SAW's, the beginning of 

Section 4.3 contains a description of one case; for non-interacting SAW's, the following 

is the dependence of v on the dimension d of the lattice as argued by Flory [25] 

v = { (d!2) d ::s; 4 

!. d>4 
2 

(2.6) 

Although Flory's argument does not constitute a proof, the formula is correct for 

d = 1 and believed to be exact for ,d = 2. Numerical simulations suggest that for 

d = 3, v = .59 ... (see Coniglio, etal. (14] for details); fo~ d = 4, it is expected that 

(2.7) 

Before continuing, we should point out that none of the above arguments actually 

proves the existence of the critical exponents v and I· In fact, surprisingly little is 

known theoretically about these exponents; for example, up to no':V the existence of 

~ 

v has only been proven for dimensions d = 1 and d > 4 (see Slade [63] and Slade 

(64]). Thus, when we say "believed to be exact", we are referring to computational 

results; the reader should keep this in mind during the following discussion. 
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Consider a set of points S in ~2 • One way to define the dimension of S is the 

following: cover ~2 with non-overlapping squares of unit area, and count how many of 

these squares intersectS; call this number n1 • Then cover ~2 with squares of area !, 

and let n 1 be the number of such squares which intersectS. Continue this procedure 

with squares of area k, ~, . . . . The dimension ds of S is defined to be 

d l
. lnnm 

s= 1m-
m-+oo lnm 

(2.8) 

This is called the boxcounting dimension. For other definitions of dimension and ways 

to actually compute it see Peitgen, Jurgens and Saupe [57], Peitgen and Saupe [58] 

and Parker and Chua [56]. 

For d 2:: 5, v = !, so SAW's and plain random walks have the same dimension: 

dcrit = 4 is called the critical dimension for the SAW. The existence of such a dcrit in 

Equation 2.6 and Equation 2.2 tells us that the geometric constraint of self-avoidance 

doesn't play a very big role in the dynamics if we are in a high enough dimension. 

In addition to the SAW described above, there are other walks on lattices which 

allow varying degrees of self-intersection. For example, consider the set AN of all 

random walks of length N, let J(w) be the number of self-intersections of the walk 

w, and give each walk w a probability 

U (w) = exp( -j3J(w)) 
f3 < exp( -j3J) > 

(2.9) 

where the average <> is taken over all w E AN. When j3 = 0, we have a simple 

random walk; when j3 -l- oo we get the SAW. This probability measure is called the 
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weakly self-avoiding walk, and it is conjectured (but not yet proven) that the critical 

exponents for the weakly self-avoiding walk are the same as for the SAW. I.e. if we 

define v(f3) by 

(2.10) 

then v(f3) = v if (3 > 0. 

There is also another set of walks, called k-tolerant, which belongs to the same 

universality class as the weakly self-avoiding walks (i.e. it is conjectured that both 

types of walks have the same critical exponents). A walk is k-tolerant if it returns to 

the same point up to but not more than k times; for example, the standard SAW is a 

1-tolerant walk. Instead of having a probability U13(w) which decreases exponentially 

with the number of self-intersections, we instead weight equally all walks in AN which 

are k-tolerant, and those walks which do not are given a probability of 0. 

Why would all of these different kinds of walks be in the same class? After all, if 

we consider, say, a 6 x 10200-tolerant walk, how could this possibly look like an SAW 

(i.e. a 1-tolerant walk)? Firstly, we should be clear about the phrase "looks like". 

Fix k and suppose we model our k-tolerant walk on the computer; if the length of our 

walk N ~ k, then the behavior of our k-tolerant walk will be significantly different 

from that of an SAW. In fact, if k is really big (e.g. 6 x 10200 ), then for any walk size 

which we can model on our computer, the k-tolerant walk will look like a random 

walk. But remember the definition of the symbol :::::: we want to look at the walk 

as N -+ oo. So, what we really should be doing is fixing k and letting N get much 
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bigger than k: the conjecture then is that all of the k-tolerant walks (and all of the 

weakly self-avoiding walks) are asymptotically the same - in other words, they are 

in the same universality class with the same critical exponents. So the answer to the 

second question posed at the beginning of the paragraph is that for N large enough, 

a 6 x 10200-tolerant walk and an SAW do have the same critical exponents, but from 

a computational point of view, if we wanted to show this we would need to use walks 

of length N ~ 6 x 10200
, which is not possible on the computers of today. If we were 

to use an N much smaller than 6 x 10200 , the calculated critical exponents would not 

be the same as those for an SAW. 

What about the first question (i.e. the justification for assuming this asymptotic 

equivalence)? Again, we do not have any proofs, but numerical evidence and heuristic 

arguments (see Oono [51), Shapir and Oono [62], Malakis (44), and Oono and Freed 

[52]) lend at least some credence to the claims above. 

At this point, the reader may be wondering whether or not we can find any kind of 

quasi/weakly /tolerant self-avoiding walk which has different critical exponents from 

the walks already discussed. The answer is that we can. Suppose, instead of weighting 

each walk in AN, we decide to start with a given walk w of length N and extend it, 

choosing the next site x among the nearest neighbors of the last point in the walk WN 

with a probability based on the number of times we have already visited it V(x). Let 

this probability be 

exp( -,BV(x)) 
Ly exp( -,BV(y)) 

(2.11) 
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where the sum is over the nearest neighbors of WN. This is called the myopic self-

avoiding walk (myopic because it only looks at nearest neighbors before deciding 

where to go next), and, although it has not yet been proven, numerical work gives 

the following result for the critical exponent v: 

{ 

~ d= 1 
v-

! d > 1 

(2.12) 

with a possible log correction for d = 2 (see Equation 2. 7). Thus, dcrit = 2, and so 

both the exponent v and dcrit are different from the previously described SAW. 

In fact, we might expect a priori that the myopic walk belongs to a different uni-

versality class, since: 1) we are using only local information at WN to decide our next 

move; 2) unlike the weakly self-avoiding walks, the probability of a particular walk 

varies not only according to the total number of self-intersections but also according 

to their distribution. For example, a myopic walk with r intersections at one point has 

in general a different weight than a myopic walk with one intersection at r different 

points; however, if we use the weak SAW measure, both walks have the same weight. 

2.3 Polymers 

Now that we have examined SAW's, we take a closer look at polymers. Most of the 

discussion below can be found (with considerably more details) in Doi and Edwards 

[17] and de Gennes [15]. In what follows, everything will be in three dimensions unless 

otherwise indicated. 
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What exactly is a polymer? We can think of it as a long chain of molecules (called 

monomers) linked together by some sort of chemical bond. This is the definition of a 

polymer, but what about the physical mechanism behind the formation of polymers? 

Polymers form when the condition required to add one molecule to a chemical system 

is almost independent of the systems's size. For example, going from one molecule 

(Ah to (Ah -(A)2 may be different from going from (A) 1 -(A)2 to (Ah -(A)2-(A)3; 

however, going from (Ah- ... - (A)n (n ~ 1) to (Ah- ... - (A)n+I in many cases is 

almost identical to going from (Ah- ... - (A)n+I to (Ah- ... - (A)n+2 ; this process 

is called a polymerization reaction and can lead to extremely long chains. 

The bonds between the monomers determine the general shape of the polymer, 

and we can classify polymers as either rigid or flexible based on these bonds. What 

exactly does flexibility mean? Suppose we choose a given monomer m and fix the 

positions of its neighbors m -1 and m + 1. Next, we find the points in space where the 

energy of m has a local minimum. If the barriers between these energy minima are 

small compared to a given temperature T, then we say the polymer is dynamically 

flexible at this temperature; if the difference in energy between each of these minima 

is small (again compared to T), then the polymer is called statically flexible. Of 

course, this definition is not exact, and there are polymers which are flexible in only 

one sense, rigid in both senses, etc. In the following sections we will be concerned 

chiefly with polymers that are both dynamically and statically flexible. 

What about the individual monomers? Although their molecular weight deter-
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mines that of the polymer, and although the bonds between successive monomers are 

what keeps the polymer together, in some cases the exact shape of the monomers 

does not play a large role in determining the macroscopic properties of the polymer. 

For example, take two polymers of the same length N and conformation, but whose 

monomers are in one case circles and in the other case triangles: the difference in 

viscosity between these two scales as N-t (see Doi and Edwards [17] for the defi

nition of viscosity and the proof of this scaling law), so for a long enough polymer, 

from the point of view ~f viscosity it does not matter if the monomers are circles or 

squares. Warning: we do not mean to say that the presence of monomers does not ' 

affect the dynamics of the polymer: the excluded volume effect, which is caused by 

the short-range repulsion between the monomers, does have a significant influence on ·· 

the dynamics (see the discussion below). 

Now suppose that we take a bunch of identical po.lymers and put them in some 

kind of fluid (this fluid is called the solvent). What will happen is determined by a 

number of things. The interaction between the polymers and the solvent is one factor, 

and based upon this interaction the solvent is called either good or poor. Good means 

the solvent molecules are attracted to the polymer over a wide range of temperatures, 

and in a good solvent each segment of the polymer tends to contact solvent molecules 

rather than other segments; poor means the polymers do not interact strongly with 

the solvent and tend to precipitate out of the solvent when the temperature is changed 

or the polymer concentration is increased. · 
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We can get a more quantitative description of the quality of a solvent (see de 

Gennes [15]) as follows. Consider a "polymer-solvent" solution on a cubic lattice 

in three dimensions; let the fraction of sites occupied by monomers be ~' and let 

the volume of a lattice cube be a3
. The amount of volume around each monomer 

that cannot be occupied by other monomers will be denoted by v (this is called 

the excluded volume). Also, recall that the free energy F is defined to beE-TS 

where E is the energy, Tis the temperature, and Sis the entropy. ForE, the relevant 

parameters are XMs, XMM, and xss, which denote the energy of the monomer-solvent, 

monomer-monomer, and solvent-solvent interactions respectively. 

For low concentrations cl>, at each lattice site the free energy of mixing, which is 

defined to be the free energy of the solution minus the weighted average of the free 

energies of the pure polymer and pure solvent, can be written as 

(2.13) 

where the Flory interaction parameter x is defined as 

1 
X= XMS- 2(XMM + Xss) (2.14) 

It should be noted that x is usually an increasing function of the temperature, al-

though the exact dependence is very complicated (see de Gennes [15] for the derivation 

of Equation 2.13). 

The coefficient of the cl> 2 term in Equation 2.13 can be interpreted as the strength 

of the interaction between monomers; this gives us an expression for the excluded 
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volume v, namely a3(1 - 2x). When x is near zero, the solvent is similar to the 

monomer and v ~ a3
; this is what is meant by a good solvent. Poor solvents, on the 

other hand, have a relatively large x, and so v < 0; the borderline case is X = ~ and 

v = 0. 

In addition to the quality of the solvent, another factor determining the behavior 

of our polymer-solvent soup is the concentration of the polymers: depending upon 

whether this is very high, medium, or very small, the solution is called respectively 

concentrated, semidilute, or dilute. A more quantitative definition goes as follows: 

for a polymer of length N, let Rm be the location of the m-th monomer. We define 

the center of mass Ra by 

(2.15) 

and the radius of gyration R 9 by 

2 1 ~I 12 Rg = N 1 L....t Rm - Ra . + m=O 

(2.16) 

Let C be the average distance between the center of masses of the polymers. We 

then say that the solution is dilute if C ~ R9 ; if C ~ R9 , the solution is semidilute; 

and if C ~ R9 then the solution is concentrated. In our work, we will be considering 

dilute solutions: in a good solvent, this means the effect of the interaction between 

different polymers is negligible compared with the solvent:-polymer interaction. 

We are now going to take a closer look at one of the polymers swimming around 

in the solvent. A number of models have been proposed to describe the dynamics 

of this polymer: two of the simplest are the freely-jointed chain and the Gaussian . 
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chain. The freely-jointed chain model considers the polymer as a chain of N links, 

each of fixed length a and able to point in any direction independently of each other. 

For the Gaussian chain model, the lengths of the bonds have independent Gaussian 

distributions, all of which have the same mean and variance. For both models, the 

end-to-end vector of the polymer is a sum of the form I:f:1 ri where the { ri} are 

randomly oriented vectors either of fixed length a (for the freely-jointed chain) or 

whose lengths have the appropriate Gaussian distribution (for the Gaussian chain). 

If we define the average squared end-to-end distance TN by 

(2.17) 

then it turns out that for both models 

TJv = bN (2.18) 

where b is a (model-dependent) constant called the effective bond length; in fact, in 

the calculation of TN, the local structure of the chain affects only this constant b -

it does not affect the power of Non the right hand side of Equation 2.18. 

The following is an example of this calculation for the freely-jointed chain taken 

from de Gennes [15]. 
I 

< (RN- Ro)(RN- Ro) > 
i=l j=l 

N 

I:< rd:·i > 
i=l 

- Na2 = bN (2.19) 
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where b = a2 • Since the orientations are independent, we have 

(2.20) 

unless i = j. In fact, even if there is an interaction between the segments i, i ± 1, ... , i ± p 

(where pis fixed and finite), we still have r'Jv::::::: bN as long as N is large enough (see 

de Gennes [15] for details). 

However, both the freely-jointed chain and the Gaussian chain have neglected a 

fact which significantly changes the dynamics of the polymer: since each segment of 

the polymer has some finite volume, a given segment cannot enter the region already 

occupied by other segments. This makes the monomer-monomer interaction consid-

erably more complicated; additionally, since our polymers are immersed in a solvent, 

when considering the force between monomers the solvent-monomer interaction must 

also be taken into account. The effective inter-monomer force then consists of a 

short-range repulsive interaction along with an attractive tail (see Oono [51] for more 

details). One frequently used model of this is the Lennard-Jones potential, given by 

(2.21) 

where € is the minimum value of the energy and u determines the length of the 

short-range repulsive interaction. An illustration of this is given in Figure 2.2. 

One can see in Figure 2.2 that the interaction energy E can be naturally decom-

posed into two parts: repulsive and attractive. In general, the interaction potential 

¢>of the repulsive interaction between monomers m and lis usually assumed to have 
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Figure 2.2: Interaction energy E vs. distance from monomer r for the Lennard-Jones 
potential with € = 1.0 and cr = 0.5. 
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the form 

(2.22) 

where v is the excluded volume mentioned above; if the reader does not like the delta 

function here, we can replace it with some smooth positive function with a peak at 

the origin, which decays rapidly away from the origin, and whose integral over ~d is 

one. 

When looking at the global properties of the polymer w (such as end-to-end dis-

tance), it is not necessary to examine in detail the local monomer structure. In fact, 

instead of the discrete potential for the monomer-monomer interaction 

1 N 
V(w) = 2 L vkBTb(Rm- Rz) 

l,m=O 
l#m 

(2.23) 

(where the l , m monomer self-interaction term has been omitted), the following 

continuous version is often used 

V(w) = ~VkBTjT=N r=N drdub(c(r) -'c(u)) 
2 Jlr-uj>a 

(2.24) 

where c( r) is the polymer curve paramaterized by r, and where a is the cutoff pa-

rameter which corresponds to the condition l =f. m in Equation 2.23. See Oono [51] 

for a detailed discussion of the continuous version and the parameter a. 

For a given polymer and solvent, vis a function of temperature; the temperature 

T = Te for which v = 0 is called the 0- or Flory temperature, and at T = Te the poly-

mer is in an intermediate state between the scrunched-up phase at low temperatures 

and the stretched-out phase at higher temperatures. 
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When there is a short-range repulsive effect, the polymer swells and stretches out 

more than a polymer of the same number of monomers which has no such repulsive 

interaction: this effect is called the excluded volume effect, and one result is that rN 

in Equation 2.17 is larger for a given N. 

The excluded volume effect takes into account the interaction between segments 

which are not necessarily near each other along the polymer chain: this is one example 

of what is called a 'long'-range or global interaction. We should be careful here: 'long' 

in this case does not refer to the spatial range of the interaction but to the distance 

between the interacting monomers along the polymer chain (called contour distance). 

How can we define long and short (or global and local)? The answer is that there 

is in general no unambiguous definition (see Oono [51]). However, for our purposes 

we do not need to draw a very fine distinction between the two, and we can avoid 

any difficulties by defining a long-range interaction as one which involves segments of 

the polymer whose contour distance is of the order of the length of the polymer (the 

excluded volume effect fits this criterion); short-range will be everything else. 

