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The applicability of Monte Carlo methods to 

self-avoiding walks anq interacting polymers 

Donald Martin Krapp, Jr.* 

May 6, 1998 

Abstract 

We consider polymers, modelled as self-avoiding walks with in

teractions on a hexagonal lattice, and examine the applicability of 

certain Monte Carlo methods for estimating their mean properties at · 

equilibrium. Specifically, we use the well-known pivoting algorithm of 

Madras and Sokal combined with Metropolis rejection to locate the 

phase transition, which is known to occur at f3crit ~ 0.99, and to re

calculate the known value of the critical exponent v ~ 0.58 of the sys

tem for f3 = f3crit~ Although the pivoting-Metropolis algorithm works 

well for short walks (N < 300), for larger N the Metropolis criterion 

combined with the self-avoidance constraint lead to an unacceptably 

small acceptance fraction. In addition, the algorithm becomes effec

tively non-ergodic, getting trapped in valleys whose centers are local 

energy minima in phase space, leading to convergence towards differ

ent values of v. We use a variety of tools, e.g. entropy estimation and 

histograms, to improve the results for large N, but they are only of 

•supported in part by the Office of Energy Research, Office of Computational and 
Technology Research, Mathematical; Information, and Computational Sciences Division, 
Applied Mathematical Sciences Subprogram, of the U.S. Department of Energy, under 
Contract No. DE-AC03-76SF00098, and by a~pre-doctoral Applied Mathematics Fellow
ship from the National Science Foundation. 
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limited effectiveness. Our estimate of f3crit using smaller values of N 

is 1.01 ± 0.01, and the estimate for v at this value of f3 is 0.59 ± 0.005. 
We conclude that even a seemingly simple system and a Monte Carlo 

algorithm which satisfies, in principle, ergodicity and detailed balance 
conditions, can fail to sample phase space accurately and thus not 
allow accurate estimations of thermal averages. This should serve as 
a warning to users of Monte Carlo methods in complicated polymer 
folding calculations. The structure of the phase space combined with 

the algorithm itself can lead to surprising behavior, and simply in

creasing the number of samples in the calculation does not necessarily 
lead to more accurate results. 

1 Introduction 

Consider a long linear polymer chain in a good solvent, and suppose the poly

mer is both dynamically and statically flexible (see de Gennes [5]). When 

the temperature T is large, the behavior of the polymer is dominated by the 

excluded volume constraint, and the statistics of such a polymer are known 

to correspond to those of a self-avoiding walk (SAW). As the temperature is 

lowered, the attraction between the monomers becomes more important; at 

a certain critical temperature Tcrit (called thee temperature), the polymer 

undergoes an abrupt transition from a stretched out chain at T > T crit to 

a compact blob forT < Tcrit· In addition, there is.a third, intermediate 

configuration at T = T crit· 

One way to characterize such configurations is by examing the critical 

exponent v ~ which is defined by < R'j., >ex N 2v where N is the number 

of monomers in the polymer and < R~ > is the average squared end-to

end distance of polymers composed of N monomers. In two dimensions, 

the exponent v depends on the temperature T as follows: for T < Tcrit, 

v = ~; for T = Tcrit, v ~ 0.58; and for T > Tcrit, v = ~- These values of 

v are the result of theoretical calculations, numerical work (see below), and 

experiments conducted on real polymers (see Poole, et al. [12] and Coniglio, 
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et al. [4]). 

As mentioned above, SAW's are appropriate for modeling such polymers 

when T > Tcrit; however, in general it is necessary to consider interacting 

SAW's if we wish to model our polymers for arbitrary T. We consider SAW's 

on a two-dimensional hexagonal lattice with nearest-neighbor (NN) interac

tions, where an NN interaction occurs when two non-consecutive steps of the 

walk are one lattice spacing apart. If NNN is the number of such interactions 

for a given SAW, then the weight of this walk is defined to be exp( -f3NNN) 
where (3 = ~ is the inverse temperature. Poole, et al. [12]) used straightfor

ward sampling of SAW's to estimate T crit and the critical exponents at this 

temperature; their results indicate that for this system T crit ~ 0.99. 

