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Chapter 1 

Introduction 

The nonlinear Schrodinger equation plays a major role in describing various phys­

ical phenomena in continuum mechanics, plasma physics, nonlinear optics, and vortex dy­

namics in classical and superfluid mechanics [23]. In a paper of 1988 [41] on statistical 

mechanics of the nonlinear Schrodinger equation, it was observed that a Gibbs canonical 

ensemble associated with the nonlinear Schrodinger equation exhibits behavior reminiscent 

of a phase transition in classical statistical mechanics. The existence of a phase transition 

in the canonical ensemble of the nonlinear Schrodinger equation would be very interesting 

and would have important implications for the role of this equation in modeling physical 

phenomena; it would also have an important bearing on the theory of weak solutions of 

nonlinear wave equations [46], [47], [48]. 

The cubic Schrodinger equation, as will be shown later, is equivalent to the self­

induction approximation for vortices, which is a widely used equation of motion for a thin 

vortex filament in classical and superfluid mechanics [26]. The existence of a phase transi-
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tion in such a system would be very interesting and actually very surprising for the following 

reasons: in classical :fluid mechanics it is believed that the turbulent regime is dominated by 

strong vortex stretching [14], while the vortex system described by the cubic Schrodinger 

equation does not allow for stretching. In superfiuid mechanics the self-induction approx­

imation and its modifications have been used to describe the motion of thin super:fl.uid 

vortices [53], which exhibit a phase transition; however, more recently some authors con­

cluded that these equations do not adequately describe super:fl.uid turbulence [5], and the 

absence of a phase transition in the cubic Schrodinger equation would strengthen their argu­

ment. The self-induction approximation for vortices takes into account only very localized 

interactions, and the existence of a phase transition in such a simplified system would be 

very unexpected. 

In this thesis we present a numerical study of the phase transition type phenom­

ena observed in [41]; in particular, we find that these phenomena are strongly related to 

the splitting of the phase space into distinctly different components. We point out the 

interesting fact that. the phase transition type behavior of the discretized cubic Schrodin:ger 

equation can be observed in a discretization with as few as 2 points. The refinement of the 

discretization does not change the global picture qualitatively. 

We vary two parameters in the canonical ensemble of the cubic Schrodinger equa­

tion: the first parameter is the temperature, the second one· is a certain constraint on the 

function space. We demonstrate that at a fixed low temperature, as the constraint varies, 

the canonical ensemble of the cubic Schrodinger equation undergoes a bifurcation which is 

manifested both in the change in the shape of the typical function and in a corresponding 
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change of the structure of the phase space. 

For a fixed value of the constraint, as temperature varies there is a phase transition 

type change in shape of the typical function and a corresponding change in the structure 

of the phase space. We investigate numerically a special continuum limit in which both 

the constraint and the number of discretization points increase, and conclude that there 

is a strong indication of a phase transition in this limit. We also discover that in terms 

of vortex approximations, the phase transition type behavior for the cubic Schrodinger 

equation results in the transition from an almost straight filament with a sharp kink for 

low temperatures to a filament of random shape at high temperatures. We remark that in 

the limit the temperature at which the transition occurs increases to infinity, which is in 

agreement with the results of Chorin [12), [14), [15) that the single vortex filament has a 

phase transition at infinite temperature. 

Recently there has been an increasing interest in the study of motion of a single 

thin vortex and of a collection of thin vortices in the approximations of the self-induction 

type [31), [32), (33), [34), [30), [57). If the phase transition in the cubic Schrodinger equation 

were to exist, this might lead to a reconsideration of the role of these equations and their 

modifications in the study of classical and superfluid turbulence. 

This thesis consists of six chapters. Chapter 1 is an introduction and a brief 

summary of our results. 

In Chapter 2 we present some essential facts from classical statistical mechanics 

that we will need in subsequent chapters. 

In Chapter 3, following [41] we introduce the statistical ensemble for the non-linear 
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Schrodinger equation, which is similar to the classical Gibbs canonical ensemble. We discuss 

the properties of this ensemble, in particular its invariance (46]. We show that this ensemble 

is, in a sense to be made precise later, equivalent to the microcanonical ensemble. Then we 

discuss the ergodicity of the non-linear Schrodinger equation. We present numerical results 

that show the equivalence of. the time and ensemble averages. 

In Chapter 4 we begin by considering a simplified system that arises from the 

discretization of the non-linear Schrodinger equation. We study the energy level sets of 

the dynamical. system, and the configurations in the phase space on which the statistical 

ensemble of the cubic Schrodinger equation is concentrated. We observe that as we vary 

temperature and a constraint in the Gibbs ensemble, there are two distinctly different 

structures in the phase space - one has a ball-like shape, and the other has a torus-like 

shape. These different shapes appear at the same temperature as the phase transition type 

behavior observed in (41]. These ball and torus structures exist for any discretization of the 

system, starting from the simplest 2-point discretization. We show that in a certain limit 

there is a strong evidence of a discontinuity in a temperature dependent quantity. 

In Chapter 5 we derive a self-induction approximation of the motion of a single 

vortex filament, following the presentations in (3] and (6]. We briefly mention the properties 

of the self-induction approximation like the conservation of the arclength of the filament. 

Using the Hasimoto transformation (26] we derive the cubic Schrodinger equation. We 

discuss briefly a few constants of motion of the the cubic Schrodinger equation and the 

corresponding constants of motion of the self-induction approximation. 

Chapter 6 contains final remarks and conclusions. 
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Chapter 2 

Some Basic Facts from Statistical 

Mechanics 

In this chapter we present basic concepts from statistical mechanics; more detailed 

exposition can be found in [28] ,[39]. 

2.1 Some Basic Concepts and Definitions 

Suppose we are interested in the properties of a large system of interacting particles 

at equilibrium. By equilibrium we mean the state of the system where thermodynamic 

properties (pressure, volume, a:rid temperature, for example) do not change in time; we are 

not concerned with how the system rea;ches an equilibrium. One example of such a system 

is an ideal gas consisting of N particles. A state of this system is completely determined by 

the 3N canonical coordinates qil,qiz,qi3 and 3N canonical momenta Pii,Pi2,Pi3 • Suppose 

that the dynamics of this system are described by the Hamiltonian H(p,q), where we use 
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Hamiltonian H(p,q) is a map from R6N into R; then the equations of motions are: 

. 8H(p,q) 
qi = 

8pi 
.. _ 8H(p,q) 
Pt-- · 

8qi 
(2.1) 

Each configuration of the system corresponds to a point in the 6N dimensional space. If 

we specify some initial condition with an energy E, then our system will move in 'space 

on the surface of constant energy E. We are not interested in the motion of the one 

particular configuration of the system, in fact we cannot identify it in practice due to the 

large number of particles in our system. Instead, we would like to consider many possible 

microscopic states of the system (points in our 6N dimensional space) that correspond to 

a single macroscopic state; we also would like to find out what would be an appropriate 

distribution of the states at equilibrium for the system under consideration. 

2.2 The Microcanonical Ensemble 

We begin ou~ discussion with a descript~on of the microcanonical ensemble. Define 

an energy shell as all points (p,q) in the 6N dimensional space with the values of energy 

H(p,q) at these points between E and E + oE, where oE <t: E. We make the following 

assumption: When a macroscopic system is in the:r:modynamic equilibrium, every state in 

the same energy shell is equally likely. Therefore at the thermodynamic equilibrium the 



probability density function to find a system in a state (p,q) is given by: 

{ 

Constant if E < H(p,q) < E + 8E 
p(p,q) = 

0 otherwise 

If f(p,q) is a measurable function then its ensemble average is defined as 

< 1 >= I J(p, q)p(p, q)dpdq. 
I p(p, q)dpdq 

7 

(2.2) 

Every system in the microcanonical ensemble consists of N particles, has a volume 

V, and an energy between E and E + 8E. Now we define two fundamental concepts of 

statistical mechanics - entropy and temperature. Let D(E) be the volume occupied by a 

microcanonical ensemble in the phase space: 

D(E) = f p(p, q)dpdq. 
j E<H(p,q)<E+8E 

(2.3) 

Entropy is defined to be: 

S(E, V) = k log JX.E), (2.4) 

where k is the Boltzmann constant, which is not important for our presentation, so we will 

choose units in which it is equal to 1. The entropy is an extensive variable: that is, when 

the system is composed of two subsystems, the total entropy is equal to the sum of the 

entropies of the subsystems: 

(2.5) 

Let us consider a system which is composed of two subsystems. The total energy of such a 

system, neglecting the interaction energy between these subsystems, is: 

(2.6) 
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The volume of the phase space that these two subsystems occupy is proportional to: 

(2.7) 

Consider a system at equilibrium with an energy E which is composed of two subsystems 

with energy E1 and E2 respectively. The entropy of the system is equal to S(E, V) = 

S(E1 , V1 ) + S(E2 , V2). Consider the problem of maximizing the entropy of the system 

S(E, V) subject to the constraint E = £ 1 + E2 , i.e.: 

maxzmzze S(E, V) (2.8) 

subject to E = E1 + E2 

By using Lagrange multipliers we can solve the constrained maximization problem 

(2.9) to get the following necessary condition for the maximum: 

(2.9) 

The minimum of entropy is achieved at some energy values E1 and £ 2 • Using condition 

(2.9) define temperature T: 

(2.10) 

From this definition temperature is a parameter which arises through an equilibrium con-

clition. 

2.3 The Canonical Ensemble 

Now we would like to find out what is a relevant ensemble for description of a 

system in thermal equilibrium with a larger system. In other words, we have to find out 
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the probability that system 1 in thermal contact with a larger system 2 has energy E1. 

