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Abstract 

We show how to extend the 't Hooft anomaly matching conditions to discrete symmetries. 
We check these discrete anomaly matching conditions on several proposed low-energy spectra 
of certain strongly interacting gauge theories. The excluded examples include the proposed 
chirally symmetric vacuum of pure N = 1 supersymmetric Yang-Mills theories, certain non­
supersymmetric confining theories and some self-dual N = 1 supersymmetric theories based 
on exceptional groups. 

1 't Hooft Anomaly Matching for Continuous Global Symme­
tries 

't Hooft anomaly matching [1] is a powerful tool to constrain the massless fermionic bound-state 
spectrum. Finding the massless spectrum is very important, since it is the first step towards 
establishing an effective low-energy Lagrangian (an analog of the chiral Lagrangian for QCD) 
of a given strongly interacting theory. 't Hooft was arguing that the global symmetries can 
be used to severely restrict the massless fermion spectrum. Below we briefly summarize 't 

Hooft 's original argument. Assume we have a strongly interacting gauge theory based on the 
gauge group Gc, and that the theory has in addition a G F flavor symmetry. In order for the 
theory to be consistent, the gauge anomalies Gg have to cancel. In order for the G F to be an 

unbroken global symmetry, the mixed G~GF anomalies have to vanish as well. However, a priori 

there is no reason for the G} anomalies, the anomalies calculated solely with respect to the 
global symmetries themselves, to vanish. It turns out that these G} anomalies, instead of being 
vanishing, will put a non-trivial constraint on the massless spectrum of the theory. 

To see this, introduce spectator fields, which do not transform under the strong gauge group 
Gc, only under the flavor symmetry G F, such that all G} anomalies vanish. In this enlarged 
theory we can weakly gauge the G F flavor symmetry, and consider the low-energy limit of this 

modified theory. At low energies, the Gc gauge group will confine the original degrees of freedom 
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into bound states. However, since we can take the gauge coupling of G F to be arbitrarily small, 
we expect G F to be still weak at low energies. Thus the low-energy effective theory should be a 

weakly interacting G F gauge theory of the composite Gc bound states. In order for this effective 
theory to be consistent, the G} anomalies still have to be vanishing in the effective theory. Now 

let us compare the extended theory to our original one. We notice, that since the spectators do 
not transform under Gc, they do not participate in forming the bound states. Thus they are 
included both into the high-energy and low-energy theories as elementary fields, therefore their 

· contribution to the G} anomalies is identical in the low-energy and in the high-energy theories. 

Thus the remaining degrees of freedom also have to have matching G} anomalies: the global 

anomalies of the elementary degrees of freedom have to match those of the massless bound states, 

if G F is not spontaneously broken. This statement is 't Hooft anomaly matching. It is a set of 

necessary conditions which the correct low-energy spectrum has to satisfy, and which played a 
central role in establishing exact results inN= 1 supersymmetric gauge theories [2]. Explicitly, 
the expressions for the anomalies which have to be matched for a Gc gauge theory with global 

symmetry Gp = Gl X G2 X ••• X U(lh X U(lh X ... are: Gf: EnAk, c;u(l)j: En~tk~, 
U(l)iU(l)jU(l)k : En qk~q~, U(l) (gravity)2 

: En qk, where A is the cubic anomaly coefficient 
defined by the relation Trn {Ta, Tb}Tc = Andabc (the T's being the generators of the group Gi 
in a given representation R), J-Ln is the Dynkin index Trn yayb = f.LnOab, and qi's are the U(l)i 
charges. The sum over R denotes the summation over all representations of fermions present in 
the high-energy or the low-energy descriptions. 

2 Discrete Anomaly Matching 

Following the logic of the previous section, the following question arises naturally: can we 
extend the 't Hooft anomaly matching conditions to discrete global symmetries as well? We will 
show, that the answer is yes, however, these conditions are weaker than those for continuous 
symmetries. We consider only abelian ZN discrete symmetries. Since the ZN charges are defined 
only mod N, the best we can hope for are matching conditions that have to be satisfied mod 

N. We will see, that indeed, some of the discrete anomaly matching conditions will be mod N, 
but some of them slightly weaker. 

Consider first the case of the G}ZN anomalies, where G F is a simple Lie group, and where 
G F and ZN are assumed to be global symmetries of our gauge theory with gauge group Gc. As 
in 't Hooft's argument, we can include spectators which do not transform under the gauge group, 
only under Gp and ZN, such that the G} and the G}ZN anomalies vanish. Now we can weakly 

gauge the G F global symmetry. Since the G}Z N anomaly vanishes, that is Ei f.LiQi = 0 mod N 
where f.L is the Dynkin index and q is the ZN charge, the ZN discrete symmetry is unbroken even 

in the background of G F instantons. Now we consider the low-energy effective theory. Since 
the ZN is a good symmetry of the full extended theory, the G}ZN anomalies have to vanish in 

the low-energy effective theory as well, thus Ei f.LiQi still vanishes mod N. Since the spectators 

do not transform under the strong gauge group Gc, their contribution to Ei f.LiQi is identical in 

the high-energy and the low-energy theories. Thus we conclude that the G}ZN anomalies have 
to be matched mod N. Note, that in this argument, one never had to promote the discrete 

symmetry to a continuous one, contrary to the criticism of Ref. [9]. Therefore, the objection 
raised in Ref. [9] has no basis. 

