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Abstract 

Lack of resolution is a common problem hampering the use of large eddy simulation models for 
investigating boundary layer dynamics. Entrainment into the tops of marine stratus is characteristic of 
this problem. The use of parallel computing as a technique for resolving both boundary layer motions and 
the entrainment region enables the investigation of the interaction between the moist thermodynamics 
and turbulence in the entrainment region at very small length scales (dx = 8 m, dz = 4 m). This 
interaction results in heterogeneity at small scales which is important for correctly diagnosing the details 
of entrainment. 

This study presents several numerical experiments at high resolution using a generalization of a 
1995 GCSS (GEWEX Cloud System Studies) model intercomparison. Subtle details of the numerical 
algorithm are found to cause larger differences in entrainment than choice of subgrid model. A kinetic 
energy budget shows that even for very high resolution, numerical dissipation is usually larger than that 
produced by the subgrid model. However, the structure of eddies at the inversion is determined mainly by 
resolution with very little dependence on numerical representation. Inversion properties are converging 
as resolution approachs an undulation scale. Most of the mixing is confined within 100 meters of the 
inversion with entraining motions having an aspect ratio of 6 to 1. 

1 Introduction 

An important unresolved problem in many areas of boundary layer meteorology is the process of entrain­
ment through a stratified inversion. Large eddy simulations are becoming increasingly popular and there is 
considerable debate about the ability of these models to resolve overturning at the inversion. This study 
uses very high resolution simulations to clarify the role of small scale structures in the entrainment process. 
In the process, the ability of large eddy simulation to resolve these structures has been studied. 

These turbulence simulations have been consistently limited by the lack of sufficient computational re­
sources and one of the largest sources of error in large eddy simulation (LES) is the lack of resolution. To 
avoid the computational requirements of 3D modeling, there have been many investigations of idealized en­
trainment, often in 2D (MacVean and Bretherton, 1998; Kuo and Schubert, 1988) and with idealized vortices 
(Siems et al. 1992). High performance computers have only recently been able to achieve adequate resolu­
tion. The lack of resolution compounds two fundamental problems with LES, numerical error on resolved 
scales and errors due to the lack of unrepresented scales. Attempts to mitigate these problems have resulted 
in improved numerics (Almgren et al., 1996; Stevens and Bretherton, 1997; Skamarock and Klemp, 1994) 

*This work was supported by the Defense Special Weapons Agency IACR098-3017, through the U. S. Department of Energy 
under Contract No. DE-AC03-76SF00098. 
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and sub-grid scale parameterizations (Mason and Brown, 1994; Mason and Brown, 1998; Deardorf, 1974). 
This study uses a novel combination of massively parallel computing and modern numerics to investigate 
stratocumulus entrainment. 

Entrainment in model simulations can come from several sources: simulated overturning of material 
surfaces pulling air from the stratified free atmosphere into a well-mixed boundary layer, numerical diffusion 
inherent in the method of integration or explicitly added for monotonicity or stability, and parameterized 
sub-grid scale diffusion. Ideally entrainment in the model would be represented by inviscid motions that 
are overturning on resolved scales and which initiate a transfer of energy to a parameterized sub-grid scale 
inertial range. Often this is not the case and the resolution required for an inertial range is not present. This 
paper quantifies these effects on entrainment for a moist test case. 

Often atmospheric flows contain intrinsic length scales which must be properly resolved for a simulation 
to be trusted. Such a length scale was introduced in Bretherton et al. (1998) and investigated in Stevens and 
Bretherton (1998) for a simplified smoke cloud. This length scale arises from typical accelerations caused by 
the density jump at the inversion and is often less than 5 m. This is much smaller than typical resolutions 
used in large eddy simulation. Stevens and Bretherton found that lack of resolution for the smoke cloud 
caused excessive numerical diffusion at cloud top and hence under-resolved simulations overentrained. 

Determining the effects of numerical errors is a challenging task. Errors in entrainment due to numerical 
defects can. be more subtle than excessive diffusion at the inversion. Often, techniques to limit undesirable 
numerical effects can limit the strength of eddies impinging on the inversion which could actually lower 
entrainment. This study uses kinetic energy dissipation to show that numerical dissipation can be much 
greater than that of the subgrid model. An investigation of the vertical velocity spectra is then used to 
evaluate differences in dissipation between different numerical approaches. 

Parameterized diffusion at the fine scale end of a turbulent inertial range is usually described as the desired 
outcome of subgrid models. Often this is unfeasible, due to lack of resolution. Improving sub-grid models 
for underresolved 3D LES models is an important precursor to adequately modeling these clouds via 1D 
column parameterization in larger scale models. This study presents several very high-resolution simulations 
where inertial subrange scaling is present in the boundary layer and compares them to coarser simulations. 
Since a large fraction of entraining boundary layer eddies are unresolvable with typical resolutions, these 
high resolution simulations provide a new view of entraining eddies, whose diagnosed bulk properties can 
then be incorporated into such subgrid models. This is done through statistics derived from the thickness 
and variability of the inversion. This work supports much of the recent effort (Lock and MacVean, 1998; 
Lewellen and Lewellen, 1998; B. Stevens et al, 1998) to relate entrainment to boundary layer motions. 

This paper is organized around analysis of small scale motions in marine stratocumulus. Its analysis 
is also applicable to other types of convective boundary layers. The research uses a generalization of the 
smoke cloud case (Bretherton et al, 1998) and extends results which came out of its intercomparison. In 
Section 2, we introduce a case study, typical measures of entrainment and the aspects of the large eddy 
simulation model which facilitate this investigation. The relationship of the entrainment to the boundary 
layer dynamics is investigated in section 3. In section 4, the structures determining the turbulence at the 
inversion are examined. Throughout this text, the importance of adequate resolution is demonstrated by 
the convergence of simulation properties as resolution is increased. In section 5, we present conclusions and 
future directions. Summaries of the model and its parallel implementation follow in the appendices. 