As above, consider two systems in thermal equilibrium. We showed that the total entropy 

is maximal for some particular values of energy E1 and E2. Assume that the number of 

particles in system 1, which we denote by N1 is much smaller than the number of particles 

in system 2, which we denote by N2, i.e. N1 ~ N2; and also assume that E1 ~ E2. The 

event of finding the system 1 in the dp1 dq1 of (p1, q1) is independent of the event of finding 

system 2 in the state with energy E2. Therefore the probability of finding the system 1 in 

that p(p1 ,q1 ) is proportional to D2(E2). By assumption E1 is much smaller thanE; expand 

log ~(E- E1) in a Taylor series and keep the first two terms in the expansion: 

(2.11) 

Taking the logarithm of both sides yields: 

(2.12) 

The first term in (2.12) does not depend on E1, so it is just a proportionality constant. This 

implies that the probability. p(PI, q1) of system 1 to have energy E1 in equilibrium with the 

larger system is proportional to: 

E1 
exp(--y)· 

2.4 Energy Fluctuations in the Canonical Ensemble 

(2.13) 

We are going to show that the microcanonical ensemble is equivalent in a certain 

sense to the canonical ensemble. We compute the mean square fluctuation of the energy in 
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the canonical ensemble; and show that the fluctuation decreases as the number of particles 

in the system increases. This suggests that the canonical distribution is sharply peaked 

around its mean. The expected value of the energy in the canonical ensemble is: 

Introduce the partition function: 

Define the quantity A(V,T) 

I H e-f3H dpdq 
< H >= I e-f3H dpdq 

Z(V, T) = J e-f3H dpdq. 

-,BA(V,T) = logZ(V,T), 

(2.14) 

(2.15) 

(2.16) 

which is actually called the Helmholtz free energy. Differentiate the following identity with 

respect to {3; 

J ef3(A(V,T)-H(p,q))dpdq = 1, 

to obtain: 

j ef3(A(V,T)-H(p,q))[A(V, T)- H(p, q) + f3~;]dpdq = 0. 

Integrating the expression (2.18) above we have: 

&A 
A(V, T)- < H > +,6 &{3 = 0. 

Equation (2.14) can be rewritten as: · 

< H > - j H ef3(A(V,T)-H)dpdq = 0. 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Differentiate this equation with respect to {3 to obtain: 

a~:> - J H(A(V, T)- H + {3~;)e.B(A(V,T)-H)dpdq = 0, (2.21) 

which implies: 

a~: > + J ( < H > -H(p, q))(A(V, T)- H(p, q) + {3~;)e.B(A(V,T)-H(p,q))dpdq = 0. 

(2.22) 

Taking into account equation (2.19) we can rewrite (2.22) in the form: 

a~:>+!(< H > -H(p,q))2e.B(A(V,T)-H(p,q))dpdq = 0. (2.23) 

Using equation (2.16) we obtain: 

a<H> 2 _ 
a{) + < ( < H > -H) >- 0. (2.24) 

We can also rewrite this equation as: 

a< H > 
T 2 + < ( < H > -H)2 >= 0. ar (2.25) 

For a macroscopic system < H >ex N 'and 8 ~I;J.> ex N, thus as N -* oo the mean square 

fluctuation goes to zero; in this sense the canonical ensemble is equivalent to the micro-

canonical ensemble. 

2.5 Finite Size Effects and Phase Transitions 

We formulated the statistical ensemble for a system of fixed size: i.e., a fixed 

number of particles N, and a fixed volume V. However, we are interested in the properties 

of a system consisting of a huge number of particles (on the order of 1023). Therefore we 
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take a limit in which the number of particles N and the volume V both go to infinity, but 

the ratio V /N remains fixed. This limit is called a thermodynamic limit: 

<X>oo= lim <X>NV· 
N-+oo,V-+oo ' 

(2.26) 

To simulate 1023 degrees of freedom is out of reach of computers, and in practice the number 

of degrees of freedom used for computation is much smaller, of the order of a few thousand. 

Nevertheless, even with such a modest number of degrees of freedom some useful results 

can still be obtained. 

Some physical systems in nature exhibit phase transitions ( gas-liquid, fluid-

superfluid, conductor-superconductor, magnetization transition etc. ), i.e. a sharp change 

of some properties of the system with respect to the change in some parameter, such as tern-

perature. Two important questions are: Can we determine whether a mathematical model 

exhibits a phase transition? And can we see a phase transition on a computer (that is to say 

in a simulation with just a finite, probably very small, number of degrees offreedom) ? The 

answer to the first question is yes, but very often it is difficult to do so. The answer to the 

second question may depend on a number of subtle assumptions. We do not pursue both 

of these questions further here, but limit ourselves to a brief discussion of phase transitions 

and effects associated with the finite size of a system and the canonical ensemble. 

For a system of finite size, the expected value of some smooth or analytic function 

is a smooth or analytic function of the parameter {3. However, if we take a thermodynamic 

limit, as the size of the system goes to infinity, then some quantity of interest might be-

come nonsmooth and nonanalytic with respect to {3. Therefore a typical definition of a 

phase transition is the following. Let X be a smooth or analytic measurable function: If 
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limN-+oo,V-+oo < X > ({3) is a nonanalytic function of {3 then we say that the system exhibit 

a phase transition. The temperature T = h at which this nonanalyticity occurs is called a 

critical temperature. In this discussion we implicitly assume that temperature is a control 

parameter of the phase transition. 

For the magnetization transition, for example, the typical phase change picture 

looks like this (see Figure (2.1)). 

2.5 

2 

0.5 

2 3 4 5 6 
Temperature 

Figure 2.1: Phase transition in magnets. Below the critical temperature Tc magnetization 
is nonzero, above the critical temperature Tc magnetization is zero. 

For values of temperatures below the critical Tc there is a non-zero magnetization; 

for values of temperature above the critical temperature the magnetization is zero. This 

type of the phase transition with a discontinuity in the derivative of a function is a called 

a phase transition of second order. A phase transition with a discontinuity in the function 

itself is called a phase transition of the first order. A typical picture of a phase transition 



of the first order is presented in Figure (2.2). 
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Figure 2.2: The smooth curves represent the functions of temperature for the finite N. The 
discontinuous step function represents the limit of the smooth functions as N --+ oo. 
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Chapter 3 

The Non-linear Schrodinger 

Equation and Measure 

3.1 The Canonical Ensemble Associat~d with the Cubic Schrodinger 

Equation 

The cubic Schrodinger equation 

~ 87/J = EJ21f; ~l·'·l 2 ·'· 
i at 8x2 + 2 'f' 'f' 

(3.1) 

which we are going to derive later in Chapter 5 can be rewritten in the Hamiltonian form: 

(3.2) 

where the Hamiltonian is 

(3.3) 
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q and p stand respectively fcir real and imaginary part ofthe function 'lj; in (3.1). We use a 

dot to denote the derivative with respect to time, and a prime to denote the derivative with 

respect to space; we assume here and everywhere in this thesis that p and q are periodic 

functions of x. 

Lebowitz, Rose, and Speer ([41]) introduced an ensemble very similar to the Gibbs 

canonical ensemble, with a measure formally written as: 

P(dp, dq) = z-1 exp[-f'H(p, q)]dpdq, (3.4) 

or, writing the Hamiltonian explicitly: 

(3.5) 

where dpdq is a Lebesgue measure, Z is a partition function, and fJ is a scalar, the 'inverse 

temperature'. The Hamiltonian (3.3) is not bounded below, so in order to make sense out 

of the formal object (3.4), Lebowitz et al. ([41]) suggested to restrict the ensemble to the 

functions that satisfy either 

(3.6) 

or 

(3.7) 

for some constant N. The idea is to restrict the set of functions by the constraint (3.6) 

or (3.7), so that the second term in (3.5) can be bounded by the first term in (3.5). They 

proved that this constrained measure is well defined ( see ( [ 41]) for details). The meaning 
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of the first integral in (3.5) is easy to explain; the formal expression 

(3.8) 

stands for the standard Brownian bridge measure in two dimensions. The second term in 

(3.5), formally given by 

(3.9.) 

is a density which can be bounded by the first term (3.8) under the constraint conditions 

(3.6) or (3.7). The choice of these constraints was motivated by the fact that the nonlin-

ear Schrodinger equation conserves the integral (3.6). This measure was also studied by 

H.P.McKean ([46]), who showed that this measure is invariant. An invariant measure is by 

definition a measure that is preserved by the flow of the partial differential equation; this 

can be described as follows: Take some measurable set of initial conditions and evolve it in 

time by the nonlinear Schrodinger equation; then the set of solutions at any later time will 

have the same measure as the initial set. 

3.2 Ergodicity 

Now we are going to make a connection between the ensemble averages defined by 

(3.5), (3.6), and the averages in time of the dynamical system (3.2). The average in time 

of some function f is defined as 

lit < f >t=- f(p(s),q(s))ds 
t 0 

(3.10) 

where (p(s),q(s)) is a solution of the equations of motion (3.2) with periodic boundary 

conditions in space, and with an intitial condition ( q(O),p(O) ). If the average with respect 
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to the ensemble is equal to the average in time as time goes to infinity, the dynamical 

system with such a measure is called ergodic. The importance of this concept is due to the 

following problem. Very often it is necessary to compute the average in time of a dynamical. 

system; however, integration in time of the equations of motion for large time. may be too 

expensive. In this case, computing ensemble averages might be an attractive alternative. 

However, proving ergodicity of a system may be ari. even more complicated prob­

lem; in fact, we do not know any proof of ergodicity for our system. Nevertheless, we have 

numerical evidence which supports the ergodicity assumption. 

There is a natural question that arises at this point: The Hamiltonian (3.3) of 

the dynamical system (3.2) is a constant of the motion. If we start the dynamical system 

at some initial configuration with some specific value of the energy E, the system will 

· have the same energy for all time. Therefore the phase space accessible to the dynamical . 

system is restricted by the Hamiltonian. On the other hand, the average with respect to 

the measure (3.5),(3.6) is taken over all possible configurations in the phase space subject 

to a constraint (3.6). Why do we expect the ensemble average (3.5),(3.6) which samples 

configurations over all possible energy values to give the same result as the time average? 

