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Wilson's phase-space cell approximation, as extended by White, is used to compute the con

tribution of long-wavelength fluctuations. The resulting theory possesses nonclassical critical 

exponents similar to those observed experimentally. Far from the critical region, where long

wavelength fluctuations are not important, the theory reduces to that corresponding to the 

base equation of state. The complete theory is used to represent the thermodynamic prop

erties and phase behavior of binary mixtures of methane, carbon dioxide, and n-butane. In 

the critical region, agreement with experiment is dramatically improved upon adding to the 

base equation of state corrections from long-wavelength fluctuations. 
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Introduction 

The thermodynamic properties of fluid mixtures are of much interest in chemical engi

neering primarily for design of separation operations. These properties are often provided 

through a phenomenological equation of state such as the Redlich-Kong-Soave or Peng

Robinson equation. By suitable adjustment of equation-of-state constants, these equations 

tend to perform fairly well far from the critical points of the fluids; however, they yield poor 

results near the critical point. While renormalization-group methods have been successful 

in describing the behavior of systems near critical points, much of the work in this area is 

only applicable to the region asymptotically close to the critical point. 

For engineering applications it is desirable to have an equation of state that is accurate 

both near to and far from the critical point. One method for obtaining such an equation is 

to splice together the known behavior of fluids asymptotically close to the critical point with 

an equation of state that works well far away from the critical region. An equation of state 

using this approach is typically referred to as a crossover equation of state as described for 

pure fluids (Chen et al., 1990; Kiselev, 1990; Kiselev et al., 199i; Kiselev and Sengers, 1993; 

Kiselev and Kostyukova, 1993). This approach has been extended to binary fluid mixtures 

of Type I (Leung and Griffiths, 1973; Jin et al., 1993; Povodyrev et al., 1996; Kiselev, 1997) 

as well as other types of mixtures (Anisimov et al., 1995a, b, 1996; Cheng et al., 1997). 

Regrettably, several parameters are required to fit experimental data for each system. 

Another method, known as hierarchical reference theory, (Parola and Reatto, 1984, 1985; 

Meroni et al., 1990) is to reformulate liquid-state theory to take into account density fluctu-
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ations on successively larger length scales. This method has been applied to Lennard-Jones 

fluids and to fluids with three-body interactions (Meroni et al., 1993) The hierarchical ref

erence theory has also been extended to fluid mixtures (Parola and Reatto, 1991, 1993). 

However, because this method is computationally intensive, it is not suitable for typical 

engineering applications. 

Wilson (1971a,b) ·introduced the phase-space cell approximation for the semiquantitative 

analysis of the behavior of systems near the critical point. This procedure yields (Wilson, 

1971b; Wilson and Fisher, 1972; Grover, 1972; Grover et al., 1972; Salvino and White, 1992) 

an equation of state with non-classical exponents close to those observed experimentally 

(Sengers, 1991 ). Table 1 compares nonclassical and classical exponents obtained by com

monly used analytical equations of state. The phase-space cell approximation yields the 

exact (Wilson and Fisher, 1972) critical exponents to first order in the t = 4- D expansion 

(where D is the dimension of space) and gives the exact exponents for the n-component spin 

model in the limit when the number of spin components approaches infinity (Ma, 1976). 

White and coworkers (Salvino and White, 1992; White and Zhang, 1993, 1995, 1997) 

extended the range of applicability of the phase-space cell approximation to regions of the 

phase diagram beyond the critical regime. The resulting theory is computationally efficient 

and agrees well with experimental data for the equation of state in a b~oad region around 

the critical point for various pure fluids. Recently, ~his method has been extended to a larger 

region around the critical point (White and Zhang, 1997; Lue and Prausnitz, 1997). 

In this work we extend this method to multicomponent fluids. First, we recast the parti-
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tion function in terms of a functional integral. In addition, we discuss how different approx-

imations to the functional integral lead to various well-known models of fluids. We present 

the basic ideas of the approximate renormalization method. We discuss our implementation 

of White's global renormalization scheme to fluids. To illustrate its engineering utility, we 

apply the theory to binary fluid mixtures of methane, carbon dioxide, and n-butane. Finally, 

we summarize our findings and give some concluding remarks. 

Field Theory for Simple Fluids 

Consider an open multicomponent system consisting of w components at absolute tern-

perature, T, species chemical potential, f.ia, and total volume, V. We specify that the fluid's 

molecules interact with a spherically symmetric pair potential, ua...,.(r); further, each of the 

molecules interacts with an external field, ea(r). The grand partition function, 3, of this 

system is given by (Hansen and McDonald, 1986) 

(1) 

where r is the center-to-center distance between molecules, f3 = 1/(kBT), kB is the Boltz-

mann constant, N(J is the number of particles of type a, raj is the position of the jth molecule 

of type a, and A(}' is the thermal wavelength of a molecule of type a. 