2 Case Description 

The simulations performed are generalizations of a 1995 GCSS (Bretherton et al. 1998) model intercompari­
son. The 1995 intercomparison was chose11 to isolate the effect of longwave radiative cooling on entrainment, 
by removing condensation and virtual effects on buoyancy. This simplified model intercomparison and made 
possible comparisons with dry convective boundary layers whose turbulent properties are better understood 
and documented. The study presented here reintroduces these effects through an analogous moist case and 
compares this case to the earlier dry case. 
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The GCSS test case simulated a turbulent boundary layer underneath a strongly stratified inversion. 
Turbulence was driven solely from radiation, parameterized by a conserved radiatively active tracer that 
mimicked the effects of cloud radiative cooling. Effectively, the only difference between the compared models 
was their choice of numerical algorithm and sub grid model. It was found that even for a single class of three­
dimensional LES models, entrainment rates and other statistics often differed by a factor of two. Further 
research indicated that entrainment in a smoke cloud behaved analogously to that of laboratory experiments. 
However, in simulations where the resolution was too coarse (.6-x = 50m, .6-z = 25m), entrainment was 
dominated by numerical diffusion. This diffusion was correlated to not resolving an undulation scale at the 
inversion. 

The initial profiles and typical hourly averages for Qt and 01, the total water mixing ratio and liquid 
water virtual potential temperature respectively are shown in Figure 1. The jumps in Qt and (}l are similar 
in magnitude to those observed in Nichols and Turton (1983), although the resultant cloud is deeper and 
thicker as seen by the profile of Qc in Figure 1, the mixing ratio of condensed water. The initial profiles 
were chosen to be smooth in both Qt and 01 to insure that details of the initialization were resolved on the 
coarsest of the simulations. The radiative cooling Srad which drives the simulations was parameterized as in 
the intercomparison and is described below. The winds were initially calm and no large scale forcings such 
as subsidence was applied. Motions were initiated via a perturbation in (}l and turbulent kinetic energy etke 

consisting of a fixed sum of sine waves with random amplitudes and phases. The maximum amplitude of 
each wave was 0.1 K and IQ-3m2 js2 respectively. The domain was 3.2 km wide in each horizontal dimension 
and 1.2 km high. 

The relevance of the smoke cloud to a more realistic moist cloud is a useful extension of the GCSS 
intercomparison. For many stratus clouds, there is an additional source of turbulence from evaporative 
cooling. This cooling arises from evaporation caused by mixing of saturated boundary layer air at cloud top 
with unsaturated above inversion air. The mixtures are often less buoyant than their initial sources due to 
this evaporation. This study includes this effect by specifying inversion jumps in Qt and (}1 which for a given 
jump in Bv, the virtual potential temperature, results in the greatest possible evaporative cooling without 
buoyancy reversal. This corresponds to a value of zero for the stability parameter D as defined by Siems 
et al. (1990) and 0.23 for the stability parameter K as defined by MacVean and Mason (1990). This jump 
in inversion values is on the border of the instability region specified by Randall (1973). The buoyancy of 
mixtures as a function of above inversion air fraction is shown in Figure 2. Although there is a 4 K jump in 
Bv at the inversion, roughly 50% of the mixtures are neutrally buoyant with respect to the boundary layer. 
This is caused by evaporative cooling exactly cancelling the increase in potential temperature from mixing 
in above inversion air. 

The model used in this study integrates a modified form of the the anelastic equations of Ogura and 
Phillips (1962). These equations are found by decomposing the Navier-Stokes equations into an isentropic 
base state Po, the leftover mean environmental component in hydrostatic balance p1 , and a dynamic pertur­
bation pz. 

p(x, y, z, t) = Po(z) +PI (z) + pz(x, y, z, t) 

This results in the system of equations: 

aui 
at 

aOi 
at 
aqt 

at 

= 

= 

a 
-pou· = 0, axj J 

(I) 

(2) 

(3) 

(4) 

(5) 

where II is the perturbation pressure pz/po, Oi = (Ol- Oo)/Oo is a scaled liquid water potential temper­
ature, and O'ff = Bv,z/Bo is a scaled virtual potential temperature buoyancy term. Longwave radiation is 
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parameterized using a simple parameterization. 

(6) 

where H is the height of the domain. For these simulations, constant values of Fr(H) = 100 W jm2 and 
Ka = 10m2 /kg were used. This results in most of the radiative forcing being concentrated with 70 meters 
of the inversion as seen in Figure 1. Cloud water, qc, is found by inverting Wexler's equations (Flatau et al, 
1992) and precipitation is neglected. The subgrid stresses Tij and fluxes (ujq~, ujBi') are computed using a 
sub-grid model. 

Theories describing turbulent motions require estimates of where the sources and sinks of turbulent energy 
originate and what determines their magnitude. Often the numerical dissipation in the resolved advection 
scheme is equivalent to that produced by the subgrid model. This raises the issue of to what degree is the 
mixing in a simulation determined by a physically meaningful energy cascade versus the extent to which it 
is fixed by the model's resolution and numerics. An attempt to resolve this issue requires analysis of the 
interaction between the model numerics and the subgrid-model. This case study uses two sub-grid models to 
isolate dependancies on the sub-grid model. The subgrid models used in this study are the turbulent kinetic 
energy (TKE) 1.5-order closure scheme (Mellor and Yamada 1974) and the Smagorinsky/Lilly 1.0-order 
scheme (Lilly, 1962; Smagorinsky, 1963). 