If we would like to construct a measure, such that a dynamical system with this measure 

is ergodic, it seems more natural to consider the microcanonical ensemble since it samples 

the given energy shell; we choose the energy shell that is defined by E. However, suppose 

the measure (3.5),(3.6) is concentrated on the configurations of the energy shell defined by 

E; then it is plausible that the averages with respect to (3.5),(3.6) and the microcanonical 

ensemble will be the same. In this sense the measure (3.5),(3.6) and the microcanonical 
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ensemble are equivalent. 

3.3 Numerical Methods 

Our goal now is to evaluate numerically the ensemble average (3.5),(3.6). First we 

are going to introduce a discretization of the Hamiltonian (3.3) and the constraint (3.6). 

Discretize the interval [0,1] by n discretization points; let u; and v; be the discretization 

of the real and imaginary part of the solution of the cubic Schrodinger equation; then the 

discrete version of the Hamiltonian (3.3) is 

H = ~ t)(ui+lh- u;)2 +(Vi+\- v;)2)h _ ~ fJuf + vf)2h, 
t=I t=I 

(3.11) 

where h = ~ is the discretization step. This particular discretization of the Hamiltonian 

leads to the following discretization of the measure (3.5) 

and the discretization of the constraint (3.6) is 

n 

N = l)ut + vf)h. (3.13) 
i=I 

3.3.1 Metropolis Sampling Method 

We are going to describe a method for computing ensemble averages due to 

Metropolis et al. ([49]). For the purposes of the presentation assume for a moment that we 

are given the discrete Hamiltonian H ( x) without a constraint, where x denotes a configura-

tion (XI, ... , XM ); and each X; is a scalar. One can think of x as of ( ui, VI, ... , un, vn) in 
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the discretization of the Hamiltonian (3.11). However at this point we consider a method 

without a constraint; later we will add a constraint to the method. 

The idea of the method is to construct a Markov chain in the space of all discrete 

configurations that will converge to the stationary (or equilibrium) probability density 1r 

given by z-1 exp ( -f3H(Xt, ... , XM )). Z is a partition function and is the sum of the 

weights exp ( -f3H(X1 , •.. , XM )) over all possible configurations. 

(3.14) 

One major difficulty in evaluating the ensemble average is that the partition function Z 

cannot be easily computed; the Metropolis sampling allows one to avoid this difficulty. The 

weight of the configuration x is given by: 

(3.15) 

where the subscript x denotes the configuration (Xll ... , XM ). 

Given an equilil?rium distribution 1r we wish to construct a Markov chain P that 

converges to this equilibrium distribution. We need to find a transition probability matrix 

P = (Pxy) = (probability to make a transition from a state x to a state y) that satisfies 

the following two conditions (for more details see (Binder,Heermann [4]) and (Sokal [55])): 

Denote by p~~) a transition probability from x to y in n steps. Irreducibility: For each pair 

of states x,y there exists an n ~ 0, such that p~~ > 0. 
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Stationarity of 7r: 

L 1l"xPxy = 1l"y, \ly. (3.16) 
X 

A sufficient condition for stationarity of 7r is: 

Detailed balance for 71": For each pair of states x and y, 

A method for constructing a transition probability satisfying the detailed balance 

condition was introduced by Metropolis et al ([49]). The idea is to take an arbitrary irre-

ducible transition matrix P0 = (P~y), called the proposal matrix. In the next section we give 

an example of the proposal matrix that we use to compute the ensemble averages. Using 

this matrix P0 generate a move Xl-l-y; then accept or reject this move with probability bxy 

or 1- bxy respectively. Thus, the transition probability matrix P = (Pxy) is: 

(3.17) 

Pxx = P~x + L P~y(1- bxy)· 
x#y 

Detailed balance for the matrix P is equivalent to the following condition: 

0 b - 0 b 1l"xPxy xy- 1l"yPyx yx· (3.18) 

One way to construct bxy is to look for bxy of the following form: 

7r Po 
b =F(~) xy 0 ' 1l"xPxy 

(3.19) 

where F is a scalar function, F:[O,oo )1-l-[0,1]. It is easy to see that ifF satisfies the following 

equation: 

1 
F(a) = aF(- ), 

a 
(3.20) 



22 

then the detailed balance equation (3.18) is satisfied. 

There are many different functions satisfying equation (3.20). One suitable choice 

of F is to take: 

F(a) =min( a, 1). (3.21) 

Another choice of F also used is F( a) = a~l. Observe that we have a lot of freedom in 

choosing a proposal matrix P0 ; many different proposal moves are possible as long as the 

matrix P of the full algorithm is irreducible, we also have many different choices ofF, as long 

as they satisfy equation (3.20). At this point we can summarize the algorithm as follows: 

1. Generate a proposed move Xr--ty. 

2. Compute the ratio: 

0 
R = 1ryPyx. 

0 
1rxPxy 

(3.22) 

3. Accept the transition from x to y with probability F(R). In other words, generate a 

random number 'Y from the uniform distribution on [0,1], and accept the proposed 

move if 'Y :s; F(R), and otherwise reject it. When we reject a proposed move we make 

a null transition, i.e. we count the old configuration as a new configuration. 

4. Calculate the necessary averages. 

In equation (3.22): the probabilities of configurations 1r x and 1r y enter the expression as a 

ratio, and the partition function Z cancels out. This fact is crucial, since Z is almost never 

explicitly computable. 
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When the proposal matrix P0 is symmetric, i.e. P~y = P~x• the acceptance proba-

bility bxy simplifies: 

'Try) bxy = F(- . 
1rx 

Now going back to our definition of 1rx in (3.15) we can rewrite expression (3.23) as: 

bxy = F(exp(-/3(H(y)-H(x)))). 

(3.23) 

(3.24) 

As an example, consider the case where we chose a symmetric proposal matrix 

P~y = P~x and the function F(a) =min( a, 1). Then the algorithm simplifies slightly to the 

following: 

1. Generate a proposed move x~-+y. 

2. If {36H=. /3(H(y)- H(x)):::; 0, then the proposed move is accepted with probability 

1. 

3. If {36H > 0, then the proposed move is accepted with probability exp( -/36H). In 

other words, generate a random number 1 from the uniform distribution on [0,1], 

and accept the proposed move if 1 :::; exp( -/36H), otherwise reject it. When we 

reject a move we make a null transition, i.e. we count the old configuration as a new 

configuration. 

4. Calculate the necessary averages. 

Note that there is nothing special about the proposal matrix P0 being symmetric; as long 

0 

as one can compute the ratio 1ryP~x the algorithm will work. For more details on how to 
1rxPxy 

implement and improve this algorithm see Binder,Heermann [4] and Sakal [55] 
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3.3.2 Details of the Implementation of the Metropolis Sampling 

In this section we give the details of the implementation of the Metropolis sampling 

designed specifica.lly to compute the ensemble averages with the measure (3.5),(3.6). In the 

previous section we considered the Hamiltonian without a constraint. Now we are going to 

add the constraint (3.13) into the algorithm. 

Pick some arbitrary initial configuration ( u1, v1, ... , un, vn) that satisfies the con-

straint (3.13). To generate a new configuration that will satisfy the constraint (3.13) pick 

some i and j between 1 and n; generate a random number 8 uniformly distributed on the 

interval (0,1], and compute the proposed values of u£ew and vr;ew as 

uiew = r cos(27r8), vr;ew = r sin(27r8), (3.25) 

where r = Jur + vJ. Notice that if the proposed move is accepted the constraint (3.13) 

will be satisfied since u?;tew 2 + v?;tew 2 = u~ + v~ 
t . J t J. 

In this construction it is obvious that probability to go from the old configuration 

to the new configuration is equal to the probability to go from the new configuration to 

the old configuration; therefore the proposal matrix P 0 = (P~y) introduced in the previous 

section is symmetric, and as mentioned above, the algorithm simplifies a little bit since P~y 

and P~x cancel out in the ratio (3.22); and we do not need the specific values of P~y and P~x 

for the method. 

We organize the computations in the following way. Fix i = 1 and take j = 1; 

generate a new configuration satisfying the constraint (3.13); accept or reject it according 

to the rule given in the previous section, then take j = 2; generate a new configuration and 

accept or reject it, then take j = 3, etc. until j = n. After that fix i = 2 and let j vary from 
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1 to n; after that fix i = 3, and continue this procedure until i = n. It is easy to see that 

after n2 steps of this algorithm the probability to get from some arbitrary configuration 

x to an arbitrary configuration y, satisfying the constraint (3.13) is nonzero; and so the 

irreducibility condition is satisfied. 

The way to organize the computations which we just described is not unique. One 

can, for example, pick i and j at random, or use another method for generating a new 

configuration, as long as the irreducibility condition holds. 

3.3.3 Numerical Method for Integration of the Schrodinger equation 

Now we present a numerical method for integration of the non-linear Schrodinger 

equation; the method is described in [32]. The idea is to use Strang-type splitting for the 

linear and nonlinear parts of equations (3.2). In one fractional step solve the linear equation 

• II 

q = -p' 
• II 

p=q; (3.26) 

by using discrete fast Fourier transform. As in the previous section, discretize the real 

and imaginary part of the solution in space on the interval [0,1] by n points as ( Uj, Vj) 

respectively, j = 1, ... , n. Obtain the Fourier modes ( uk, vk), k = 1, ... , n; then apply the 

exact solution formula 

u( t + Llt) + zv( t + Llt) = ( u( t) + zv( t)) exp( -z4[sin( 7rk)~ ]2 .6.t); 
n L 

(3.27) 

invert the Fourier transform to return to the physical space. In the second fractional step 

solve the nonlinear equations 

(3.28) 
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using the formu!a 

(3.29) 

In the next .step of the numerical algorithm the first fractional step is applied, then the 

second fractional step, etc. The two fractional steps are alternated to maintain a second 

order accuracy in time and space. This scheme- is unconditionally stable in time for any 

time step. 

This numerical method conserves the discrete constraint (3.13) since each frac-

tional step of the method conserves (3.13). In our computations we monitored conservation 

of the Hamiltonian and the constraint (3.13) as an accuracy check. 