Similarly, one can consider the ZN(gravity) 2 anomaly, which constrains the quantity Ei Qi· 
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Considering correlators in gravitational instanton backgrounds, we conclude that Li Qi- has to 

be matched mod N/2. The origin of the (weaker) mod N/2 matching is that every fermion has 
at least two zero modes in gravitational instanton backgrounds. An alternative explanation for 

the possible additional N /2 contribution to this this anomaly is to note that a heavy Majorana 

fermion with ZN charge N/2 does not have a vanishing ZN(gravity)2 anomaly, instead it exactly 

contributes N /2. 
Thus we conclude, that the G}ZN anomaly has to be matched mod N, and the ZN(gravity) 2 

anomaly mod N /2. We call these the Type I anomalies. For the remaining (Type II) anomalies 
(Z~, U(1) 2ZN, U(1)Z_Kr, Z~ZM) there is no similar argument in favor of anomaly matching 
based on instantons. However, by promoting certain parameters of the Lagrangian to background 
fields one can extend the discrete symmetry to a continuous global U(1) symmetry, from which 

one can argue that the Type II anomalies still have to be matched mod N (for more details see 
Ref. [3]). There are however some important subtleties which one has to consider for these Type 

II anomalies: 
- Decoupling of Majorana fermions can weaken the Z'fv matching condition, just like in the 

case of the ZN(gravity)2 anomaly 
- One has to choose a normalization where all U(1) charges are integers in order to have a 

mod N matching condition 
- Existence ·of fractionally charged massive states can invalidate the matching of Type II 

anomalies (but not that of Type I anomalies) 
Thus, we conclude that the discrete anomalies have to be matched in the following way: 

Type I: G2ZN: mN, ZN(gravity) 2 : mN + ~~ N; Type II: Z~: mN + ~~ N 3 , U(1) 2 ZN: mN, 

U(1)iU(1)jZN: mN, U(l)Z~: mN, U(1)ZNZM: mK, where after each anomaly we have 
indicated the possible difference. Here m, m' are integers, and m' can be non-vanishing only if 
N, M are even. K is the GCD of N and M. Type I anomaly matching constraints have to be 
satisfied regardless of the details of the massive spectrum. Type II anomalies have to be also 

matched except if there are fractionally charged massive states. 

3 An Example 

We have checked, that all Seiberg dualities [2], including Kutasov type dualities [4] (at least the 
ones we have checked from: the long list of theories in [4]) satisfy the discrete anomaly matching 

conditions presented in the previous section, even though some of these matching conditions are 
very non-trivial. Here we present only one simple example, which is based on an s-confining 
N = 1 supersymmetric theory [5]. The theory together with the confining spectrum is given in 

the table below. 

f.l I rn 
B 

U(1)R 

1 
3 
2 
3 

1 

2 

4 

S0(7) is the gauge group and SU(6) x U(1)R x Z12 are the global symmetries. The anomaly 
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matching conditions are: 

uv IR 
8U(6) Z12 8 2 X 8 + 4 X 4 = 8 + 2 X 12 

zl2 (gravity )2 48 2 X 12 + 4 X 15 = 8 X 12 + 6 

Zf2 48 23 X 21 + 43 X 15 = 94 X 12 
U(1}kZ12 1200 76 X 12 

U(1)RZf2 -5 X 8 X 6 -68 X 12 

where the contributions to the first three anomalies in the magnetic theory are quoted in the 

order 8 2 , 8 4 . The U(1)R charges are multiplied by a factor of 6 to make all the charges integers. 
All anomalies match mod 12 except the Z12 (gravity) 2 anomaly, which is matched mod 6, 

and signals the presence of massive Majorana fermions with charge 6. But we do not see the 

corresponding contribution to Zf2 anomaly because 123/8 = 216 is a multiple of 12. 

4 Excluded Examples 

Kovner and Shifman argued recently [6], that there might be an additional, chirally symmetric 
phase of N = 1 pure Yang-Mills theory, with vanishing gaugino condensate. In this vacuum, 
the Z2N (for the case of 8U(N) gauge groups) discrete R-symmetry is not broken, therefore the 
discrete anomalies have to be matched by the massless fields of the low-energy effecti~e theory. 