There is another phenomenon we would like to discuss before moving on to more 

detailed models of polymers: it is called the hydrodynamic interaction. To understand 

this, let us look at the motion of the monomers a little more closely. We denote the 

linear velocities of the monomers 0, 1, ... , N by V 0 , Vt, ... , V N, their angular velocities 

by W 0 , Wt, ... , W N, and the forces and torques acting on them by Fo, F 1 , •.. , FN and 
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T 0 , Tt, ... ,TN. The equation of motion of the monomers then has the general form 

(2.25) 

which defines the mobility or interaction matrix Hmi· 

Now, suppose the monomers are small spheres; the reason we do this is so that 

rotational motion does not enter into the problem below. If there are no torques 

acting on the monomers, then we write 

Vm = LHmi · Fi 
i 

(2.26) 

If the velocity of each monomer were determined only by the forces acting on it, 

then Hmi would be diagonal with the form 

H . _ lbmi 
mt- ( (2.27) 

where ( is the friction constant of the monomers: the exact value of ( depends on 

the viscosity "'s of the solvent and on the exact shape of the monomers (for example, 

for a sphere of radius a, ( = 67rTJ8 a), and the linear relationship between V m and F m 

holds for our spheres only as long as F m is small. 

The problem here is that the velocity of a given monomer m is not only affected 

by F m, but also by the forces acting on the other monomers {Fili = 1, ... , m -1, m + 

1, ... , N}. The reason is that the force Fi moves monomer j; then, because of the 

monomer-solvent interaction, monomer j moves some of the molecules of the solvent 

-near it; this motion propagates to the solvent molecules near monomer m, which 
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in turn interact with monomer m. This is the hydrodynamic effect, and if this is 

taken into account, the mobility matrix Hmi becomes non-diagonal. Going back to 

the discussion above about long-range forces, if Hmi is a full matrix, then we have a 

long-range interaction, whereas if Hmi is diagonal (or tri-diagonal), then we have a 

short-range one. 

More can be said quantitatively about this non-diagonality if we make a few 

assumptions about the fluid in which the monomers are floating around (i.e. the 

solvent). In particular, we assume the fluid is incompressible, and we also assume 

that the Reynolds number R is small. This is called the Stokes' approximation (see 

Chorin and Marsden [13]), and it gives us the following equations: 

(2.28) 

(2.29) 

where u = u(x(t), y(t), z(t), t) is the velocity field of the fluid, F ext are the external 

forces, and p is the pressure. 

What we do now is calculate the flow field induced by the external forces acting 

on the monomers assuming the monomers are points. The result is (see Doi and 

Edwards [17] for the calculation) 

N 

u(r) =I: H(r- R) · Fi (2.30) 
i=O 

where, if we let r = rr = r(f\ f2
, f3

) with lrl = 1, His given by 

H(r) = -
8 

1 
(I+rr) 

7r'T}sr 
(2.31) 
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with rirj being the ij element of the 3 X 3 matrix rr. Since the monomers move with 

the fluid, their velocities are given by 

N 

Vm = u(Rm)_= l:H(Rm- R) · Fi (2.32) 
i=l 

with H(O) =· ~ as in the case where we neglected the hydrodynamic effect. We now 

identify H(Rm- R) with Hmi· 

2.3.1 Rouse and Zimm Models of a Polymer 

Now that we know more about the polymer-solvent solution, we can use this to 

construct models of polymers which are hopefully more realistic that the Gaussian 

and freely-jointed chains mentioned above. 

The first description of a polymer that we consider in this section is the Rouse 

model. In this case, the polymer is modelled as a bunch of beads connected by 

springs, and both the hydrodynamic interaction and the excluded volume effect are 

disregarded. Thus, the mobility matrix Hmi is the same as in Equation 2.27, and the 

interaction potential is 

(2.33) 

where k = 3kb~T is the spring constant, b is the effective bond length, and Rm is the 

position of the rpth bead. 

To get the equation of motion for the mth bead (monomer), we use Newton's law 

and assume the mass is negligible; thus, the forces add up to zero. These forces are 
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friction with the solvent, the spring interactions with the monomers m + 1 and m -1, 

and some "random" force to model the (temperature-dependent) random collisions 

of our monomer with the surrounding fluid. So, form= 1, ... , N -1, the equation of 

motion can be written 

(2.34) 

and for m = 0, N we have 

dRo C----;u- = k(R1- Ro) +fo (2.35) 

(2.36) 

where the {fm} as written above are "Gaussian white noise", with fm = (!;,_, J!, !!), 

and with moments given by 

< fm(t) >= 0 (2.37) 

_(2.38) 

Again, we have to interpret these equations in the appropriate sense: for the corre-

sponding Wiener process, we should have a variance of 2(kBT (see Section 3.4 and 

Section 3.3 for more rigorous definitions of "random" force, "Gaussian white noise", 

and Wiener processes). 

The Rouse model's key assumption is that the dynamics of the polymer is governed 

by local interactions; however, for a real polymer the hydrodynamic interaction does 

play a role in the dynamics, and in fact experimental results do not agree with some 
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of the Rouse model's predictions. For example, consider the center of mass Ra(t) as 

a function of time (see Equation 2.15), and define the self-diffusion constant DG by 

(2.39) 

which is a measure of how much the polymer as a whole drifts around in the sur-

rounding solvent. The Rouse model predicts that DG ex N-1 , but experiments give 

The lack of agreement between the Rouse model and experiment leads naturally 

to the question: what happens if we take into account the hydrodynamic interaction? 

Going back to Equation 2.31, we see that the interaction matrix Hmz is non-linear 

in Rm - Rz. Zimm replaced Hmz by its average with respect to the equilibrium 

distribution function at the 8-temperature; in this model, the mobility matrix Hmz 

is given by h( m - 1)1 where 

(2.40) 

See Doi and Edwards [17) for the detailed calculation. 

We should note that this is valid only near T = Te and only near equilibrium, and 

we should also note that since the excluded volume v is zero at Te, we are in effect 

neglecting. the excluded volume interaction. Later on we will examine this assumption 

more closely. 

Just as for the Rouse model, we now want to get the equation of motion for 

the mth bead (monomer), we again use Newton's law: the only difference is that 
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the spring interactions with the monomers m + 1 and m- 1 is smeared out by the 

hydrodynamic interaction (i.e. the non-diagonal H) so that every monomer interacts 

with monomer m. We thus arrive at the Zimm model, which is as follows: 

dRm(t) N 
d = L h(m -l)(k(Rl+l - 2Rt + Rt-I) + fm) 

t l=O 
(2.41) 

where we define RN+I to beRN and R_1 to be Ro. Again, the key difference here is 

that Hmz is non-diagonal, and so the interaction between the monomers is non-local. 

Although the Zimm model's prediction of the dependence of Da (see Equa-

tion 2.39) on N agrees with the experimental results near T = Te, it is not clear 

that the Zimm model will yield meaningful results if we attempt to apply it to poly-

mers when the temperature is not near Te. What about if we include the excluded 

volume interaction? Instead of considering only the spring potential in Equation 2.33, 

we need to add the following (spatially) short-ranged potential: 

1 N 
ul = 2VkBT L 8(Rm - Rz) 

m,l=l 

(2.42) 

where 8 is either the Dirac delta function or of the form cexp( -1;1
2 

), where c normal-

izes 8 so that its integral over ~d is one, and where 0 < € ~ 1 describes the narrowness 

of the peak at 0. If we also wish our model to be applicable away from Te, we must 

start from the matrix given by Equation 2.31. Note that this H(r) depends upon 

the configuration of the polymer; in other words, we can say that H = H(r(t)) and 

so will change from step to step (in a numerical scheme), unlike the constant matrix 

Hmt in Equation 2.40. 
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Both the Rouse model and the Zimm model are examples of the more general 

Langevin equation, which can be written for each monomer as 

(2.43) 

with fm(t) the random force term as above, and with U the interaction potential. The 

first sum is just the force on the m-th monomer 8~ + fm(t), which gets smeared out 

by the hydrodynamic interaction given by Hnm. The second sum is because of the 

drift that could happen, for example, when the diffusion D = k~T depends on the 

position of the monomer. 

2.4 Random Walks as Models for Polymers 

In the previous two sections, we have discussed in detail two topics which at first 

glance are seemingly unrelated: self-avoiding walks and ·polymers. However, there is 

in fact a deep connection between the two; in the next few paragraphs, we will use a 

few examples to more clearly illustrate this connection. 

The reader will have noticed that the average end-to-end distance of a polymer-

rN when the excluded volume effect is disregarded (e.g. for the Gaussian model see 

Equation 2.17) scales according to the same power of N as the end-to-end distance of 

a random walk on a lattice; when the excluded volume effect is present, it turns out 

that for a dilute solution of polymers in a good solvent at temperatures higher than 

the 0 temperature, rN scales just like it does for a non-interacting SAW on a lattice. 
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We can extend the analogy even further: as noted above, x in Equation 2.14 is a 

function of temperature, and thus so is the excluded volume v; at T = Te, v = 0. If 

we want to calculate the statistics of a dilute polymer solution in a good solvent at the 

e point in two dimensions, we can use another SAW called the kinetic growth walk 

(KGW) (see Poole, et al. [60]), which is an SAW on a hexagonal lattice that starts 

at the origin and takes random steps until it cannot proceed any further without 

intersecting itself. For the KGW only nearest-neighbor interactions are considered. 

At this point it should be noted that for real polymers, even though the two

body interaction may disappear at thee point, the three-body (and four-body, etc.) 

interactions may still be present. If we take into account these three-body interactions, 

it turns out that the coefficient v of the <1.>
2 term in the expansion of the free energy (see 

Equation 2.13) becomes v = v + w0 a3 where a3 is the volume occupied by a monomer 

and w0 measures the strength of the three body interaction. In real experiments it 

is actually v that is measured and not v; the temperature at which this v vanishes is 

called the e temperature, and may be significantly different from the e temperature . 

. On the lattice, we model this by including including (a subset of) the three-body 

interactions in our energy calculations. Again, there is a corresponding SAW called 

the SKW (see Section 4.3 for more details) which allows us to calculate the critical 

exponents of the polymer at this temperature in two dimensions. It should be noted 

that it is not clear that the e and e points should belong to the same universality 

class (see Section 4.3 for a definition). 
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In summary, depending upon the temperature and the quality of the solvent, we 

can sometimes choose an appropriate random walk on a lattice and use this to calcu

late the critical exponents instead of numerically integrating a system of differential 

equations in ~d (as would be nece~sary with the Rouse model, for example). 
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Chapter 3 

Markov Chains, Brownian Motion 

and Stochastic Differential 

Equations 

3.1 Introduction 

In this chapter we will first discuss the necessary probability and measure the

ory background, including the definition of a probability space and Markov chains 

and processes. We will then summarize some results about Wiener processes, which 

is used in the Rouse and Zimm models (see Section 2.3.1) to describe the collisions 

between polymer and solvent. Since some of the models for polymers discussed in sec

tion 2.3.1 are formulated in terms of stochastic differential equations, we will also give 
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a rigorous definition of what stochastic differential equations such as Equation 2.34 

and Equation 2.41 actually mean. 

3.2 Probability and Markov Chains 

The idea behind the discussion below is to get a rigorous definition of Markov pro

cesses and transition probabilities; this will be needed when we talk about schemes for 

computing thermal averages in Section 4.2 and in the chapter on numerical methods 

(Chapter 5.2). A more detailed discussion can be found in Feller [21] and in the thesis 

of Chang [9]. 

We begin with some basic definitions. Suppose :E is a set, and let F be a non

empty set of subsets of :E which is closed under complements and countable unions. 

F is called a o--algebra of subsets of :E (note that ~ and 0 are both in F). Let 

A1, . .. ,An, ... be a countable collection of sets in F with Ai n Ai = 0 if i =/= j. 

A probability measure P is a real-valued non-negative function defined on F with 

P('E) = 1 and P(UAi) =I: P(Ai) for any such collection of sets. The triple (:E, F, P) 

is called a probability space. 

Define Bd to be the o--algebra generated by open sets in ~d; the sets in Bd are 

called Borel sets. Let I be some index set, and suppose { Xt, t E J} is a family of 

~d-valued random variables defined on (:E, F, P): that is, for each t, Xt : :E-+ ~d and 

for each Borel subset B of ~d, the set x;-1(B) is in A (i.e. is A-measurable). The 

family { Xt} is called a stochastic process. 
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The random variables {xt} are called independent if for every finite subset x1 , ... ,xn 

and for every choice of Borel sets S1 , •.. ,Sn, the events Ai = {w : xi(w) E Si} are 

independent: i.e., P(nAi) = IT P(Ai)· Two collections of measurable sets g and 1-l 

are independent if for any G E 9 and HE 1-l, P(G n H)= P(G)P(H). 

The expected value of E( Xt) of Xt( u) is defined to be Jr; Xt( u )dP: if for all t we 

have E(xt) = c (where cis independent oft), and if for all t, s E(xsxt) = C(t- s ), 

then we say that the process is stationary; C(t- s) is called the covariance of the 

process. 

Suppose now that Xt E L1(P) and let 9 beau-algebra of sets such that 9 C :F. 

A random variable Yt is called a conditional expectation of Xt relative to 9 if Yt is 

9-measurable and if for all G E 9 we have 

(3.1) 

By the Radon-Nikodym theorem (see Feller [21] for details) such a Yt exists. We 

then write Yt = E(xtl9). IfF E :F, then the conditional probability P(FI9) is defined 

by 

P(FI9) = E(IFI9) (3.2) 

where the indicator function lp of the set F is defined by lp(J) = 1 iff E F and 0 

otherwise. We will also use the notation P(xt E Flxs) to mean P(xt E FIXs) where 

Xs is the smallest u-subalgebra of :F with respect to which X 8 is measurable; X[t1 .f2] 

will be the smallest u-subalgebra of :F with respect to which the {xsls E [tb t2]} are 
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measurable; and :F/ will be the smallest o--subalgebra of :F with respect to which 

{ x s - Xt It ~ s < oo} are measurable. 

Let { Xt, t E (Tt, T2]} be a stochastic process, and let T1 ~ s ~ t < T2 ; it is called 

a Markov process if it satisfies the following 

(3.3) 

with probability one for any F E :F. This means that only the present state of the 

system (and not any information about the past states) has an effect on the future 

development: the system has no memory. A Markov chain is a Markov process whose 

random variables only assume values in a certain finite or denumerably infinite set. 

We define the transition probability P(s, x, t, F) to be the distribution such that 

P(s, x, t, F)= P(xt E Flxs) (3.4) 

holds with probability one for s ~ t. The following equations then hold for P( s, x, t, F): 

(a) P(s, x, t, ·)is Bd measurable for fixed s, Xs, t. 

(b) P(s, ·, t, F) is a probability measure for fixed s, t, F. 

(c) the Chapman-Kolmogorov equation is satisfied: 

P(s,x,t,F) = f P(u,y,t,F)P(s,x,u,dy) 
}~a 

(3.5) 

Alternatively, we also can start with a function satisfying conditions (a) ,(b) and 

(c) and construct a Markov process for which Equation 3.4 holds (see Doob (18] for 

more details). 



38 

3.3 Brownian motion 

Using the probability background in the previous section, we now will look more 

closely at how we can model the random collisions of a polymer with the surrounding 

solvent; the mathematically rigorous way to do this involves the construction of a 

Wiener process. For a more detailed discussion, see Lamperti [39] Paley and Wiener 

[54], Karatzas [34] and Knight [36]. 

Let (:E, F, P) be a probability space. A Brownian motion process, or a Wiener 

process, is defined to be a stochastic process {xt, t 2: 0} which satisfies the following 

conditions: 

(i) x0 (o-) = 0 a.s. (almost surely- with probability one). 

(ii) If 0 < t1 < ... < tm, then Xt;+ 1 - Xt; are independent fori. 1, ... , m- 1. 

(iii) For s, t 2: 0, Xt+s - Xt is normally distributed with mean 0 and variance s. 

(iv) For almost all a E :E, the function Xt( a) is everywhere continuous in t. 

The existence of such a process is not obvious: for a proof, see Lamperti [39]. 

This process is a model of the physical phenomenon known as Brownian motion: 

small particles suspended in a fluid move in an irregular manner that results from the 

numerous collisions between the particles and the molecules in the surrounding fluid. 