The TKE scheme is derived from averaging the momentum equations about a length scale determined 
by the model resolution. It involves a prognostic equation for the sub-grid energy €tke which includes terms 
for production by deformation and buoyancy and its dissipation. 

a a 3/2 

K D f2 2 K etke K N2 etke = m e + --po m axk - h - Ct-z-
Po axk 

(7) 

Here, K m is the eddy viscosity, Def2 = ~ ( ~ + ~) is the deformation, and N 2 is a local estimate of the 

Brunt-Vaisala frequency. The term P
2 -lLpoKm 8;•&· parameterizes triple moment terms. Eq. (7) contains 
0 VXk UXk · 

the length scale assumptions: 

Kh = 
.!. 

chlefke> (8) 
.!. 

Km Cmlet2ke> (9) 

(~x~y~z)l/3. (10) 

If one makes the additional assumption that etke is in local equilibrium, 

3/2 

0 - K Def2 K N 2 c etke - m - h - t-z-, (11) 

this model reduces to the Smagorinsky sub-grid model 

Km = c;z2Defy'1- RijPr, Ci = c~fct. (12) 

An interesting property of the Smagorinsky sub-grid model is that for strong Richardson numbers, Ri > Pr, 
€tke = 0, whereas for the TKE model, etke is often nonzero under identical conditions. 

The numerical model used in this study were developed by Almgren et al. (1996) using an advection 
scheme and treatment of physical processes developed by Stevens and Bretherton (1997) and Smolarkiewicz 
and Margolin (1995). For a detailed description of the numerical model, see Stevens et al. (1998) which 
includes the treatment of adaptive mesh refinement. In this paper, we use a distributed memory single­
level version of the adaptive algorithm. The parallel implementation strategy is discussed in Appendix A. 
It is a forward-in-time projection method using a 3rd order advection scheme for both velocity and scalar 
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advection. This advection scheme has better accuracy properties than many commonly used schemes in 
meteorological models. Common sources of error in many large eddy simulations are errors in the resolved 
advective fluxes which often produce unphysical extrema in the moisture fields such as qt. This can be 
avoided in forward-in-time schemes via flux correction techniques. Most of these techniques are equivalent 
to slope-limiting, where the normal slope of the solution used in calculating an advective flux over a cell 
face is limited to eliminate pathological under/overshoots (Leveque 1992). Slope limiting is used for both 
qt and Bz for this reason; however, slope-limiting for the momentum is not required. Its use is similar to 
the spectral filtering and artificial viscosity techniques used to control noise at high wavenumbers, often at 
the expense of accuracy in lower wavenumbers. Several researchers (Mason and Brown, 1998; B. Stevens et 
al, 1998) have conjectured that by eliminating numerical noise with these filters, the sub-grid models often 
perform in a more meaningful manner. This investigation uses simulations with and without slope limiting 
to test this idea. 

Kinetic energy, e = Uiui/2, is a useful quantity for analyzing whether mixing in the model arises from 
the numerics or the sub-grid model and for relating boundary layer motions to entrainment. This quantity 
satisfies the budget equation: 

ae ae ali # Ui aTij - = -Uj-- Uj- + gw()v + ---. 
at axj axj Po axj 

(13) 

Due to the cell-centered forward-in-time implementation of the model, it is possible to construct discrete 
budgets of e as described in Appendix B. One can use this energy budget with zero residual to focus attention 
on the dissipation in the model's advection scheme. We define an energy residual with no resolved dissipation: 

(14) 

where (ui %:.) is evaluated in conservative form as the convergence of an energy flux. Since the budget 
1 conv 

is exact, this residual is equivalent to 

( Uj ::J model - ( Uj ::J conv = Se,res· (15) 

One can think of this as the numerical energy dissipation in the model. An estimate of an eddy viscosity 
can be found from a first-order model: 

Se,res = -Ke(z)Def2 (16) 

This makes it possible to directly compare the numerical diffusion against that of the subgrid model, since the 
subgrid dissipation is modelled as KmDee. Although dissipation in a large eddy simulation is a complicated 
nonlinear process that often involves countergradient transport, this eddy viscosity was found to have similar 
magnitude and behavior to that determined by the sub-grid model. Hence it is a useful estimate of the 
numerical diffusion as a function of height. Understanding how changes in the representation of turbulence 
in the boundary layer affect boundary layer properties helps clarify the role of resolution. 

Predicting entrainment or the rate at which a boundary layer deepens with time is fundamental to 
parameterizing them in climate studies. Entrainment in this study, denoted We, is defined as the rate at 
which the average height of the inversion layer rises. Our definition of the inversion layer is the region for 
which qt takes on values (7.5:::; qt :::; 8.5 (g/kg)). The mean horizontal average of the thickness of this layer, 
denoted c5zinv, is used as a measure of inversion thickness which measures the region where the strongest 
mixing of inversion and boundary layer air occurs. The standard deviation of c5zinv is an indication of the 
degree to which entraining tongues of air thicken the mixing region. This is different than the estimate used in 
the GCSS intercomparison of determining the boundary layer height as the topmost layer of an intermediate 
value of the tracer. The standard deviation of that boundary layer height indicates the average undulation 
of the inversion and isn't necessarily correlated with entrainment events. Other statistics involving c5zinv 
are useful tools for examining the role of resolution in properly capturing the entrainment dynamics. By 

5 



computing statistics on clusters of neighboring gridpoints where 8zinv is much thicker than its horizontal 
average one can estimate the average area and number of entraining eddies. This provides useful information 
on the structure of these eddies. 

A relationship between the magnitude of boundary layer motions and entrainment is a fundamental part 
of parameterizing the entrainment. This requires relating the kinetic energy budget to entrainment. The 
"efficiency" of the entrainment, as described by the parameterization 

We/w* = A/Ri (17) 

w* = 2.5foZinv gw'Ot/ dz (18) 

Ri 
gzinvll.Bv 

(19) = ' Bow*2 

is an appealing concept from the dry convective boundary layer that appears to often hold for the dry smoke 
cloud. The A parameter is controversial as an estimate of the efficiency as it has dependencies which arise 
from the distribution of radiative cooling and choice of numerics, resolution, and sub-grid model. However, 
it is useful for framing a discussion about the ability of a boundary layer to perform work as it relates the 
buoyancy flux at cloud top ( -well.Bv) to a fraction A of the buoyancy production in the boundary layer. 

