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Abstract 

We study numerically a canonical ensemble of solutions of the focusing cubic Schrodinger 
equation. We investigate a bifurcation and a conjectured phase transition in this canon-
ical ensemble, which were first described by Lebowitz, Rose, and Speer [11). 

We show that the bifurcation and the possible phase transition are associated with 
the splitting of the phase space into separate components. This splitting can be ob­
served in a discretization with as few as 2 points. We also find that in a certain 
continuum limit at infinite temperature there is a behavior that may be associated 
with a phase transition. 

The cubic Schrodinger equation is equivalent to the self-induction approximation 
for vortices; we exhibit the changes in the shape of vortex filaments that correspond to 
the changes in the canonical ensemble associated with the cubic Schrodinger equation. 

1 Introduction 

The nonlinear Schrodinger equation plays a major role in describing various physical phe­
nomena in continuum mechanics, plasma physics, nonlinear optics, and vortex dynamics in 
classical and superfiuid mechanics. In a paper of 1988 [11] on statistical mechanics of the 
nonlinear Schrodinger equation, it was observed that a Gibbs canonical ensemble associated 
with the nonlinear Schrodinger equation exhibits behavior. reminiscent of a phase transition in 
classical statistical mechanics. The existence of a phase transition in the canonical ensemble 
of the nonlinear Schrodinger equation would be very interesting and would have important 
implications for the role of this equation in modeling physical phenomena; it would also have 
an important bearing on the theory of weak solutions of nonlinear wave equations [12], [13], 
[14]. 

The cubic Schrodinger equation is equivalent to the self-induction approximation for vor­
tices, which is a widely used equation of motion for a thin vortex filament in classical and 

*This work was supported in part by the Applied Mathematical Sciences Subprogram of the Office of 
Energy Research, U.S. Department of Energy, under contract DE-AC03-76-SF00098, and in part by the 
National Science Foundation under grants DMS94-14631 and DMS89-19074. 
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superfl.uid mechanics [8]. The existence of a phase transition in such a system would be 
very interesting and actually very surprising for the following reasons: in classical fluid me­
chanics it is believed that the turbulent regime is dominated by strong vortex stretching 
[4], while the vortex system described by the cubic Schrodinger equation does not allow for 
stretching. In superfl.uid mechanics the self-induction approximation and its modifications 
have been used to describe the motion of thin superfl.uid vortices [17], which exhibit a phase 
transition; however, more recently some authors concluded that these equations do not ade­
quately describe superfl.uid turbulence [3], and the absence of a phase transition in the cubic 
Schrodinger equation would strengthen their argument. The self-induction approximation 
for vortices takes into account only very localized interactions, and the existence of a phase 
transition in such a simplified system would be very unexpected. 

In this paper we present a numerical study of the phenomena observed in [11]; in particu­
lar, we find that these phenomena are strongly related to the splitting of the phase space into 
distinct components. We point out the interesting fact that the splitting can be observed 
in a discretization with as few as 2 points. The refinement of the discretization does not 
change the global picture qualitatively. 

We vary two parameters in the canonical ensemble of the cubic Schrodinger equation: 
the first is the temperature, the second is a certain constraint on the function space. We 
demonstrate that at a fixed low temperature, as the constraint varies, the canonic_al ensemble 
of the cubic Schrodinger equation undergoes a bifurcation which is manifested both in the 
change in the shape of the typical function and in a corresponding change of the structure 
of the phase space. 

For a fixed value of the constraint, as temperature varies, there is a change in the shape 
of the typical function and a corresponding change in the structure of the phase space. 
We investigate numerically a special continuum limit in which both the constraint and the 
number of discretization points increase, and conclude that there is a strong indication of a 
phase transition in this limit. We also discover that in terms of vortex approximations, the 
phase transition type behavior for the cubic Schrodinger equation results in the transition 
from an almost straight filament with a sharp kink for low temperatures to a filament of 
random shape at high temperatures. 