For a given N and T, in theory it is possible to calculate the exact value of 

< R'fv >for our cqllection of interacting SAW's; if SN is the set of all SAW's of 

length N, the average is just EaesN R'fv(a)exp( -f3NNN(a)). However, since 

the number of SAW's of a given length N grows exponentially with N, it is 
impractical to do this for large N. Instead, we use a Monte Carlo technique 

to generate a sequence (or Markov chain) of walks with l~rge weights; we 

then calculate an approximation to < R'fv > using these walks. 

Our algorithm consists of applying the Madras-Sokal pivoting algorithm 

(see Madras and Sokal [9]) and then using Metropolis rejection (see Metropo

lis, et al. [11]) to choose those SAW's with high probabilities. We start out 

with an initial SAW of a given length N; we then randomly pick a step min 

the SAW and apply a randomly chosen lattice transformation to the first m 

steps (if m < ~) or the last N- m steps. If the new walk is not self-avoiding, 

we reject it and start again; if we get a new SAW, we calculate N/:rj/1 and 

pick a random number 0:::; r:::; 1. If r < exp(f3(N'Ni!/- N}}'fv)), then the new 

walk is accepted 

, For the initialization part, we use thermaliziation: i.e., we discard the 

walks at the beginning of our sequence before calculating thermal averages. 

In addition, we use a hash table when calculating the NN interactions, so 

each step of the algorithm is O(N). Since the algorithm satisfies both the 
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ergodicity and detailed balance conditions (see Binney, et al. [2]), one would 

expect that our approximate thermal averages would approach the exact 

values as the length of the Markov chain increases. 

We first attempted to do what we thought would be a relatively simple 

Monte Carlo calculation of the critical exponent 11 as a fuction of the inverse 

temperature f3. The goal was to locate the phase transition which takes place 

at theE> point f3 ~ 0.99 (see Coniglio, et al. [4] for more details). For f3 = 0 all 

walks have the same probability and there is no nearest-neighbor interaction; 

the pivoting algorithm at this value of f3 is very efficient compared with other 

methods, as is shown in Madras and Sokal [9]. However, we encountered 

problems when attempting to extend the algorithm to f3 =f. 0 which we will 

explain in the following sections. 

2 Acceptance fraction and trapping 

For a given iteration of our algorithm, there are three possible outcomes: the 

new walk is rejected because it is not self-avoiding, 'the new walk is rejected 

because its energy is significantly larger than the energy of the current walk, 

or the new walk is accepted. For a given run, let M_ be the total number 

of iterations of our algorithm, and let ri, re, and ra be .the number of walks · 

rejected because of self-interection, the number rejected because of energy 

considerations, and the number accepted, respectively. We then have M = 

ra + re + ri. 

In Figure 1 we show, as a function of N and f3, the fraction of transfor

mations accepted. As N becomes larger, it can be seen that the number of 

accepted walks becomes smaller: this is to be expected whether f3 is zero 

or not. However, the number accepted becomes extremely small as f3 ap

proaches the critical value f3crit ~ 0.99. At first glance one might think this 

would have something to do with an increasing number of Metropolis rejec

tions (i.e rejections because of unfavorable changes in the energy). In fact, 

the fraction of transformations rejected because of energy considerations is 
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·Figure 1: Fraction of attempted transformations accepted vs. length of the 

walk N for various values of {3. For each value of N and /3, we first initial

ized the walks by performing the pivoting algorithm with T = oo until 105 

transformations were accepted; we then did then same with T = ~- After 

that, we performed at least 5 x 107 steps of our algorithm and recorded the 

number of new walks which were both self-avoiding and which were accepted 

by the Metropolis step. We repeated this whole procedure for five separate 

runs and averaged the results. 
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indeed an increasing function of (3, although it remains relatively small even 

near f3crit· 

In addition, there is also a somewhat less dramatic increase in the percent

age of rejections due to self-intersection as f3 approaches f3criti this can also be 

attributed indirectly to the Metropolis step, since as f3 increases, the walks 

become more contracted, so the probability that a randomly chosen trans

formation at a randomly chosen step of the walk produces a self-intersecting 

walk becomes correspondingly greater. 