We divide the interaction potential, ua...,.( r ), into a reference contribution, u~e_f ( r ), due 

mainly to repulsive interactions, and a perturbative contribution, u~...,.(r), due mainly to 
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attractive interactions [i.e., Ua-y(r) = u~e_f(r) + u~'Y(r)]. The grand partition function can be 

rewritten (Negele and Orland, 1988) 

3[ii] = j IT Dpu(· )V<f>u( ·) exp { -~ L j d3rd3r' Pa(r)va-y(r- r')p-y(r') 
u a-y 

+ ~ j d3 rpa(r)va(r)- i~ j d3rpa(r)</>a(r) + ln3ref[i~]} (2) 

where i = yCT, lla(r) = ,B[JLa- ea(r)], Va-y(r) = ,Bu~'Y(r), and :=;ref is the grand partition 

function for the reference fluid; 

00 00 1 
:=;ref[ii] = L · · · L IT 1 3N 

N1=0 Nw=O u Nu.Au 

X j IT d3 r,.t exp {- ~ ?= u:e./ (raj- r-yk) + 2; lla(raj )} (3) 
~ ~¢~ ~ 

The symbol ... represents a particular property for all components. For example, iJ repre-

sents the set { v1 , v2 , ••• , llw}· In Eq. (2), the symbol f ITu Vpu( · )D<f>u( ·) indicates a functional 

integration where Pu ( r) and </>(! ( r) are the integration variables, and the range of integration 

is over all possible "shapes" of these functions. The function P<~ ( r) can be interpreted as the 

instantaneous density distribution of molecules of type u in the system; the function </>(! ( r) 

can be interpreted as a potential field felt by molecules of type u that is generated by the 

perturbation potential of all the molecules in the system. 

For all but a few oversimplified interaction potentials, approximations are needed to 

evaluate the functional integral in Eq. (2). If the saddle-point method (Negele and Orland, 

1988) is used to approximate the value of the functional integral, the Helmholtz energy per 
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unit volume of the system, J, becomes 

f =ref - L aa-yPaP-y 
Ci'Y 

(4) 

where ref is the Helmholtz energy per unit volume for the reference system, Pa is the density 

of component a in the fluid, and aa-y is the interaction volume between molecules of type a 

and 1, given by 

(5) 

Equation ( 4) has the form of the classic van der Waals equation. The saddle-point approxi-

mation neglects the contribution of density fluctuations of all wavelenghs that are not already 

accounted for by the reference system. 

We can add fluctuation corrections to the saddle-point approximation by expanding the 

exponent of the integrand of the functional integral in Eq. (2) in a Taylor series in the fields, 

</>a, and neglecting terms higher than second order. The resulting functional integral can 

be performed analytically. This approximation, also known as the Gaussian approximation, 

yields (Negele and Orland, 1988): 

f =ref+~ J (~~3lndet[l + v(q)xref(q)] (6) 

where 

A ref( ) 8 + hA ref( ) - Xa"Y q = Pa Ci"'f Pa a-y q P"Y· (7) 

Here h~:f is the total correlation function between components a and 1 in the reference 

fluid. The symbol A denotes the three-dimensional Fourier transform of a function. Equation 
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(6) is the well-known random-phase approximation (RPA) (Andersen and Chandler, 1970; 

Chandler and Andersen, 1971). If the reduced perturbation potential, Va-y(r), is chosen such 

that the pair-correlation function is equal to zero inside the hard core, the RPA becomes the 

optimized random-phase approximation (ORPA) (Andersen and Chandler, 1972). 

Several "conventional" theories adequately describe the behavior of fluids far from the 

critical region. These include the cubic equations of state based on the mean-field approxi

mation, liquid-state theories based on integral-equation theory such as the hypernetted-chain 

equation, and the mean-spherical approximation, and perturbation theories. 

Far from the critical point, the correlation length,~' is small, on the order of magnitude 

of molecular dimensions. For distances exceeding, ~' molecules in the fluid are essentially 

uncorrelated. Conventional theories perform well in this regime because ~ is small; only 

correlations between a few particles contribute significantly to the free energy. 

However, as the critical point is approached, the correlation length increases, diverging to 

infinity. An increasing correlation length means that correlations between larger and larger 

numbers of molecules make an increasingly significant contrib11tion to the properties of the 

system. Most of the common approximations in liquid-state theories are not adequate to 

describe accurately correlations between large numbers of molecules; therefore, they perform 

poorly in the critical region. 

As discussed by Sengers ( 1991), neglect of long-wavelength fluctuations results in a theo

retical free energy that is analytic at the critical point and therefore does not show the correct 

behavior in the critical regime. To include long-wavelength fluctuations, Wilson (1971a,b) 
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constructed an approximate renormalization-group method. 

Long-Wavelength-Fluctuation Corrections 

The first step towards including the contribution of long-wavelength fluctuations to the 

free energy is to divide the free energy into two parts: a short-wavelength contribution that 

can be described satisfactorily using conventional liquid-state theory, and a long-wavelength 

contribution that must be computed using a renormalization-group method. 

We divide the reduced attractive interaction potential into a short-wavelength, vi~, and 

long-wavelength contribution, v~~ (Ivanchenko and Lisyansky, 1992, 1995; Ivanchenko et al. 

1992). 

A-1( ) = [A(s)]-1( ) + [A(/)]-1( ) 
VO"Y q V O")' q V 01")' q (8) 

The definitions of v~~ and v~~ are arbitrary, provided [iJ(s)]~~(q) rapidly approaches v;~(q) 

when q > 21rjL, and [iJ(l)]~~(q) rapidly approaches v;~(q) when q < 21rjL. The length 

L is chosen such that contributions from fluctuations of length scales less than L can be 

adequately calculated by standard approximation methods, such as the Gaussian approxi-

mation. 