Note that since the increments of the Wiener process are independent, for any 

fixed t so are the two a-subalgebras Xt and X/ (see Section 3.2 for the definitions). 

We will now give a summary of some of the more interesting properties of a Wiener 

process: Theorems 2, 3 and 4 are all proven in Lamperti [39]. 
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The first property concerns the large scale behavoir of the paths: 

Theorem 2 P(limsupt-+oo v' x = 1) = 1 
2tloglogt 

In fact, since { -xt(u)} and {xt(u)} are both Wiener processes, Theorem 2 holds 

for both of these, and so Xt( u) has both positive and negative values for arbitrarily 

large t. Since Xt( u) is a.s. continuous, we conclude that Xt( O") has arbitrarily large 

zeros. 

We know the function Xt( u) is continuous in t: what can be said about its dif-

ferentiability? Using the following theorem, called the "local law of the iterated 

logarithm", 

Theorem 3 For each t 0 > 01 P(lim suph-+O+ v' Xto+h -xto = 1) = 1 
2hloglogh-1 

we can conclude that P(x~exists) = 0 for each fixed t. Wiener and Paley gave a more 

precise characterization: 

Theorem 4 If). > ! 1 the values of u for which there exists a t such that 

lim suph-+O I Xto+h(1>.-xto(u) I < oo form a set of 0 measure. If). < ! 
1 

then except for 

a set of u of zero measure 

A stronger result is that with probability one, the t set for which Xt exists has 

Lebesgue measure 0. However, we do not really need the above theorems to prove 

non-differentiability: we can instead start from the fact· that is normally 

distributed with mean 0 and variance h (see Lamperti [39]). 
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3.4 Stochastic Differential Equations 

We are now ready to actually say what the equations for the Rouse and Zimm 

models (see Equation 2.34 and Equation 2.41) actually mean. Suppose Yt and f 

are ~d-valued functions, G is ad by m matrix, and Xt is an m-dimensional Wiener 

process. Since the derivative of Brownian motion a.s. does not exist (and thus 

Brownian motion is not of bounded variation), equations like the following 

dYt = f(t, Yt)dt + G(t, Yt)dxt, Yo= c, 0 ~ t ~ T < oo (3.6) 

need to be looked at more carefully. However, before we begin with our attempt 

to define this equation more rigorously, let us proceed informally in one-dimensional 

case. dxt in the above equation is sometimes written as edt where et is called white 

noise, which means that et is a stationary Gaussian stochastic process with constant 

Fourier transform j(>..): if we again denote the covariance of et by C(t), and if we 

define f ()..) by 

f(>..) = _!_ ! 00 

e-i>.tc(t)dt 
27r -oo 

.(3.7) 

then j(>..) is some constant c independent of>... The problem here is that this implies 

that C(t) = 8(t) where 8 is the Dirac delta-function. In particular, we have 

C(O) = /_: j(>..)d>. = oo (3.8) 

and when t =f:. 0, C(t) =. 0, which means that for arbitrarily small s, the random 

variables et and et+s are uncorrelated. 
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As we have presented it, this informal approach contains a number of difficulties: 

we could continue along this path and make things more rigorous by introducing 

generalized functions, but we take another route. Instead of trying to define white 

noise, we are going to define the integral 

(3.9) 

and from this we will be able to make more sense of Equation 3.6. The strategy is to 

define the integral first for step functions, restrict our G to a certain class of functions 

that, among other things, can be approximated (in a sense to be defined below) by 

step functions, and then define the integral of G as the limit (again in a sense to be 

defined below) of the integrals of these step fuctions. However, we first need some 

preliminary definitions: for more details and a discussion of white noise, see Arnold 

[4] or Ito and McKean [33]. 

A sequence of random variables Gm converges stochastically to a random variable 

G if for all € > 0 we have 

lim P((J': IGm((J')- G((J')I > €) = 0 
m-+oo 

(3.10) 

This is written 

st- lim Gm = G 
m-+oo 

(3.11) 

Suppose G is a step function on [0, t] with 0 = t0 < t 1 < ... < tm = t and 

G = G(ti-1) on [ti-ll ti); we define the integral of G to be 

(3.12) 
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We now need to examine the more general case: for which G can we define the integral 

in Equation 3.9? Suppose {Ftlt ~ 0} is a family of o--subalgebras ofF; {Ft} is called 

non-anticipating (with respect to the Wiener process { xt}) if it has the following 

characteristics: 

(a) Fs C Ft (0 $ s $ t) 

(b) Ft ::> Xt (0 ::; t) 

(c) Ft is independent of Xt ( 0 ::; t) 

If we have ad x m matrix function G(s, o-) defined on [0, t] x :E, Borel-measurable 

with respect to s and P-measurable with respect to o-, we correspondingly call G 

non-anticipating if G( s, ·) is .1"8 -measurable for all s E [0, t]. The set of all such 

non-anticipating fuctions which are in L2(0, t) (that is, for which the equation 

(3.13) 

holds with probability one) is denoted by M2[0, t]. 

Let our function G be in M2 [0, t]: then we can find a sequence of step functions 

st- lim r IG(s)- Gm(s)l 2ds = 0 
m-+oo Jo (3.14) 

We then define the integral of G (call this I (G)) by 

r Gdx = r G(s)dxs = st- lim r Gm(s)ds lo lo m-+oo lo (3.15) 

The value I( G) does not depend on the sequence {Gm}, and with probability one it 
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is determined uniquely. Again, we refer the reader to Arnold [4] for proofs of .these 

statements and a more detailed discussion. 

Let {xtiO:::; t:::; T} denote an ~m-valued Wiener process, and suppose now that we 

are given some initial condition c = c(u), with c being a random variable independent 

of Xt- x 0 for all 0 :::; t :::; T. Also, let the ~d valued f and the d x m matrix G be 

defined on [O,T] x ~d. Additionally, if y is a· random variable y(u), for fixed (t,y) 

suppose f(t,y) and G(t,y) are independent of u E ~: in other words, all of the 

dependence on O" E ~ is in the variable y. Define the functions f ( t, u) = f ( t, Yt ( u)) 

and G(t, u) = G(t, Yt(u)); we assume that they fulfill the following conditions: 

(a) 7 and G are non-anticipating with respect to Xro,T]' which is defined to be 

the smallest u-subalgebra of :F with respect to which c and {xsiO :::; s :::; t} are 

measurable. 

(b) with probability one we have: 

(where IGI = trace(GG')) 

fat 17( s, u) Ids < oo 

fat IG( s, u) l2dx < oo 

(3.16) 

(3.17) 

At this point we are finally ready to give a mathematically more rigorous inter

pretation of Equation 3.6: namely, we define Yt to be a solution of Equation 3.6 on 

the interval [0, T] with initial condition Yo( u) = c( u) if the following conditions hold: 

(a) Yt is Xr'O,T]-measurable, i.e. non-anticipating fortE [0, T]. 
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(b) for every t E [0, T] with probability one we have: 

Yt(o-) = c(o-) +lot f(t, Yt(o-))dt +lot G(t, Yt(o-))dxt (0 ~ t ~ T ~ oo) (3.18) 

Note that the integrals exist by condition (b) (in particular, since G E M 2 [0, T]). See 

0ksendal [50] for a proof. 

What about existence and uniqueness? The reader familiar with the theory of 

non-stochastic ODE's may suspect that we need some sort of Lipschitz condition and 

possibly some bound on the growth of f and G: this is in fact the case, as indicated 

in the following theorem. 

Theorem 5 Suppose f, G, Xt and care as above, and furthermore suppose that there 

exists a constant K such that: 

(a) (Lipschitz) Vt E [0, T], x E ~d, y E ~d: 

if(t,x)- f(t,y)J + IG(t,x)- G(t,y)J;::; Klx- Yi (3.19) 

(b) (growth bound) Vt E [0, T], x E ~d: 

(3.20) 

Then Equation 3.6 has in [0, T] a unique, with probability one continuous ~d-valued 

solution Yt with the initial condition Yo = c. In other words, if Xt and Yt are contin-

uous solutions of Equation 3. 6 with the same inital value c, then 

P( sup IXt - Yt I > 0] = 0 
O$t$T] 

(3.21) 
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For the proof, see Arnold [4]. 
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Chapter 4 

Thermodynamics and Phase 

Transitions 

4.1 Introduction 

In this chapter, we will introduce the thermodynamics concepts relevant to our 

computations. In particular, we will discuss why we cannot compute thermal av

erages exactly and how we can get good approximations to them; this will involve 

the probabiliy theory discussed in Chapter 3. After that, we will give a brief outline 

of the theory of phase transitions: we will define what a phase transition is, give a 

detailed example of a phase change, and describe the limitations encountered when 

using a computer to simulate such a transition. 
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4.2 -Thermodynamics Background 

For a system in a heat bath at a constant temperature T, the probability (called 

the Gibbs probability) of the system being in a state a with energy Ea is given by 

( 4.1) 

where {3 = k;T (kB is Holzmann's constant) and where the "partition function" Z is 

defined by 

(4.2) 

The summation is over all possible states a. 

The goal of much of our computations is to calculate the thermal average of some 

function X (a): 

1 
<X>=- 2:X(a)e-.6Ea. 

Z ex . 
(4.3) 

X could be, for example, the end-to-end distance of an SAW. 

Suppose that the size N of our system is fixed, and assume that the system has 

a finite number of states for any given N. For example, if we consider SAW's on a 

lattice, we can group the SAW's into equivalence classes, each class consisting of those 

SAW's which are horizontal and/or vertical translates of each other. Alternatively, 

we could require the SAW's to start at the origin. 

For many systems, even for moderately sized N the sum in Equation 4.3 contains 

an intractable number of terms; thus, we cannot evaluate the thermal averages di-

rectly. Instead, we have to somehow sample some of these configurations in such a 
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way that our estimated average is not too far from the exact value. Since the Gibbs 

probabilities e-!3Ea vary over many orders of magnitude, a straightforward random 

sampling of the states is not in general an efficient method: this would include many 

terms with negligible contributions to the above sum, and it might leave out terms 

with large Gibbs probabilities. Instead, what we want to do is choose those configu-

rations a with the largest probabilities e-!3Ea and use the values of X( a) to estimate 

< X > (this is called importance sampling). How do we select these a? 

What we plan to do is to generate a Markov chain of states: we start with some 

arbitrary initial state ai and then specify how to move from one state to the next; if 

this transformation is chosen correctly, the frequency of a given state in the Markov 

chain will be close to its Gibbs probability. Recall the assumption above that the 

number of states M of our system is finite. Suppose that the probability of going 

from a configuration ai to ai depends only on ai, and not on any previous state of 

the system (this will give us a Markov process, and the sequence of states that we get 

from the algorithm below will be a Markov chain): define Pij to be this probability. 

So, we must have 
M 

Vi: L:Pii = 1 (4.4) 
j=l 

Pi will be the Gibbs probability of the state ai. We form an M x M transition 

matrix P whose elements are { Pij}, and we define the n-step transition probabilities 

P[J to be: 
M 

P['j = I: P/t1 Pki (4.5) 
k=l 
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with Pi~ = Pii. Suppose also that we impose the following two requirements on the 

Pn. 
ij· 

1) accessiblilty, or ergodicity: you can reach any configuration from any other one 

in a finite number of steps. 

Vi, j3n ~ 0 such that Ptj =/: 0. (4.6) 

2) we want the {pi} to be a stationary distribution for the Markov chain (see 

Section 3.2 for the definition). 

M 

Vj''£piPii =Pi 
i=l 

( 4.7) 

Instead of 2), detailed balance, or micro-reversibility is often assumed: this means 

the following equation is satisfied for all states ai,aj: 

(4.8) 

If you sum this equation over i and use Equation 4.4, you get Equation 4. 7, so detailed 

balance is actually a stronger requirement. 

If 1) and 2) are satisfied, what can be said about the distribution of states in 

our newly created Markov chain? Well, what we want is to create a Markov chain 

in which, for each state, as we move along the chain, the difference between the 

probability of occurence of the given state in the chain and the Gibbs probability 

decreases. In other words, if A0 , A1 , ••• ,Am is the sequence of states we get from our 

Markov process (where the {Ai} are not necessarily distinct), we want 

1 m 
lim - LX(Ai) =<X>. 

m-+oo m i=O 
(4.9) 
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For our Markov chain, the following argument, taken from Binney, et al. [8], shows 

that this is the case (see their book for a further discussion): first, although ergodicity 

(see Equation 4.6) is in general difficult to prove for Markov chains produced by a 

given algorithm, without it we could not be sure that we are somehow not missing 

some (or even many) high probability states when generating the chain, so we do 

need this assumption even if we often cannot verify it in practice. 

Now for the detailed balance condition. Suppose we let wr be the probability 

of occurrence of state i at the nth step of our Markov chain, and define a difference 

between the actually probabilities Pi and Win 

m 

nn = 2: I wr - Pi I (4.10) 
i=O 

We can use detailed balance to show that nn is a non-increasing function of n as 

follows: 

m 

nn+l - 2: I wr+l - Pd 
i=O 
m m 

2:12: WpPii- Pil 
i=O j=O 
m m 

L I L(Wp Pji- PiPij)l 
i=O j=O 
m m 

- L I L(Wp Pji- pjPji)l 
i=O j=O . 

m 

- 12:(Wp- Pi)l 
j=O 
m 

< 2: IWjn- Pi I= nn 
j=O 

(4.11) 
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where we use Equation 4.5 to go from line two to line three, Equation 4.8 to go from 

three to four, and Equation 4.5 once more to go from four to five. 

To be sure, the above argument only says we will eventually get good results: it 

does not tell use how big m needs to be. Thus, for a given .m, we have no guarantee 

that the averages we compute will be a good approximation to the true value < X >: 

for example, we might have problems near a phase transition, where the variance of 

the value's X(oi) will be large, and thus we might need an impractically large number 

of steps in our Markov chain (see Section 4.3 for more details about this). 

4.3 Phase Transitions 

To begin our discussion of phase transitions, we will give an extended description 

of the transition which occurs for interacting self-avoi.ding walks on a lattice in two 

dimensions. After the example, we will present a more· general definition of a phase 

transition. 

Consider an SAW on a hexagonal (two-dimensional) lattice whose· edges interact 

with each other on a short spatial range, with the number of such interactions being 

given by one plus the number of hexagons which contain two steps of the walk not 

connected on that hexagon (Figure 5.1 (A)-(D)) plus twice.the number of hexagons 

that contain three steps of the walk not connected on that hexagon (Figure 5.1 (E)); 

let NNN be the number of such nearest neighbor interactions, and give the SAW a 

probability proportional to ef3NNN. It turns out that the average shape of the SAW 
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depends greatly on /3: if f3 is greater than a certain f3crit, the SAW shrinks into a 

compact blob; if f3 is below this f3crit, the SAW is stretched out as if there were no 

interaction; at f3 = f3crit, there is an intermediate state (we assume that there are no 

other possible states). This is one example of a phase transition. 

If we invert Equation 2.5, we get the following: 

(4.12) 

In the following we assume that such an exponent exists; please see Section 2.2 for a 

more detailed discussion of this point. 

We call ~ the dimension (see Section 2.2 for a definition of dimension) of the SAW, 

and this will change as f3 passes through f3crit· In fact, the values of v in the compact, 

the stretched out, and the intermediate states are known from heuristic arguments 

and numerical simulations. When f3 > f3crit, then ~ = ! (this is as compact as 

you can get in two dimensions); if f3 < f3crit, v = ~ (this corresponds to the Flory 

exponent given in Equation 2.6 above). What is f3crit, and what about the value of 

vat f3 = f3crit? The following argument, due to Coniglio, et al. [14], will answer this 

question. 

We consider a new walk on the lattice called the smart kinetic walk (SKW): the 

idea behind this is to avoid getting trapped in a loop where you cannot get out without 

self-intersection. The walker starts at the origin and moves one step, labelling the 

hexagon on the left with a+ and the one on the right with a-. For the next step, 

the same procedure is followed, and this continues. When the walker reaches a point 
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where a random choice could lead to being trapped in a loop, the hexagons on both 

sides will have already previously been labelled, so the walker must simply choose the 

path with+ on the left and- on the right. The only way for the SKW to terminate 

is for the walker to return to the origin. 