We show that the canonical ensemble associated with the cubic Schrodinger equation, 
in a sense to be made precise later, is equivalent to the microcanonical ensemble. We also 
present numerical results that show the equivalence of the time and ensemble averages. 

2 Formulation of the Problem 

The cubic Schrodinger equation 

! 81/J = 821/J I·'· 12·'· 
i at 8x2 + 'f/ 'f/ 

(1) 

where 1/J is a complex function of scalar arguments t, and x 

?jJ(t,x) = q(t,x) + zp(t,x), (2) 

can be rewritten in the Hamiltonian form: 

2 



8q 82p ( 2 2 ) 8H at = - 8x2 - p q + p = 8p' 

where the Hamiltonian is 

(3) 

(4) 

and ~~'~~denotes functional derivatives. Lebowitz et al. ([11]) introduced an ensemble very 
similar to Gibbs canonical ensemble, with a measure formally written as: 

P(dp, dq) = z-1 exp[-,BH(p, q)]dpdq, (5) 

or, writing the Hamiltonian explicitly: 

(6) 

where dpdq is a Lebesgue measure, Z is a partition function, and ,8 is a scalar, the 'inverse 
temperature'. The Hamiltonian (4) is not bounded below, so in order to make sense out of 
a formal object (5) Lebowitz et al. suggested to restrict the ensemble to the functions that 
satisfy either 

or 

foL(q2 + p2)dx = N, 

foL ( q2 + p2)dx ::; N, 

(7) 

(8) 

for some constant N, so that the second term in (6) can be bounded by the first. They 
proved that this constrained measure is well defined (see [11] for details); we assume here 
and everywhere in this paper that p and q are periodic functions of x, and the constraint is 
given by (7). The choice of these constraints was motivated by the fact that the nonlinear 
Schrodinger equation conserves the integral (7). 

3 Preliminary Results -

We now present numerical results on the behavior of the measure (6),(7) which are directly 
linked to the phase transition type behavior observed in [11]. 

In [11] it was observed that for different ranges of temperatures and constraints the 
measure (6),(7) is concentrated on functions of different shapes. As an example, we present 
several typical functions for low and high temperature, and low and high values of constraint 
in Figures (1),(2),(3). 

In order to distinguish between the functions the following quantity was introduced in 
[11 ]: 

]{ = < J~(q2 (x) + p2 (x)) 2dx >. 
< fo (q2(x) + p2 (x))dx >2 

3 

(9) 
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Figure 1: Typical real and imaginary components of the field for low temperature and large 
value of the constraint. 
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Figure 2: Typical real and imaginary components of the field for high temperature. 
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Figure 3: Typical real and imaginary components of the field for low temperature and small 
value of the constraint. 

The denominator in (9) is used for the normalization; recall that our measure must satisfy 
the constraint (7), therefore (9) can be rewritten in the form 

T/ = < foL(q2(x) + p2(x)?dx > 
.n N2 . (10) 

In Figure ( 4) we plot K for various N and temperature. 
Notice that on the left side of the picture in Figure ( 4) ( 10-2 ::; {3~ < 1 ) the three 

curves are distinctly different and almost constant; in the transition region 1 ::; {3~ ::; 10, 

the curves come together, and for 10 ::;, {3~ ::; 102 the three curves assume the same constant 
value. 

This behavior of the kurtosis K is very similar to what has been observed in certain 
phase transitions in statistical physics [9], and it raises the question as to whether this is 
indeed a phase transition or if some other phenomenon is taking place. 

In order to examine this question we start by studying a simplified system, and then 
move to a more general one. 