We choose the following form for the long-wavelength interaction potential 

(9) 

where a 01.,is given in Eq. (5), and ( 0 ., denotes the range of the attractive interaction potential 

(10) 
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With the division of the perturbation interaction potential into two parts, we can di-

vide (Ivanchenko and Lisyansky, 1992, 1995; Ivanchenko et al. 1992) the density field, Pa(r), 

into two contributions: p~) which consists primarily of long-wavelength components (i.e., 

wavelengths greater than L ), and p~s) which consists primarily of short-wavelength compo-

nents (i.e., wavelengths shorter than L ). Introducing these new variables into the partition 

function [see Eq. (2)], we find 

:=: = Q1
(l) jiTVp~>(·)exp{-~ L: j d3rd3r'p~>(r)v~4(r- r')p~>(r') 

q Ctry 

+ ~ j d3rp~>(r)va(r)- _r(s)[p(l>]} (11) 

where 

exp{ -_r(s)[p(1>]} = Q9s) j IT Vp~s)(· )V<Pu( ·) exp{ -~ L: j d3rd3r' p~>(r )vi~(r - r')p~s)(r') 
q Ctry 

+ L: j d3rp~s)(r)va(r)- i L: j d3r[p~>(r) + p~>(r)]<Pa(r) 
Ct Ct 

+ln3ref[i¢'J} (12) 

Q = jfiVpu(·)exp{-~j d3rd3r'pcx(r)vcx-y(r-r')pry(r')} 
q 

(13) 

Q(l) = j IT Vpu(·) exp{ -~ j d3rd3r'pcx(r)v~4(r- r')pry(r')} 
q 

(14) 

Q(s) = ]TJVpu(·)exp{-~j d3rd3r'pcx(r)vi~(r-r')p-y(r')} (15) 

Density profiles, p~>(r), have no small-wavelength components. The functionalF(s) accounts 

for short-wavelength fluctuations but not for long-wavelength fluctuations. 

To evaluate _r(s), we need to make further approximations. We introduce the local-density 
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approximation, 

(16) 

where j<s> is the free energy per unit volume for a uniform system. 

If we completely neglect the contribution of the short-wavelength portion of the attraction 

potential (i.e., if we choose [v<s>]~~(q) = 0) , we find, 

(17) 

This is the form White and coworkers used in their analysis. 

To obtain a better description of the fluid, we need to consider J(s) more carefully. The 

short-wavelength response of a fluid is governed primarily by the repulsive part of its inter-

action potential (Weeks et al., 1971). That is, for qd > 1r, h(q) ~ kref(q), where dis the 

diameter of the repulsive core of a molecule in the fluid. When only short-wavelength fluctu-

· ations contribute significantly to the free energy, standard liquid-state theories, such as the 

mean spherical approximation (MSA), work well. This suggests that we should use a liquid-

state free-energy model, like that of the MSA, JMSA, as an approximation for f(s). However, 

while the function J(s) accounts only for short-wavelength fluctuations, JMSA includes both 

short and long-wavelength fluctuations, although the long-wavelength fluctuations are given 

crudely. Therefore, before we add contributions from long-wavelength fluctuations calculated 

from renormalization method~, we need to subtract the MSA's estimate for the contribution 

of long-wavelength fluctuations. To do so, we choose the following form 

f(s) = JMSA + L aOI'YPOIP'Y 
OI'Y 
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The second term, 'L-a-y aa-yPaP·n in Eq. (18) subtracts the long-wavelength contributions 

provided by the MSA. However, Eq. (18) gives only a crude approximation, because the 

second term in the equation only subtracts the q = 0 contribution, - 2:-a'Y aa-yPaP')'· Therefore, 

in addition, it is necessary to subtract also the contributions from fluctuations of other wave 

numbers q < 271" / L. 

Substit'uting Eq. (16) into the functional integral in Eq. (11) yields 

(19) 

where the Hamiltonian, H, is given by 

H(l)[p{I)J = L aa~(;-y j d3r\l p~)(r). \l p~)(r) 
a')' 

+ j d3r [f(s)(,o<1)(r))-~ aa-yP~)(r)p~)(r)] (20) 

In general, a Hamiltonian, H, relates the energy of the system to the density distributions 

of the various components in the system. To obtain the partition function, 3, from the 

Hamiltonian, one must integrate over all possible shapes of the the functions Pa(r). However, 

the integration in Eq. (19) is restricted to density distributions, p~)(r), which are smooth 

on length scales less than L. That is, over distances less than L, p~)(r) should be nearly 

constant because those portions of the density profiles that are not smooth were already 

integrated when the variables p~)(r) were integrated to obtain :F(s)_ Therefore, Ji(l) is a 

partially integrated version of 1i in which fluctuations of wavelengths less than L have been 

"averaged out." This process can be thought of as dividing the fluid into several boxes 

of volume L3 . Within each box, we microscopically average over all the properties. The 
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density distributions, p~)(r), are the average density inside each box, because the small-

wavelength variations of the actual density profile, Pcx(r), inside each box have been averaged 

by integrating over p~)(r). 