What is the probability of anN-step SKW? For a non-interacting SAW model, 

the weight will be H~)N-I, since the first step can go in any of the three directions, 

and each subsequent step can go in any two directions. For the SKW, this factor 
( 

will be multiplied by 2NNN where NNN is the number of times we have .been forced 

to step in a particular direction: i.e. the number of edges with a weight of one. In 

fact, we can be more precise about NNN: it is one plus the number of hexagons which 

contain two steps of the walk not connected on that hexagon plus twice the number 

of hexagons that contain three steps of the walk not connected on that hexagon (see 

Figure 5.1 and recall the definition given above of the nearest-neighbor interaction for 

our interacting SAW on the hexagonal lattice). Each time one of the configurations in 

this figure appears in the walk (i.e., each time we have a nearest-neighbor interaction 

of the sort (A)-(F)), it means we have been forced to make a step either to avoid 

self-intersection or to avoid self-trapping, and, on the other hand, each time we have 

been forced to make such a step, one of these configurations will appear in the walk. 

However, 2NNN can be written more suggestively as exp(ln 2NNN ), and this is 

precisely the weight that our interacting SAW's defined above have at f3 = ln 2. In 

other words, the statistics of the SKW correspond to those of the interacting SAW's 
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at the temperature T = Te, = ~2 • What can we say about vat this value of /3? 

Our walker actually traces out the outer layer of what is called a percolation 

cluster. Percolation theory can be defined as the study of collective properties of 

random objects, and percolation clusters are sets of objects (such as points or edges 

of a graph) which are somehow connected to each other. 

The following example will hopefully make this rather abstract definition more 

concrete: construct some sort of lattice in the plane (see Section 2.2 for the definitions 

of lattice, edge, plaquette, etc.). Two points will be called nearest neighbors if they 

have an edge in common; bonds (i.e. edges) are nearest neighbors if they have a point 

in common; plaquettes are nearest neighbors if they have a common bond on their 

boundary. Then, choose a probability p and, for each point (point percolation) or each 

bond (bond percolation) or each plaquette in the newly formed lattice, pick a random 

number r; if r < p, color the selection black, otherwise color it white. Now define a 

cluster to be a collection of black points (bonds, plaquettes) that can be connected 

to each other through black points (bonds, plaquettes) that are nearest neighbors. It 

turns out that for many lattices, the existence of a cluster with an infinite number of 

points (bonds, plaquettes) depends on p as follows: for p < Pcrit there is no infinite 

cluster, but for p > Pcrit there is. Pcrit depends on the lattice and on whether points or 

bonds or plaquettes are being considered. There are many variations on this theme: 

for example, considering a square lattice and bond percolation, we can have different 

probabilities Phor and Pver for the horizontal and vertical directions. See Stauffer (65] 
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for more details. 

We now consider plaquettes on a hexagonal lattice. Choose a probability p and 

randomly label the hexagons on the lattice with + or - according to this p; the 

resulting lattice will have clusters of +'s and of -'s, with the borders being bonds 

with a + hexagon on one side and a - hexagon on the other. If we set p = ~, we get 

precisely the same cluster which was traced out by our SKW during its walk, and for 

a percolation cluster, the dimension of the cluster is known to be ~'thus v = ~ and 

so we have found the intermediate state of the interacting SAW at f3crit = ln 2. 

Although we have looked carefully at one example, we have not yet given a general 

definition of what exactly a phase transition is. One way to look at it is the following: 

a mechanically isolated system at constant temperature T ~ 0 (for example, a self

avoiding walk at fixed f3 with some interaction between the nodes of the walk) wants 

to minimize the free energy F = E - T S where E is the energy and S the entropy. 

At any given T there is a sort of competition between E and S. When T is very 

small, E plays the dominant role, and so those configurations which minimize E are· 

chosen; for our SAW's, these configurations are the scrunched up ones with a lot of 

nearest-neighbor interactions. On the other hand, when T is large, it is S which plays 

the bigger role, and so those configurations which minimizeS are chosen; for SAW's, 

these are the stretched out ones. At some intermediate or "critical" temperature 

T crit, E and S balance each other out. So, as we decrease T from +oo, there is a 

sort of "transition" between the scrunched up and the stretched out "phases". As we 
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increase the size of our system (i.e. the length of the SAW) this transition becomes 

more and more abrupt: as N increases, E and S become larger, and so even small 

changes in T can produce very large changes in F. For N = oo, we would expect the 

transition at T crit to be very, very abrupt; in fact, if we are lucky we might be able 

to find some quantity ~(T) which has some kind of discontinuity (or non-analytic 

behavoir) at T crit. 

To be more quantitative, one generally accepted definition of a phase transition 

begins with a variable ~ called an order parameter: the exact defintion of ~ depends 

upon the system you are considering, but roughly speaking points where~ has some 

. 
type of "singular" behavior indicate phase transitions: "singular" could mean < ~ > 

is 0 on one side of the transition and non-zero on the other side. For example, 

suppose we have a lattice of magnetic spins {si}; we can define ~(x) to be the mean 

magnetization in a small volume hV around x: 

1 
~(x) =-LSi 

hV iEoV 
(4.13) 

Having chosen an appropriate order parameter, we want to use this to better 

characterize the behavior of the system near a critical point, which can be defined as 

the point(s) at which our function~ is non-analytic. To examine this behavior more 

quantitatively, we define the connected two-point correlation function GF) by 

(4.14) 

This is a measure of the long-range order in the system. 



57 

Let us define the symbol A(r) rv B(r) to mean li~ ..... oo ~~=~~~} = 1; similarly, in 

the following equations A(T) rv B(T) means limT-+Tcrit :~:~~~~ = 1. 

For r large and 0 < IT- Tcritl ~ Tcrit, 

(4.15) 

where 'T/ is a critical exponent defined by the above equation, and where ( is the 

correlation length: i.e. the order parameter fluctuates on length scales (. 

Empirically, it is also found that for IT - T critl ~ T crit, 

(4.16) 

where ). is another critical exponent. 

Why are we worried about these critical exponents? Experimentally it has been 

observed that many systems which are seemingly quite ~iifferent have the same critical 

exponents. This has led to the concept of universality classes, which are collections of 

systems; all ofthe systems in a given collection have the same values for their critical 

exponents. The values depend on, for example, the spatial dimension and any symme-

tries in the Hamiltonian, but not on the details of the microscopic interactions. In our 

discussion above of the phase transition of interacting SAW's, we used a hexagonal 

lattice when we looked at the structure of the intermediate state: universality would 

lead us to believe that these conclusions are valid on other (e.g. square or triangular) 

lattices too. Universality would also suggest that, although we chose our definitions 

of the nearest neighbor interactions on the square and cubic lattices partially because 
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of the ease and speed with which they can be computed, the resultant statistics of 

the interacting SAW's may be the same as those which would be observed for other 

localized (and from a computational point of view possibly less efficient) interactions, 

although this is not necessarily the case. 

We should be clear here about the meaning of critical exponents: in Section 2.2 

we defined these for functions of SAW's as the length of the SAW's approaches oo. 

Here however, a critical exponent describes the behavior of some function the system 

in the neighborhood of a critical point Tcrit (i.e. when ITTT~ritl <t: 1). In the literature 
crtt 

the term "critical exponent" is used for both cases: for the sake of clarity, we will call 

the first case "SAW" and the second "thermodynamic" in the following discussion. 

Consider Equation 2.5: the "SAW" exponent v is defined for both interacting 

and non-interacting SAW's, and for the non-interacting case, we can think of no 

sensible "thermodynamic" interpretation. However, if we give the interacting SAW's 

a probability which depends not only on the number of interactions but also on some 

variable T, then we can examine the end-to-end distance of the SAW's as Tis changed 

and, if we observe non-analytic behavior near some T = T crit, we can also consider 

v as a "thermodynamic" critical exponent in the neighborhood of this Tcrit· Such 

an interpretation may also be possible for other exponents, but we will chiefly be 

concerned with v. In what follows, the reader should interpret critical exponent in 

the thermodynamic sense, unless otherwise indicated. 

Phase transitions were originally classified by Ehrenfest according to the smooth-



ness of the chemical potential p,, which is defined by 

8E 
!1- = 8N 
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(4.17) 

where E is the energy of the system and N is the number of particles. A transition 

was called nth order if the lowest order derivative of p, to be discontinuous across 

the transition was the nth derivative. However, the usual classification now uses the 

latent heat 

(4.18) 

where ch = (a~~> h is the specific heat and h IS a thermodynamic variable, e.g. 

volume, which is held constant. If the latent heat is non-zero, the transition is called 

first-order, otherwise it is called continuous. 

One of the problems with trying to simulate a phase transition of SAW's (or of 

any system) on a computer is that a "true" phase transition can only take place for 

an SAW of infinite length. This is because all the thermodynamics of a system can be 

derived from the partition function Z; in other words, if we know Z we can find the 

other interesing thermodynamic variables. For example, the average energy < E > 

is given by 

E -I_~ E -f3Ea- -(8log z) < >- Z ~ ae - a(3 v ( 4.19) 

where V is the volume; the heat capacity Cv = (a~~> )v at constant volume can be 

found from Z using 

( 4.20) 
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We refer the reader to Binney, et al. [8] for other calculations of thermodynamic 

variables using Z. 

If the system size N is finite, Z, being the finite sum of analytic functions (expo

nentials), will itself be analytic; thus, we cannot expect to be able to define some order 

parameter whose "singular" behavior will indicate a critical point. On the other hand, 

an infinite sum of analytic functions can in some cases exhibit singularities; in some 

physical systems, this singular behavior can be associated with a phase transition. 

Therefore, although we cannot hope to see these singularities in the order parameter 

for our finite system, if we choose this parameter appropriately, the phase transition 

may be reflected in the behavior of the parameter. If we study these quasi-transitions 

as a function of system size, this may tell us something about the phase transition in 

the infinite system. 

Another way to think of the finite-size effect is to go back to the correlation length 

(see Equation 4.15 and Equation 4.16): as soon as ( ~ N where N is some measure 

of the system size (e.g. the length of the SAW), we will not be able to detect any 

increase in (. For the system of size N, we will thus arrive at our "phase transition" 

at some f3 different from f3crit· 

So, what can be done to take into account the finite size of the system? What 

we want to do is find the dependence between f3crit (or Tcrit) and N. What exactly is 

f3crit for a finite system? We can define it to be the f3 at which ( ~ N. 

There is also another criterion that is sometimes useful in detecting the transition 
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for a finite system. If, for an infinite system, near Tcrit Ch has the following behavior: 

(4.21) 

where a and a' are critical exponents and t = TTT,rit, then one way to locate T crit for 
crat 

finite N is to find the temperature at which the specific heat 

( 4.22) 

has a maximum. If we use this technique, then according to Ferdinand and Fisher 

[22], we can expect the shift in critical temperature to scale as 

bTcrit = T(oo)- T(N) "'N1
f>. 

where,\ is the critical exponent defined in Equation 4.16 above. 

Similarly, if we look at the free energy F defined by 

1 
F = --lnZ 

{3 

then, for a finite system, F(N) will have the following behavior: 

( 4.23) 

(4.24) 

( 4.25) 

where t and a are defined as in Equation 4.21 and Pis a scaling function. The exact 

form of P and the proportionality constant in Equation 4.23 depend on the details of 

the system. 

It should also be noted that we can only observe a given system for a finite time 

Tobs: for SAWs, this means that we can only apply our Markov transition matrix 
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a finite number of times, and so we can only examine a finite sequence of states 

a 17 ••• ,aM; for other systems such as the Rouse and Zimm models, this means we can 

only take a finite number of time steps. 

In Equation 4.6 we define ergodicity as follows: for any two states, there is a 

non-zero probability that we can reach one from the other in some finite number 

of steps of our Morkov process. This definition does not say anything about how 

small this probability can be or how many steps we may need. Since we can only 

observe a system during the time 7obs, the concept of ergodicity on a time scale 7 is 

much more useful from a computational point of view. What exactly does this mean? 

Remember that we want to explore as many of the (high probability) states of the 

system as possible, and we want the resulting approximations of thermal averages, 

which are calculated using the states of the system we have explored, to be close 

to the exact values. Thus, if we say 'a system is ergodic on a time scale 7, then if 

7obs ~ 7, our calculations should give thermal averages close to the exact values. The 

value of 7 depends on the particular thermal averages we are calculating as well as 

the accuracy with which we want to compute these averages. 

The ergodic time scale 7 is determined by the size of the energy barriers between 

various minima of the free energy F: the larger the barriers, the longer the time 

needed to explore different states. If 7 is relatively large and we only look at the 

system for a short period of time, the system may only remain in a small portion of 

phase space, and so our calculations may result in very inaccurate approximations to 
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the thermal averages. However, r is also determined by the particular algorithm we 

are using to examine the state space. If we have a particularly efficient algorithm, 

we may be able to move around the energy barriers and explore phase space more 

quickly than if we were using a less efficient one. 

We can also give a more quantitative definition of r. Define the autocorrelation 

function C ( k) for the variable X = X (a) by 

C(k) = < X(ai)X(ai+k) >- < X(ai) >2 

< X(aj) 2 >- < X(ai) >2 
(4.26) 

where ai is the jth state in our sequen~e, and the averages are taken over our par-

ticular sequence of states ab ... ,aM. Note that C(O) = 1. r can then be defined as 

r = k, where k is such that C(k) ~ 0.03 for example. 

When f3crit is approached, r becomes large, and so sampling the phase space with 

our Monte Carlo method becomes more difficult. Why does this happen? To a 

certain extent, the reason is related to the algorithm that we use. As we approach 

a phase transition, the correlation length ( grows as in Equation 4.16: this reflects 

the increasing long-range order of the system. Thus, we can expect that if we use 

something like the Madras-Sokal method for SAW's (see Section 5.2) to go from state 

ai to state ai+k, we will require more and more transformations in order to undo 

this long-range order and get to a new, more statistically uncorrelated state (a state 

ai+k such that in Equation 4.26 C(k) ~ 0.03): i.e. we will need more time to move 

around through the various free energy barriers. The blowing up of r near f3crit is 
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called critical slowing down. The relationship between T and (is often written as 

r=C (4.27) 

where z is the dynamical critical exponent and varies according to the system and 

the algorithm. 

For a finite system, T must remain finite even at our quasi-transition (i.e. at 

the point where small changes in the temperature cause large changes in the order 

parameter q> or in one of its derivatives), since the free energy barriers between the 

various states and the correlation length (must also remain finite. However, T does 

increase, and this requires more computing time for Monte Carlo simulations near 

the quasi-phase transition. For magnetic spins on a lattice, various algorithms have 

been developed which help to reduce the value of z, such as the Swendsen-Wang and 

the Wolff algorithms (see Binney, et al. [8]). For SAWs, however, Madras-Sokal (see 

Section 5.2) only requires a relatively few number of steps to generate "effectively 

independent" configurations, so z is less than for many algorithms which only modify 

one or two steps of the SAW at a time (see Section 5.2). 

One question that has not yet been addressed is why study phase transitions at 

all. The statistics of real polymers in dilute solutions of good solvents are known 

to correspond to those of a non-interacting SAW. When the attraction between the 

monomers cannot be neglected, a phase transition similar to the one observed in the 

interacting SAW's takes place (i.e. a small change in f3 results in a huge change in, for 

example, the volume occupied by the polymer), and many biological systems operate 
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near f3crit in order to take advantage of this transition (e.g. it is possible that the 

collapse transition in DNA is actually such a phase transition). For more examples, 

see Binney, et al. [8]. 
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Chapter 5 

Numerical Methods 

5.1 Introduction 

In this chapter we will describe the numerical methods that we used in the Monte 

Carlo calculations, beginning with the (efficient) generation of self-avoiding walks 

using the pivoting algorithm and Metropolis rejection. Next we will discuss the 

histogram method for sampling phase space and calculating thermal averages for 

various temperatures. Then we will outline a method for estimating the entropy of a 

sequence of walks using only a small portion of each walk. 

5.2 Generating SAW's 

Self-avoiding walks are used in a number of areas in statistical physics and poly

mer theory (see Madras and Sokal [43] for references), and until recently an efficient 
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method for generating SAW's of more than a few hundred steps was not available. 

Our goal is to examine the applicability of Monte Carlo methods by looking at 

an example for -which the results are known: the phase transition which occurs for 

interacting SAW's on a two-dimensional hexagonal lattice. In order to do this, we 

need to generate a series of SAW configurations for certain values of f3 and N (the 

length of the SAW), compute the average end-to-end distance (rN ), and then fit a line 

to the plot of lnrN vs lnN for each value of /3. Using the graph of the slopes of these 

lines plotted as a function of /3, we want to locate the known critical temperature 

on the two-dimensional hexagonal lattice and compute the exponent v for the three 

states of the SAW (see Section 4.3 for details). 