3.4 Comparison of the Time and Ensemble Averages 

Now we present numerical evidence for the equivalence of the ensemble (3.5), (3.6) 

and the microcanonical ensemble; in Figure (3.1) we show the energy fluctuation of the 

ensemble (3.5), (3.6) around its mean energy, i.e. 

(3.30) 

computed at some fixed temperature versus the constraint N. 

We introduce the energy fluctuation (3.30) into our presentation to estimate the 

concentration of the measure (3.5),(3.6) on the configurations with the mean energy < 

H >. We argued above in section 3.2 that if the measure (3.5),(3.6) is concentrated on the 

configurations that belong to the energy shell defined by < H >, then it is plausible that 

the averages with respect to (3.5),(3.6) and the microcanonical ensemble will be the same. 
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As one can see from the graph in Figure (3.1) the energy fluctuation tends to zero 

as N increases. This suggests that for large values of N the probability density on the space 

of configurations is concentrated on the energy shell defined by the mean energy · < H >. 

number of nodes= 80, number of pushes= 6.4.108
, beta= 1 
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* 
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* 

10~L------~~--~--~--~~-~~~~ 
1~ ~~ 

Constraint 

Figure 3.1: Equivalence of the ensemble (3.5), (3.6) and the microcanonical ensemble. 

For the dynamical system (3.2) we choose some initial configuration with the 

energy equal to the average ensemble energy (3.5), (3.6). In Figure (3.2) we present the 

calculations of the time average and the ensemble average of the following quantity 

< foL(pZ + qZ)Zdx > 
NZ (3.31) 

One can see from Figure (3.2) that there is a remarkable agreement between the time and 

the ensemble average! In this computation the number of discretization points was taken 

to be 40, and the value of the constraint N (3.13) equal to 103 . The same agreement was 
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Figure 3.2: Time average and ensemble average 

28 

observed when we increased the number of discretization points to 80 and 150, and changed 

the value of the constraint. Therefore we conjecture that our discrete dynamical system is 

ergodic. One remark should be made here about the continuum dynamical system. The 

cubic ~chrodinger equation has an infinite family of conserved quantities (see [51]); the 

numerical scheme that we use to integrate the cubic Schrodinger equation in time does 

not have a corresponding infinite family of conserved quantities; although we verify the 

conservation of the Hamiltonian and the constraint N (3.13) in the integration in time. 

Therefore the trajectory in time of the numerical scheme visits a larger subspace than the 

actual continuum solution, and the ergodicity that we describe here might be due to the 

particular numerical algorithm. 
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Chapter 4 

Phase Space Topological Changes 

and Bifurcation 

In this chapter we present numerical results on the bifurcation of the measure 

(3.12),(3.13) which is directly linked to the phase transition type behavior observed in [41]. 

4.1 The History of the Problem 

In [41] the statistical ensemble for the nonlinear Schrodinger equation (3.5), (3.6) 

is introduced. In the terminology of [41] the solution of the nonlinear Schrodinger equation 

'ljJ is called a complex field; recall that for the cubic Schrodinger equation in Chapter 3 we 

used the real valued functions q and p for the real and imaginary parts of 'ljJ respectively, 

i.e. 

'1/J(x) = q(x) + zp(x), ( 4.1) 
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where x is a scalar argument. We are going to refer to the pair of functions ( q, p) as 

·a field. It was observed in [41] that there is a large difference between the form of the 
\. 

typical field configuration for low temperatures and the form for high temperatures; for 

example, in Figure ( 4.1) we present the typical real and imaginary components of the 

field for low temperature and large constraint N. These functions look like humps, while 

for high temperature the typical functions look like random fluctuations; we present high 

temperature typical functions in Figure ( 4.2). The word typical here means that the measure 

is concentrated on the functions similar in shape to· the typical ones. 
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Figure 4.1: Typical real and imaginary components of the field for low temperature and 
large constraint. 

In the next picture we present the typical functions for low temperature and small 

constraint N. The typical functions here are almost constant up to small random fluctua-

tions. 



31 

N=80, p = 125•10-3 
15.-----~----------------~.-----.-----.------.----~ 

I I 
I II II 

I 
I II II 

0 r I I Ill I 

I' 
\ I 

I rl I 
~I 

I 
/I I 1\, I 

r II ;I I I,. I ' -5 ,, II 
~I I I/' Jv I II Ill 

I I 1,,1 I I I 

I I' 
'I 

-10 I I 
I 

1'1 ,I 

II I I 
It 
If 

-15 II 
If 
I 

-20 
0 20 40 60 eo 100 120 140 160 

•-• real componen1, • --• imaginary component 

Figure 4.2: Typical real and imaginary components of the field for high temperature. 
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This definition. of typical is not very precise, so in order to make the definition 

more rigorous the following quantity was introduced, 

( 4.2) 

where <> stands for averaging with respect to the statistical ensemble (3.5), (3.6). The 

problem with this definition of S( x) is that the Hamiltonian (3.3) is translation invariant 

on the periodic fields; thus for example if we take the field in Figure ( 4.4) and translate it in 

space by any amount, the new field will have exactly the same statistical weight. Suppose 

for a moment that all the statistical weight of the ensemble (3.5), (3.6) is concentrated on 

the fields just like the one in Figure ( 4.4); then simple averaging as defined in formula ( 4.2) 

will smear the humps, and the result will be S( x) equal to some constant. In order to make 

sense of S(x) we have to eliminate the translation invariance. The method used in [41] is 

the following: for every field ( q, p) to find a point x such that q2( x) + p2( x) is maximal, 

and translate the maximum of the field to the middle of the interval [0, L] and then take an 

average in ( 4.2). 

This translation approach produces an artificial spike in the middle; in order to 

eliminate this effect it was suggested in [41] to divide S(x) by the quantity 

( 4.3) 

where 0 denotes the average with respect to the statistical ensemble (3.5), (3.6) without the 

potential energy term in the Hamiltonian (3.3). 

The quantity ffo((J) is plotted in Figure ( 4.4); the main result of this computation is 

that the typical field configurations for low temperatures look like sharp spikes (or soliton­

like structures as they were referred to in [41]). For high temperatures, the typical field 
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configurations look like constant functions with oscillations added to them. As one can see, 

qualitatively the picture remains the same as in Figure 4.1 - sharp spikes are typical for 

low temperatures, and fiat configurations are typical for high temperatures. 
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Figure 4.4: Plot of S(x)jS0(x) for high and low temperatures 

Although the pictures 4.4 and 4.1 are intuitively easy to understand, the construe-

tion of ffo((J) is slightly artificial. Another approach to studying the change in the typical 

field configurations, which does not involve artificial translation invariance breaking, is to 

compute the typical kurtosis of the field configurations 

K = < fo~(q2(x) + p2(x))2dx >. 
< fo (q2(x) + p2(x))dx >2 

( 4.4) 

The denominator in ( 4.4) is used for the normalization; recall that our measure must satisfy 
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the constraint (3.6), therefore ( 4.4) can be rewritten in the form 

( 4.5) 

The reason for introducing the quantity K is to distinguish the field configurations 

that have sharp spikes from those that are flat. We would expect that at low temperatures 

K would be larger than at high temperatures, provided the constraint (3.6) is large enough. 

This is indeed what happens, (see Figure (4.5)). One can see that there are two distinctly 

different regimes in this picture, at low and high temperature, and also a transition region 

between them. 
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Figure 4.5:. Values of K for fixed N =80, and varying (3. 

The left part of the graph in ( 4.5) ( 10-2 ~ (3k < 1 ) corresponds to the sharp 

spike in Figure 4.4, and the right part of the graph ( 10 ~ (3~ ~ 102
) corresponds to the 
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:flat configuration in Figure 4.4. 

Let us summarize our observations so far. At low temperatures the kurtosis K of 

the typical field configurations is high; and it remains almost constant if we increase the 

temperature up to a certain value. Once the temperature reaches the transition region, K 

decreases sharply; for higher temperatures K again becomes almost constant. 

So far we have discussed the change in the kurtosis ( 4.5) with respect to tempera-

ture. Now we would like to look at the change in the kurtosis when we vary both constraint 

N and temperature. In Figure 4.6 we present plots of the kurtosis ( 4.5) for N = 10, 40, 80. 
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Figure 4.6: Values of K for N= 10, 40, 80 and varying (3. 

Notice that on the left hand side of the picture in ( 4.6) ( 10-2 ~ 13~ < 1 ) the three 

curves are distinctly different and almost constant; in the transition region 1 ~ 13~ ~ 10, 

the curves come together, and for 10 ~ !3~ ~ 102 the three curves assume the same constant 
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value. 

This behavior of the kurtosis K is very similar to the pictures of phase transition 

in statistical physics [28], and it raises the question as to whether this is indeed a phase 

transition or if some other phenomenon is taking place? 

In order to examine this question we start by studying a simplified system, and 

then moving to a more' general one. Before we begin the study of a simple case, we need 

some definitions. 

4.2 Definitions 

Suppose we are given a discrete canonical measure (3-.12),(3.13), and we want to 

compute an average with respect to this measure of some quantity using the Metropolis 

sampling algorithm. We start with some random initial configuration, which we denote by 

x1 = (u(1), ... ,u(n),v(1), . .. ,v(n)), and then run the Metropolis sampling, as described 

in the Chapter 3, for some large number of steps M, storing each configuration as a point 

Xi, i = 1, ... ,M. After M steps we will get M points, (x1, ... ,xM)i this collection of M 

points we will call a Metropolis sampling trajectory. Notice that this Metropolis sampling 

trajectory does not depend on a quantity computed in the Metropolis sampling algorithm; 

it only depends on the temperature in the ensemble and on the initial point. 

The Metropolis sampling trajectory is a trajectory in 2n-dimensional space; we can 

define a projection of the Metropolis ~ampling trajectory onto a 3-dimensional subspace by 

picking any three components of the vectors u,v, for example u1 ,u2 ,v3 . In a similar way 

we can define a projection of a Metropolis sampling trajectory onto a three dimensional 
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subspace, which we will denote by (xf, ... ,x~). 