If L ~ ~' different boxes are essentially decoupled from each other, and the functional 

integral in Eq. (19) can be factored and easily evaluated. The free energy of the entire 

system is the sum of the free energies of each box in the system. The second term in Eq. 

(20) represents the sum of the free energies of each box, and the free energy of the entire 

system is the integrand of the second term. 

However, if L < ~' the situation is different. In this case, boxes which are separated by 

less than distance~ are significantly coupled with each other. We can no longer write the 

free energy as a simple sum of the free energies of all boxes because the boxes interact with 

each other. The first term in Eq. (20) represents the contribution of these interactions. The 

functional integral in Eq. (19) is no longer easy to evaluate. As indicated earlier, one method 

to evaluate the functional integral in Eq. (19) is the saddle-point approximation. This yields 

f(O) = f(s)(i}1)(r))- L acx-yP~)(r)pV)(r) (21) 
cx-y 

where superscript (0) denotes that J(o) is a "zeroth" order approximation to f. This approx-

imation neglects the effect of fluctuations of wavenumbers 0 < q < 27r I L. The fluctuations 

of wavenumbers q > 27r I L are accounted for by J(s). When L ~ ~' the saddle-point ap-

proximation becomes highly accurate. In our approximation for f(s) (see Eq. (18)), Eq. (21) 

reduces to the mean-spherical approximation. 

A strategy to incorporate fluctuations with wavelengths greater than L, (important when 
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L < 0 is gradually to integrate over larger and larger length scales, starting at L, until we are 

averaging over length scales much larger than ~. That is, we want to evaluate the following 

integral 

(22) 

where p{l') represents density profiles that are smooth on length scales L' > L. 1-(_{l') is a 

Hamiltonial for these density profiles, and N is a normalization constant. The integration 

variable p<l) represents variations of p<l) between length scales L and L'. That is, we integrate 

over all density fluctuations of length scales between L and L'. 

Equation (22) can be used iteratively to integrate over larger and larger length scales. As 

we integrate over larger and larger length scales, the Hamiltonian, 1-{(l) gradually changes, 

or is renormalized. Eventually, when L, the length scale for averaging, is much greater than 

the correlation length, ~' the Hamiltonian does not change anymore. The interaction term 

gradually becomes smaller and smaller until it disappears completely. The free energy of the 

fluid can then be obtained from the saddle-point approximation, that is accurate at these 

conditions. 

The integral in Eq. (22) cannot be performed analytically and is, in fact, as difficult 

to evaluate as the integral in Eq. (2). Approximate methods must be used to evaluate the 

integral. However, the advantage of making approximations to the integral in Eq. (22) is that 

long-wavelength fluctuations are taken into account in a much more satisfactory manner, 

leading to nonclassical critical exponents. In the next section, we discuss one method to 

evaluate this integral, known as the phase-space cell approximation. 
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Phase-Space Cell Approximation 

As longer and longer wavelength fluctuations are incorporated into the theory, the free en-

ergy gradually changes. The phase-space cell approximations lead to the following recursion 

relations which specify how the free energy changes as fluctuation effects are added. 

ln)(P) = J(n-l)(P) + hj(n)(P) 

hj(n)( ~ = _ kBT l ln,s(P) 
p (2n L )3 n In,z(P) 

hj(n)(P) = 0 

for 0 ~ p < Pmax/2 

for Pmax/2 ~ P < Pmax (23) 

where p = :Z::::u Pu is the total density of molecules in the system, Pmax is the maximum 

possible density of molecules in the system, and 

(24) 

i = s, l (25) 

i = s, l (26) 

(27) 

(28) 

A derivation of this recursion relation is given in the Appendix; it is based closely on 

the work of Wilson (1971b), White and Zhang (1995), and Battle (1994). The density 

fluctuations are written as an expansion in basis functions generated by translations and 

dilations of a single wavelet function, '!j;Ot (see Appendix and Battle (1994) for details). 
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Parameter .6.0 .. , is the average gradient of the wavelet. That is, 

(29) 

This average gradient should depend only on the particular wavelet functions, '¢"', chosen 

and not on the potential function. These parameters are adjusted to fit experimental critical 

data. 

In our work, the initial approximation for the Helmholz energy per unit volume, J(o), 

is given by Eq. (21). It is assumed that fluctuations with wavelengths less than L are well 

accounted for by f(o). In this work, we choose L = 5.10 A. 

To include long-wavelength fluctuations in the free-energy model, we begin with an ap-

proximation for J(O) (e.g., Eq. (21)). The free energy J(o) neglects fluctuations of wave 

number 0 < q < 27r I L. By inserting J(o) into the recursion relations, Eqs. (23)-(28), we 

obtain successive approximations to the Helmholtz free energy per unit volume, f(n), each 

containing the contribution of fluctuations of larger and larger wavelengths. The free energy 

f(n) contains fluctuation contributions from wavenumbers 0 < q < 27r I (2n L ). In principle, 

we should use J(oo) as our final free energy. In practice, the free energies are nearly identical 

for n > 5; therefore, we use J(s) as our "final" free energy. 