Generating equal probability SAW's is easy in principle; however, doing this ef

ficiently is not at all a simple task: if you procede, for example, by starting at a 

point and just randomly picking the direction to move in, going to the next point, 

and continuing this, the chances of generating an SAW of any appreciable length is 

extremely small. 

To be more exact, if we are on a lattice with coordination number l, then the 

number of random walks zfjw of length N is zN. If we use a (slightly) smarter 

algorithm that does not allow immediate reversals, then the number of non-reversal 

random walks z~RRW (the notation, as well as most of this discussion, is .taken from 

Binder and Heermann [7]) still grows exponentially with N as 

(5.1) 
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What about the number of SAW's ZfvAW? In this case, the dependence upon N 

becomes more complicated, and only for large N (i.e. when N -+ oo) can we find a 

simple form for this dependence, which is given in Equation 2.2 and the discussion 

preceding it. Using this equation and Equation 5.1 we can find the ratio of zfvAW 

to z~RRW, and thus calculate the efficiency of the simple algorithm for dimensions 

d< 4: 

ZfvAW T l-1 
z~RRW X ( 1 )N ffY-l = exp( -Nln -7- + (! -1) InN) (5.2) 

So for large N, the probability of producing an SAW decreases exponentially with 

N; this is called the attrition problem. Thus, the simple algorithm is not extremely 

useful when trying to generate long walks. [We should note here that the meaning of 

long depends upon the lattice and the dimension: on the square lattice, for example, 

long would be a few hundred or less, as our calculation above shows.] Simple sampling 

can however be used to (efficiently) generate shorter walks, as we will see below in 

the discussion of Madras-Sokal initialization. 

More efficient algorithms to generate equal probability SAW's have been devel-

oped, such as the slithering snake algorithm, which consists of removing an edge at 

one end of the walk and adding one to the other end; an ergodic variant of this also 

exists for generating SAW's of varying length. See Redner and Reynolds [61], Aragao 

de Carvalho, et al. [3], Wall and Mandel [68] and Beretti and Sokal [5] and the refer-

ences cited in these articles. Among such algorithms, one of the most efficient - and 

the one we have used in our calculations- is due to Madras and Sokal [43] and goes 
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as follows: 

Start with an initial configuration A0 (i.e. an SAW of length N); the question 

of how to actually find such an A0 will be addressed below after we have described 

the transformation and acceptance parts of the algorithm; suppose for now we have 

somehow found this A0 • 

The next step is to select a random point along the SAW A0 and apply a lattice 

transformation to the shorter part of it. A lattice transformation is an element of the 

symmetry group of the lattice, which consists of rotations, reflections, or combinations 

of the two. For example, on an n-dimensional square lattice, there are 2nn! such 

transformations, since every transformation consists of a permutation of an nX n 

matrix with each diagonal element being ±1 and every non-diagonal element equal 

to 0. On a two-dimensional hexagonal lattice, there are six such transformations: 

rotations of 0, 120 and 240 degrees about the chosen point, and flips about each of 

the three lines meeting at the chosen point. 

To be sure, the chances of generating a new SAW using the Madras-Sokal algo

rithm also goes to zero as N approaches infinity, but rate at which this decreases is 

much smaller than for the simple alternative mentioned above: for two-dimensional 

square lattices, Madras and Sokal [43] estimate that this rate is ::::::: N-0·19. An

other advantage of this algorithm is that each transformation changes the SAW fairly 

radically: we can expect that after a few successful transformations, we will have 

generated a new, effectively independent configuration. 
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After applying the lattice transformation, we have to check to see if the new 

configuration is self-avoiding or not. We could simply check each point against, say, 

all of the points to the left (or right) of it, but for an SAW of length N this would 

involve O(N2
) operations. A quicker way would be to create a bit-field with (2N + l)d 

elements (where d is the dimension of the lattice) and map each point of the walk 

into this bit-field: if two points are mapped to the same bit, then we know there 

is a collision, so the new configuration has to be rejected. The amount of work for 

this strategy is O(N), but it requires an inordinate amount of storage space for the 

bit-field: an N = 500 walk with d = 3 would need more than 125 MB just for the 

bit-field. 

So we want to find a strategy in between the two extremes above: try to reduce 

the size of the data structure needed for checking for self-intersection, but at the 

same time stay as close to O(N) amount of work as possible. Instead of a one-to-one 

mapping of the (2N + 1)d possible coordinates of our walk into the bit-field, we choose 

a function h (called a hash function) that maps these (2N + 1 )d points {Xi} into some 

finite interval of Z. 

We proceed in the following manner: We start with the first point in the walk xo 

and store a 0 in the element h(x0 ) of an array (this array is called the hash table). 

Then we go to x1 and store 1 in the h(x1 ) element of the hash table; then we go 

to x 2 , ••• Since the size of the hash table will be smaller than (2N + 1)d, h will not 

be one-to-one. What should we do when there is a collision between two points Xi 
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and Xj, i < j (i.e. when h(xi) = h(x;))? If Xi = Xj, then we should reject the new 

configuration since it is not self-avoiding. If Xi =f:. xi, we use an auxiliary array and 

store a j in the i element of this array. Then we continue with the next point Xj+l· 

What happens if Xi =f:. xi, but the i element of the auxiliary array is already has a 

k in it? Then we compare x; and Xki if they are equal, stop since the configuration 

is not self-avoiding; otherwise, store a j in the k element of the auxiliary array, and 

continue with Xj+l· If the k element is occupied by l, compare x; and x1 as above and 

repeat this procedure as many times as necessary until finding an empty element in 

the auxiliary array. This auxiliary array will contain multiple "linked" lists of indices, 

each list being (part of) an equivalence class of zd under the mapping h : zd ~ z. 

One of these lists would look like 

a: ... z J k l 

l / l / l / ! (5.3) 

b: ... J k l 

with a being the index of the array element, b the value of ath array element, and 

h(xp) = h(xq) for p, q E {i,j, k, l}. If there is an Xm in the SAW such that h(xm) = 

h(xz) then an m will be put in the lth element. 

The first question is how to choose h. We know that our SAW is connected, so 

since the points {xi} that we will be checking will be fairly close together, the hash 

function should separate these points: that is, if l ~ N, then ih(xi)- h(xi+zl ~ O(N). 

Otherwise, we would have too many collisions and thus spend too much time checking 
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and inserting indices into the auxiliary list: this would ruin the efficiency of the 

algorithm. Let Xi= (x}, ... , xf). The function used by Madras and Sokal (and by us) 

was: 

(5.4) 

where a17 •.• ,ad, Mare relatively prime, and 

(5.5) 

If the function h and the prime M are chosen correctly, what can be said about 

the efficiency of the algorithm? In the worst case, we would have to do N work for 

an insertion, since we could have collisions with every other element. However, if N 

is not too close to M, we can avoid having a lot of collisions, and the work involved 

for each point is 0(1) (see Knuth [37]), so the total work is O(N). 

There are a few modifications to the above algorith~ which decrease the constant 

in front of theN in O(N): if i is the location of the randomly selected pivot point for 

the transformation, apply the transformation to x0 , ..• , Xi-l if i < ~;otherwise, apply 

the transformation to Xi+b ... , XN. Also, when checking for collisions, proceed in the 

order Xi±b Xi±2 , .•. since it is more likely for the points near Xi to collide. 

The question now is how to choose M, since this will be the size of our hash table 

(the auxiliary array is the same size as the walk itself). Madras and Sokal found 

that M can be as low as 2N without compromising the efficiency of the hash table 

algorithm; we chose M to be around 15N for our calculations; the reason is that 

we use the hash table in the energy calculation below, and so we have to take into 
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account not only the points in the walks but also all of the nearest neighbors of these 

points. 

We now return to the questions posed above about the initialization process: 

namely, how can we find an initial _configuration A0? Why not simply use a straight 

line on the square or ·cubic lattices, or something similar on the hexagonal lattice? 

The reason why we cannot do this is given by Madras and Sokal [43]: "When an

alyzing the data produced by a dynamic Monte Carlo method, one assumes that 

the observations come from an (approximately) stationary stochastic process whose 

single-time probability distribution is the desired equilibrium distribution." In other 

words, if we simply set the initial state to be a straight line, even if we know that 

our algorithm will eventually produce a Markov chain for which the frequency of oc

curence of a given SAW is close to this SAW's Gibbs probability, averages computed 

using a finite portion A0 , •.. , AM of this Markov chain may be extremely inaccurate, 

since the beginning part of the finite chain may contain a large number of walks whose 

Gibbs probabilities are very low. For example, at low temperatures configurations 

with a small number of nearest-neighbor interactions have relatively low probabili

ties: however, if we start with a straight line, there will be a number of SAW's with 

relatively few nearest-neighbor interactions at the begin~ing of A0 , ••• , AM. 

There are in fact a number of methods for generating an appropriate initial con

figuration: the problem is that all of these methods are rather time-consuming. The 

three considered by Madras and Sokal are simple sampling, dimerization and ther-
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malization: simple sampling and its drawbacks have already been discussed above; 

we will give a brief summary of the other two below, see Madras and Sokal [43] for 

more details. 

Dimedzation is a recursive algorithm: if we want an N -step SAW, we generate 

two N/2-step ones, piece them together, and check to see if the resulting walk is 

self-avoiding. If so, we are done; if not, generate two more N /2-step SAW's, put 

them together, and check again for self-intersections. This continues until we have 

sucessfully pieced two walks together. How do we generate an N/2-step SAW? By 

piecing together two N / 4-step SAW's. We continue by considering smaller and smaller 

SAW's until we have reached a level m such that we can use simple sampling to 

(efficiently) generate SAW's of length N /2m. The time required for dimerization is 

O(Nc1 log2 N+c2 ), and it does in fact generate SAW's from the equilibrium distribution. 

The third method, thermalization, consists of of starting at some arbitrary initial 

state (for example, a straight rod on a square or cubic lattice), applying the transfor

mation, and discarding the first T observations so that the distribution of Ar is close 

to the equilibrium distribution. Unfortunately, the time required for. this is at least 

O(N2
), compared with O(N) for the transformation and self-intersection checking. 

At first glance it might seem that Madras-Sokal thus does not provide any sig

nificant computational advantages over certain other schemes because of the time 

required for initialization. However, it turns out that the constants in the O(N2
) and 

0( Nc1 log2 N+c2 ) are small enough that initialization only becomes a problem for fairly 
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large N: for example, on a square two-dimensional lattice, thermalization is effective 

uptoN~ 10000, and dimerization works up to around n ~ 3000. 

This is the Madras-Sokal algorithm for generating equal probability SAW's. As

suming that the algorithm satisfies detailed balance and ergodicity ·(see below for a 

proof), the resulting Markov chain of SAW's A0 , A1 , A2 , ••• will then be a stationary 

stochastic process, and we can use this chain to compute, say, the average end-to-end 

distance of non-interacting SAW's of a given length N. 

However, the interacting SAW's we are studing do not all have equal probability; 

instead, the probability of a SAW depends on its energy, which in turn depends on 

the temperature and the number of interactions between the points in the given SAW. 

We want to compute the energy of an interacting SAW and determine whether the 

transition should be accepted or not based upon the energy change between the old 

configuration and the new one. What modifications must be made to the Madras

Sokal algorithm in order to accomplish this? 

For a given lattice, the energy of an SAW can depend on (some subset of the) num

ber of nearest neighbor edge interactions N NN, the number of next-nearest neighbor 

edge interactions NNNN, and so on. For hexagonal lattices, one possibility is accord

ing to the definition given by, among others, Coniglio, et al. ([14]), which gives the 

statistics of a. walk at the temperature T = Te': an interaction consists of the SAW 

traversing one or more sides of a hexagon, leaving, and then returning. It could also 

happen that the SAW then leaves and returns yet again, in which case there are 
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two interactions. Examples of such NNN and NNNN edge interactions are given in 

Figure 5.1. 

(A) (B) 

(C) (D) (E) 

Figure 5.1: NNN and NNNN edges on the square lattice, and (A)-(E) four examples 
of the edge interaction on the hexagonal lattice: (A)-(D) each have one interaction, 
(E) has two according to Coniglio, et al. · 

For the hexagonal lattice, if we follow the definition of edge interactions given by 

Coniglio, et al. [14], we would also have to check to see if the two edges are in the 

same hexagon. However, the algorithm would be more complicated: we would have to 

be more careful about counting the interactions twice - specifically, we would have to 

worry about the interaction illustrated in part (E) of Figure 5.1 which involves three 

separate parts of the walk. If the three interacting edges there are labelled i,j, k 

and if we have already have counted the { i, k} and the {j, k} interactions, we do not 

count the {i,j} interaction, since the total weight of the interactions in this hexagon 
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should only be 2, not 3. The reader may say at this point: why not define a simpler 

NNN and NNNN edge interaction and argue that universality implies we will get the 

same statistics and behavior as for the more complicated one? This question is all 

the more valid because the energy calculation takes up most (more than 80 percent 

on average) of the computing time for each iteration. 

Since the code for the interaction defined by Coniglio, et al. is somewhat more 

complex than it might be for some simpler definitions, and since the actual time 

penalty is not negligible (compared with, say, a definition which does not need to 

worry about NNNN interactions), we decided to use simply the NNN interactions 

when calculating energies. However, there is a caveat: our interaction gives the 

statistics of a walk at the temperature T = Te, and it is not certain that the e 

and 8' points belong to the same universality class (see Poole, et al. [60] for a more 

thorough discussion of this point). 

The choice of using only NNN interactions also has an effect on the initialization 

part of the algorithm. Although we did not mention it above, another possibility for 

initialization near T = Te' could be the SKW algorithm: this generates walks from 

the ensemble at f3 = In 2, but this is useful only if we include the appropriate subset of 

NNNN interactions in our subsequent calculations using the Madras-Sokal algorithm. 

Since we consider only the 0 point, the corresponding algorithm would be the KGW 

(see Section 2.4). However, the SKW algorithm is much more efficient than KGW 

at producing SAW's of any significant length. In fact, since KGW suffers from the 
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attrition problem illustrated by Equation 5.2, it is impractical except for producing 

extremely short walks. So, we are left with the three possibilities mentioned above; 

taking into account the length of our walks and the arguments for and against the 

three methods, for our calculations we have chosen to use thermalization. 

In order to compute the number of nearest-neighbor interactions, you could go 

through the whole walk and check each point against all of the others to find the 

nearest neighbor interactions, but this would again involve O(N2 ) work. A more 

efficient way is to use the hash function and the hash table which we have already 

used above to check for self-avoidance. If we have reached this point, we know the walk 

is self-avoiding, and the SAW has already been mapped into the hash table. We now 

find the NNN-neighbors of each point Xi (call these {xik}), and start computing their 

hash codes {h(xik)}, starting with x0k. On the square lattice, the nearest neighbors of 

the point (x}' x;) are the points (x} ± 1, x[) and (x}' xr ± 1); on the cubic, nearest for 

(x}, x[' xr) are (x} ± 1, xr' xr), (x}, x[ ± 1, xf) and (xi' x[, xr ± 1); on the hexagonal, 

nearest means the other three points which are one step away from Xi, namely (x} + 

1, xr ± 1) and (x}- 2, xn, or (x}- 1, xr ± 1) and (x} + 2, xn. 

If, when computing the hash codes of the neighboring points, we have a collision 

between Xik and x j, and if i < j, we check to see if Xik = xi; if so, we increment 

the interaction counter NNN (if j < i we do not count the interaction so as to avoid 

counting each interaction twice). The work here on any of the three lattices is also 

O(N), although the constant depends on the coordination number of the lattice and 
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the exact definition of the interaction (whether it includes just nearest neighbors, or 

also next nearest neighbors, or some other combination). 

Now that we have computed the energy of the new SAW, we need to find a criterion 

for accepting or rejecting it. Remember that we are sampling the phase space in order 

to compute a thermal average, and so, given enough iterations, we want to eventually 

reach states a with a large Gibbs probability exp( -(3E(a)). We used the Metropolis 

algorithm (see Metropolis, et al. [48]) to decide whether to accept or reject the new 

SAW: if .D..E is the energy change going from the old walk to the new, then the 

probability of accepting the new walk is computed as follows: 

a) if .D..E < 0, accept the transition 

b) if not, pick a random number r between 0 and 1. If e-f3t1E > r, accept the new 

SAW; otherwise, reject it. 