If the rejection percentage increases with N and f3, why not just do more 

iterations of the algorithm? Here we ran into another problem in our calcula

tions which can be termed (computational) non-ergodicity. The non-ergodic 

behavior can ·best be illustrated by an example from our data, which is shown 

in Figure 2. In this case, for f3 = 0.9 and N = 1500 (a medium-sized walk not 

too far away from f3crit ::::::: 0.99) we used the same initial configuration and 

computed the average end-to-end distance Ree as a function of the length 

of our Markov chain for ten different runs. For each individual run, we had 

initially attempted to do a running estimate of the variance of Ree and use 

this as a stopping criterion: however, we found that in some cases the in

dividual runs were converging to (significantly) different values of Ree and 

thus gave different values for the critical exponent v. This behavior is clearly 

illustrated in Figure 2. 

Although we have no direct evidence (one reason is that the size of the 

phase space for N = 1500 is enormous), what we suspect is that the pivoting 

and Metropolis algorithm becomes computationally non-ergodic for relatively 

small values of N and values of f3 near f3criti phase space breaks up into 

valleys separated by energy peaks which in some cases require an inordinate 

amount of time to surmount. Although we have a number of walks from 

each valley, attempting to transform walks from one valley into walks in 

another in order to illustrate this energy barrier is both difficult and not 

particularly enlightening. Difficult, because we cannot let the algorithm itself 

do it: since the sample space is so big, the time required to transform one 

6 



r 

11~0~----r-----~----~--~~--~~--~----~~--~----~ 

10~ 

90000 

8~ 

run1-
run 2 ----· 
run3 ··--·· 
run 4 ··-·-···· 
run 5 -·-·
run 6 -·-·
run7 ----·· 
runS······ 
run 9 ····-· 

run 10-

20000~----~----~--~~--~~--~----~----~----~----~ 
0 18+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 Be+OS 9e+06 

iteration 

Figure 2: Average end-to-end distance vs. number of iterations for f3 = 

0.9 and N = 1500 .. In this case, iterations means the number of times 

we were able to perform a pivoting transformation without self- intersection; 

the actual number of accepted walks (i.e. after the Metropolis rejection step) 

was between 1.1 x 106 and· 2.5 x 106 • See the text for a further discussion of 

this point. All runs started with the same initial configuration; we first set 

f3 = 0.0 and did 400000 iterations (for f3 = 0.0 this means 400000 walks had 

been accepted), then we set f3 = 0.9 and did 400000 ""more iterations before 

begining to calculate the end-to-end distance. 
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randomly selected walk into another is tooJong; also, developing an algorithm 

to directly transform one walk into another while maintaing the constraint 

of self-avoidance is not trivial. Even if we could do the direct transform, and 

even if the resulting path from one walk to another had a big energy barrier, it 

would not be a very convincing proof of the existence of the above-mentioned 

valleys since we would not know if there ·were any alternative paths between 

the two walks with lower barriers. 

Extrapolation of results for N small can be of some help, but there are a 

few caveats. Since we can only do the enumeration up to around N = 30, it 

is not clear that conclusions drawn from these phase spaces for such small N 

will be applicable at much larger N. At these small N the number of nearest

neighbor interactions is so small that (3 needs to be extremely large in order 

to allow the formation of valleys and peaks in phase space. For example, 

we set (3 = 20 and then ran our algorithm for small values of N (between 

10 and 20); as the reader may have suspected, there was almost immediate 

convergence towards various walks which represented local minima in the 

phase space. In Figure 3 we show two such walks for N = 16. 

A close examination of the two walks in Figure 3 shows that any lattice 

transformation applied to a part of either of the walks will break some of the 

bonds (i.e. will decrease the number of nearest-neighbor interactions), and 

so will be rejected with probability 1 - e-f3. If (3 is large enough, we have 

from the computational point of view an effectively non-ergodic algorithm; in 

this case we can define non-ergodic to mean that the number of iterations of 

the algorithm (and thus the compute time) required to overcome the energy 

barriers is larger than some given number (say 1012). We suspect that as N 

increases, t4e (3 required for this to occur gradually approaches f3crit· 

One way of conveying at least heuristically the trapping that we suspect is 

occuring is to run the algorithm for a fixed N (in this case we use N = 1000) 

and for (3 = 0; this gives a sequence of walks for which there is no Metropolis 

rejection. Since every walk is equally probable, each o_f the walks in a given 

series tends to have a different number of nearest-neighbor interactions. We 
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Figure 3: Two "trapped" configurations for N = 16. 

then set f3 = 1 and calculate the probability that the algorithm would actu

ally produce this sequence of walks; the result is shown in Figure 4. Again, 

we should stress that this is not a proof, but it does give us some insight into 

what effect an increase in f3 has on our algorithm's sampling of phase space. 