Now consider a time dependent Hamiltonian system with periodic boundary con-

ditions (3.2); discretize this system in space by n points, and integrate it in time for some 

large timeT, starting at some initial configuration y1 = (u(1), ... ,u(n),v(1), ... ,v(n)). 

For integration in time we use some numerical method, for example the one described in 

Chapter 3; we define the time trajectory as a collection of points (y1 , ••. , YK ), J( tlt = T, 

where tlt is the time step of the numerical integration scheme. The time trajectory is a 

trajectory in 2n-dimensional space, and (yf, ... , y'f<) is the projection of the time trajectory 

onto a three-dimensional subspace, which we will call a projected time trajectory. 

4.3 Simple case 

To motivate the discussion later in this chapter we consider a very simple discrete 

periodic in space system (3.11),(3.13) with just 2 discretization points, i.e. in (3.11), (3.13) 

we take n = 2, or explicitly the Hamiltonian is given by 

( 4.6) 

which leads to the following discretization of the measure (3.5), (3.6) 

2 2 

P( du, dv) = Z21 exp[ -,8~ ?=(( Ui+lh- Ui )2 + ( Vi+lh- Vi )2)h- ~ ?=C u7 + v[) 2 h]dudv, 
t=l t=l 

( 4.7) 

and 

2 

N = I)ur + v[)h, ( 4.8) 
i=l 
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where h = ~ is the discretization step. The equations of motion can be written as: 

( 4.9) 

where i=1,2; and since u and v are periodic by definition u3 = ui, uo = u2 , v3 = vi, and 

The reason for choosing such a system is its simplicity; we can visualize this 

system in 3-dimensional space, because this system is almost 3-dimensional. By almost 

3-dimensional we mean that given three arbitrary components of the system, for example 

Ut, u2 , and VI, one can determine v2 from ( 4.8) up to a sign. 
' . 

Now we investigate the phase space of the dynamical system ( 4.9); we start the 

system at various initial conditions with different values of the Hamiltonian ( 4.6) and the 

fixed value of the constraint ( 4.8) and follow the system for large enough time, so that the 

system settles into some periodic or quasiperiodic motion. 

4.3.1 Phase space splitting of the dynamical system into energy level sets 

We begin by fixing some value of the constraint ( 4.8) and pick the initial condition 

corresponding to the minimum value of the Hamiltonian ( 4.6). In Figure ( 4. 7) we plot 

the time trajectory that corresponds to the minimum value of the Hamiltonian. This time 

trajectory corresponding to the minimum of the Hamiltonian lies in a plane, which we call 

a minimum energy plane. We then increase the Hamiltonian and integrate in time starting 

at some arbitrary initial condition; after some time the time trajectory settles to some quasi 

periodic motion, which looks like a motion on a surface of a torus (see Figure 4.7). 
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Figure 4.7: Time trajectories in the phase space of the 4-dimensional system with constraint. 
The axes correspond to the two real components and one of the imaginary components of 
the system. The thick line corresponds to the minimum value of the Hamiltonian. The thin 
line corresponds to a value of the Hamiltonian larger than the minimum. 
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Keeping the value of the constraint ( 4.8) fixed, we increase the value of the Hamil-

tonian further; the new time trajectory is plotted in Figure ( 4.8). 
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Figure 4.8: Trajectories in the phase space of the 4-dimensional system with constraint. 
The axes correspond to the two real components and one of the imaginary components of 
the system. The thick line in this picture is the same minimum energy line as in the figure 
( 4. 7) above, and is reproduced in this picture as a reference line. 

If we increase the Hamiltonian value even further, and compute the corresponding 

trajectories, we find that the trajectories collapse onto the line perpendicular to the min-

imum energy plane (see Figure (4.8) ). Finally, at the highest value of the Hamiltonian 

the trajectory in Figure ( 4.9) is a circular line in the plane perpendicular to the minimum 

energy plane. 

Figures ( 4. 7)-( 4.9) provide a picture of the phase space splitting into various energy 

surfaces from the minimum to the maximum value of the Hamiltonian with some fixed value 

of the constraint. 
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Figure 4.9: Trajectories in the phase space of the 4-dimensional system with constraint. 
The axes correspond to the two real components and one of the imaginary components 
of the system. Thick line corresponds to the minimum of the Hamiltonian, and thin line 
corresponds to the maximum of the Hamiltonian. 
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4.3.2 Changes of Metropolis sampling trajectories with respect to tern-

perature 

Now we would like to find out if there is any connection between the time tra-

jectories of the dynamical system ( 4.9) and the Metropolis sampling trajectories of the 

system ( 4.6), ( 4.8). Our previous discussion in Chapter 3 suggests that for large inverse 

temperature {3, the configurations that contribute the most to the statistical sum would be 

concentrated on configurations of minimum energy. This is indeed the case, and we verify 

this in Figure ( 4.10), where we plot a Metropolis sampling trajectory for the low temper-

ature with the same value of the constraint ( 4.8), which we used for the time trajectories 

above. We started the Metropolis sampling at many different points and each time got the 

same torus like picture in Figure ( 4.10). 
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Figure 4.10: Metropolis sampling trajectory of the 4-dimensional system, {3=4. The axes 
correspond to the two real components and one of the imaginary components of the system. 
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Now we would like to find out how this Metropolis sampling trajectory changes as 

we increase the temperature. We pick some high enough value of temperature, and compute 

the Metropolis sampling trajectories starting at various initial configurations. What we see 

is that the torus-like structure of the most important configurations changes completely and " 

starts to look like a ball. 
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Figure 4.11: Metropolis sampling trajectories of the 4-dimensional system with constraint, 
,8=0.04. The axes correspond to the two real components and one of the imaginary com­
ponents of the system. 

We observe that the typical phase space Metropolis sampling pattern completely 

changes its topology over some range of values of temperature. In other words, there is a 

low temperature pattern - a torus, a high temperature pattern - a ball, and a transition 

region between them, in which torus is transformed into a ball, or vice versa. 

Although one specific configuration can be sampled several times and so it will 
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have a bigger statistical weight associated with it, in Figures 4.10,4.11 such a configuration 

is shown as just one point. To give a better picture we show the weight of each different 

energy state in Figures ( 4.12) and ( 4.13). 
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Figure 4.12: Density of states for the Metropolis sampling trajectories. The horizontal axis 
is the energy, from smallest to largest possible values. The vertical axis is the density of 
the configuration with each energy. 

These pictures show that for low temperature almost all of the contribution to 

the statistical sum comes from the neighborhood of the smallest energy configuration. An 

increase in temperature results in a bigger contribution to the sum from the higher energy 

states, which corresponds to the torus like Metropolis sampling trajectory turning into a 

hall. 
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Figure 4.13: Density of states for the Metropolis sampling trajectories. The horizontal axis 
is the energy, from smallest to largest possible values. The vertical axis is the density of 
the configuration with each energy. 



46 

4.3.3 Changes of Metropolis sampling trajectories with respect to con-

straint N 

So far we have observed that there is a change in the topology of the sample 

trajectories from a torus to a ball when the temperature is changed. Motivated by this 

observation, we would like to find out what topological changes happen when we change 

both the constraint N and the temperature, as in Figure ( 4.6). First, in Figure ( 4.14) we 

present the graphs of ]( vs. {3~ for several different values of N. 
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Figure 4.14: Values of K for N= 1, 10, 40 and varying (3. 

Notice that even for the simple 2 node system there is qualitative similarity be-

tween these graphs and the ones in Figure ( 4.6) for the 40 node system. This indicate.s 

that studying a simple 2 node system will provide an insight into the behavior of a more 
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complicated one. 

In Figure ( 4.14) as in Figure ( 4.6) there are clearly three distinct regimes; for 

10-3 ~ {3~ ~ 10-1 the curves corresponding to different constraints are clearly distinct and 

almost constant; for 10-1 ~ iN ~ 1 the curves come together, and for 1 ~ {3~ the curves 

are indistinguishable and constant. 

We would like to find out what are the topological changes in Metropolis sampling 

trajectories corresponding to the low value of {3~ when the three curves in Figure ( 4.6) are 

distinct. To do this we fix iN= 10-2 and plot Metropolis sampling trajectories in Figures 

( 4.15), ( 4.16), and ( 4.17), for N =1, 10, and 40 respectively. 
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Figure 4.15: Metropolis sampling trajectories of the 2 node system, N = 1, 1/(f3N) = 10-2 • 

A new interesting feature has appeared in Figure ( 4.16) as we increase the value 

of the constraint N from 1 to 10 - a single torus splits into two tori, and the two tori then 
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Figure 4.16: Metropolis sampling trajectories ofthe 2 node system, N = 10, 1/(f3N) = 10-2
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move apart as N increases until they become perpendicular to each other. 

In order to see what happens to the two tori Metropolis sampling trajectories 

(N = 40) as we increase the temperature, we pick the first value of f3 in the transition 

region, for example {3~ = 1, and the second value of (3 in the region where all three curves 

in Figure (4.14) come together, for example {3~ = 10. The Metropolis sampling trajectories 

are shown in Figures ( 4.18), and ( 4.19). 
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Figure 4.18: Metropolis sampling trajectories of the 2 node system, N = 40, 1/(f3N) = 1. 

One can see from these pictures that as temperature increases the two tori become 

'fatter' in the transition region, and turn into a ball for high enough temperatures. 

In section 4.3.2 we showed that for low temperatures the Metropolis sampling 

trajectories are concentrated around the minimum energy time trajectories ( see Figures 

( 4.7), and ( 4.10) ); now we present minimum energy time trajectories for N = 10, (Figure 
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N=40, 1/(~N)=10 
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Figure 4.19: -Metropolis sampling trajectories of the 2 node system, N = 40, 1/((3N) = 10. 

(4.20)), and for N = 40 (Figure (4.21)). 

Recall that there are two ti~e trajectories coming through each point of the phase 

space, since the fourth degree of freedom of the system is determined from the three shown 

in the picture and a constraint up to a plus or a minus sign. 

If we compare Figures (4.20), (4.21) and Figures (4.16),(4.17) respectively, we 

again see a very good agreement between Metropolis sampling and time trajectories; this 

confirms our intuitive reasoning in Chapter 3. 