The Madras-Sokal algorithm is ergodic (for a proof see Madras and Sokal [43]), 

and the Metropolis algorithm satisfies the detailed balance condition, since 

P(a-+ a') = min(!, e-!3(Eai-Ea)) = e-{3(Ea,-Ea) = P(a'). 
P(a'-+ a) min(!, e-!3(Ea-Ea•)) P(a) 

(5.6) 

Thus, both of the criteria mentioned in Section 4.2 are fulfilled, and thus we have 

reason to believe that our thermal averages computed with the Monte Carlo data will 

approximate well the actual averages (with the caveats discussed in Section 4.3). 
\ 
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5.3 Histograms and Sampling 

As stated at the beginning of the previous section, our computations involve ·gen-

erating a series of SAW configurations for various /3 and N and using this data to 

compute rN. These calculations can be extremely expensive, especially for large N; 

one way to reduce this cost is to reuse the data from a given /30 to estimate rN 

for other nearby values of /3. We will outline this procedure (called the histogram 

method) below; for a more thorough discussion, see Akao [1], Kuchta and Etters [38] 

and Ferrenberg and Swendsen [23]. 

The first step in the histogram method is to generate a series of SAW's for the 

given /3o and N and store a histogram of the energy and end-to-end distance Ree in 

two vectors nand r. During this computation, for each SAW bin our Markov chain 

we compute the number of nearest-neighbor interactions NNN(b) (which determines 

the energy of this walk) as well as Ree(b). Then we increment nNNN(b) by one and 

add Ree(b) to rNNN(b)· At the end of this computation, we can calculate rN as 

(5.7) 

where l is the number of elements in the vectors n and r and m = 2:::~=1 nk is the 

total number of walks in our Markov chain. 

Now let us look at the actual phase space. Let L be the maximum number of 

nearest-neighbor interactions that our N-step SAW's can have, and let Nk be the 

number of walks with k nearest-neighbor interactions. The partition function Z(/3o) 
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can be written as 
L 

Z(f3o) = L exp( -kf3o)Nk (5.8) 
k=l 

We can also define a probability measure Pk(/30 ) which tells us the relative weight 

of the walks with k nearest-neighbor interactions 

1 
Pk(f3o) = Z(f3o) exp( -kf3o)Nk (5.9) 

In order to be able to use our Markov chain to calculate thermal averages, we 

want 

(5.10) 

We will assume this is true for the rest of this calculation. If the Monte Carlo data for 

the original temperature /30 are not good (i.e. the original histogram is not smooth), 

then we cannot expect to be able to use these data for calculating averages at another 

temperature j3. 

Using the approximation in Equation 5.10 for Pk(/30 ), we can rewrite Equation 5. 7 

as 

(5.11) 

So far, storing the histogram data has not saved any cpu time. However, if we want to 

calculate rN(/3) for some other /3, instead of calculating an entirely new Markov chain, 

we can just "shift" the data we have for f3 by exp(/3- (30 ) and use this to estimate 

rN(f3). In other words, we approximate rN(f3) by replacing Pk(/30 ) in Equation 5.11 
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with 

1 . 
Pk(f3) = Z(/3) exp( -kf3)Nk (5.12) 

From Equation 5.9, we know that 

Nk = Pk(f3o)Z(f3o) exp(kf3o) (5.13) 

We can also use Equation 5.13 to rewrite Z(f3) in terms of Z(f30 ) as follows 

L 

Z(f3) = L exp( -k(/3- f3o))Pk(f3o)Z(f3o) (5.14) 
k=1 

If we substitute Equation 5.13 and Equation 5.14 back in to Equation 5.12, Z(/30 ) 

cancels out, and we get 

Pk(f3) = ;xp( -k(f3- f3o))Pk(f3o) 
Lj=I exp( -j(f3- f3o))P;(f3o) 

The average rN(f3) can then be calculated using 

(5.15) 

(5.16) 

The key point here is that although we have to recalculate the probabilities Pk(f3), 

we can reuse the arrays r and n from the calculation for {30 • This can result in 

substantial savings in compute time. 

There are problems with this approach. For example, the Markov chain that we 

generated for {30 presumably will allow us to calculate averages over the phase space 

for this particular value {30 , but how do we konw this chain will give a good sampling 

of the phase space when f3 -:f. {30? Although we cannot offer any rigorous proofs, 
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what we can hope is that if f3 is close to /30 , then the averages calculated using Pk(/3) 

will approximate closely the true averages. How can we judge whether f3 and /30 

are close enough? One way is to look at the corresponding histogram plots: if the 

shifted histogram for beta is very unsmooth or if the peak of the shifted histogram lies 

very near the tail end of the original one, then we might suspect that the estimated 

averages do not approximate the true averages very well for f3. 

Figure 5.2 shows an example of the original histogram as well as several ones which 

have been shifted according the procedure described above. It is clear that the last 

few histograms are not at all acceptable, whereas the first shifted one is fairly smooth 

and its peak lies near the peak of the original histogram. What happens with the last 

few histograms is the phenomena described by Poole, et al. [60]. As the temperature 

decreases (i.e. as f3 increases), the walks with more nearest-neighbor contacts become 

more probable, and so make a larger contribution to the statistics. At f3 = 0.3, those 

walks with a large number of nearest-neighbor contacts are at the far right of the 

histogram; they do not make a large contribution to the statistics, and they are not 

sampled effectively by our Monte Carlo algorithm, but this does not greatly affect 

the statistics at f3 = 0.3. However, as f3 increases, in the histogram method these 

walks become increasingly important for calculating thermal averages; a smaller part 

of our original sample data becomes more important in the statistics, and so what was 

originally a small statistical error at f3 = 0.3 becomes disastrous as f3 grows. Poole, et 

al. call this an effective reduction in the sample size; this reduction limits the amount 
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0 10 20 30 40 50 • 60 70 
energy (NN) 

Figure 5.2: The original histogram is from a Monte Carlo run of 2.5 x 107 iterations on 
a two-dimensional hexagonal lattice with f3 = 0.3 using· the pivoting and Metropolis 
algorithm described in Section 5.2. The other three curves were generated using the 
shifted probabilities in Equation 5.15. 

5.4 Entropy Estimation 

The motivation behind the histogram method is to use the data from one run at 

a particular j30 to help us avoid doing other runs for nearby values of j3. The reason 

we introduce entropy estimation is, in a certain sense, the opposite: we want know 

how we should combine the data from a series of runs to calculate an average of 
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some quantity over all these runs. Why we actually need to do this is explained in 

Section 6;2; here we just describe the entropy estimation itself. 

Suppose we have a Markov chain of walks x0 , x1 , ... , Xn with each walk consisting 

of N steps, and suppose we want to calculate the entropy of this chain, where the 

entropy S is defined as 
n 

S = -2:: P(xi) log P(xi) (5.17) 
i=O 

with P(xi) the probability of walk Xi· Except for very small N, we do not know the 

partition function and so we cannot calculate the probabilities exactly. Instead, what 

we do is consider a small portion of each walk, say steps 1 through m where m ~ N. 

We then find all of the self-avoiding walks y0 , Yb ... , Yl of length m, and estimate 

the probability of each walk by the frequency with which it occurs in our Markov 

chain; call this P. This will give us an estimate of the entropy of this portion of the 

walks; we then scale the estimate to approximate S for the chain of N-step walks. 

This gives 

N~- -S = -- L..J P(yi) log P(yi) 
m i=O 

(5.18) 

We can see why this works if we look at the definition of the entropy in Equa-

tion 5.4; suppose we break up a walk of length N into 2 segments of length m = ~, 

and suppose each of these segments has entropy 

1 

So= -2:: P(yi) log F(yi) (5.19) 
i=O 

For the walks of length N, we will have 12 configurations, each of which will have 
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a probability equal to the product of the probabilites of each segment of length m. 

Remembering that L.:~=O F(yi) = 1, we can then calculate the entropy of the N-step 

walks: 

1 I 

S - - L L F(yi)F(yi) log F(yi)P(Yi) 
i=O j=O 

l I I I 

- - L F(yi) L F(yi) log P(yi)- L P(yi) L P(yi) log F(yi) 
i=O j=O i=O i=O 

l I 

- - I:f>(yj)logf>(yj)- L:P(yi)logP(yi) 
j=O i=O 

- -2So (5.20) 

(5.21) 

A similar calculation works for the general case. 

Now, suppose we have a series of M runs, and denote by ri the average for the 

ith run of some quantity r. We can use the entropy e$timates to put these averages 

together as follows. Using the free energy F = E - T S, where E is the energy, T the 

temperature, and S the entropy, we can calculate the exact average of r as 

l:a r( a) exp( -f) 
<r >= F l:a exp(-T) 

(5.22) 

where the sum is over all configurations a in the appropriate phase space. If we know 

the average energy Ei and average entropy Si for each run i, we can estimate< r > 

as 

"'M ( F;) L....i-I ri exp -T 
< r >~ M F.· 

l:i=l exp( -¥) 
(5.23) 
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In addition to self-avoiding walks on the hexagonal lattice, this method has also 

been applied in Monte Carlo calculations of hard sphere lattice gases (see Meirovitch 

(47]) and vortex filaments (see Chorin [10]), where it has given good results. We 

have not yet said anything about how good our estimate for < r > will be, and 

Equation 5.23 is not the only possibility for combining the data from the various runs. 

For example, we could use the histogram data described in Section 5.3: we simply 

put together all of the histograms from the separate runs and then use Equation 5. 7, 

with the vectors rand n containing the end-to-end distance and number of walks for 

all of the runs. Chapter 6 contains a more thorough discussion of this point and some 

of numerical results for various weighting methods. 
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Chapter 6 

Numerical Results 

6.1 Introduction 

In this chapter we will discuss in detail some of the difficulties we had with our 

implementation of the numerical methods in Chapter 5 and how we attempted to 

resolve these problems. After that we will present and analyze the results of our 

calculations and attempt to draw some useful conclusions about the simulation of 

phase transitions using our Monte Carlo algorithm. 

We first attempted to do what we thought would be a straightforward Monte 

Carlo calculation of the critical exponent v in Equation 2.5 as a fuction of the in

verse temperature (3 on a two-dimensional hexagonal lattice using the pivoting al

gorithm with Metropolis rejection described in Section 5.2. The goal was to locate 

the phase transition which takes place at the e point (3 ~ 0.99 (see Coniglio, et al. 
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[14] for more details). For (3 = 0 all walks have the same probability and there is no 

nearest-neighbor interaction; the pivoting algorithm at this value of (3 is very efficient 

compared with other methods, as is shown in Madras and Sokal [43]. However, we 

encountered some problems when attempting to extend the algorithm to (3 =J:. 0 which 

we will attempt to explain in the following sections. 

6.2 Acceptance fraction and trapping 

For a given iteration of our algorithm, there are three possible outcomes: 

• the new walk is rejected because it is not self-avoiding; 

• the new walk is rejected because its energy is significantly 

larger than the energy of the current walk; 

• the new walk is accepted. 

For a given run, let M be the total number of iterations of our algorithm, and let 
( 

ri, re, and ra be the number of walks rejected because of self-interection, the number 

rejected because of energy considerations, and the number accepted, respectively. We 

then have M = ra + re + ri. 

In Figure 6.1, Figure 6.2 and Figure 6.3 we show as a function of N and (3 the 

fraction of transformations rejected because of self-intersections, the fraction rejected 

because of energy considerations, and the fraction accepted, respectively. As N be-

comes larger, it can be seen th<~.t the number of accepted walks becomes smaller: this 
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Figure 6.1: Fraction of attempted transformations rejected because of self-intersection 
vs. length of the walk N for various values of /3. For each value of Nand /3, we first 
initialized the walks by performing the pivoting algorithm with T = oo until 105 

transformations were accepted; we then did then same with T = ~- After that, we 
performed at least 5 x 107 steps of the pivoting algorithm with Metropolis rejection 
and· recorded the number rejections due to self-intersection. We repeated this whole 
procedure for five separate runs and averaged the results. 
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is to be expected whether f3 is zero or not. However, the number accepted becomes 

extremely small as f3 approaches the critical value f3crit :::::::: 0.99. At first glance one 

might think this would have something to do with an increasing number of Metropolis 

rejections (i.e rejections because of unfavorable changes in the energy). In Figure 6.2, 

one can see that the fraction of transformations rejected because of energy consider-

ations is indeed an increasing function of f3, although it remains relatively small even 

near f3crit· 
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Figure 6.2: Fraction of attempted transformations rejected because of energy vs. 
length of the walk N for various values of {3. The statistics were calculated from 
the same runs in the same way as in Figure 6.1. Note that the rejection percentage 
actually decreases with increasing N. See the text for a more detailed discussion of 
this. 
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Note that, as illustrated in Figure 6.2, the fraction of Metropolis rejections is 

actually a decreasing function of N, the number of steps of the walk. The reason for 

this is that as· N increases an increasing percentage of transformations are rejected 

because of self-intersection, so the algorithm in most cases does not even get a chance 

to decide if the energy change is favorable or not: self-intersection of the proposed 

walk causes it to be rejected before the Metropolis energy calculation. 

0.45 

0.4 

0.35 

0.3 

0 0.25 
0 
ctl 
0 

~ 0.2 

0.15 

0.1 

0.05 

0 
0 

i: 

\ 
' \ 

' + ... , ...... , 

beta::O -+
beta::0.3 -+--· 
beta::0.6 · s · • 
beta=0.9 ··!>(--·· 

beta=1 _... __ 
beta=1.1 -liE-·

beta=1.2 -~- ·· 

til.... '+ ',,''+--

...... ··.,_ --------------------------+~_-__ -_-__ -__ -__ -_-__ -__ -__ -__ -_-__ -_________ j 
-------------------------~-

4 .... \· .. 
\ \ 
\ \ 

liE \ X. 
\. \, ··· ..... 

··13 ••• __ _ 

··s ........... . ........... 
·····-EJ-------·-····--~ ....... . 

~' \ '•, 

. :~s~-~;~~~?-~~;:;~~;:;_;;~~;:;;;;~~~~~~;~;~: 
100 200 300 400 500 

N 
600 700 800 900 1000 

Figure 6.3: Fraction of attempted transformations accepted vs. length of the walk N 
for various values of f3. Again, the statistics were calculated from the same runs in 
the same way as in Figure 6.1 and Figure 6.2. 

In fact, this suggests that what we should be looking at is not the number of energy 

rejections re divided by the total number of iterations M, but instead re divided by 
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the number of iterations of the algorithm which generated self-avoiding walks: i.e. 

Mr • . = ~+ . This ratio is shown in Figure 6.4; here the effect of increasing f3 can -r, re ra 

clearly been seen in the increasing percentage of rejections due to the Metropolis 

step. If we go back to Figure 6.1, we can see that there is also a somewhat less 

dramatic increase in the percentage of rejections due to self-intersection; this can 
\ 

also be attributed indirectly to the Metropolis step, since as f3 increases, the walks 

become more contracted, so the probability that a randomly chosen transformation 

at a randomly chosen step of the walk produces a self-intersecting walk becomes 

correspondingly greater. 