Much effort has gone into developing and validating parameterizations such as Equation (17). Often LES 
studies have been used as the chief means for validating them in the absence of the wide range of observations 
needed. One of the issues that has arisen from these LES studies is whether an adequate resolution of the 
localized entraining eddies is more or less important than capturing other boundary layer effects correctly. 
A study by Lewellen (1998) suggests that properly resolving the ability of turbulence in the boundary layer 
to perform work is the key to accurately simulating the evolution of these clouds. Since this only requires 
resolving eddies which scale with the boundary layer height, much less resolution is required as compared to 
resolving fine scale entraining eddies. Another viewpoint arises from the idea that entrainment is mainly a 
function of the net source of kinetic energy (Lock and MacVean, 1998)-. This would indicate that it is sufficient 
to resolve the sources of kinetic energy to get meaningful entrainment. In this case study, the sources are 
limited to radiation with the bulk of it contained within 100 m of the inversion. This is still much larger 
than the entraining eddy length scale. A final viewpoint is that resolving entraining eddies is fundamental 
to an accurate simulation. By providing simulations, where all of these length scales are resolved, this study 
is able to help clarify the role of physical processes in determining the validity of parameterizations such as 
Eq. (17). 

3 Relationship of entrainment to boundary layer dynamics 

Several experiments were conducted using the simulations summarized in Table 1. These experiments enable 
the simultaneous comparison of resolution, resolved numerics and the sub-grid model. These simulations are 
named according to their relative resolutionL (low), M (medium), H (high), V (very high) and the value of l 
used in the subgrid model. For direct comparison to the smoke cloud, simulations were performed where'the 
buoyancy was replaced by Off = (01--'-0o)/Oo. This results in a 7 K inversion similar to that used in the GCSS 
intercomparison, but with cloud water and radiation profiles similar to the moist case described above. The , 
simulation acronyms are composed of whether they involve a smoke cloud (first letter S) versus a moist one, 
their numerical resolution (L,M,H,V), the value of l, whether slope limiting occured (S-) and the order of 
the turbulence closure scheme used. In this comparison of simulations, several statistics were computed as 
hourly averages centered at 2.5 hours of simulated time, at which point, the simulated turbulence had settled 
into a steady state with respect to its forcings. This is shown by the behavior of w* as shown below. These 
statistics are presented in Table 2. 

Table 2 shows three different entrainment rates, the obvious two between the moist and dry case and 
whether slope-limiting was applied to the velocities. Although, there is no net production of turbulence 
in the moist case, the evaporative cooling of mixed parcels causes a rapid increase in entrainment that is 
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much greater than would be expected from differences in inversion strength. The difference in entrainment 
caused by slope-limiting is shown in the top plot of Figure 3, where there are two groupings of inversion 
heights. This indicates the tendency of slope-limiting to smooth fields can weaken entrainment significantly. 
This numerical dependence of the entrainment rate is stronger than the resolution dependence as seen by 
the top plot of Figure 4. Increased resolution for the moist case raises entrainment. This is in contrast 
to the smoke simulations (SL40_15, SM20_15, and SH10_15) which exhibit similar behavior to the 
simuluations used in the GCSS intercomparison where higher resolution was found to reduce numerical 
diffusion and hence spurious entrainment. It was also found in the GCSS study that slope-limiting had the 
largest effect on entrainment rate while resolution and type of sub-grid model were of smaller importance. 
Since slope-limiting and flux corrected transport are two commonly used techniques, understanding this 
numerical choice is very important. 

All of the simulations in Table 2 whether moist or dry have the same integrated buoyancy production, w* 
even though they have widely varying entrainment rates. This is. a reflection of the fact that the same amount 
and distribution of radiative cooling was applied in each case. In the bottom plot of Figure 3, w* is plotted 
as a function of time for all of the moist simulations. This plot indicates that the buoyancy production has 
equilibrated after roughly 4000 s. The A parameter is compared in Table 2 and the bottom plot of Figure 4. 
This parameter for the smoke cloud is behaving as in Stevens and Bretherton 1998 with higher resolution 
limiting numerical diffusion and lowering A. This parameter for the moist case is 60% higher or 100% higher 
depending on slope-limiting with higher resolution actually increasing A. This indicates the entrainment 
closure, Eq. (17), is not easily used for actual stratocumulus, since the evaporative cooling appears to weaken 
the inversion making an unaltered ABv an unsuitable choice for the inversion strength. 

The relationship of buoyancy production in the boundary layer is different between the dry and moist 
cases. The buoyancy flux profiles for Hl0_15 and SH10_15 are shown in Figure 5. The entrainment 
buoyancy flux for the smoke cloud is well described by the entrainment rate and jump in ()I at the inversion 
(dotted line). For the moist case (solid line), there is a very small negative entrainment buoyancy flux that 
is not well represented using the jump in Bv. The reason for this can be seen by comparing the actual moist 
buoyancy flux against what the buoyancy flux would look like for the same values of w'Bf and w'q: if the 

layer were dry w'B'tf dry or completely saturated w'B'tf moist· 

'()# W v dry = 

'()# W v moist = 

{3 = 

ffo ( w'Bf + Bo0.608w'q0 

9 (!3---,B' ( Lf3 1 o) -, ') Bo w 1 + CpdT - · w qt 

1 + 00 1.608~ 
1 + _f_ dqvs 

Cpd dT 

(20) 

These buoyancy fluxes are shown by dashed and dash-dot lines respectively. The actual buoyancy flux 
is close to the saturated buoyancy flux throughout the boundary layer, but is constrained to lie between 
the saturated and unsaturated fluxes. The unsaturated buoyancy flux is similar to the smoke buoyancy 
flux with a sharp minima which is well determined by the jump in inversion () and the entrainment rate. 
Since the moist and actual buoyancy fluxes don't have this property, large changes in entrainment will not 
cause buoyancy to consume much kinetic energy. This reduces the effectiveness of quantities such as w* for 
diagnosing entrainment. This case study provides multiple simulations with the same inversion with clearly 
different We, but very similar w*. 