The calculations in the recursion relations must be performed numerically. The initial free 

energy is computed on a density grid with spacing .6-p"' = 0.0025 d
6

3 for each component a, 
7r a 

where d"' is the hard-sphere diameter of component a. The integral in Eq. (25) is performed 

using the trapezoid rule. The final free energy is fit using a piecewise-smooth cubic spline; 

the pressure and chemical potential were computed from the free energy using derivatives 
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of the spline fit. A computer program that renormalizes the free energy according to the 

recursion relations is available upon request from the authors. 

Application to Single-Component Systems 

For interactions between molecules we use the square-well potential. The reference po-

tential is a hard-sphere potential, given by 

uref(r) = {oo 
. 0 

r<d 
(30) 

r>d 

where dis the diameter of the repulsive interaction. The perturbation potential is 

{

-€ 

u'(r) = 
0 

r < ).d 
(31) 

r > ).d 

where c is the depth of the attractive potential, and ). is a constant related to the range of 

the attraction. 

For this potential, parameters a and ( (see Eqs. (5) and (10)) are given by 

a = 271" c>.3d3 
3 

(2 = ~).2d2 
5 

The Helmholtz energy per unit volume, j, is writen in the form 

(32) 

(33) 

(34) 

where b ~ 7ras /6 is the volume of a molecule, TJ = pb is the packing fraction of spheres in 

the system, and ref is the Helmholtz energy per unit volume of the reference fluid. The 
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reference system is a hard-sphere :fluid with diameter d. The properties of the reference 

system are given by the Carnahan-Starling (1969) equation of state. The formula for :F is 

too lengthy to reproduce here; it is given in Eqs. (13), (15) and (16) in Tang and Lu (1994). 

To describe the properties of real :fluids, we fit the square-well :fluid interaction parameters, 

€ and d, to selected experimental data at fixed ..\. Because the MSA accurately describes 

the properties of a :fluid away from the critical point, we fit the interaction parameters to 

experimental liquid-phase densities and vapor pressures for temperatures 20% below the 

critical temperature, and to experimental density (PVT) data for temperatures 20% above 

the critical temperature. We obtained parameters for methane, carbon dioxide, and n-

butane. Experimental data for pure methane are from Vargaftik (1975) and Kleinrahm and 

Wagner (1986); data for carbon dioxide are from Vargaftik (1975); data for n-butane are 

from Younglove and Ely (1987). Parameter .6-aa was chosen to reproduce the experimentally 

observed critical temperature. The parameter ..\ was chosen to yield the correct critical 

pressure after the :fluctuation corrections had been applied. 

To achieve a satisfactory fit for carbon dioxide and n-butane, we need a temperature-

dependent well depth, €. We choose the following form 

(35) 

Parameters for methane, carbon dioxide, and n-butane are given in Table 2. 

Lue and Prausnitz (1997) compare predictions of the MSA and the MSA with renormalization-

group corrections (MSA+RG) with expermental data for vapor-liquid coexistence curves, 

vapor-pressure curves, and pressure-density isotherms for these pure :fluids. The comparison 
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shows that the RG correction very much improves agreement with experiment in the critical 

region. 

Application to Fluid Mixtures 

The mean-spherical approximation can be extended to multicomponent sytems. In addi-

tion, the perturbative-solution method has been extended (Tang and Lu, 1995) to mixtures. 

However, the resulting formulae are cumbersome and the computation time required for 

evaluation rises dramatically with the number of components. Therefore, to simplify calcu-

lations, we approximate the Helmholtz energy per unit volume of the mixture, J, as 

f =ref- LPaP-yEoryba-yF(kBT/Ea-y,Tf,Aa-y) 
a-y 

(36) 

where ba-y = 7rda-y/6, and Tf = l:a Pabaa· The reference system is an additive hard-sphere 

fluid with diameters da. The properties of the reference fluid are given by the Mansoori-

Carnahan-Starling-Leland (1971) equation of state. 

The square-well interaction parameters between unlike species are obtained from the 

parameters between like speCies by 

f.a-y = ~(1- ka-y) 

1 
dOl"!= 2(dq + d-y) 

1 
Aa-y = 2( Aa + )..'"~) 

(37) 

(38) 

(39) 

The single binary parameter ka-y is fit to equation-of-state data for temperatures greater than 

20% of the higher critical temperature and to mixture phase-equilibrium, data with less than 
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0.1 mole fraction of the component with the higher critical temperature in the liquid phase 

for temperatures lower than 20% of the higher critical temperature. 

Vapor-liquid phase-coexistence data for carbon dioxide I n-butane mixtures are from 

Olds et al. (1949), Nagahama et al. (1974), Kalra et al. (1976), Brown et al. (1989), Pozo et 

al. (1989), Shibata and Sandler (1989), Traub and Stephan (1990), and Weber (1989); data 

for methane I carbon dioxide mixtures are from Reamer et al. (1944), Arai et al. (1971), 

Davalos et al. (1976), Hwan et al. (1976), Mraw et al. (1978), Al-Sahhaf et al. (1983), Somait 

and Kidnay (1983), Xu et al. (1992), and Bian et al. (1993); data for methane I n-butane 

mixtures are from Sage et al, (1940), Roberts et al. (1962), Chen et al. (1974), Elliot et al. 