If the rejection percentage increases with Nand {3, why not just do more iterations 

of the algorithm? Here we ran into another problem in our calculations which can 

be termed (computational) npn-ergodicity. The non-ergodic behavior can best be 

illustrated by an example from our data, which is shown in Figure 6.5. In this case, 

for f3 = 0.9 and N = 1500 (a medium-sized walk not too far away from f3crit ~ 0.99 

we used the same initial configuration and computed the average end-to-end distance 

Ree as a function of the length of our Markov chain for ten different runs. For each 

individual run, we had initially attempted to do a running estimate of the variance 

of Ree and use this as a stopping criterion: however, we found that in some cases 

the individual runs were converging to (significantly) different values of Ree and thus 

gave different values for the critical exponent v. This behavior is clearly illustrated 

in Figure 6.5. 
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Figure 6.4: Number of energy rejections/(total iterations-rejections because of self
intersection) vs. length of the walk N for various values of (3. Again, the statistics 
were calculated from the same runs in the same way as in Figure 6.1 and Figure 6.2. 
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Figure 6.5: Average end-to-end distance vs. number of iterations for (3 = 0.9 and 
N = 1500. In this case, iterations means the number of times we were able to perform 
a pivoting transformation without self- intersection; the actual number of accepted 
walks (i.e. after the Metropolis rejection step) was between 1.1 x 106 and 2.5 x 106 • 

See the text for a further discussion of this point. All runs started with the same 
initial configuration; we first set (3 = 0.0 and did 400000 iterations (for (3 = 0.0 this 
means 400000 walks had been accepted), then we set (3 = 0.9 and did 400000 more 
iterations before begining to calculate the end-to-end distance. 
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Although we have no direct proof (one reason is that the size of the phase space 

for N = 1500 is enormous), what we suspect is that the pivoting and Metropolis 

algorithm becomes computationally non-ergodic for relatively small values of Nand 

values of (3 near f3criti phase space breaks up into valleys separated by energy peaks 

which in some cases require an inordinate amount of time to surmount. Although 

we have a number of walks from each valley, attempting to transform walks from one 

valley into walks in another in order to illustrate this energy barrier is both difficult 

and not particularly enlightening. Difficult because we cannot let the algorithm itself 

do it: since the sample space is so big, the time required to transform one randomly 

selected walk into another is too long; also, developing an algorithm to directly trans

form one walk into another while maintaing the constraint of self-avoidance is not 

trivial. Even if we could do the direct transform, and even if the resulting path from 

one walk to another had a big energy barrier, it would not be a very convincing proof 

of the existence of the above-mentioned valleys since we wouldn't know if there were 

any alternative paths between the two walks with lower barriers. 

Extrapolation of results for N small can be of some help, but there are a few 

caveats. Since we can only do the enumeration up to around N = 30, it is not clear 

that conclusions drawn from these phase spaces for such small N will be applicable 

at much larger N. At these small N the number of nearest-neighbor interactions is 

so small that (3 needs to be extremely large in order to allow the formation of valleys 

and peaks in phase space. For example, we set (3 = 20 and then ran our algorithm for 
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small values of N (between 10 and 20); as the reader may have suspected, there was 

almost immediate convergence towards various walks which represented local minima 

in the phase space. In Figure 6.6 we show two such walks for N = 16. 

Figure 6.6: Two "trapped" configurations for N = 16. 

A close examination of the two walks in Figure 6.6 shows that any lattice trans

formation applied to a part of either of the walks will break some of the bonds (i.e. 

will decrease the number of nearest-neighbor interactions), and so will be rejected 

with probability 1 - e-f3. If f3 is large enough, we have from the computational point 

of view an effectively non-ergodic algorithm; in this case we can define non-ergodic 

to mean that the number of iterations of the algorithm (and thus the compute time) 

required to overcome the energy barriers is larger than some given number (say 1012
). 
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We suspect that as N increases, the f3 required for this to occur gradually approaches 

f3crit· 
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Figure 6.7:. Number of nearest-neighbor interactions for a sequence of walks with 
f3 = 0 and N = 1000. In this case, there is no Metropolis rejection and all walks have 
equal probability. 

One way of conveying at least heuristically the trapping that we suspect is occuring 

is to run the algorithm for f3 = 0 and produce a series of walks. Since every walk is 

equally probable, each of the walks in a given series tends to have a different number 

of nearest-neighbor interactions; this is illustrated in Figure 6. 7. We then set f3 = 1 

and calculate the probability that the algorithm would actually produce this sequence 

of walks; the result is shown in Figure 6.9. Again, we should stress that this is not 
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a proof, but it does give us some insight into what effect an increase in f3 has on our 

algorithm's sampling of phase space. 
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Figure 6.8: Transition probability vs. walk number for the same sequence of walks 
as in Figure 6. 7 but with f3 = 1.0. Transition probability means in this case the 
probability that the Metropolis rejection step would allow us to go from walk 0 to 
walk i through each of the intermediate walks 1, 2, ... , i- 1. 

6.3 Weighting the Runs 

The behavior illustrated in Figure 6.5 occurred for other values of N and other 

values of /3 near f3criti convergence towards significantly different values of the mean 

end-to-end distance is apparently not atypical, so doing one long run is not an effective 
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Figure 6.9: Log( transition probability) vs. walk number for the same sequence of 
walks as in Figure 6. 7 but with f3 = 1.0. Transition probability means in this case 
the probability that the Metropolis rejection step would allow us to go from walk 0 
to walk i through each of the intermediate walks 1, 2, ... , i- 1. 
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strategy. Given this, how can we compute the mean with any degree of accuracy? 

If the phase space breaks up into valleys separated by large energy barriers, then 

one approach might be to explore a number of different valleys and use the resulting 

thermal averages from each valley to calculate an overall thermal average. 

In other words, we want to do a number of different Monte Carlo runs and use 

the means from all of the runs R~e to get a final estimate Ree of the mean. However, 

we have not said how we should weight each individual mean when calculating Ree· 

There is no reason to suppose that the valleys contain the same number of walks or 

the same distribution of end-to-end distances, so it is not clear that equally weighting 

all of the ~e is justified. The problem now is how to decide on a method for weighting 

the runs. 

What is really needed here is a way to estimate how much of phase space IS 

explored by each of the runs; this will allow us to estimate the weights that we should 

give to the energy valley corresponding to each run. If we go back to Section 5.4, 

we see that the entropy method allows us to quantify how much of phase space is 

explored: we can use this algorithm to estimate the entropy of each run; the entropy 

estimate (along with the average energy) can then be used to get an approximate free 

energy Fi which we substitute in to Equation 5.23. 

We estimate the entropy for a given segment of the walk and for a given Monte 

Carlo run in the following manner: let m be the number of steps in the segment. For 

the first step, let bm-I be 0 if the step is horizontal, 1 if it is in the positive y direction, 
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and 2 otherwise. For the remaining m - 1 steps, let bm-i be 0 if the step is to the left 

and 1 if if it is to the right. We thus get a sequence { bi} which uniquely identifies each 

possible m-step segment. We then form the sum Sm = 2:~01 2ibi which also uniquely 

identifies each m-step segment; Sm is then stored for each of the walks in our Markov 

chain. At the end of the run we sort this list, find all of the numbers Sm which appear 

in the list, and count the number of times that each number appears. This gives us 

the frequency (i.e. the estimate of the probability) for each configuration, from which 

we can calculate the entropy estimate using Equation 5.18. 

We attempted to do this for a number of vaiues of f3 and N, but the results, 

some of which are illustrated in Figure 6.10, were disappointing at best. Initially we 

tried fairly small portions of the walk (2 :5 m :5 5), but we found that the resulting 

entropies were extremely close to the "equal probability" values for all of the runs: 

for example, there are 3 * 2 * 2 = 12 walks consisting of three steps, and our entropy 

values for the three-step segments of the walk were extremely close to In 12, which 

is the entropy of the ensemble of equal probability three-step walks. So, we next 

tried to increase m to between 30 and 50 and then used different segments along the 

walk to see if the entropy estimation would be the same from segment to segment (a 

consistency check for the entropy calculation). 

However, even for f3 = 0 we found that the entropy in the center of the walk was 

significantly smaller than at the ends. The reason for this is related to one of the 

improvements in efficiency that we used when implementing the pivoting algorithm: 
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Figure 6.10: Entropy calculation results for various values of f3 and m with N = 1000; 
we did 6 x 105 inital iterations, and then calculated the entropy for 2 x 106 iterations 
of the algorithm. In these cases, the walk segments were 1 , ... ,m and N- m + 1 , ... ,N. 
Note that all of the estimates start out very close to the "equal probability" value 
ln 12 ~ 2.4849 of the entropy for m = 3. We decided to plot the difference of the two 
estimates instead of the estimates themselves since for some values of f3 the estimates 
are so close that the curves for the two segments overlap. 
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namely, when a given site is selected as the pivot point, we only pivot the smaller, 

part of the walk. Thus, the central part tends to remain in the same configuration 

for a longer period of time than the ends, so the entropy calculation using the central 

segment does not accurately reflect how much of phase space is explored by the entire 

walk and leads to an underestimation of the entropy of the walk. 

Because of this, we decided to just use segments of length m at the two ends to 

estimate the entropy. For values of f3 near 0, the estimates from the different ends 

were very close; however, there was no need for entropy estimates for these f3 values 

since the there was no significant discrepancy between the averages calculated from 

various Monte Carlo runs. The values of f3 for which we needed the entropy estimate 

were precisely those values for which the entropies calculated at the different ends 

did not agree (see Figure 6.10). 

So, we resorted to the heuristic method of averaging the two entropies to come up 

with a single estimate; the motivation behind this is that we want the subsection of 

the walk that we use in estimating the entropy to accurately reflect the entire walk's 

wandering through phase space. A careful examination of Section 5.4 shows that the 

arguments there are valid both when we are using consecutive steps of the walk for 

our subsection and when the "subsection" consists non-adjacent steps of the walk. 

The only modification necessary is in our function mapping the "subsection" to an 

integer: if we take non-adjacent steps, in general we would need to do an expansion 

in base three (instead of base two) since non-adjacent steps could go in any of three 
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directions, whereas adjacent ones are constrained to two because of self-avoidance. 

Anyway, the point is that by putting the estimates from the two extremes of the walk 

together, we might hope to get a more global picture of the walk and so a better 

estimate of the entropy. 

After calculating the average entropy, we then tried to use these values to find an 

average over all of the separate Monte Carlo runs. Once again, the procedure was not 

effective, and the reas~m why can be seen if we look at Figure 6.11 and Figure 6.12 

which show, respectively, the free energy and entropy for a series of runs with f3 near 

f3crit· What we would expect is that the energy and entropy would be approximately 

equal for f3 ~ f3crit, since this is where the balancing out between the two takes place 

(see Section 4.3 for a further discussion of this point). From the graphs, it is clear 

that for some runs this is indeed (at least approximately) the case; for others, this is 

not true. If we look at Equation 5.23, what we might hope is that the free energy for 

these "bad" runs will be small enough that their contributions to the average will be 

negligible. However, even if this is true (and it is for this set of runs), the problem 

is that the same exponential factor that gets rid of these "bad" runs also gets rid of 

every other run except the one with the largest free energy. The reason for this is that 

even though the various good runs have free energies which are within a few percent 

of each other, the actual differences themselves can be of the order of 5- 10; when 

this difference is exponentiated, runs whose free energies are relatively close may have 

weights whose ratios can be between e5 and e10• The same phenomenon occurs if we 
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use only the entropies (instead of the free energies) to weight the walks, although 

the "chosen" run may be different for the two weightings. All of this is illustrated 

in Figure 6.13, where we show the end-to-end distances for the runs as well as the 

average end-to-end distance computed using the two different weightings. 
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Figure 6.13: End-to-end distance vs. run for f3 = 1, N = 2000. mean(F) is the 
mean calculated using Equation 5.23. mean( S) is the mean calculated assuming the 
average energies Ei of each run are roughly the same. 

We decided next to temporarily abandon the entropy method and to instead try to 

look for other ways to weight the averages from the various runs. The first alternative 

was simply lumping all of the histograms from the various runs together to try to get 

a more accurate average histogram. The resulting histograms for f3 near f3crit and for 
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various N are shown in Figure 6.14; as can be seen from the figure, the quality of the 

composite histograms is unacceptable for even moderate values of N, although for a 

given N, each of the component histograms may look quite smooth when viewed by 

itself. For example, the composite histogram for N = 2000 appears to be composed 

of at least four sub-histograms, each of which is fairly smooth; howeve~, since they 

are centered around different energies, when put together they do not form a smooth 

composite histogram. 
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Figure 6.14: Probability of walks vs. energy (as measured by number of nearest 
neighbor interactions) for f3 = 1 and N = 1000, 1500,2000. 

When using the composite histogram method to compute thermal averages, what 
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we are doing is weighting each of the runs according to the walks accepted after the 

self-avoidance check; what we are not doing is taking into account which runs give 

us more new walks. In other words, we are only considering the length of each of 

the separate Markov chains, and not the number of individual walks which each one 

contains; the reader should recall that a given Markov chain will contain a sequence 

of identical walks unless and until the Metropolis step accepts a new walk based 

on energy considerations. The problem here is that the length of a given Markov 

chain does not tell us how much this chain has explored phase space. So, instead of 

considering the length, why do not we consider the number of walks ra accepted after 

the Metropolis rejection step? The reader may be saying at this point: what happens 

if we just keep bouncing back between two (or three or a small number) of walks? 

For N > 100 the phase space itself is huge; one might suspect that the valleys 

in which each of the runs get trapped are also huge. For any reasonable number of 

iterations (say :$ 109 ), huge means that a walk trapped in a subspace only explores 

a minuscule portion of the subspace. To examine more closely the "hugeness" of 

the subspaces, and to see if we might be bouncing back and forth between a few 

walks, we did some test runs for N = 1000 and N = 2000 with f3 = 1; for each walk 

generated by the algorithm, we recorded the distance between steps ik and jk of the 

walk for k = 1 ... 9 and Jik- jkJ varying as kf. We then used these pairs to label 

the walks (we didn't have enough disk space to store all of the walks themselves): by 

examining this list, we found a lower bound for the number of different walks in our 
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chain. For all runs, the average of the ratio of this bound to the number of walks ra 

accepted by the algorithm is 0.95 (see Figure 6.15). In other words, there is very 

little revisiting of any point in phase space by the algorithm. This does not mean 

that a given walk does not appear more than one time in our Markov chain (this is 

not true): what it means is that although we might get stuck at a particular walk 

for a number of consecutive iterations of the algorithm, once the algorithm accepts 

another walk, usually we won't go back to the first walk later in the algorithm. 
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Figure 6.15: Number of walks accepted after self-avoidance check and Metropolis 
step vs. bound for number of individual walks in Markov chain for /3 = 1 and 
N = 1000, 2000. 

Thus, for a given run i, r~ is very close to the number of distinct walks generated 
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by our algorithm. One might suspect that the number of distinct walks would also 

be directly related to the entropy of a particular run. Since the entropy estimates 

themselves do not provide an accurate method of weighting the runs, we might try 

to somehow weight run i according to r~. In fact, there is a correlation between ra 

and the entropy that we computed above. This is illustrated in Figure 6.16, and this 

is why we temporarily abandoned the entropy method. Although the fact that we 

take exponentials of the entropies in order to calculate thermal averages makes these 

averages inaccurate, the magnitude of the entropies themselves gives us a clue as to 

which runs we might want to give less weight to and which ones we might want to 

give larger weights to: since the r~ reflect the entropies, instead of using the entropy, 

why not instead use the r~ (which are much easier to compute) to do the weighting? 

We illustrate the results of this weighting in the following figures. First, Fig

ure 6.17 and Figure 6.18 show the results of our calculations when we use no weight

ing at all. These are somewhat disappointing, especially given the large number of 

iterations that we did for each run. For N > 300, the curves give inaccurate values of 

v near f3crit, which is precisely where we need the most accuracy; however, even for 

smaller N things do not look good near f3crit· 

If we examine Figure 6.19 and Figure 6.20, we see that using the r~ gives good 

results up to much larger values of N. To be sure, it is clear from Figure 6.20 that 

even this weighting gives inaccurate values of v for N > 1000. What about using 

the histograms themselves instead of weighting the averages directly? Putting them 
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together according to the procedure described in Figure 6.19 is identical to putting 

together the averages; however, if we add the weighting described in Figure 6.21, the 

results of the two methods are not in general the same. If ree(i,j) are the end-to-end 

distances for runs i = 1, ... , M, with each run consisting of Mi walks, then averaging 

these averages using weights r.~ gives 

(6.1) 

However, if we weight the individual histograms and then put them together to form 

an average, we are actually computing 

(6.2) 

The result of this second method is given in Figure 6.22; as can be seen by comparing 

with Figure 6.21, for our data the two methods give almost identical results. 

6.4 Estimating f3crit and v 

Even though the curves for large N are not particularly useful, we can still use the 

curves for small N to try to estimate f3crit· To do this, however, we need more sample 

points near where the curves for different N seem to intersect. We could do many 

more runs with values of f3 near the intersection points of the curves in Figure 6.19, 

but this would be extremely expensive from a computational point of view. Instead, 

we decided to use the histogram method (see Section 5.3) to fill in the curves near 
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Figure 6.21: Same as Figure6.19, except that when we combined the Ree(i,N,/3) to 
get Ree(N, (3), we weighted each according to the number of walks r~ accepted after 
the Metropolis step. This corresponds to Equation 6.1. 
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the suspected value of f3crit· The results of this are shown in Figure 6.23. From this 

Figure, we can estimate f3crit to be between 1.01 and 1.02. Unfortunately, the lack of 

good data for larger N prevents us from accurately determining the dependance of 

the estimate of f3crit on N (see _Section 4.3). 
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Figure 6.23: Same as Figure 6.19, except that we used the histogram method to fill 
in the curves near (3 = 1. 