I 

The most natural candidate for the massless field is <P = (Wa Wa)3, since this is the basic 
variable of the Veneziano-Yankielowicz Lagrangian [7], based on which Kovner and Shifman 
concluded that there might be an additional vacuum. In this case, the R-charge of the fermionic 
component of <P is -~, which signals the fractionalization of the Z2N charges. Therefore, it is 
convenient to rescale the discrete charges such that the gaugino of the high-energy theory has 
charge 3, and check the anomaly 'matching conditions for the resulting Z6N symmetry. The 

discrete anomalies for SU(N) are: 

Z6N (gravity) 

z~N 

IR 
-1 
-1 

The difference in the Z6N (gravity )2 anomalies of the UV and the IR descriptions is 2 mod 3N, 
which means that the discrete anomalies can not be matched for any value of N. Recall that the 
Z6N(gravity)2 anomaly is Type I and must be matched irrespective of charge fractionalization. 
Therefore, this low-energy description of the pure SU(N) YM theories is excluded. One can 
show in an analogous way, that the Kovner-Shifman vacua are excluded by discrete anomaly 

matching for the other ·simple groups as well. 
However, this does not completely exclude the idea of a chirally symmetric phase of N = 1 

pure Yang-Mills theories. It excludes only a specific realization of it described above. One could, 
for example, try to match anomalies with the operator S = W a wa instead of <P. Here no charge 

fractionalization occurs, and hence anomalies should be matched mod 2N. The anomalies for 
SU(N) are 

UV IR 
Z2N (gravity) 1 

z~N 1 

The differences in the anomalies are both N 2 - 2, which is divisible by N only for N = 1, 2. 

Performing a similar analysis we find that the fieldS matches the discrete anomalies for SO(N) 
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only if N is odd, while it matches always for Sp(2N). None of the discrete anomalies for the 
exceptional groups are matched by S. Even though anomalies are matched for some special 

cases by S, generically it does not match the discrete anomalies and therefore we conclude that 

it is not a likely candidate for a low-energy solution. 
In addition to the Kovner-Shifman vacuum, the excluded examples include several non­

supersymmetric theories which were conjectured to be confining in the early 80's [8]. An example 
of such a theory with the conjectured low-energy spectrum is given in the table below. 

SU(4) SU(2} U(1} Z12 
A 

~ 
0 2 1 

X 1 -1 1 

CD 3 3 

All the continuous global anomalies (SU(2)2U(1), U(1)(gravity)2 and U(1) 3 ) are matched be­

tween the high-energy and the confining spectrum. The discrete anomalies are: 

uv IR 
SU(2) Z12 6 12 

zl2(gravity )2 27 9 

Zf2 27 81 
U(1)2 Z12 63 81 
U(1)Z[2 9 81 

The U(1)2 Z12 anomaly matching is satisfied mod 12 and the Z12 (gravity)2 anomaly matching 
is satisfied mod 6. However, while the SU(2}2 Z12 , the U(1}2 Z12 and the Zf2 anomalies must 
match mod 12, they match only mod 6, and hence the discrete anomaly matching conditions 
are violated. In the absence of any dynamical explanation of spontaneous breaking of Z12, and 

since SU(2}2 Z12 is a Type I anomaly, one has to consider this model excluded based on discrete 
anomaly matching. 

Similarly, certain N = 1 supersymmetric dualities based on exceptional groups can be ex­
cluded as well using the discrete anomaly matching conditions (see [3] for details). 

Finally, we comment on an interesting example, where continuous anomaly matching can 
lead to misleading conclusions [10]. The theory is N = 1 SO(N) with a symmetric tensor. All 
continuous anomalies are matched by the set of independent gauge invariant operators, and the 

Type I discrete anomalies match as well in this example. However, the Type II conditions are 
not satisfied. As explained before, the failure of the matching of Type II anomalies does not 

automatically exclude a given low-energy spectrum due to the possibility of charge fractionaliza­
tion. However, we have to emphasize that all established theories satisfy the Type II conditions 

as well, and that the charge fractionalization of the heavy states is quite unlikely. Thus this 

raises the suspicion that this theory is not confining. Indeed, it was noted in [10] that there are 
several reasons to believe that the theory is not confining at the origin. This is a good example 

where the failure of Type II discrete anomaly matching is the first sign of the incorrect guess on 

the low-energy dynamics. 

5 Conclusions 

We have shown how to extend the 't Hooft anomaly matching conditions to discrete global 

symmetries. There are two types of discrete anomalies. Type I anomaly matching conditions 
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( G~ZN and ZN (gravity )2 ) have to be satisfied regardless of assumptions on the massive bound 
states. Type II constraints have to be satisfied except if there are fractionally charged massive 
states. We have tested several conjectured low-energy solutions using discrete anomaly matching. 

The excluded examples are: the chirally symmetric phase of N = 1 pure Yang-Mills theories, 
certain non-supersymmetric theories conjectured to be confining, and N = 1 supersymmetric 
self-dualities based on exceptional groups. 
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