3 Weighting the Runs 

The behavior illustrated in Figure 2 occurred for other values of N and other 

values of f3 near f3criti convergence towards significantly different values of the 

mean end-to-end_ distance is apparently not atypical, so doing one long run 

is not an effective strategy. Given this, how can we compute the mean with 

any degree of accuracy? If the phase space breaks up into valleys separated 

by large energy barriers, then one approach might be to explore a number oL. 

different valleys and use the resulting thermal averages from each valley- to 

· calculate an overall thermal average. 

In other words, we want to do a number of different Monte Carlo runs 
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Figure 4: Log( transition probability) vs. walk number for the sequence of 

walks originally generated using f3 = 0. Transition probability means in this 

case the probability that the Metropolis rejection step would allow us to go 

from walk 0 to walk i through each of the intermediate walks 1, 2, ... , i- 1. 

When calculating the probabilities, we set f3 = 1.0. 
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and use the means from all of the runs R~e to get a final estimate Ree of 

the mean. However, we have not said how we should weight each individual 

mean when calculating Ree· There is no reason to suppose that the valleys 

contain the same number of walks or the same distribution of end-to-end 

distances, so it is not clear that equally weighting all of the ~e is justified. 

What is really needed here is a way to estimate how much of phase space 

is explored by each of the runs; this will allow us to estimate the weights that 

we should give to the energy valley corresponding to each run. The entropy 

method (see Meirovitch [10], Chorin [3] and Akao [1]) allows us to quantify 

how much of phase space is explored: we can use this algorithm to estimate 

the entropy of each run; the entropy estimate (along with the average energy) 

can then be used to get an approximate free energy Fi which we can use to 

get an overall average. 

Suppose we have a Markov chain of walks x 0 , x11 ••• , Xn with each walk 

consisting of N steps, and suppose we want to calculate the entropy of this 

chain. Except for very small N, we do not know the partition function and so 

we cannot calculate the probabilities exactly. Instead, what we do is consider 

a small portion of each walk, say steps 1 through m where m ~ N. We then 

find all of the self-avoiding walks Yo, Yb ... , Yl of length m, and estimate the 

probability of each walk by the frequency with which it occurs in our Markov 

chain; call this P. This will give us an estimate of the e~tropy of this portion 

of the walks; we then scale the estimate to approximate S for the chain of 

N-step walks. This gives 

N~- -S = -- L.J P(yi) log P(yi) 
· m i=O 

(1) 

Now, suppose ,we have a series of M runs, and denote by ri the average for 

the ith run of some quantity r. We can use the entropy estimates to put 

these averages together as follows. If we know the average energy Ei and 

average entropy Si for each run i, we can estimate< r > as 

"M ( F;) "' L..,i=l ri exp -T 
< r >"' M F.· 

L:i=l exp(- ¥) 
(2) 
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where Fi = Ei- TSi. 
We estimate the entropy for a given segment of the walk and for a given 

Monte Carlo run in the following manner: let m be the number of steps in 

the segment. For the first step, let bm-t be 0 if the step is horizontal, 1 if it is 

in the positive y direction, and 2 otherwise. For the remaining m- 1 steps, 

let bm-i be 0 if the step is to the left and 1 if if it is to the right. We thus get 

a sequence { bi} which uniquely identifies each possible m-step segment. We 

then form the sum Sm = 2:~01 2i bi which also uniquely identifies each m-step 

segment; Sm is then stored for each of the walks in our Markov chain. At the 

end of the run we sort this list, find all of the numbers Sm which appear in 

the list, and count the number of times that each number appears. This gives 

us the frequency (i.e. the estimate of the probability) for each configuration, 

from which we can calculate the entropy estimate using Equation 1. 

We attempted to do this for a number of values of f3 and N, but the 

results, some of which are illustrated in Figure 5, were disappointing at best. 

Initially we tried fairly small portions of the walk (2 s; m s; 5), but we found 

that the resulting entropies were extremely close to the "equal probability" 

values for all of the runs: for example, there are 3 * 2 * 2 = 12 walks consisting 

of three steps, and our entropy values for the three-step segments of the walk 

were e~tremely close to ln 12, which is the entropy of the ensemble of equal 

probability three-step walks. So, we next tried to increase m to between 30 

and 50 and then used different segments along the walk to see if the entropy 

estimation would be the same from segment to segment (a consistency check 

for the entropy calculation). 