4.4 - General case 

Now we consider the more general case of the statistical ensemble (3.11),(3.13), 

and a dynamical system (3.2) with the number of discretization points n greater than 2. We 
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Figure 4.20: Splitting of the minimum energy circle in the time dependent system, N = 10. 
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would like to investigate the connection between changes in kurtosis ( 4.6) and Metropolis 

sampling trajectories; we are motivated by the simple 2 point system case of the preceding 

section, and would like to see whether such phenomena as tori turning into a ball persists 

for the large system. Since we cannot visualize the whole n-point system as we could before, 

. we have to take projections onto a three-dimensional subspace. 

4.4.1 Changes of Metropolis sampling trajectories with respect to tem­

perature in large system. 

Surprisingly, we are still able to observe very clearly phase space changes of the 

Metropolis sampling trajectories at low and high temperatures, which look very much the 

same as in the simple 2-point case. 

We present a typical picture that we observed over different combinations of any 

three discretization nodes. We picked at random three particular nodes and monitored their 

Metropolis sampling trajectories for a few different runs of Metropolis algorithm. 

In Figure ( 4.22) we present the projection of the Metropolis sampling trajectory 

of a 10-point system for low temperature. The parameter range of this system (N = 1, 

f3 = 4) corresponds in Figure (4.6) to the left part of the lower curve (JN = 0.25). Notice 

that the Metropolis sampling trajectory is a single torus and looks very much the same as 

the torus of the 2-point system in Figure ( 4.10). 

Both of these tori in Figures ( 4.22), and ( 4.10) correspond to the lower kurtosis 

curves in Figures (4.6), and (4.14) respectively. 

In the 2-point case we observe that as we increase the temperature the torus like 

picture turns into a ball. Now we increase the temperature in the large system C]N = 10, 
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Figure 4.22: Metropolis sampling trajectory for the lO~point system, N =1, j3 = 4. 

see Figure 4.6) and plot the resulting Metropolis sampling trajectories in Figure ( 4.23). 
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Observe that the torus turns into a ball, just as in the 2-point system (see Figures 

(4.10),(4.11)). This is very surprising; even though the phase space of the larger system is 

very complicated, the simple phase space structure of the Metropolis sampling trajectories 

is preserved in the large system. 

Let us consider the dynamical system (3.2); which we discretize with a large num-

her of points and integrate in time at a minimum value of the Hamiltonian; the resulting 

trajectory is given in Figure ( 4.24). 

Notice that, as before in the 2-point case, the Metropolis sampling trajectories 

for low temperature (Figure 4.22) are concentrated around the energy minimum shown in 

Figure ( 4.24). 
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Figure 4.23: Metropolis sampling trajectory for the 10-point system, N=1, (3 = 0.1. 
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4.4.2 Changes of Metropolis sampling trajectories with respect to con-

straint N in large system 

Recall that in Figure ( 4.6) kurtosis changes depending on both temperature and 

constraint N. In simple 2-node system we observed that as N increases at low temperature, 

the torus splitted into two tori (Figures 4.15, 4.16, 4.17 ). The sample trajectories of the 

large system also change from a torus to a more complicated structure, which we plot in 

Figure ( 4.25); nevertheless the torus like picture splits into something very similar to the 

two tori picture of the simple 2-point system (see Figure 4.17). 
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Figure 4.25: Metropolis sampling trajectory for the 40-point system N = 103 , f3 = 10-4 • 

As temperature increases, something similar to the 2-point case takes place; at 

first the tori structure becomes 'fatter' (see Figure 4.26) and then for high temperature it 



turns into a ball (Figure 4.27). 
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Figure 4.26: Metropolis sampling trajectory for the 40-point system N = 103 , f3 = 10-5 

Clearly, there is a strong connection between phase space Metropolis sampling 

trajectories structure and differences in kurtosis (Figure 4.6), which appears in the small 

2-node system and persists for larger systems. 

4.4.3 Changes in kurtosis J{ as constraint N increases 

It might appear that as N increases for low temperature the kurtosis curves in 

(Figure 4.6) will tend to a discontinuous step function. However, whatreally happens for a 

fixed number of discretization points is that for large enough value of N the curves converge 

to a smooth function; the results are shown in Figure ( 4.28). 

For values of N > 640 presented in Figure ( 4.28) the curves converge to a curve 



57 

number of nodes= 40, Constraint= 103
, beta= 10-6 

80 

60 

40 

20 .. 
0 

-20 .. 
-40 

-60 

-80 .!• :~ 

100 

100 

-100 -100 

Figure 4.27: Metropolis sampling trajectory for the 40-point system N = 103
, f3 = 10-6 

• N=40, + N=80, x N=320, o N=640, number of nodes = 40 
40 0 0 0 6 0 0 

X X X X 0 X 

35 X 

0 

X 

30 

0 

"' 25 X 

~ 
)( .., 

i;2o 
+ 

"'c. 
.J:::o 

v 15 

10 

+ + + 
5 + 

* * * * * 
+ 

* * + • + *"1-+ Iii ® ® 

0 
10-2 10_, 10° 10

1 
102 10' 

1/(J}N) 

Figure 4.28: Values of K for various N and f3 



58 

close to the one that corresponds to N = 640. From these pict~res for the fixed number of 

nodes we do not observe convergence to the discontinuous step function as N increases. 

4.4.4 Changes m kurtosis K as the number of discretization points in-

creases 

Now consider the limit in which the constraint N is fixed and the number of 

discretization points increases. In this case again we observe that the functions converge to 

some smooth limit function; the results are shown in Figure ( 4.29). 
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Figure 4.29: Values of K for N =40 and different number of discretization points. 

If we pick a larger value of N ·and compute kurtosis for increasing numbers of 

discretization points, the functions again converge to some smooth limit function; the results 

are shown in Figure (4.30). 
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These plots suggests that for a fixed value of N, as the number of discretization 

points increases the kurtosis converges to a smooth function. However, for larger value of 

N the kurtosis has a steeper slope in the transition region; this suggests that we need to 

investigate the limit as both N and the number of discretization points increase. 

4.4.5 Changes in kurtosis f{ as both N and the number of discretization 

points increase 

We are going to show that as we increase the number of discretization points the 

kurtosis tends towards to a higher limit. 

In the previous plots we either used a fixed number of discretization nodes (n=40) 

or a fixed constraint ( N =40, N =80). If we now increase the number of discretization points 
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and the constraint N simultaneously, we observe that in the transition region the slope of 

the curve corresponding to larger N is steeper than for a smaller N. If we double the 

number of nodes, the derivative increases substantially (see the summary in Table (4.1)). 

This might suggest the possibility of a discontinuity irL the function K in the limit as N and 

the number of discretization points approach infinity. The estimates for the derivatives in 

the transition region are summarized in Table ( 4.1). 

I Number of nodes I Maximum absolute value of the derivative 

I 40 I 2.1 

~i~ . :~2: 

Table 4.1: Maximum absolute value of the derivative 

The plots of the curves in the transition region are given in Figure ( 4.31 ). Here 

we plot K for increasing number of nodes and increasing values of N. Notice that in Figures 

(4.28), (4.29, (4.30) we used a logarithmic scale, but we do not use it in Figure (4.31). 

Also observe that the horizontal axis in Figure ( 4.31) is scaled as (3~, and as N 

goes to infinity the transition region increases which implies that the temperature in the 

transition region goes to infinity. 

To summarize: In the transition region between low and high temperatures the 

slope of K increases in absolute value as the number of nodes and the constraint N increase. 

However, the numerical simulation cannot provide a proofthat there is a discontinuity in the 

limit as the number of discretization nodes and N go to infinity. Investigating numerically 

a system of more than 500 discretization nodes or 1000 degrees of freedom ( 500 real and 
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Figure 4.31: Values of K for increasing number of discretization points and N. N = 640 
(for 40 and 80 nodes), N = 1000 (for 160 nodes), and N = 2000 (for 320 nodes) 

500 imaginary components) becomes prohibitively expensive. 
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0 

Chapter 5 

The Self-Induction Approximation 

and the Non-linear Schrodinger 

Equation 

In this chapter we describe the self-induction approximation for a single vortex. 

First we would like to motivate our interest in this equation and in statistical mechanics 

associated with this equation from the point of view of fluid and superfluid turbulence. 

5.1 Introduction. Turbulence and Statistical Mechanics. 

An understanding of turbulence is one of the important unsolved problems in sci­

ence; turbulence in fluid and superfluid flows has been studied by scientists for many years. 

Smooth fluid flows are well understood and there are accurate models and computational 

methods for their analysis. However, three dimensional high Reynolds number fluid turbu-
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lence is not well understood; one of the reasons for this is that accurate resolution of the 

turbulent three dimensional flow on a computer requires on the order of 1020 - 1050 grid 

points in space and time. This comes from the need to resolve the motion on length scales 

that span many orders of magnitude. It is evident that such calculations are impossible 

even on the fastest computers; therefore there is a need for a deeper insight into the physics 

of turbulence and into the computational algorithms. 

There is experimental evidence that turbulent motion is not only very complex, 

but also random. In other words, if we make the same experiment with a large number of 

apparently identical systems, we would obtain different results from the same measuring 

process; this suggests that turbulence needs a statistical description. There is also evidence 

of universal behavior in turbulent motion; the inertial scale of turbulence, which is the scale 

between the range at which energy is injected into the system and the range at which it is 

dissipated, exhibits a universal energy spectrum, called the Kolmogorov spectrum, which is 

independent on the type of fluid and the geometry ofthe flow [14], [45], [38], [40], [44]. 

This motivates an approach to turbulence taken by many researchers in which 

one uses a stochastic model for the motion on the small scales, and one couples it with 

explicit solution of the N avier-Stokes equations on large scales. A small-scale model, or a 

subgrid model, is supposed to account for the effects on small scales, like energy transfer 

and dissipation [14], [40]. There is a more recent approach for treating simultaneously all 

scales of turbulence by a suitable stochastic model and computing averages of the fluid flow, 

subject to given initial constraints [18]. 