First we introduce a discretization of the Hamiltonian ( 4) and of the constraint (7). 
Discretize the interval [0,1] by n discretization points; let ui and Vi be the discretization 
of the real and imaginary part of the solution of the cubic Schrodinger equation; then the 
discrete version of the Hamiltonian ( 4) is 

H = ~ t((ui+lh- Ui? + (i+l h- Vi)2)h -l t(u~ + vf)2h, 
t=l t=l 

(11) . 

where h = ~ is the discretization step. This particular discretization of the Hamiltonian 
leads to the following discretization of the measure (6) 
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Figure 4: Values of K for N = 10, 40, 80 and varying (3. 

and the discretization of the constraint (7) is 
n 

N = L:C u~ + vl)h. (13) 
i=l 

Suppose we are given a discrete canonical measure (12),(13), and we want to compute 
an average with respect to this measure of some quantity using the Metropolis sampling 
algorithm [15], [2]. We start with some random initial configuration, which we denote by 
x1 - (u(l), ... , u(n), v(1), ... , v(n)), and then run the Metropolis sampling for some large 
number of steps M, storing each configuration as a point Xi, i = 1, ... , M. After M steps we 
will get M points, ( x1, ... , x M); this collection of M points we will call a Metropolis sampling 
trajectory. Notice that this Metropolis sampling trajectory does not depend on a quantity 
computed in the Metropolis sampling algorithm; it only depends on the temperature in the 
ensemble and on the initial point. 

The Metropolis sampling trajectory is a trajectory in 2n-dimensional space; we can define 
a projection of the Metropolis sampling trajectory onto a 3-dimensional subspace by picking 
any three components of the vectors u,v, for example Ut, u2 , v3 • 

Now consider a time dependent Hamiltonian system with periodic boundary conditions 
(3); discretize this system in space by n points, and integrate it in time for some large time 
T, starting at some initial configuration y1 ( u(1), ... , u(n ), v(1), ... , v(n )). For integration 
in time we use some numerical method, for example the one described in [10]; we define the 
time trajectory as a collection of points (y1 , ..• ,yK), I<t6..t= T, where t6..tis the time step 
of the numerical integration scheme. The time trajectory is a trajectory in 2n-dimensional 
space, and a projection of the time trajectory onto a three-dimensional subspace we will call 
a projected time trajectory. 
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4 The Simplest Case 

To motivate the discussion later in this paper we consider a very simple discrete periodic in 
space system (11),(13) with just 2 discretization points, i.e. in (11), (13) we taken= 2. 

The reason for choosing such a system is its simplicity; we can visualize this system in 
3-dimensional space, because this system is almost 3-dimensional. By almost 3-dimensional 
we mean that given three arbitrary components of the system, for example u1, u 2 , and Vt, 

one can determine v2 from (13) up to a sign. 
In Figure (5) we present thegraphs of K vs. f3k for several different values of N. 
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Figure 5: Values of K for N-:- 1, 10, 40 and varying {3. 

Notice that even for the simple 2 node system there is qualitative similarity between 
these graphs and the ones in Figure ( 4) for the 40 node system. This indicates that studying 
a simple 2 node system will provide an insight into t}le behavior of a more complicated one. 

In Figure (5) as in Figure ( 4) there are clearly three distinct regimes; for 10-3 S f3k S 
10-1 the curves corresponding to different constraints are clearly distinct and almost con­
stant; for 10-1 

::::; JN S 1 the curves come together, and for 1 ::::; {3~ the curves are indistin­
guishable and constant. 

We would like to find out what are the changes in Metropolis sampling trajectories 
corresponding to the different curves in Figure ( 5). 

In Figure (6) we plot a Metropolis sampling trajectory for low temperature and small 
constraint; the parameters corresponds to the left side of the lower curve in Figure (6). We 
started the Metropolis sampling at many different points and each time got the same torus 
as in Figure (6). 

Now we consider how this Metropolis sampling trajectory changes as we increase the 
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Figure 6: Metropolis sampling trajectory of the 4-dimensional system, /3=4. The axes 
correspond to the two real components and one of the imaginary components of the system. 

temperature. We pick some high value of temperature, and compute the Metropolis sampling 
trajectories starting at various initial configurations. What we· see is that the torus-like 
structure of the most important configurations changes completely and starts to look like a 
ball. 

We observe that the typical phase space Metropolis sampling pattern completely changes 
its shape over some range of values of temperature; there is a low temperature pattern - a 
torus, a high temperature pattern - a ball, and a transition region between them, in which 
torus is transformed into a ball. The ball pattern corresponds to the curves on the right side 
in Figure (5). 