However, even for f3 = 0 we found that the entropy in the center of the 

walk was significantly smaller than at the ends. The reason for this is related 

to one of the improvements in efficiency that we used when implementing the 

pivoting algorithm: namely, when a given site is selected as the pivot point, 

we only pivot the smaller part of the walk. Thus, the central part tends to 

remain in the same configuration for a longer period of time than the ends, so 

the entropy calculation using the central segment does not accurately reflect 
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Figure 5: Entropy calculation results for various values of f3 and m with 

N = 1000; we did 6 X 105 inital iterations, and then calculated the entropy 

for 2 x 106 iterations of the algorithm. In these cases, the walk segments 

were 1, ... ,m and N- m + 1, .. : ,N. All of the estimates start out very close 

to the "equal probability~' value In 12 ~ 2.4849 of the entropy for m = 3. We 

decided to plot the difference of the two estimates instead of the estimates 

themselves since for some values of f3 the estimates are so close that the 

curves for the two segments overlap. 
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how much of phase space is explored by the entire walk and leads to an 

underestimation of the entropy of the walk. 

Because of this, we decided to just use segments of length m at the two 

ends to estimate the entropy. For values of (3 near 0, the estimates from 

the different ends were very close; however, there was no need for entropy 

estimates for these (3 values since the there was no significant discrepancy 

between the averages calculated from various Monte Carlo runs. The values 

of f3 for which we needed the entropy estimate were precisely those values 

for which the entropies calculated at the different ends did not agree (see 

Figure 5). 
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Figure 6: Free energy vs. run for (3 = 1, N = 1500,2000. 

6 

So, we resorted to the heuristic method of averaging the two entropies 

to come up with a single estimate; the motivation behind this is that we 

want the subsection of the walk that we use in estimating the entropy to 
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accurately reflect the entire walk's wandering through phase space. A careful 

examination of the discussion above about our entropy calculation shows that 

the arguments there are valid both when we are using consecutive steps of 

the walk for our subsection and when the "subsection" consists non-adjacent 

steps of the walk. The only modification necessary is in our function mapping 

the "subsection" to an integer: if we take non-adjace~t steps, in general we 

would need to do an expansion in base three (instead of base two) since non

adjacent steps could go in any of three directions, whereas adjacent ones are 

constrained to two because of self-avoidance. Anyway, the point is that by 

putting the estimates from the two extremes of the walk together, we might 

hope to get a more global picture of the walk and so a better estimate of the 

entropy. 

After calculating the average entropy, we then tried to use these values 

to find an average over all of the separate Monte Carlo runs .. Once again, 

the procedure was not effective, and the reason why can be seen if we look at 

Figure 6 and Figure 7 which show, respectively, the free energy and entropy 

for a series of runs with f3 near f3crit· What we would expect is that the energy 

and entropy would be approximately equal for f3 ~ f3crit, since this is where 

the balancing out between the two takes place. From the graphs, it is clear 

that for some runs this is indeed (at least approximateiy) the case; for others, 

this is not true. If we look at Equation 2, what we might hope is that the 

free energy for these "bad" runs will be small enough that their contributions 

to the average will be negligible. However, even if this is true (and it is for 

this set of runs), the problem is that the same exponential factor that gets 

rid of these "bad" runs also gets rid of every other run except the one with 

the largest free energy. The reason for this is that even though the various 

good runs have free energies which are within a few percent of each other, 

the actual differences themselves can be of the order of 5 - 10; when this 

difference is exponentiated, runs whose free energies are relatively close may 

have weights whose ratios can be between e5 and e10 . The same phenomenon 

occurs if we use only the entropies (instead of the free energies) to weight the 
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walks, although the "chosen" run may be different for the two weightings. 

All of this is illustrated in Figure 8, where we show the end-to-end distances 

for the runs as well as the average end-to-end distance computed using the 

two different weightings. 
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Figure 8: End-to-end distance vs. run for f3 = 1, N = 2000. mean(F) is the 

mean calculated using Equation 2. mean( S) is the mean calculated assuming 

the average energies Ei of each run are roughly the same. 