(1974), and Kahre (1974). Equation-of-state data for carbon dioxide I n-butane mixtures 

are from Olds et al. (1949); data for methane I carbon dioxide mixtures are from Reamer et 

al. (1944); data for methane I n-butane mixtures are from Reamer et al. (1947). 

After fitting the parameter k12 , the parameter .6.12 is adjusted to give a reasonable fit to 

a pressure-composition envelope at a particular temperature. Table 3 gives these parameters 

for each of the mixtures studied here. Critical coordinates for the mixtures are not used as 

input data. 

Figures 1, 2, and 3 show pressure-composition envelopes for carbon dioxide I n-butane, 

methane I carbon dioxide, and methane In-butane mixtures, respectively. The symbols are 

experimental data; the dashed lines are predictions of the MSA; and the solid lines are results 

of the MSA with renormalization-group (MSA+RG) corrections. The MSA predicts a much 

larger two phase envelope than that observed experimentally. The MSA+RG predictions 
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are in much better agreement with experimental data. Far from the critical region of the 

fluid mixture, the predictions of the MSA and the MSA+RG coincide. The predictions of 

the MSA+RG can be adusted by changing parameter .6.12 . Decreasing .6.12 decreases the 

two-phase region. 

Figure 4 shows the variation of phase densities with pressure for carbon dioxide I n

butane, methane I carbon dioxide, and methane I n-butane mixtures, respectively. The 

symbols are experimental data; the dashed lines are predictions of the MSA; and the solid 

lines show results of the MSA+RG. Predictions of the MSA+RG are in better agreement 

with experimental data than tpose of the MSA. 

Figures 5, 6, and 7 present pressure-density isotherms at several composistions for carbon 

dioxide I n-butane, methane I carbon dioxide, and methane I n-butane mixtures, respec

tively. For both theories, agreement with experiment is fairly good. At moderate to high 

densities both theories underestimate the pressure, but the MSA+RG results are in closer 

agreement with experiment than the MSA results. At low densities, the MSA is in better 

agreement with experiment; however, the difference in the predictions of the MSA and the 

MSA+RG at these conditions is small. This small difference could be due to inadequate 

subtraction of long-wavelength fluctuations from J(s) in Eq. (18), or perhaps to inadequacy 

of the recursion relations, Eqs. (23)-(28), at these conditions. 
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Conclusions 

In an earlier paper (Lue and Prausnitz, 1997), we propsed a method to extend the "global" 

renormalization-group corrections of White and coworkers for pure fluids to a wider region 

of densities and temperatures. In this work, we extend our method to multicomponent flu

ids. To illustrate engineering applicability, we combine our method with the mean-spherical 

approximation to produce an equation of state for fluid mixtures valid. near to and far from 

their critical points. 

The MSA + RG results are in better agreement with experimental data than the MSA 

results. Far from the critical region of the fluid mixture, the predictions of the MSA and the 

MSA+RG coincide. Predictions of the MSA+RG can be adusted by changing the parameter 

.6.12 . Decreasing .6.12 decreases the two-phase region. 

The predictions of the MSA and the MSA + RG for the equation of state of the fluid mix

ture is fair. At moderate to high densities, the MSA+RG yields better agreement with ex

periment than the MSA. However, at low densities, the MSA yields slightly better agreement 

with experiment. Overall, the MSA + RG results are better than those from the uncorrected 

MSA fit. 

However, it is important to stress that modest agreement between theory and equation-of

state data is not primarily due to inadequacy of the renormalization corrections but, instead, 

to inadequacies in the base equation of state. 

In this work, we use the MSA; however, in general, any model for the free energy can be 

used. The main direction for future improvement is first, to find a better reference equation 
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valid at conditions not near critical and second, to find a better way to subtract the long

wavelength approximation for the free energy contained in the reference equation. 

The major advantage of our method is that it is not limited to Type I fluids. In principle, 

it can be applied to any binary or higher multicomponent mixture provided that a reliable 

equation of state exists for representing the properties of the fluid mixture at conditions 

remote from the critical region. Although we only examined vapor-liquid phase equilibria, 

our method can be used to study any type of fluid phase-coexistence behavior, including 

liquid-liquid phase equilibria. 

The major shortcoming of our method is the numerical evaluation of the multidimen

sional integral in the recursion relation [Eq. (25)]. The dimension of the integral is equal to 

the number of components of the fluid. The more components in the fluid, the more com

putationally expensive the evaluation of the integral. Before this method can be of practical 

use for fluids with many components, it will be necessary to develop an efficient method to 

evaluate this multidimensional integral. 
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Notation 

a 

b 

d 

e 

f 

h 

z 

k 

kB 

L 

N 

N 

q 

Q 

r 

T 

v 

-

-
,_ 

-

-

-

-

-

-

-

interaction volume defined in Eq. (5) 

molecular volume 

hard-sphere diameter 

external field 

Helmholtz energy per unit volume 

total correlation function 

binary mixing parameter, defined in Eq. (37) 

Boltzmann constant 

maximum wavelength of fluctuations that are approximated by base theory 

number of molecules 

normalization factor 

Fourier transform variable 

normalization factor 

center-to-center distance 

temperature 

reduced perturbation potential 
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Greek letters 