We would like to find what are the changes in the Metropolis sampling trajectories 
corresponding to the low value of (3~ when the three curves in Figure ( 4) are distinct. To 

do this we fix (3~ = 10-2 and plot Metropolis sampling trajectories in Figures (8), (9), and 
(10), for N=1, 10, and 40 respectively. 

A new interesting feature has appeared in Figure (9) as we increase the value of the 
constraint N from 1 to 10- a single torus splits into two tori, and the two tori then move 
apart as N increases until they become perpendicular to each other. 

In order to see what happens to the two tori Metropolis sampling trajectories (N = 40) 
as we increase the temperature, we pick the first value of f3 in the transition region, for 
example f31N = 1, and the second value of/3 in the region where all three curves in Figure 

(5) come together, for example (3~ = 10. The Metropolis sampling trajectories are shown in 
Figures (11 ), and (12). 

One can see from these pictures that as temperature increases the two tori become 'fatter' 
in the transition region, and turn into a ball for high enough temperatures. 

It is intuitively clear that for low temperatures the Metropolis sampling trajectories are 
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Figure 7: Metropolis sampling trajectories of the 4-dimensional system with constraint, 
,8=0.04. The axes correspond to the two real components and one of the imaginary compo­
nents of the system. 
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Figure 8: Metropolis sampling trajectories of the 2 node system, N 
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Figure 9: Metropolis sampling trajectories of the 2 node system, N = 10, 1/((JN) = 10-2
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concentrated around the minimum energy time trajectories; below we present m1mmum 
energy time trajectories for N = 10, (Figure (13)), and for N = 40 (Figure (14)). 

4 

3 

2 

-3 

-4 
4 

1st real component 

N=10 

4 
2 

1st imaginary component 

Figure 13: Splitting of the minimum energy circle in the time dependent system, N = 10. 

Recall that there are two time trajectories corning through each point of the phase space, 
since the fourth degree of freedom of the system is determined from the three shown in the 
picture and a constraint up to a plus or a minus sign. 

If we compare Figures (13), (14) and Figures (9),(10) respectively, we again see a very 
good agreement between Metropolis sampling and time trajectories. 

5 The General Case 

Now we consider the more general case ofthe statistical ensemble (12),(13), and a dynamical 
system (3) with the number of discretization points n greater than 2. We would like to inves­
tigate the connection between changes in kurtosis ( 4) and Metropolis sampling trajectories; 
we are motivated by the simple 2 point system case of the preceding section, and would like 
to see whether such phenomena as tori turning into a ball persists for the large system. Since 
we cannot visualize the whole n-point system as we could before, we have to take projections 
onto a three-dimensional subspace. 

Surprisingly, we are still able to observe very clearly the phase space changes of the 
Metropolis sampling trajectories at low and high temperatures, which look very much the 
same as in the simple 2-point case. 

We present a typical picture that we observed over different combinations of any three 
discretization nodes. We picked at random three particular nodes and monitored their 
Metropolis sampling trajectories for a few different runs of Metropolis algorithm. 

In Figure (15) we present the projection of the Metropolis sampling trajectory of a 10-
point system for low temperature. The parameter range of this system (N = 1, f3 = 4) 

12 
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1st real component -10 -10 
1st Imaginary component · 

Figure 14: Splitting of the minimum energy circle in the time dependent system, N = 40. 

corresponds in Figure ( 4) to the left part of the lower curve (!3~ = 0.25). Notice that the 
Metropolis sampling trajectory is a single torus and looks very much the same as the torus 
of the 2-point system in Figure (6). 

Both of these tori in Figures (15), and (6) correspond to the lower kurtosis curves in 
Figures (4), and (5) respectively. 

In the 2-point case we observe that as we increase the temperature the torus like picture 
turns into a ball. Now we increase the temperature in the large system (f31

N = 10, see Figure 
4) and plot the resulting Metropolis sampling trajectories in Figure (16). 