We decided next to temporarily abandon the entropy method and to 

instead try to look for other ways to weight the averages from the various 

runs. The first method involved recording the energies of each of the walks 

in our Markov chain and using this data to construct a histogram for each 

run; we then lumped all of the histograms from the various runs together 

to try to get a more accurate average histogram. The resulting histograms 

for f3 near f3crit and for various N are shown in Figure 9; as can be seen 
'-
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from the figure, the quality of the composite histograms is unacceptable for 

even moderate values of N, although for a given N, each of the component 

histograms may look quite smooth when viewed by itself. For example, the 

composite histogram for N = 2000 appears to be composed of at least four 

sub-histograms; however, since they are centered around different energies, 

when put together they do not form a smooth composite histogram. 
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Figure 9: Probability of walks vs. energy (as measured by number of nearest 

neighbor interactions) for (3 = 1 and N = 1000, 1500, 2000. 

When using the composite histogram method to compute thermal aver

ages, what we are doing is weighting each of the runs according to the walks 

accepted after the self-avoidance check; what' we are not doing is taking into 

account which runs give us more new walks. In other words, we are only 

considering the length of each of the separate Markov chains, and not the 

number of individual walks which each one contains; the reader should recall 
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that a given Markov chain will contain a sequence of identical walks unless 

and until the Metropolis step accepts a new walk based on energy considera

tions. The problem here is that the length of a given Markov chain does not 

tell_ us how much this chain has explored phase space. So, instead of consid

ering the·length, why do not we consider the number of walks r a accepted 

after the Metropolis rejection step? The reader may be saying at this point: 

what happens if we just keep bouncing back between two (or three or a small 

number) of walks? 

For N > 100 the phase space itself is huge; one might suspect that the 

valleys in which each of the runs get trapped are also huge. What we mean 

by this is that for any reasonable number of iterations (say :::; 109 ), a walk 

trapped in a subspace only explores a minuscule portion of the subspace. 

To examine more closely the "hugeness" of the subspaces, and to~ see if we 

might be bouncing back and forth between a few walks, we did some test 

runs for N = 1000 and N = 2000 with f3 = 1; for each walk generated by the 

algorithm, we recorded the distance between steps ik and Jk of the walk for 

k = 1 ... 9 and lik- Jkl varying as k:. We then used these pairs to label the 

walks (we didn't have enough disk space to store all of the· walks themselves): 

by examining this list, we found a lower bound for the number of different 

walks in our chain. For all runs, the average of the i-atio of this bound to 

the number of walks ra accepted by the algorithm is 0.95. In other words, 

there is very little revisiting of any point in phase space by the algorithm. 

This does not mean that a given walk does not appear more than one time 

in our Markov chain (this is not true): what it means is that although we 

might get stuck at a particular walk for a number of consecutive iterations 

of the algorithm, once the algorithm accepts another walk, usually we won't 

go back to the first walk later in the algorithm. 

Thus, for a given run i, r~ is very close to the number of distinct walks 

generated by our algorithm. One might suspect that the number of dis

tinct walks would also be directly related to the entropy of a particular run. 

Since the entropy estimates themselves do not provide an accurate method 
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of weighting the runs, we might try to somehow weight run i according to 

r~. In fact, there is a correlation between ra and the entropy that we com

puted above. This is illustrated in Figure 10, and this is why we temporarily 

abandoned the entropy method. Although the fact that we take exponentials 

of the entropies in order to calculate thermal averages makes these averages 

inaccurate, the magnitude of the entropies themselves gives us a clue as to 

which runs we might w~nt to give less weight to and which ones we might 

want to give larger weights to: since the r~ reflect the entropies, instead 

of using the entropy, why not instead use the r~ (which are much easier to 

compute) to do the weighting? 

walks accepted vs. entropy for beta=1 
1.3e+06 ..-----..-----..-----..--------,r------.r-----.-----.----,.----., 
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N=2000 + 

+ 
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0 
sooooo~~~~--~--~--~--~-~~-~~-~--~ 

260 280 300 320 340 360 380 400 420 440 
entropy 

Figure 10: Number of walks accepted after self-avoidance check and Metropo

lis step vs. entropy for the runs in Figure 6 and Figure 7. 