The preceding results indicate that the boundary layer turbulence depends primarily on the numerical 

(-)1/2 
details. However the profile of qf2 as shown in Figure 6 depends strongly on resolution. The higher 

resolution simulations have stronger Qt perturbations which are concentrated at the inversion between 740 
and 780 m for the moist case. Notice the diffused nature of the coarsest simulations. It appears that most 
of the heterogeneity is concentrated within 100m of the inversion. This profile is converging as resolution is 
increased, independent of the details of the numerics. This behavior is also seen in other statistics. Figure 7 
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shows the average boundary layer deformation and enstrophy (half the square of the vorticity). Notice that 
the boundary layer deformation and enstrophy for both dry and moist cases have the same dependence on 
resolution. These quantities are clearly resolution sensitive. The resolution dependence of enstrophy has 
been noticed in simulations in other scientific fields as well (Bell and Marcus, 1992; Chorin, 1986). There is a 
seeming contradiction in that some statistics such as variance of Qt at the inversion appear to be much more 
sensitive to resolution than algorithmic details, whereas the entrainment rate is more impacted by numerics. 
Some feature of the numerics must control boundary layer entrainment. 

An illustration of the role of numerics and resolution is seen in the vertical velocity power spectra of 
Figure 8 and 9. All of the 128x128x96 simulations are plotted in Figure 8. Figure 9 shows the simulations 
for all of the resolutions with the TKE model and no slope-limiting. In both figures, amplitudes at the 
highest wavenumbers fall off faster than k-5/ 3 . This may not be an undesirable feature, since most of these 
wavenumbers have wavelengths that are underresolved by the model grid. Mason and Brown (1998) present 
simulations whose spectra fall off faster than k- 5/ 3 yet perform better in other statistics than simulations 
whose spectra better approximate k-5/ 3 . Both figures have interesting spectra for those wavenumbers which 
are resolved by the criteria that they have wavelengths smaller than 200 m and greater than 4~x. The 
reference lines in both figures for demonstrating a k- 5/ 3 dependence have wavenumber extents determined 
by this criteria. The line in Figure 8 is taken from M20_15 and the line in Figure 9 is from V06_15. Note 
that for the simulation L40_15, there is only one valid wavenumber which fits in this range. L40_15 uses 
the resolution of the GCSS intercomparison and illustrates the extent to which resolution in LES studies has 
been limited. The choice of 200 m as an upper bound is one-fourth of the boundary layer height and is a 
generous estimate of the start of the inertial range. 

For a given resolution, the boundary layer spectra are all very similar with respect to numerics at low 
numbers as shown in Figure 8, while at high wavenumbers the simulations with slope-limiting have increased 
dissipation. For scales which satisfy the resolution criteria, their amplitudes approximate k-5/ 3 . The slope­
limited cases are much less active at high wavenumbers than the non-slope limited ones. Both choices of 
sub-grid model have similar effects at both the inversion and the boundary layer. At the inversion the spectra 
of slope-limited cases have much less power for all wavenumbers. When resolution is allowed to increase for 
fixed numerics, the amplitudes at higher wavenumbers increase at the expense of lower wavenumbers. This 
indicates that low wavenumbers are being forced spuriously by lack of resolution. Hence many of the motions 
that are considered resolved in low resolution simulations may be numerical artifacts. A similar result was 
found by Brown and Minion (1995) where lack of resolved high wavenumbers led to spurious low wavenumber 
vortices. This might explain the differences between the low resolution and high resolution plots of inversion 
depth c5zinv in Figure 14 which are discussed in the next section. 

The importance of quantifying the role of numerical dissipation has been shown above. This was done by 
comparing the numerical dissipation, Se,res, to that of the subgrid model, KmDef2 • The fraction of the total 
dissipation which is numerically generated rather than produced by the subgrid model is shown in Figure 10. 
For simulations with a subgrid model, but no slope-limiting, numerical dissipation is roughly two-thirds of 
the total. The simulations L40S_l5, M20S_l5, and HIOS~15 show that when both the slope-limiter and 
sub-grid model are active, the increased dissipation from the slope-limiter is offset by decreased dissipation 
from the sub-grid model. 

A similar ratio is observed when one compares the eddy viscosity required to relate the dissipation rate 
to the deformation rate, Def2 (Figure 7). The deformation rate and total dissipation are roughly constant 
throughout most of the boundary layer for all cases. The Dee profile is seen to vary strongly with resolution 
with a peak at the boundary layer top (not shown). This peak has a depth of 50-60 m for most resolutions 

(
-)1/2 

which resembles the behavior in q~2 • This resolution dependence causes the numerical viscosity Ke to 

behave in a similar manner to the sub-grid model eddy viscosity. In Figure 11, a comparison of numerical 
versus sub-grid eddy viscosities is presented. In the case where no sub-grid model was applied Km was 
computed as a diagnostic. We see that in the boundary layer this estimate is roughly equivalent to that of 
the sub-grid model. At the inversion this estimate is 5-6 times that of the sub-grid model. This indicates that 
lack of resolution at the inversion and its effects on the numerics are controlling mixing at the inversion. The 
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numerical eddy viscosity depends strongly on slope-limiting in the boundary layer and at the inversion. The 
numerical eddy viscosities without slope-limiting are 75-80% of the cases with slope-limiting, independent 
of resolution. This might account for the difference in entrainment caused by the slope-limiting. 