There are many approaches that can be taken to study turbulence by probabilistic 
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means. One of the most natural approaches is to apply ideas from statistical physics and 

equilibrium thermodynamics [14], [8], [9], [10], [11]. The idea is plausible, since the small 

scales of the turbulent flow have time scales much smaller than the time of the overall decay 

of the flow, so the small scales can reach equilibrium very fast compared to the time on 

which the flow is observed. The equilibrium assumption provides a great simplification, 

since it requires relatively few defining parameters, like energy, temperature, and a set of 

constraints; however, it still allows us to observe a wide variety of phenomena including 

phase transitions and negative temperatures [1], [7], [14], [12], [13], [16], [17], [36], [43], 

[50]. It also admits various formulations of turbulent models both in real space and spectral 

variables [14], [27], [52]. 

Turbulence plays an important role in quantum systems like superfluid helium 

[21]. In the superfluid flow the mechanical and thermal effects are coupled; thermal effects 

can destroy the superfluid flow, and this process has been related to turbulence [21], [24]. 

The equations of motions of the superfluid are not fully understood and how to model the 

superfluid flow remains an open question [29], [6], [56], [2], [53], [54].· 

The study of superfluidity is also important because of its relation to the super­

conductivity [22], [35]; therefore a study of superfluidity rriight provide an insight into the 

study of superconducting currents, and help in the design of the superconducting devices. 

5.2 The Self-Induction Approximation 

In this chapter we describe the self-induction approximation for a single vortex. 

We then use the Hasimoto transformation tb obtain a non-linear Schrodinger equation 
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from the self-induction approximation. We use a Hamiltonian formulation of the non-linear 

Schrodinger equation to construct a Gibbs canonical ensemble. 

We start by considering inviscid isentropic incompressible fluid in three dimensions. 

We would like to study its time evolution by studying the time evolution of the vorticity w. 

Denote the velocity field by v . 

w = curlv. (5.1) 

We show following [19] how the velocity v can be expressed in terms of the 

vorticity w . An incompressible fluid satisfies the equation div v=O. Then there is a vector 

field A such that div( A )= 0 and v= curl (A). Therefore/:::,. A = -w. Green's function 

for the Poisson equation in three dimensions is 

G(x, xt) = 
1 

The vector A can be expressed in terms of w by 

A(x) = f G(x, xt)w(xt), dxt 
}Ra 

where the integral is over R 3 . Taking the curl of A, we get for v(x) 

v(x) = _!:__ { (x- xt) X w(xt) dxt, 
47r }Ra llx- xt113 

(5.2) 

(5.3) 

(5.4) 

where the integral is taken over the whole three-dimensional space. We wish to rewrite this 

expression for the velocity in a different form. To do this we need to introduce the concept 

of a vortex tube and its strength. 
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Take a two-dimensional surfaceS that is nowhere tangent tow. Draw vortex lines 

through each point of this surface, assuming that w does not vanish anywhere on that 

surface. The resulting object, which is a product of the surfaceS and vortex lines, is called 

a vortex tube. Suppose the surface S is finite with a boundary that we will call L. The 

quantity 

1 vds, (5.5) 

is the circulation of the tube. By Helmholtz' theorem [19] the circulation of the isentropic 

fluid around any two curves encircling a vortex tube is the same; this value is therefore 

common to the whole vortex tube. It is called strength of the vortex tube, and we denote 

it by f. It is also constant in time, as the vortex tube moves with the fluid. By Stokes' 

theorem 

f' = i vds = is wdB, (5.6) 

where dB denotes the differential directed area dB = ndb. Here n is a normal to the surface 

S and db is an infinitesimal area of the crosssection of the vortex tube. 

Assume that vorticity is concentrated in a small neighborhood of a curve in three 

dimensions; call this curve with this neighborhood a vortex filament, and call this curve 

itself a centerline of the vortex filament. Assume further that along each crossection normal 

to the centerline, the vorticity associated with this vortex filament is the same at every 

point of the crossection and is parallel to the centerline at the point of the intersection of 

the centerline and the vortex tube. 

For any surface s that is transverse to this centerline Is wdB = r. We call this r 
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the strength of the vortex filament. Then the formula for v(x) becomes 

v(x) = .!:._ f (x- xl) x t(x1) dxl, 
4rr lc llx- x/11 3 (5.7) 

where the integral is taken over the line C, and t(xl) is a unit tangent vector to the curve 

C at the point xl. 

Now we wish to study the evolution of the vortex filament by the asymptotic 

expansion introduced by Arms and used by Hama [25]. We follow the presentation in [3] 

and [6]. 

Denote by x(s) the centerline of the vortex filament, where sis an arclength along 

the centerline. By Taylor's theorem x(s)= x(O) + ~~(O)s + ~ a;:(o)s2 + O(s3
). Without 

. 2 

loss of generality choose x(O)=O, and denote the tangent unit vector ~~(0) by t and ~5~(0) 

by fi:n, where n is the normal unit vector and fi: is the curvature. Similarly, expand t( s) as 

t(s)= t + fi:llS + O(s3 ). The vector product t x n is called the binormal vector; denote it 

by b. Consider a local coordinate system at the point 0 spanned by the triple t, n, s; pick 

a point r= (0, acos('¢'),asin('¢')) near thevortex filament and calculate the integral (5.7) 

at this point. Neglecting terms of order three or higher in s we can write 

1 
(x(s)- r) x t(s) = nasin('¢')- bacos('¢')- tafl:ssin('¢')- 2bfl:s2

• (5.8) 

Substituting the expression above into (5.7), integrating from -L to L, and taking 

the distance a from the point r to the filament sufficiently small, we get 

r . rfi: L 
v(r) = -

2 
-(b cos('¢')- n sm( '¢')) + -b log(-)+ 0(1). 

rra 4rr a 
(5.9) 
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The contribution to the velocity that comes from the vortex outside the line of 

integration -1 :::; s :::; L is bounded in magnitude and we can neglect it. The first term in 

(5.9) represents the rotation of the fluid around the vortex filament. A straight filament will 

produce a velocity field given by this first term, but the filament itself will remain stationary 

in its own velocity field. Therefore we assume that the motion of the vortex filament itself 

is given by the second term in (5.9). 

Finally, we are able to write down an asymptotic equation for the motion of the 

vortex filament. Taking a point :X on the filament we get from (5.9): 

r,. L 
v(x) = -blog(-), 

471" (F 

(5.10) 

where b is the unit binormal vector at the point x and cr is usually taken as a 

finite radius of the real vortex filament. We can change units of time in (5.10) to absorb 

the constant in front of the equation 

v(x) = l'bb. (5.11) 

We would like to show now that a vortex filament moving with the fluid according 

to ( 5.11) does not stretch. Pick a parametrization of the filament TJ by parametrizing the 

fluid particles along the filament; the length along the vortex filament s is thus a function 

of ry. If the filament stretches as it moves 05~~,t) should depend on time. We now prove that 

as~~,t) does not depend on time. Differentiate ( 5.11) with respect to the arclength s : 

~(ax)_ a(,.(as X n)) _a,.( ) (at ~(~at)= 
a a - a -a txn+/'b xn+txa a 

S t t S S Sl'bS 
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Here we use the fact that ~! = ~n. Changing the order of differentiation in the 

expression above, we find: 

(5.12) 

Analogously, we differentiate (5.11) with respect to TJ and get: 

(5.13) 

Finally, we differentiate ~~ with respect to time: 

(5.14) 

Changing the order of differentiation in the formula above and using (5.13) we get: 

(5.15) 

From formulas (5.12- 5.15) above, we conclude that gt( ~~) = 0 i.e. the filament 

does not stretch. This is one of the limitations of this model of the motion of the vortex, 

since real fluid vortices exhibit stretching. 

5.3 The Hasimoto Transformation 

In this section we describe a transformation, due to Hasimoto, of a self-induction 

approximation into a nonlinear Schrodinger equation. 

The Frenet-Seret equations of differential geometry are given by: 

ox 
OS = t, 

ot 
os = ~n, 

on 
-- rb- ~t 
OS - ' 

ob - = -rn, 
OS 

(5.16) 
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where x is the vortex centerline, t is the unit tangent, n is the unit normal, b is the unit 

binormal, "' is the curvature, r is the torsion, and s is the arclength. Using the last two 

equations in (5.16) we obtain:· 

and 

:s(n + ib) = -ir(n + ib)- Kt. 

This suggests the following coordinate transformation: 

N = (n + ib)exp(i las r(s)ds) 

'1/J = K~xp(i las r(s)ds). 

Then from (5.18) and (5.19) we obtain: 

. aN= -'1/Jt, 
OS 

at - 1- -os = Re('lj;N) = 2('1/JN + '1/JN). 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

Next we would like to derive an equation describing the time evolution of N. 

Expand 8J: inN, N, t, where N denotes the complex conjugate of N: 

aN _ 
- = aN+ f3N + (t. at 

We then have the following scalar products between t, N, and N: 

tN = tN = 0, NN=NN=O, NN=2. 

(5.22) 



We determine the coefficients a, (3, arid '"Y as follows: 

1 . - .!. 0 -
.a+ a = 2(NN + NN) = ot (NN) = 0 

f3 = ~NN = ~~(NN) = 0 
2 4 ot 

ot 
'"'f=-N-. ot 
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(5.23) 

Thus a = iR , where R is some unknown real function. To determine '"'(, compute 

the derivative of t with respect to time: 

ot 0 0,. .01/; - i o'lj; - o1/; 
-=-(,.b)= -b- ,_rn = Re(t-N) = -(-N- -N). ot OS OS OS 2 OS OS 

(5.24) 

Using the orthogonality relations and (5.24) we find the expression forT 

.o'l/; 
'"'(=-t-. 