/3 - 1/(kBT) 

v generalized chemical potential 

b Kronecker delta 

~ - mean square value for wavelet function 

c - square-well depth 

( range of perturbation potential defined in Eq. (10) 

TJ - packing fraction 

,\ - reduced square-well width 

A thermal wavelength 

Jl - chemical potential 

cp integration variable 

p number density 

'1/J - wavelet function 

~ - correlation length 

w - number of components in fluid 

Subscripts 

j, k, s, t molecule number 

a,/, cr,r species type 
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Superscripts 

l 

MSA 

ref 

s 

long wavelength 

mean-spherical approximation 

reference system 

short wavelength 

vector in fluid components 

three-dimensional Fourier transform 
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Appendix. Derivation of Recursion Relations 

To perform the integration in Eq. (22), we first need to define precisely what is meant 

by a density profile smooth at length scale L. To do this, each density distribution, p0, is 

expanded in terms of the basis functions, '¢im1)(r). These basis functions are constructed 

from translations and dilations of a single function, '¢01 • That is 

(A1) 

where m and l are integers. We require that the functions '¢01 satisfy the following properties 

(Battle, 1994), 

1. '¢01 is nearly zero outside the cube 

C = [0, 1) X [0, 1) X [0, 1) 

2. The functions '¢im/) are orthogonal with respect to the Sobolev norm, 

(A2) 

where b is the Kronecker delta, and ~01., is a normalization factor that depends on the 

particular definition of the functions '¢im/). 

3. I~OI(r)l ~ 1 in the cube C 

4. fc cf3r'¢01 (r) = 0 where the subscript Con the integral sign means that the domain of 

integration is the cube C. 
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Any function that has a finite Sobolev norm can be represented in terms of these basis 

functions. For example, the density distribution, p01 (r), can be expressed as 

00 

P01(r) = L (A3) 
m=-oo 1=-oo 

If p~) is a density distribution that is smooth on length scale 21 L, the density can be 

expressed as (Battle, 1994) 

p~>(r) = L L p~ml')?jJ~ml')(r) (A4) 
m 11?_1 

From this expansion, we find that the density at length scale 21- 1 L can be related to the 

· density at length scale 21 L by 

(A5) 
m 

The Hamiltonian at length scale 21- 1 L, 1-{(1- 1) can be determined from the Hamiltonian 

at length scale 21 L, 1-f.(l) by integrating over the expansion coefficients p~ml) 

(A6) 

where .A! is a normalization constant to be discussed later, and the Hamiltonian is defined 

as 

1-f.(l)[p{l)] = L a01~(;'Y j d3r\7p~>(r) · \7p~>(r) + j d3rj(1)(p\1)(r)) (A7) 
OI'Y • 

Substituting Eq. (A5) into the gradient term of the Hamiltonian, we find 
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+ L j d3rp~ml)'Vp~-l)(r). 'V'I/J(ml)(r) 
m 

+ L J d3rp~ml) p~m'l)'V'I/J(ml)(r). 'V'I/J(m'l)(r) 
mm' 

= j d3r'Vp~>(r)·'Vp~>(r)+(21L)l:P~ml)p~ml)~a-y (AS) 
m 

where we have made use of Eq. (A2). 

Substituting Eq. (A5) into the first term of the Hamiltonian, we find 

j d3rf(l-I)(j}l-l)(r)) = j d3rf(l-l)(iJll(r) + Lp(ml)~(ml)(r)) (A9) 
m 

Requirement ( 1) states that the function '1/Ja( r) is approximately equal to zero outside the 

cube C. Combined with Eq. (A1), this implies that the functions '1/Jiml)(r) are approximately 

equal to zero outside the cube 

Therefore, the integral can be divided into a sum of integrals over each cube c<mt). This 

yields, 

Requirements (3) and (4) imply that over half of the cube C(ml), '!fJ;:1(r) ~ +1 while in the 

other half '!fJ;;-1(r) ~ -1. With this we find that 

(AlO) 
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Introducing Eqs. (AS) and (AlO) into Eq. (A6), we find 

exp{ -,81-l(l)[p{l)]} = ~ j II dP.,.m exp{ -,81-{(1-l)[p{l-1)]} 
-rm 

where 

= exp {-~ ""';(;, j d"rV p~>(r) · V p~>(r)} 

X_!_ J IJ dP(m'l) exp{- (21 L ){3 "'a ;-2 "'p(ml) p(ml) f::l N .,. 2 LJ a-r':.a-y LJ a -y a-y 
m'-r a-y m 

- (2/L?/3 L[f(l-l)(p{/)(2/Lm) + p(ml)) + j(l-l)(p{/)(2/Lm)- p(ml))]} 
2 m 

= exp {-~ ""';(!, j d"rV p~>(r) V p~>(r)} 

X~ II[j II dP;ml) exp{ -(21 L )3 ,B[L aa-y~a-y (;~2) 2 Piml) p~ml) 
m .,. ~ 

+~[j(l-l)(p{/)(2/Lm) + p(ml)) + J(l-l)(p{/)(21 Lm)- p(ml))]]}] 
2 

-,81-l(Z)[p{l)] =-L aa~(;-r j d3r\l p~)(r). \1 p~)(r) 
a-y 

- L[f(l-l)(p{1)(21 Lm)) + ln J'(p{1)(21 Lm) )] (All) 
m 

Because the density profiles, p~), are fairly constant on length scales less than 21 L, the 

system can be considered as being divided into cubes of width 21 L. Integrals can be consid-

ered as sums with differential volume element ~r = (21L)3, and we can make the replacement 