Observe that thetorus turns into a ball, just as in the 2-point system (see Figures (6),(7) ). 
This is very surprising; even though the phase space of the larger system is very complicated, 
the simple phase space structure of the Metropolis sampling trajectories is preserved in the 
large system. 

Let us consider the dynamical system (3); which we discretize with a large number of 
points and integrate in time at a minimum value of the Hamiltonian; the resulting trajectory 
is given in Figure (17). 

Notice that, as before in the 2-point case, the Metropolis sampling trajectories for low 
temperature (Figure 15) are concentrated around the energy minimum shown in Figure (17). 

Recall that in Figure ( 4) kurtosis changes depending on both temperature and constraint 
N. In the simple 2-node system we observed that as N increases at low temperature, the 
torus splits into two tori (Figures 8, 9, 10 ). The sample trajectories of the large system 
also change from a torus to a more complicated structure, which we plot in Figure (18); 
nevertheless the torus like picture splits into something very similar to the two tori picture 
of the simple 2-point system (see Figure 10). 

As temperature increases, something similar to the 2-point case takes place; at first the 
tori structure becomes 'fatter' (see Figure 19) and then for high temperature it turns into a 
ball (Figure 20). 
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Figure 17: Projected time trajectory of the 10-point system for small energy. 
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Figure 19: Metropolis sampling trajectory for the 40-point system N = 103
, (3 = 10-5 
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Clearly, there is a strong connection between phase space Metropolis sampling trajectories 
structure and differences in kurtosis (Figure 4), which appears in the small 2-node system 
and persists for larger systems. . 

It might appear that as N increases for low temperature the kurtosis curves in Figure ( 4) 
will tend to a discontinuous step function. However, what really happens for a fixed number 
of discretization points is that for large enough value of N the curves converge to a smooth 
function; the results are shown in Figure (21). 
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Figure 21: Values of K for various Nand f3 

For values of N > 640 presented in Figure (21) the curves converge to a curve close to 
the one that corresponds to N = 640. From these pictures for the fixed number of nodes we 
do not observe convergence to the discontinuous step function as N increases. 

Now consider the limit in which the constraint N is fixed and the number of discretization 
points increases. In this case again we observe that the functions converge to some smooth 
limit function; the results are shown in Figure (22). 

If we pick a larger value of N and compute kurtosis for increasing numbers of discretiza­
tion points, the functions again converge to some smooth limit function; the results are 
shown in Figure (23). 

These plots suggests that for a fixed value of N, as the number of discretization points 
increases the kurtosis converges to a smooth function. However, for larger value of N the 
kurtosis has a steeper slope in the transition region; this suggests that we need to investigate 
the limit as both N and the number of discretization points increase. 

We are going to show that as we increase the number of discretization points the kurtosis 
tends towards to a higher limit. 

In the previous plots we either used a fixed number of discretization nodes (n=40) or a 
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fixed constraint (N=40, N=80). If we now increase the number of discretization points and 
the constraint N simultaneously, we observe that in the transition region the slope of the 
curve corresponding to larger N is steeper than for a smaller N. If we double the number 
of nodes, the derivative increases substantially (see the summary in Table (1)). This might 
suggest the possibility of a discontinuity in the function K in the limit as N and the number 
of discretization points approach infinity. The estimates for the derivatives in the transition 
region are summarized in Table ( 1). 

I Number of nodes I Maximum absolute value of the derivative I 

Table 1: Maximum absolute value of the derivative 

The plots of the curves in the transition region are given in Figure (24). Here we plot K 
for increasing number of nodes and increasing values of N. Notice that in Figures (21), (22), 
(23) we used a logarithmic scale, but we do not use it in Figure (24). 
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Figure 24: Values of K for increasing number of discretization points and N. N = 640 (for 
40 and 80 nodes), N = 1000 (for 160 nodes), and N = 2000 (for 320 nodes) 

Also observe that the horizontal axis in Figure (24) is scaled as {3~' and as N goes to 
infinity the transition region increases which implies that the temperature in the transition 
region goes to infinity. 
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6 The Self-Induction Approximation for Vortices 

The cubic Schri:idinger equation is equivalent to the self-induction approximation for vortices 
[8], which is a widely used equation of motion for a thin vortex filament in classical and 
superfl uid mechanics [1], [7]. 