4 Turbulent motions at the inversion 

The preceding section shows the simulation of the inversion layer depends on both resolution and numerics. 
The role of resolution is seen in typical cross sections of Qt after 2 hours of simulation. Figure 12 displays 
cross sections for L40_15, M20_15, Hl0_15 and V06_15. The resolution is shown by plotting each cell 
as a rectangle whose size is determined by resolution and color by cell value. Only at the finer resolutions 
is overturning of mixed values observed. Although the inversion is remarkably flat, most of the tongues of 
entraining fluid extend to depths of 50-100 meters. As resolution increases these tongues thin roughly linearly 
and their number increases. In Figure 13, the layer defining c5zinv is plotted. This figure illustrates that most 
of the inversion is composed of a thin layer that is shrinking to a scale of less than 10 meters. Regions where 
entraining tongues occur thicken to a depth of roughly 50 meters. The difference in appearance between 
Figures 12 and 13 is due to the entraining tongues being mixed past the cutoff value of 8.5 (g/kg). This 
difference reflects the choice of an inversion depth where the greatest amount of mixing occurs. 

Resolution apparently determines the average thickness of the inversion and the size and number of 
downwellings. Snapshots of the inversion reflect the increase in variability with resolution. In Figure 14, 
snapshots of c5zinv after 2 hours of simulation are presented for L40_15, M20_15, Hl0_15 and V06_15. 
Downwellings are very broad and the separating inversion spaces are relatively thick for L40_15. For 
V06_15, a strong cellular structure with many more downwellings separated by a thinner inversion is 
observed. The entraining features are much broader in L40_15 than the higher resolution simulations which 
is probably due to these scales being inaccurately forced by lack of resolution at the higher wavenumbers. 
By calculating statistics on these snapshots for each minute of the third hour of simulation, it is possible to 
generate qualitative information about these structures. 

A goal of this study is to identify the importance of different scales of motion in determining entrainment. 
Horizontal averages of c5zinv indicate the importance of fine vertical resolution as seen in Figure 15. One 
scale identified by Bretherton and Stevens and Bretherton is the undulation length scale 

(21) 

This scale for the high resolution moist cases is around 7 meters versus 4 for the smoke case (these values 
are tabulated in Table 2), reflecting the weaker inversion of the moist case. The standard deviation of c5zinv 
also shown ·in Table 2 illustrates that the moist case is much more efficiently producing downwelling at 
the inversion. The importance of resolving the undulation scale for simulating mixing at the inversion is 
seen by the convergence of c5zinv as the numerical resolution approaches c5zu. For the moist and dry cases, 
the inversion layer was observed to converge at roughly first-order as a function of l, with the moist case 
converging as: 

c5Zinv = (5.4) + (0.22)(Z){l.07) (22) 

It appears c5zinv has converged the most for simulations Hl0_15 and V06_15 which have vertical/horizontal 
resolutions of 6.25/12.5 and 4/8 meters respectively. Since 5.4 m is very close to the 6.8 m observed for 
simulation V06_15. It appears that this simulation is very close to the converged value. Note that for 
L40_15, c5zu and c5zinv are much less than the mesh spacings, while for V06_15 both quantities are about 
twice the vertical mesh spacing. 

The thickness of the inversion identifies c5zu as an important vertical length scale. It remains to be 
determined if this vertical scale is also an important horizontal scale. In Figure 16, hourly statistics are 
computed on clusters of neighboring columns where c5zinv is greater than 50 m. For simulations such as 
L40_15, this is equivalent to 2 vertical mesh spacings. These statistics provide supporting evidence for 
the role of resolution rather than numerics in determining the structure of eddies at the inversion. One 
finds from this figure that the total area spanned by these clusters, their average area and their number are 
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strongly determined by resolution. An interesting result is that the average depth of these clusters is roughly 
constant around 75 meters. This is roughly twice the distance between the inversion height and the peak of 
the radiative cooling. Hence the depth of these clusters appears to be primarily related to the distribution 
of the radiative cooling. 

One consequence of the increased number of clusters with resolution assuming an even distribution of 
downwellings is that the average event composed of a downwelling and its thin surrounding inversion shrinks 
from a horizontal extent of 800 meters to 450 meters as resolution is increased from l = 40 m to 6m. This 
results in an aspect ratio changing from 20-1 in the coarsest simulations to 6 to 1 for the finest simulation. 
This is an aspect ratio similar to Rayleigh convection between two plates. Since these eddies have a depth 
roughly constant with resolution that scales with the source of kinetic energy, it suggests that this source 
has an important scale to resolve. Although this is much larger than the undulation scale, it is only spanned 
by more than 5 gridpoints in the finest simulations. 

5 Conclusions 

Inversion structure is clearly a function of resolution. Entrainment in underresolved simulations is caused 
by much larger diffused features. Most mixing is confined to within 100 m of the inversion with entraining 
eddies becoming more isotropic as the resolution increases. Typical entraining eddies have a horizontal scale 
of 450 meters amd a vertical scale of 75 m for an aspect of 6 to 1. 

The entrainment rate depends more strongly on the presence of slope-limiting than sub-grid model, hence 
this numerical detail is a fundamental concern. If the entraining eddies are confined to within 100 meters of 
the inversion where the sub-grid models have weak eddy viscosities, extra diffusion in the numerics appears 
to be the only factor reducing the ability of the boundary layer simulation to entrain. 

The optimal choice of numerics and sub-grid model is still ambiguous. However, since these models are 
attempting to approximate very high Reynold's number flows, elimination of numerical diffusion such as 
slope-limiting seems preferable. Especially when the majority of dissipation is numerically driven. One can 
make observations about the use of Smagorinsky versus the TKE model. Although both the Smagorinsky and 
TKE models are of comparable complexity to implement, and the TKE model eliminates the assumption 
that subgrid motions are locally in equilibrium, both sub-grid models produce roughly the same amount 
of dissipation as resolution was increased. Smagorinsky appears preferable, since it has the advantage of 
eliminating the necessity of advecting an additional scalar. 