We illustrate the results of this weighting in the following figures. First, 

Figure 11 shows the results of our calculations when we use no weighting at 
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all. These are somewhat disappointing, especially given the large number of 

iterations that we did for each run. For N > 300, the curves give inaccurate 

values of v near f3crit, which is precisely where we need the most accuracy; 

however, even for smaller N things do not look good near f3crit· We also 

performed the same calculations for larger values of N up toN = 200'o; the 

results for these values of N were even more inaccll,arate for values of f3 near 

f3crit· If we examine Figure 12, we see that using the r~ gives good results 

up to much larger values of N, although even this weighting gives inaccurate 

values of v for N > 1000. 

4 Estimating f3crit and v 

Even though the -curves for large N are not particularly useful, we can still 

use the curves for ~mall N to try to estimate f3crit· To do this, however, 

we need more sample points near where the curves for different N seem to 

intersect. We could do many more runs with values of f3 near the intersection 

points of the curves in Figure 12, but this would be extremely expensive from 

a computational point of view. Instead, we decided to use the histogram 

method to fill in the curves near the suspected val:ue of f3crit· The idea 

behind this is that if we already have the Monte Carlq data for one run at 

. a given /30 , we can use this data for other values of f3 near /30 : we take the 

plot of number of walks vs. energy for our run at {30 and shift this histogram 

according to the difference between {30 and our new f3 (see Akao [1], Kuchta 

and Etters [8) and Ferrenberg and Swendsen [6) for more details). 

Using this method for f3o and f3 near f3crit ~ 0;99, we estimate f3crit to 

be between 1.01 and 1.02. Unfortunately, the lack of good data for larger N 

prevents us from accurately dete:mining the dependance of the estimate of 

f3crit on N. 

After having located the approximate value of f3crit, we wanted to get a 

more accurate estimate of the critical exponent v at this temperature. To do 

this, we used a procedure from Poole, et al. [12) which goes as follows: if f3 
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Figure 11: Critical exponent v vs. j3 for various values of N. Each pair 

(/3, N) had between 5 and 20 runs; for each run i, we did between 400000 and 

800000 inital iterations and then computed the average end-to-end distance 

Ree(i,N,/3) for between 3 x 107 and 6 x 107 iterations. In this figure, we 

combined the Ree(i,N,/3) without any weighting to get Ree(N,/3). At every 

value of /3, we then fit a line to the plot of log Ree(N, /3) vs. log N using the 

set of values of N listed in the graph. 
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Figure 12: Same as Fig~re 11, except that when we co~bined the Ree(i, N, /3) 
to get Ree(N, /3), we first found the maximum ramax of ~ll of the rai for each 

pair (N, /3) and eliminated the runs whose rai was less than 0.8ramaxi we 

then used the remaining runs to calculate the average. The reasoning behind 

this is that if we look back at Figure 10, we see that since r~ reflects the 

entropy si, then those runs with small r~ and correspondingly small si will 

make a negligable contribution to the overall average. What about weighting 

the remaining runs after eliminating those with small r~? Well, in this Figure 

we give them all equal weight, but for our data weighting them using the r~ 

gives almost identical results (recall that the entropy method in effect just 

selects out one of the runs and gives it a weight disproportionately large 

compared to those of the other runs). 
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is fixed, we expect < R;e > to be proportional to N 2v. However, we do. not 

know the constant of proportionality, so we instead take this equation for 

two different values of N, say N and N + M, divide the two equations, take 
log <Ree(N+Ml

2 > 
logs, and solve for v. This gives us v ~ ~ 

1
<R1tJ1t> . We then compute 
og N 

this ratio for various values of N; this gives us several estimates of v for this 

particular (3. The results of this calculation are shown in Figure 13. For M 

fixed, the accuracy of this procedure decreases as N increases: this is because 

we are taking the log of a number which is approaching 1, so any errors in 

the averages become more and more significant with increasing N. In fact, 

Poole, et al. [12] use M = 1, but we were unable to get any useful results for 

this M, since for some N we actually had< Ree(N + 1) >slightly less than 

< Ree ( N) >; the corresponding estimate of v was therefore less than zero. 

As can be seen from Figure 13, for the estimated value of f3crit ~ 1.01, 

v ~ 0.59, which is in good agreement with the previous estimates of v ~ 0.58 

(see Poole, et al. [12] for a list of these and further references). 