We give a very brief introduction to the self-induction approximation here. Consider 
a vortex filament in three dimensional space. Denote by x( s) the centerline of the vortex 
filament, where s is the arclength along the centerline. For inviscid isentropic incompressible 
fluid it can be shown under some assumptions that the motion of the vortex centerline obeys 
the following equation [1] 

a~~s) = K(s)b(s), (14) 

where ~>:( s) is the curvature, and b( s) is the binormal to the vortex line, i.e. the vector 
product t x n, where t is the unit tangent vector, and n is the unit normal vector to x. 

The Frenet-Seret equations of differential geometry are given by 

ax 
-=t 
as ' 

where T is the torsion. 

at 
-=~>:n, 
as 

an 
- =rb- ~>:t 
as ' 

8b 
-=-rn 
as ' 

From the equations (14),(15) using the Hasimoto transformatipn [8] 

'¢ = ~>:exp(i los r(s)ds), 

we obtain the cubic Schri:idinger equation for '¢ 

(15) 

(16) 

(17) 

where C is some function of time only. We can eliminate the function C from the equation 
above by introducing a change of variables: 

- i lot '¢ = 'lj;exp(-- C(r)dr), 
2 0 

(18) 

and rewrite equation (17) in the form: 

(19) 

7 Changes in the shape of a vortex filament with the 
constraint N and the temperature 

In this section we present the plots of the typical vortex filaments that we obtain from the 
cubic Schri:idinger equation for different values of the constraint N and the temperature. We 
remarked at the end of Section 5 that in the limit as the constraint N goes to infinity the 
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temperature at which the transition occurs also goes to infinity. This fact is in agreement 
with the results of Chorin [5], [4], [6] that the single vortex filament has a phase transition 
at infinite temperature. 

The soliton-like field, which is a typical field configuration for low temperatures and large 
N (Figure 1) corresponds to an almost straight vortex filament with a sharp kink (see Figure 
25) 
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-0.02 

-0.04 
0.06 

11=1.25, N=80, number of nodes= 40, 1/(~ N)=1 o-2 

0.8 

OA 

-0.06 0 

Figure 25: Typical vortex filament for low temperature and large N, 13~ = 10-z 

This shape roughly corresponds to the left part of the upper kurtosis function in Figure 
( 4). Keeping the temperature low and decreasing the value of the constraint N gives the 
left part of the lower kurtosis function in Figure ( 4); the typical field configuration is close 
to a constant, and the corresponding filament shape is given in Figure (26). The vortex is 
smooth and almost circular, which is what one would expect for a constant field, i.e. for 
constant curvature. 

Increasing the temperature destroys the order in the shape of the vortex filament, and 
the typical vortex becomes more ri!-ndom, as shown in Figure (27); this filament corresponds 
to the right-hand side of the kurtosis curves in Figure ( 4). 

8 Comparison of the Time and Ensemble Averages 

Now we present numerical evidence for the equivalence of the ensemble (6), (7) and the 
microcanonical ensemble; in Figure (28) we show the energy fluctuation of the ensemble (6), 
(7) around its mean energy, i.e. 

<Hz>-< H >z 
<HZ> 

computed at some fixed temperature versus the constraint N. 
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Figure 26: Typical vortex filament for low temperature and small N, {3~ = 10-2 
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Figure 27: Typical vortex filament for high temperature, {3~ = 10 
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We introduce the energy fluctuation (20) into our presentation to estimate the concentra­
tion of the measure (6),(7) on the configurations with the mean energy < H >. Intuitively 
it is clear that if the measure (6),(7) is concentrated on the configurations that belong to the 
energy shell defined by < H >, then it is plausible that the averages with respect to (6),(7) 
and the microcanonical ensemble will be the same. 

As one can see from the graph in Figure (28) the energy :fluctuation tends to zero as N 
increases. This suggests that for large values of N the probability density on the space of 
configurations is concentrated on the energy shell defined by the mean energy < H > . 