The large number of high resolution simulations presented in this study show the importance of doing a 
large number of interrelated simulations rather than one unsupported simulation. Our eventual goal is to 
perform simulations with length scales of less than 2 meters (10003 meshes) in less than a day of computer 
time. This will enable a thorough investigation of these turbulence problems on a research timescale that is 
not limited by access to sufficient resolution and computing time. 

The same technique for implementing distributed parallel computing as described in Appendix A is easily 
extendable to adaptive mesh refinement. By refining in the vertical about the important 200 meters where 
entrainment is occurring, while providing 10 meter resolution in the boundary layer, we will increase our 
resolution by 50% without any increases in computational costs over the V06_15 simulation. 
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Appendix A: Parallel Implementation 

Modern parallel computers are potential solutions to the lack of resolution in many atmospheric simulations. 
These computers have the potential to resolve an order of magnitude smaller scales than a uniprocesser 
without sacrificing domain size, thus greatly reducing many sources of error. The use of parallel computing 
has been hampered by lack of an easily usable programming model. This paper presents a programming 
model in a large eddy simulation context that greatly reduces the effort needed for distributed parallel 
computing. 

The programming model used in these simulations is based on an Object-oriented library called BoxLib 
which greatly reduced the implementation difficulties. It is a small, flexible set of tools for manipulating 
block decomposed data. Due to space limitations, only a summary is presented; a more in depth presentation 
is given in (Rendleman et. al. 1998). The block decomposition of the domain is described by a few basic 
abstractions -

• An Int Vect represents a point in index space. 

• A Box represents the lower and upper bounds of a region as two points in index space. It is associated 
with operations such as intersection and other bounds manipulation tasks. 

• A BoxArray is an array of boxes that represents a block decomposition. This is used for the calculus 
of manipulating data between regions. 

An illustration of how the decomposed domain is represented using these classes is shown in Figure 17. 
Associated with these geometric quantities are the container classes: 

• An FArrayBox is a container for data associated with a Box. It is associated with copying data, simple 
arithmetic operations and passing data to Fortran application routines. 

• A MultiFab is a container for data associated with a BoxArray. It contains the FArrayBoxes associated 
with the Boxes in a BoxArray. 

Using the geometric objects Box and BoxArray, it is a simple process to construct and process the buffers 
used in message passing, even for complex grid configurations. In most instances, this is easily accomplished 
in a manner which makes the parallelism transparent to the user. The resulting code is easily maintained 
and modified on serial processors as well, due to its Single Program Multiple Data (SPMD) programming 
model implemented using BSPLib or MPI for the parallel communication. By managing the complexities 
through well-thoughout container classes, one eliminates much of the difficulty of parallel computing. This 
formalism allows routines that were developed to run on uniprocessors to be ported with small modifications 
to distributed memory multiprocessors. 

This structure extends naturally to an adaptive simulation. Once the domain has been decomposed into 
subgrids, messages between grids are required to solve the model equations. It is a natural extension of the 
BoxLib message passing model to allow communication between grids of different resolution. All that is 
required is software for accumulating residuals on coarse-fine interfaces and synchronization steps between 
coarse and fine data. 

This approach generalizes naturally to load balancing where certain regions of the domain require more 
work due to details in the physics. One approach is to adaptively section the domain into grids with roughly 
equal amounts of work. For instance, it is possible to cluster processors around regions where radiation and 
microphysics calculations dominate the computational workload. 

Appendix B: Model Description 

The model integrates the equations Eq. 2-5 in their conservative form 

au 
at = 

11 

(23) 



f)()* \7 · (poUfJ*) H 
(24) = - + ()•, 

at Po 
8qt \7 · (poU qt) H 

(25) = - + ~· at Po 
\7 · (poU) = 0, (26) 

Here vector notation is used to clarify the manner in which advection and mass continuity are implemented 
and all sources such as the sub-grid model and radiation are combined into forcing terms (H0 , He·, Hq, ). 
These equations are discretized using cell-centered velocities and scalars in a forward-in-time manner. 

{jn+l _ (jn 

.6.t 

(B*)n+l - (B*)n 
.6.t 

qn+l qn 
t - t 

.6.t 

= -Dm(lJm(ja)/po- Grrn+t + (g/2)((B'!)n + (B'!)*)k 

+(Ho + H(j)/2 

= -Dm(:tJm(B*)a)/Po + (H;. + H8.)/2 

(27) 

(28) 

(29) 

This discretization is presented in more detail with comparisons to simpler analytical flows by Almgren et al. 
(1998). The continuity constraint requires solving elliptic equations when computing (Mm, (jn+l, rrn+t ). 
The fields (Ua, (B*)a, qt) represent values traced from the cell centers to the midpoints of cell faces at 
tn+t using a forward-in-time advection method described below. The midpoint momenta _Mm = p0 Um are 
centered on cell faces at tn+ t and satisfy a cell-centered divergence constraint · 

(30) 

often referred to as the Arakawa C grid (Arakawa 1974) divergence constraint. The cell-centered velocities 
(Un, (jn+l) approximate a nodal centered divergence constraint D. 

(31) 

The pressure gradient, G uses cell-centered derivatives. The merits of an approximate versus discrete ex­
pression for the divergence are discussed in detail in Almgren et al. (1996). 

The integration of the above discrete equations is evaluated through a simple predictor-corrector algo­
rithm: 

1. Compute the forcing Hn at tn. 

2. Compute edge-based midpoint momenta .Mm via an upwinding process. This is the predictor part of 
the algorithm. It uses a locally second-order discretization of Eq. 23 to extrapolate velocities from tn to 
tn+t and interpolates velocities to the center of cell faces. This step enables advection to be computed 
in a second-order manner. 