5 Conclusions 

We originally attempted to put together two well-known Monte Carlo al

gorithms (pivoting and Metropolis rejection) in order to calculate thermal 

averages for a particular polymer system. The example we considered was 

at first glance fairly simple: self-avoiding walks on a hexagonal lattice in two 

dimensions with a nearest-neighbor interaction. Since the thermal averages 

had already been calculated for this system by other methods, our calcu

lations served as a test for the applicability of the pivoting and Metropolis 

rejection algorithms to such a polymer system. 

Our example contained some of the characteristics of more complicated 

problems (e.g. polymer folding) that are currently of interest in physics. 

However, even for our seemingly simple system, we ran into a number of 

difficulties such as unacceptably small acceptance percentages and trapping 

in valleys centered around local energy minima. 
~ 
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Figure 13: The exponent 11 as a function of Jv. We set M = 10 and tried this 

for a number of f3 in the vicinity of our estimate of f3crit· Using the radius of 

gyration instead of < Ree gives almost identical results. 
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Both of these problems occurred for N > 800 (where N is the length 

of the SAW) and (3 near f3crit = 0.99. In fact, for any N we needed to 

concentrate our attention on values of (3 near the suspected value of f3crit· 

The histogram method was useful for this, since it allowed us to use the data 

from one run at a given (30 to estimate the thermal averages for other values 

of (3 near (30 ; this considerably reduced the number of .calculations necessary 

near f3crit· However, the histogram method had its limitations: we could not 

use it to go too far away from the (30 at which the original run was done. 

The low acceptance percentage mentioned above was caused in part by 

the length of our walks: even when (3 = 0 the pivoting algorithm's accep

tance fraction decays as N°·19
• However, the chief factor was the Metropolis 

rejection step: when .f3 was near f3crit, Metropolis rejection tended to ac

cept walks which had a large number of nearest-neighbor interactions. These 

walks were contracted, and so a large percentage of the subsequent itera

tions of the pivoting part of the algorithm led to self-intersecting walks and 

a correspondingly low acceptance percentage. 

To increase the number of acceptances, we could not simply do more 

iterations. Because the algorithm became trapped in valleys in phase space, 

for different runs there was a convergence towards different thermal averages 

(which resulted in different values for the critical exponents). One way out 

of this difficulty was to do several runs, hoping that in this way we would be 

able to explore a larger portion of phase space. 'The problem then arose as 

to how to put the results from the various runs together. 

The entropy method helped us to weight the thermal averages from var

ious runs to produce an overall average. However, it too had its limitations: 

the entropy estimations gave us an indication of which runs might be more 

important, but for large enough N, we still could not get accu·rate values 

of the exponent 11. This was true even when we tried to put several runs 

together, each of which had a large number of iterations o~ the algorithm. 

In addition, the entropy estimates gave almost all of the weight to the run 

whose entropy was the highest, and gave'very little weight to runs whose 
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entropy was slightly less than this maximum value. 

Nevertheless, the entropy method did prove useful. We discoverd a direct 

relationship between our entropy estimate for a given run and the number of 

walks r a accepted after the Metropolis rejection step. The best results were 

obtained for relatively small N (N ~ 800) by doing several runs and using 

r a to weight the averages from the runs. Using these data, our estimates for 

the critical temperature and critical exponent were f3crit = 1.01 ± 0.01 and 

v = 0.59±0.005, which are in good agreement with the previous values f3crit ::::::: 
. . 

0.99 (based on numerical work by Coniglio, et al. [4]) and v ::::::: 0.58 (from 

theoretical calculations, numerical work, and polymer experiments described 

in de Gennes [5] and Coniglio, et al. [4]). However, the reason we were 

able to decide which values of N to use in these estimates of v and f3crit was 

that we already knew from previous calculations by other researchers what 

the approximate values of v and f3crit were. Thus, our algorithm was only 

partially successful, and if we had not known the approximate values of v 

and f3crit it would have been extremely difficult to decide for which values of 

N the Monte Carlo method was yielding accurate thermal averages. 

What has been learned? Even with simple interactions and a simple 

and powerful algorithm such as pivoting with Metropolis rejection, it is not 

necessarily true that one can compute accurate thermal averages for poly

mers near Tc using Monte Carlo sampling. Researchers who use Monte Carlo 

in complicated polymer folding calculations should therefore interpret the 

results of such calculations with care. Simply increasing the number of sam

ples in a Monte Carlo calculation does not always increase the accuracy of 

the estimates of thermal averages; phase space's structure together with the 

algorithm itself can lead to complex and unexpected behavior. 
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