OS 
(5.25) 

Combining (5.22), (5.24), and (5.25) we obtain an expression for the time derivative 

ofN: 

oN = i(RN- o'lj; t). 
ot OS 

(5.26) 

We wish to write down an evolution equation for 'lj;. To do this we differentiate 

equation (5.20) with respect to time, equation (5.26) with respect to arclength, and then 
' 

use formulas (5.20), (5.21), and (5.24); the result is: 

o oN o'lj; ot o'lj; i o'lj; - o1f; -(-) = --t- '1/;- = --t- '1/;-(-N- -N) 
ot 0 s ot ot ot 2 0 s 0 s 
a oN . oR o2 '1j; o'lj; 1 - -
-(-) = t(-N- R'lj;t- -t- --('1/;N + '1/;N)). 
OS at OS os2 as 2 

(5.27) 

Equating the coefficients oft and N in (5.27), we have: 

(5.28) 
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~1/J a7;; = aR _ ! a1/J 1[;. 
2 as as 2 as (5.29) 

From (5.29) we can solve for R: 

. 1 -
R( s, t) = 2"( 1/;( s, t)1j;( s, t) + C( t) ), (5.30) . 

where Cis some function of time only. Substituting this expression for R into (5.28) we get 

an equation for 1/J: 

(5.31) 

We can eliminate the function C from the equation above by introducing a change of vari-

abies: 

-J; = 1/;exp( _j__ t C( r)dr), 
2 lo 

and rewrite equation (5.31) in the form: 

~a¢ = a2-J; ~1.7.12.7. 
i 8t 8s2 + 2 '+' '+'· 

(5.32) 

(5.33) 

It should be pointed out that the function C(t) which appears in (5.31) is not arbitrary. It 

' . . 
can be recovered from the fact that we have chosen our variable 1/;(s,t) in such a way that 

1/;(0,t) is a real function for all time. We now show how C(t) can be reconstructed from 

this constraint: Suppose we solve equation (5.33) with some initial condition 1/;(s,O)= -J;(s,O) 

and some appropriate boundary conditions; then we find -J;(s,t) = r(s,t)exp(iO(s,t)), where 

r(s,t) is the absolute value of-J;(s,t). Therefore, 

r(O,t)exp(iO(O,t)) = 1/;(0,t)exp(-j__ ft C(ry)dry). 
2 Jo (5.34) 
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Since '1/J(O, t) is real r(O,t )='1/J(O, t) and 9(0, t)=-~ Jd C( "1 )dry. From this we find C(t) explicitly: 

C(t) = _2o9(0, t). 
ot 

(5.35)' 

Now we can in principle start from the self-induction equation, go to the nonlinear Schrodinger 

equation, solve it and then go back to the self-induction approximation, and write down 

the solution in the original variables. A more detailed description is presented in [6]. 

Before concluding this chapter we would like to discuss briefly the invariants of the 

self-induction and nonlinear Schrodinger equations. One of the properties of these equations 

is the existence of an infinite number of constants of motion. For the nonlinear Schrodinger 

equation we can write the first two (see [51] for more): 

:t j i¢(sWds = 0, 

. _§__ jc o7f; 1/J- o'I/J 7f;)ds = o. 
ot os os 

(5.36) 

For the self-induction equation we can write down corresponding constants of motion: 

:t j "'2(s)ds = 0, 

0 J 2 ot "' rds = 0. (5.37) 

In addition, as was shown above, the arclength is a constant of motion in the self-induction 

approximation. The invariants of the self-induction equation can also be checked by direct 

substitution. The first of the invariants in (5.37) can be interpreted as the 'total curvature' 

of the vortex filament; we see that as the vortex moves with the fluid its 'total curvature' 

remains constant; later we will make use of this invariant. 
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5.4 Changes in the shape of a vortex filament with respect 

to constraint N and temperature 

In this section we present the plots of the typical vortex filaments that we obtain 

from the cubic Schrodinger equation for different values of the constraint N and temper­

ature. We remarked at the end of Chapter 4 that in the limit as constraint N goes to 

infinity the temperature at which the transition occurs also goes to infinity. This fact is in 

agreement with the results of Chorin [12], [14], [15] that the single vortex filament has a 

phase transition at infinite temperature. 

Recall that equations ( 5.20),( 5.21) are a consequence of the Frenet-Seret equations 

of differential geometry (5.16). Integrating equations (5.20),(5.21) starting at some arbitrarY 

point in space produces the vortex filament that corresponds to the complex function 7/J. 

There are two difficulties in restoring the vortex from 7/J; one is that 7/J might be a rapidly 

oscillating non-smooth function, in which case we have to smooth it a little bit. The second 

is that by the definition of 7/J in (5.19) it has to be purely real at the point s = 0, so the 

problem is to find a filament corresponding to an arbitrary function 'ljJ that does not have 

a purely real point. We do not resolve this problem here, and just use in our presentation 

functions 7/J that are real at s = 0. 

The soliton-like field, which is a typical field configuration for low temperatures 

and large N (Figure 4.1) corresponds to an almost straight vortex filament with a sharp 

kink (see Figure 5.1) 

This shape roughly corresponds to the left part of the upper kurtosis function in 

Figure ( 4.5 ). Keeping the temperature low and decreasing the value of the constraint N 
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1\=1.25, N=80, number of nodes= 40, 11$ N)=10-2 

0.08 

0.06 

0.04 

0.02 

0 

-0.02 

-0.04 0.8 

0.06 

-0.06 0 

Figure 5.1: Typical vortex filament for low temperature and large N, {3~ = 10-2 

gives the left part of the lower kurtosis function in Figure ( 4.5 ); the typical field configuration 

is close to a constant, and the corresponding filament shape is given in Figure (5.2). The 

vortex is smooth and almost circular, which is what one would expect for a constant field, 

i.e. for constant curvature. 

Increasing the temperature destroys the order in the shape of the vortex filament, 

and the typical vortex becomes more random, as shown in Figure (5.3); this filament cor-

responds to the right-hand side of the kurtosis curves in Figure ( 4.5). 
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IJ=1.25, N=10, number of nodes= 40, 1/(~ N)=10-2 
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Figure 5.2: Typical vortex filament for low temperature and small N, (3~ = 10-2 

~=1.25.10-3, N=SO, number of nodes= 40, 1/(~ Ni=10 
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Figure 5.3: Typical vortex filament for high temperature, (3~ = 10. 
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Chapter 6 

Conclusions 

We have studied numerically bifurcation and phase transition phenomena in the 

Gibbs canonical ensemble associated with the cubic Schrodinger equation. 

We have shown that the changes in typical function profiles with respect to temper­

ature and constraint observed in [41] are associated with the splitting of a phase space into 

different components. We discovered that these changes can be observed in a discretization 

with as few as 2 points. 

For low fixed temperatures, as the constraint (3.6) increases, the functions on 

which the Gibbs canonical ensemble (3.5),(3.6) is concentrated change from almost constant 

functions (Figure 4.3) to a soliton shaped functions (Figure 4.1). This explains the increase 

in average kurtosis presented in Figure ( 4.5). There is a corresponding change in the phase 

space structure of the minimum energy surface for the Hamiltonian (3.3). We observe that 

as the constraint increases, the torus-like structure which corresponds to the small value of 

the constraint splits into two tori structure, and as the constraint increases further the two 
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tori split further apart until they become perpendicular to each other. 

The second type of change that we have studied is with respect to temperature 

(with the constraint fixed (3.6)). As the temperature increases the typical soliton-like shape 

is destroyed and becomes just a random fluctuation for high temperatures (Figure 4.2). This 

explains the decrease in average kurtosis presented in (4.5). Corresponding to the change 

in the kurtosis, the phase space structure of the Metropolis sampling trajectories changes 

from a torus-like shape to a ball-like shape (Figures 4.10,4.11). The temperature region in 

which the change in the structure of the Metropolis sampling trajectories occurs exactly 

corresponds to the temperature region for the change in kurtosis in Figure ( 4.5). 

We point out that the cubic Schrodinger equation is equivalent to the self-induction 

approximation for vortices [26]. In terms of vortex representation the soliton~like typical 

structure of functions at low temperatures corresponds to a straight vortex filament with 

a sharp kink; for high temperatures the straightness of the vortex is destroyed and the 

shape of the vortex becomes random (Figures 5.1, 5.3). We remark that in the limit the 

temperature at which the transition occurs increases to infinity, which is in agreement with 

the results of Chorin [12], [14], [15] that the single vortex filament has a phase transition at 

infinite temperature. 

We have investigated numerically the limit of the kurtosis ( 4.4) for a fixed number 

of discretization points as the constraint (3.6) increases; we demonstrated that eventually 

the kurtosis converges to a smooth function whose .maximum value is determined by the 

number of discretization points. 

We also investigated the limit of kurtosis ( 4.4) for a fixed value of the constraint 
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as the number of discretization points increases; we found that the kurtosis converges to a 

smooth function in this limit as well. 

However, if we increase both the constraint (3.6) and the number of discretization 

points, then we see a strong numerical indication that for some temperature the first deriva-

tive of the kurtosis ( 4.4) becomes infinite. We do not know what happens in the infinite 

limit; however, for large enough values of the constraint and for a large enough number 

of discretization points there may be a discontinuity in the first derivative of the kurtosis 

( 4.4 ), which could indicate a behavior similar to a phase transition in classical statistical 

mechanics. 

We also have shown the equivalence of the Gibbs canonical ensemble associated 

with the cubic Schrodinger equation (3.5),(3.6) and the microcanonical ensemble (Figure 

(3.2)). 

We have studied the ergodicity ofthe system (3.2) (3.5),(3.6), and presented results 

that show the equivalence of time and ensemble averages (Figure 3.2). We remarked that 

the numerical method used for integrating the cubic Schrodinger equation in time has two 

constants of motion: the Hamiltonian (3.3) and the constraint (3.6). On the other hand 

the cubic Schrodinger equation has an infinite number of conserved quantities [51], so the 
' . 

relation of this numerical result to the discretized equations of motion· for the continuum 

cubic Schrodinger equation is not straightforward. However, it is still an interesting fact 

that in the discrete version of the cubic Schrodinger equation there is an equivalence of the 

time and ensemble averages. 
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