Lm (21 L )3 
--+ f d3 r Performing this substitution yields 

-,81-{(l)[p(l)] =-L aa~(;-r j d3r\l p~)(r). \1 p~)(r) 
a-y 
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Comparing this expression with the definition of the Hamiltonian [see Eq. (A7)], we find 

(Al4) 

To determine the .AI, we use the procedure of White and coworkers. If perturbation 

potential v~~(r) is equal to zero, then the free energy should be fully accounted for by 

the function f(s). The renormalization procedure should therefore leave the free energy 

unaffected. This implies that 

.AI= j IT dP-r exp{ -(21L)3,8[L a;-y PaP-y 
T a-y 

+~[f(/-l)(o + P) + f(l-~)(1- P)JJ- f(/-l)(p)} 
2 

(A15) 

This process results in the recursion relations defined in Eqs. (23)-(28) to determine the 

long-wavelength fluctuation corrections to the free energy of a fluid. 
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Tables 

Table 1: Critical exponents for a simple fluid 

{3 I h ll TJ 

Expt.a 0.32-0.39 1.3-1.4 4-5 0.6-0.7 0.1 

Classical 0.5 1 3 0.5 0 

Wilson and this work 0.34b 1.22c 4.8b 0.61c oc 

afrom Sengers ( 1991). 

cfrom Salvino and White-(1992). 

bfrom Wilson (1971b). 

-) 
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Table 2: Fitted square-well parameters for three fluids when L = 5.10 A 

methane carbon dioxide n-butane 

(.6. = 12.0) (.6. = 9.15) (.6. = 10.6) 

f(o) (MJ /mol) 8.75 X 10-4 1.62 X 10-3 2.26 X 10-3 

f(I) (MJ /mol K2) 4.92 13.4 

o- (A) 3.53 3.48 4.86 

A 1.75 1.65 1.65 
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Table 3: Binary parameters for binary mixtures of methane, carbon dioxide, and n-butane 

carbon dioxide I n-butane 

methane I carbon dioxide 

methane I n-butane 

43 

kl2 .6.12 

0.185 

0.0747 

0.0995 

17.6 

25.6 

17.9 



Figure Captions 

Figure 1: Pressure-composition envelopes for carbon dioxide I n-butane mixtures: (i) ex

perimental data (symbols), (ii) mean-sph-erical approximation (dashed lines), and (iii) 

mean-spherical approximation with renormalization corrections (solid lines). Experi

mental data from Olds et al. (1949). 

Figure 2: Pressure-composition envelopes for methane I carbon dioxide mixtures: (i) ex

perimental data (symbols), (ii) mean-spherical approximation (dashed lines), and (iii) 

mean-spherical approximation with renormalization corrections (solid lines). Experi

mental data from Arai et al. (1971). 

Figure 3: Pressure-composition envelopes for methane I n-butane mixtures: (i) experi

mental data (symbols), (ii) mean-spherical approximation (dashed lines), and (iii) mean

spherical approximation with renormalization corrections (solid lines). Experimental 

data from Sage et al. (1940). 

Figure 4: Phase densities for (a) carbon dioxide I n-butane,.(b) methane I carbon diox

ide, and (c) methane I n-butane mixtures: (i) experimental data (symbols), (ii) mean

spherical approximation (dashed lines), and (iii) mean-spherical approximation with 

renormalization corrections (solid lines). Experimental data for carbon dioxide I n

butane are from Olds et al. (1949); for methane I carbon dioxide from Arai et al. (1971); 

and for methane I n-butane from Sage et al. (1940). 
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Figure 5: Equation of state for carbon dioxide I n-butane mixtures for (a) T = 444.26 K 

and (b) T = 510.93 K: (i) experimental data (symbols), (ii) mean-spherical approximation 

(dashed lines), and (iii) mean-spherical approximation with renormalization corrections. 

The variable x is the mole fraction of carbon dioxide in the mixture. Experimental data 

are from Olds et al. (1949). 

Figure 6: Equation of state for methane I carbon dioxide mixtures for (a) T = 377.59 K and 

(b) T = 510.93 K: (i) experimental data (symbols), (ii) mean-spherical approximation 

(dashed lines), and (iii) mean-spherical approximation with renormalization corrections 

(solid lines). The variable xis the mole fraction of methane in the mixture. Experimental 

data are from Reamer et al. ( 1944). 

Figure 7: Equation of state for methane I n-butane mixtures for (a) T = 444.26 K and 

(b) T = 510.93 K: (i) experimental data (symbols), (ii) mean-spherical approximation 

(dashed lines), and (iii) mean-spherical approximation with renormalization corrections 

(solid lines). The variable x is the mole fraction of methan~ in the mixture. Experimental 

data are from Reamer et al. (1947). 
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