3. Compute advective tendencies Dm ( .Mm¢0.) / p0 where '¢ is any advected quantity and 'lj;a is an edge 
based quantity found by third-order upwinding as described in Stevens and Bretherton (1997). In that 
study, this upwinding is compared to several other advection methods commonly used in meteorology. 
Quantities are updated from (On, 'lj;n) to (U*, '¢*) where 

U* = (jn- .6.tDm(_Mm(ja)/ Po+ .6.t ( -Grrn-t + g(B'!)nf + H0) (32) 
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4. Compute the forcing H* from CU*, 1/J*) and apply its correction to the quantities (U**, 1/Jn+l = 1/J**) 

U** = 0* + (Atj2)(g(Off')* k + Hg- g(Off')nk- H'J) 

1/J** = 1/J* + (Atj2)(H¢ - H~) 

(33) 

5. At the end of the timestep enforce the nodal divergence condition by solving an equation for ¢ the 
+ 1 1 

update to rrn 2 = rrn-2 + ¢. 

( (
0** On )) D Po At - G¢ = 0, (34) 

and applying the pressure correction 

On+l = U** - AtG¢, (35) 

The cell-centered discretization has several advantages over traditional staggered grid methods. The cell 
centered velocities and scalars make discretizing model physics much simpler. For instance, no interpolation 
is required for computing Coriolis forces or buoyancy terms. Model statistics are simpler to compute in 
a cell-centered forward-in-time model, due to the lack of averaging required to construct covariances such 
as fluxes and skewness. One useful property of this discretization is the ease by which discrete budgets of 
variance and skewness are constructed. From the temporal discretization, a typical advected quantity such 
as vertical velocity w satisfies: 

(wn+1)2 /2- (wn)2 /2 
At 

(wn+l )3 _ (wn)3 

At 

= 

A discretely conserved kinetic energy budget e = (u2 + v2 + w2)/2 is given by 

(36) 

n+l n (On+l +On) 
e A~ e = 2 • ( -Dm(!JmOa)/ Po- V'rrn+~ + (gf2)((Bff')n + (Bff')*)k + (H'J + Hg)/2) 

(38) 
This requires no manipulation of the buoyancy as is often done in the budgets of staggered discretizations. 
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Simulation smoke slopes sgs NX NZ llx (m) llz (m) A (m) 
1oos_oo no yes none 64 48 50.00 25.00 40 
MOOS_OO no yes none 128 96 25.00 12.50 20 
HOOS_OO no yes none 256 192 12.50 6.25 10 
1408_15 no yes TKE 64 48 50~00 25.00 40 
M20S_15 no yes TKE 128 96 25.00 12.50 20 
H10S_15 no yes TKE 256 192 12.50 6.25 10 
Loo_oo no no none 64 48 50.00 25.00 40 
Moo_oo no no none 128 96 25.00 12.50 20 
Hoo_oo no no none 256 192 12.50 6.25 10 
140_10 no· no SMAG 64 48 50.00 25.00 40 
M20_10 no no SMAG - 128 96 25.00 12.50 20 
H10_10 no no SMAG 256 192 12.50 6.25 10 
140_15 no no TKE 64 48 50.00 25.00 40 
M20_15 no no TKE 128 96 25.00 12.50 20 
H10_15 no no TKE 256 192 12.50 6.25 10 
V06_15 no no TKE 400 300 8.00 4.00 6 
8140_15 yes no TKE 64 48 50.00 25.00 40 
SM20_15 yes no TKE 128 96 25.00 12.50 20 
SH10_15 yes no TKE 256 192 12.50 6.25 10 

Table 1: Simulation names are a combination of smoke (S), resolution (L,M,H,V), Smagorinsky length scale 
(.X= (~x~y~z)1 13 ) in meters, slope limiting (S_) and the order of the subgrid model. TKE and SMAG are 
acronyms for the turbulent kinetic energy and Smagorinsky subgrid models respectively. 
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Simulation A We (mm/s) w* (m/s) 8zu (m) 8zinv (m) std. 8zinv (m) 
LOOS_OO 1.00 9.56 1.01 7.19 16.53 9.78 
MOOS_OO 1.02 9.59 1.00 7.09 10.91 8.90 
HOOS_OO 1.01 9.71 1.01 7.22 7.89 8.87 
L408_15 1.02 9.32 1.00 7.02 16.63 9.91 
M20S_15 1.00 9A1 1.01 7.11 10.74 8.98 
H108_15 1.04 9.63 1.00 7.04 7.97 8.60 
LOO_OO 1.13 10.69 1.00 7.23 17.29 10.33 
Moo_oo 1.23 11.27 0.99 7.00 11.15 8.93 
HOO_OO 1.19 11.41 1.00 7.23 8.13 9.36 
L40_10 1.12 10.57 1.00 7.20 17.06 10.35 
M20_10 1.13 10.55 1.00 7.09 10.97 8.48 
H10_10 1.15 10.85 1.00 7.15 8.01 8.44 
L40_15 1.13 10.62 1.00 7.18 17.12 10.20 
M20_15 1.13 10.42 0.99 7.03 10.93 8.91 
H10_15 1.19 11.03 0.99 7.08 8.17 9.57 
V06_15 1.22 11.07 0.99 7.00 6.82 9.83 
SL40_15 0.71 4.63 1.03 4.28 20.78 5.18 
SM20_15 0.67 4.59 1.05 4.40 14.80 4.78 
SH10_15 0.61 4.34 1.06 4.52 12.05 5.16 

Table 2: Simulation parameters after 2.5 hours of simulation. 
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Figure 8: Sensitivity of power spectra of w to numerics. Spectra denoted by + symbols are calculated from 
data at the inversion. Spectra without the + symbols are calculated from data at the middle of the boundary 
layer. The straight solid line has a slope of k-5/ 3 . 
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Figure 15: c5zinv convergence as a function of resolution. Curves are labeled as in Figure 4. 
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