After having located the approximate value of f3crit, we wanted to get a more 

accurate estimate of the critical exponent iJ at this temperature. To do this, we 

used a procedure from Poole, et al. (60] which goes as follows: if (3 is fixed, we 

expect < R~e > to be proportional to N 211
• However, we do not know the constant of 
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proportionality, so we instead take this equation for two different values of N, say N 

and N + M, divide the two equations, take logs, and solve for 11. This gives us 

(6.3) 

We then compute this ratio for various values of N; this gives us several estimates 

of 11 for this particular {3. The results of this calculation are shown in Figure 6.24; 

Figure 6.25 shows the results of the same calculation using the radius of gyration R9 

in place of Ree· ForM fixed, the accuracy of this procedure decreases as N increases: 

this is because in Equation 6.3 we are taking the log of a number which is approaching 

1, so any errors in the averages become more and more significant with increasing N. 

In fact, Poole, et al. [60] use M = 1, but we were unable to get any useful results 

for this M, since for some N we actually had < Ree ( N + 1) > slightly less than 

< Ree ( N) >; the corresponding estimate of 11 was therefore less than zero. 

As can be seen from Figure 6.24 and Figure 6.25, for the estimated value of 

f3crit ~ 1.01, 11 ~ 0.59, which is in good agreement with the previous estimates of 

11 ~ 0.58 (see Poole, et al. [60] for a list of these and further references). 
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Figure 6.24: The exponent v from Equation 6.3 as a function of Jv. We set M = 10 
and tried this for a number of (3 in the vicinity of our estimate of f3crit. 
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Figure 6.25: The exponent 11 from Equation 6.3 as a function of Jv using the radius 
of gyration R9 in place of Ree· Again, M = 10. 
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Chapter 7 

Conclusions 

We originally set out in this thesi~ to put together two well-known Monte Carlo 

algorithms (pivoting and Metropolis rejection) in order to calculate thermal averages 

for a particular polymer system. The example we considered was at first glance fairly 

simple: self-avoiding walks on a hexagonal lattice in two dimensions with a nearest

neighbor interaction. Since the thermal averages had already been calculated for this 

system by other methods, our calculations served as a test for the applicability of the 

pivoting and Metropolis rejection algorithms to such a polymer system. 

Our example contained some of the characteristics of more complicated problems 

(e.g. polymer folding) that are currently of interest in physics. However, even for our 

seemingly simple system, we ran into a number of difficulties such as unacceptably 

small acceptance percentages and trapping in valleys centered around local energy 

mm1ma. 
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Both of these problems occurred for N > 800 (where N is the length of the SAW) 

and f3 near f3crit = 0.99. In fact, for any N we needed to concentrate our attention 

on values of f3 near the suspected value of f3crit· The histogram method was useful 

for this, since it allowed us to use the data from one run at a given {30 to estimate 

the thermal averages for other values of f3 near {30 ; this considerably reduced the 

number of calculations necessary near f3crit· However, the histogram method had its 

limitations: we could not use it to go too far away from the /30 at which the original 

run was done. 

The low acceptance percentage mentioned above was caused in part by the length 

of our walks: even when f3 = 0 the pivoting algorithm's acceptance fraction decays as 

N°·19 . However, the chief factor was the Metropolis rejection step: when f3 was near 

f3crit, Metropolis rejection tended to accept walks which had a large number of nearest

neighbor interactions. These walks were contracted, and so a large percentage of the 

subsequent iterations of the pivoting part of the algorithm led to self-intersecting 

walks and a correspondingly low acceptance percentage. 

To increase the number of acceptances, we could not simply do more iterations .. 

Because the algorithm became trapped in valleys in phase space, for different runs 

there was a convergence towards different thermal averages (which resulted in different 

values for the critical exponents). One way out of this difficulty was to do several 

runs, hoping that in this way we would be able to explore a larger portion of phase 

space. The problem then arose as to how to put the results from the various runs 
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together. 

The entropy method was useful in helping to weight the thermal averages from 

various runs to produce an overall average. However, it too had its limitations: the 

entropy estimations gave us an indication of which runs might be more important, 

but for large enough N, we still could not get accurate values of the exponent v. This 

was true even when we tried to put several runs together, each of which had a large 

number of iterations of the algorithm. In addition, the entropy estimates gave almost 

all of the weight to the run whose entropy was the highest, and gave very little weight 

to runs whose entropy was slightly less than this maximum value. 

Nevertheless, the entropy method did prove useful. We discoverd a direct rela

tionship between our entropy estimate for a given run and the number of walks ra 

accepted after the Metropolis rejection step. The best results were obtained for rela

tively small N (N :::; 800) by doing several runs and using ra to weight the averages 

from the runs. Using these data, our estimates for the critical temperature and critical 

exponent were f3crit = 1.01 ± 0.01 and v = 0.59 ± 0.005, which are in good agreement 

with the previous values f3crit ~ 0.99 (based on numerical work by Coniglio, et al. 

[14]) and v ~ 0.58 (from theoretical calculations, numerical work, and polymer exper

iments described in Section 6.4). However, the reason we were able to decide which 

values of N to use in these estimates of v and betacrit was that we already knew from 

previous calculations by other researchers what the approximate values of v and f3crit 

were. Thus, our algorithm was only partially successful, and if we had not known the 
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approximate values of v and f3crit it would have been extremely difficult to decide for 

which values of N the Monte Carlo method was yielding accurate thermal averages. 

What has been learned? Even with simple interactions and a simple and pow

erful algorithm such as pivoting with Metropolis rejection, it is not necessarily true 

that one can compute accurate thermal averages for polymers near Tc using Monte 

Carlo sampling. Researchers who use Monte Carlo in complicated polymer folding 

calculations should therefore interpret the results of such calculations with care. Sim

ply increasing the number of samples in a Monte Carlo calculation does not always 

increase the accuracy of the estimates of thermal averages; phase space's structure 

together with the algorithm itself can.lead to complex and unexpected behavior. 



129 

Bibliography 

[1] J. H. Akao. Phase Transitions and Connectivity in Three-Dimensional Vortex 

Equilibria. Ph.D. thesis, Univ. of California at Berkeley, Berkeley, 1994. 

[2] J. H. Akao. Percolation in a self-avoiding vortex gas model of the lambda tran

sition in three dimensions. Phys. Rev. E, 53:6048-6055, 1996. 

[3] C. Arag ao de Carvalho, S. Caracciolo, and J. Frohlich. Polymers and gl</>14 

theory in four dimensions. Nucl. Phys. B, 215[FS7]:209, 1983. 

[4] L. Arnold. Stochastische Differentialgleichungen: Theorie und Anwendungen. R. 

Oldenbourg Verlag, Miinchen, 1973. 

[5] A. Berretti and A. D. Sokal. A new monte carlo method for the self-avoiding 

walk. J. Stat. Phys., 40:483, 1985. 

[6] K. Binder. Critical properites from monte carlo coarse graining and renormal

ization. Phys. Rev. Lett., 47(9):693-696, 1981. 



130 

[7) K. Binder and D. W. Meerman. Monte Carlo Simulation in Statistical Physics. 

Springer-Verlag, New York, 1988. 

[8) J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman. The Theory of 

Critical Phenomena. Oxford University Press, New York, 1992. 

[9) C. C. Chang. Numerical Solutions of Stochastic Differential Equations. Ph.D. 

thesis, Univ. of California at Berkeley, Berkeley, 1985. 

[10) A. J. Chorin. Equilibrium statistics of a vortex filament with applications. Com

mun. Math. Phys., 30:619-631, 1991. · 

[11] A. J. Chorin. Vorticity and Turbulence. Springer-Verlag, New York, 1994. 

[12] A. J. Chorin and J. H. Akao. Vortex equilibria in turbulence theory and quantum 

analogues. Physica D, 52:403-414, 1991. 

[13] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechan

ics. Springer-Verlag, New York, 1993. 

[14] A. Coniglio, N. Jan, I. Majid, and H. E. Stanley. Conformation of a polymer 

chain at the 0' point: Connection to the external perimeter of a percolation 

cluster. Phys. Rev. B, 35:3617, 1987. 

[15] P. G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press, 

Ithica, NY, 1979. 



131 

[16] P. G. de Gennes. Introduction to Polymer Dynamics. Cambridge University 

Press, New York, 1990. 

[17] M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University 

Press, New York, 1989. 

[18] J. L. Doob. Stochastic Processes. Wiley, New York, 1953. 

[19] J. Douglas, C. M. Guttman, A. Mah, and T. Ishinabe. A spectrum of self-

avoiding walk exponents. Phys. Rev. E, to appear. 

[20] W. Ebeling. Lattices and Codes. Vieweg, Braunschweig/Wiesbaden, 1994. 

[21] W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. 

Wiley, New York, 1966. 

[22] A. E. Ferdinand and M. E. Fisher. Bounded and ~nhomogeneous ising models. 

i. specific-heat anomaly of a finite lattice. Phys. Rev., 185:832, 1969. 

[23] A. M. Ferrenberg and R. H. Swendsen. Optimized monte carlo data analysis. 

Phys. Rev. Lett., 63(12):1195-1198, 1988. 

\ 

[24] M. E. Fisher and M. N. Barber. Optimized monte carlo data analysis. Phys. 

Rev. Lett., 28(23):1516-1519, 1972. 

[25] P. J. Flory. The configuration of a real polymer chain. J. Chem. Phys., 17:303-

310, 1949. 



132 

[26] P. J. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca, 

NY, 1953. 

[27] G. Grimmett. Percolation. Springer Verlag, New York, 1989. 

[28] J. M. Hammersley. The number of polygons on a lattice. Proc. Camb. Phil. Soc., 

57:516-523, 1961. 

[29] H. Holden, B. 0ksendal, J. Ub12Se, and T. Zhang. Stochastic Partial Differential 

Equations. Birkhauser, Boston, 1996. 

[30] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Pro

cesses. North Holland/Kodansha, New York/Tokyo, 2 edition, 1989. 

[31] K. Ito. Stochastic integral. Proc. Imp. A cad. Tokyo, 20:519-524, 1944. 

[32] K. Ito. Multiple wiener integral. J. Math. Soc. Jap_an, 3:157-169, 1951. 

[33] K. Ito and H. P. McKean. Diffusion Processes and Their Sample Paths. Springer

Verlag, New York, 1965. 

[34] I. Karatzas. Brownian Motion and Stochastic Calculus. Springer-Verlag, New 

York, 2 edition, 1991. 

[35] P. E. Kloeden and E. Platten. Numerical Solutions of Stochastic Differential 

Equations. Springer Verlag, New York, 1992. 



133 

[36] F. B. Knight. Essentials of Brownian motion and diffusion. American Mathe

matical Society, Providence, RI, 1981. 

[37] D. E. Knuth. The Art of Computer Programming, volume 3. Addison Wesley, 

Reading, Massachusetts, 1973. 

[38] B. Kuchta and R. D. Etters. Features of the histogram monte carlo method: 

Application to n2 monolayer melting on graphite. J. Comp. Phys., 108:353-356, 

1993. 

[39] J. Lamperti. Probability: A Survey of the Mathematical Theory. W. A. Benjamin, 

New York, 1966. 

[40] L. D. Landau and E. M. Lifshitz. Statistical Physics. Pergamon Press, Oxford, 

1969. 

[41] G. Lawler. Intersections of Random Walks. Birkhauser, Boston, 1991. 

[42] T. J. Ligocki. Minimizing Knot Energies Using Simulated Annealing. Ph.D. 

thesis, Univ. of California at Berkeley, Berkeley, 1995. 

[43] N. Madras and A. Sokal. The pivot algorithm: a highly efficient monte carlo 

method for the self-avoiding walk. J. Stat. Phys., 50:109-186, 1988. 

[44] A. Malakis. The trail problem on the square lattice. J. Phys. A, 9:1283, 1976. 

[45] H. P. McKean. Stochastic Integrals. Academic Press, New York, 1969. 



134 

(46] R. Meester and R. Roy. Continuum Percolation. Cambridge University Press, 

New York, 1996. 

(47] H. Meirovitch. A monte carlo study of the entropy, the pressure, and the critical 

behavior of the hard sphere lattice gas. J. Stat. Phys., 30:681-698, 1984. 

[48] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 

Equations of state calculations by fast computing machines. J. Chem. Phys., 

21:1087-1092, 1953. 

[49] 0. G. Mouritsen. Computer Studies of Phase Transitions and Critical Phenom

ena. Springer-Verlag, New York, 1984. 

[50] B. 0ksendal. Stochastic Differential Equations. Springer, New York, 4 edition, 

1995. 

[51) Y. Oono. Statistical physics of polymer solutions: conformation space renor

malization group approach. In A. Rice, editor, Advances in Chemical Physics, 

volume 61, pages 301-437. Wiley, New York, 1985. 

[52) Y. Oono and K. F. Freed. Conformation space renormalization of polymers. i. 

single chain equilibrium properties using wilson-type renormalization. J. Chem. 

Phys., 75:993, 1981. 

[53] R. H. J. M. Otten and L. P. P. P. van Ginneken. The Annealing Algorithm. 

Kluwer, Norwell, MA, 1989. 



135 

[54] R. E. A. C. Paley and N. Wiener. Fourier Transforms in the Complex Domain. 

American Mathematical Society, New York, 1934. 

[55] R. G. Palmer. Broken ergodicity. Adv. Phys., 31:669-735, 1982. 

[56] T. S. Parker and L. 0. Chua. Practical Numerical Algorithms for Chaotic Sys-

terns. Springer Verlag, New York, 1989. 

[57] H. Peitgen, H. Jurgens, and D. Saupe. Chaos and Fractals: New Frontiers of 

Science. Springer Verlag, New York, 1992. 

[58] H. Peitgen and D. Saupe, editors. Chaos and Fractals: New Frontiers of Science. 

Springer Verlag, New York, 1988. 

[59] L. Pietronero. Survival probability for kinetic self-avoiding walks. Phys. Rev. 

Lett., 55(19):2025-2027, 1985. 

[60] P. H. Poole, A. Coniglio, N. Jan, and H. E. Stanley. Universality classes of the 

() and ()' points. Phys. Rev. B, 39:495, 1989. 

[61] S. Redner and P. J. Reynolds. Position-space renomalization group for isolated 

polymer chains. J. Phys. A, 14:2679, 1981. 

[62] Y. Shapir and Y. Oono. Walks, trails and polymers with loops. J. Phys. A, 

17:139, 1984. 

[63] G. Slade. The diffusion of self-avoiding random walk in high dimensions. Comm. 

Math. Phys., 110:661-683, 1987. 



136 

(64) G. Slade. The scaling limit of self-avoiding random walk in high dimensions. 

Annals of Prob., 17:91-107, 1989. . 

(65) D. Stauffer. Introduction to Percolation Theory. Taylor & Francis, Philadelphia, 

1985. 

(66) R. L. Stratonovich. A new representation for stochastic integrals and equations . 

. J. Siam Control, 4:362-371, 1966. 

(67) G. E. Uhlenbeck and G. W. Ford. Lectures in Statistical Mechanics. American 

Mathematical Society, Providence, RI, 1963. 

(68) F. T. Wall and F. Mandel. Macromolecular dimensions obtained by an efficient 

monte carlo method without sample attrition. J. Chem. Phys., 63:4592, 1975. 

(69) K. G. Wilson and J. Kogut. The renormalization· group and the epsilon expan

sion. Phys. Rep., 12c:75-200, 1974. 



. ' 

. , .'.» ~ 

@W~•l!6if ·~ ·~·J!I~•il¥! @l!I•J:f<i#ll\.@7 ~ ~ 
®m~·~~~o~~~ 

+ • • ~ ~ .. • 

. 
' 

·' 

: 

' . 

,• 

~(tm~Jm~~ool~iml!lm«Mitnmtl~~ 
. ' . 

'' 

... 

0 

0 