• 

• 

• 
• 

Constraint. 

Figure 28: Equivalence of the ensemble (6), (7) and the microcanonical ensemble. 

For the dynamical system (3) we choose some initial configuration with the energy e'qual 
to the average ensemble energy (6), (7). In Figure (29) we present the calculations of the 

Constralnt=103
, number of nodes= 40, • tlme average, -ensemble average 

Figure 29: Time average and ensemble average 

time average and the ensemble average of the kurtosis K (10). One can see from Figure 
(29) that there is a remarkable agreement between the time and the ensemble average! In 
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this computation the number of discretization points was taken to be 40, and the value of 
the constraint N (13) equal to 103 • The same agreement was observed when we increased 
the number of discretization points to 80 and 150, and changed the value of the constraint. 
Therefore we conjecture that our discrete dynamical system is ergodic. One remark should 
be made here about the continuum dynamical system. The cubic Schrodinger equation 
has an infinite family of conserved quantities (see (16]); the numerical scheme that we use to 
integrate the cubic Schrodinger equation in time does not have a corresponding infinite family 
of conserved quantities; although we verify the conservation of the Hamiltonian and the 
constraint N (13) in the integration in time. Therefore the trajectory in time of the numerical 
scheme visits a larger subspace than the actual continuum solution, and the ergodicity that 
we describe here might be due to the particular numerical algorithm. 

9 Conclusions 

We have studied numerically bifurcation and phase transition phenomena in the Gibbs canon­
ical ensemble associated with the cubic Schrodinger equation. 

We have shown that the changes in typical function profiles with respect to temperature 
and constraint observed in [11] are associated with the splitting of a phase space into different 
components. We discovered that these changes can be observed in a discretization with as 
few as 2 points. 

We point out that the cubic Schrodinger equation is equivalent to the self-induction 
approximation for vortices [8]. In terms of vortex representation the soliton-like typical 
structure of functions at low temperatures corresponds to a straight vortex filament with 
a sharp kink; for high temperatures the straightness of the vortex is destroyed and the 
shape of the vortex becomes random (Figures 25, 27). We remark that in the limit the 
temperature at which the transition occurs increases to infinity, which is in agreement with 
the results of Chorin [5], [4], [6] that the single vortex filament has a phase transition at 
infinite temperature. 

We have investigated numerically the limit of the kurtosis (9) for a fixed number of 
discretization points as the constraint (7) increases; we demonstrated that eventually the 
kurtosis converges to a smooth function whose maximum value is determined by the number 
of discretization points. 

We also investigated the limit of kurtosis (9) for a fixed value of the constraint as the 
number of discretization points increases; we found that the kurtosis converges to a smooth 
function in this limit as well. 

However, if we increase both the constraint (7) and the number of discretization points, 
then we see a strong numerical indication that for some temperature the first derivative of the 
kurtosis (9) becomes infinite. We do not know what happens in the infinite limit; however, 
for large enough values of the constraint and for a large enough number of discretization 
points there is an indication that there might be a discontinuity in the first derivative of 
the kurtosis (9), which could indicate a behavior similar to a phase transition in classical 
statistical mechanics. 

We also have shown the equivalence of the Gibbs canonical ensemble associated with the 
cubic Schrodinger equation (6),(7) and the microcanonical ensemble (Figure (29)). 
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We have studied the ergodicity of the system (3) (6),(7), and presented results that show 
the equivalence of time and ensemble averages (Figure 29). We remarked that the numerical 
method used for integrating the cubic Schrodinger equation in time has two constants of 
motion: the Hamiltonian (4) and the constraint (7). On the other hand the cubic Schrodinger 
equation has an infinite number of conserved quantities [16], so the relation of this numerical 
result to the discretized equations of motion for the continuum cubic Schrodinger equation 
is not straightforward. However, it is still an interesting fact that in the discrete version of 
the cubic Schrodinger equation there is an equivalence of the time and ensemble averages. 
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