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Abstract 

In the Standard Model of elementary particle physics, electroweak symmetry 

breaking is achieved by a Higgs scalar doublet with a negative (mass)2 • The 

Standard Model has the well known gauge hierarchy problem: quadratically di­

vergent quantum corrections drive the Higgs mass and thus the weak scale to the 

scale of new physics. Thus, if the scale of new physics is say the Planck scale, 

then correct electroweak symmetry ·breaking requires a fine tuning between the 

bare Higgs mass and the quantum corrections. 

Supersymmetry, a symmetry between fermions and bosons, solves the gauge 

hierarchy problem of the Standard Model: the quadratically divergent corrections 

to the Higgs mass cancel between fermions and bosons. The remaining corrections 

to the Higgs mass are proportional to the supersymmetry breaking masses for 

the supersymmetric partners (the sparticles) of the Standard Model particles. 

The large top quark Yukawa coupling results in a negative Higgs (mass) 2 . Thus, 

electroweak symmetry breaking occurs naturally at the correct scale if the masses 

of the sparticles are close to the weak scale. 

In this thesis, we argue that the supersymmetric Standard Model, while avoid­

ing the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine 

tuning in some (other) sector of the theory. For example, Baryon and Lepton num­

ber violating operators are allowed which lead to proton decay and flavor changing 



neutral currents. We study some of the constraints from the latter in this thesis. 

We have to impose an R-parity for the theory to be both natural and viable. 

In the absence of flavor symmetries, the supersymmetry breaking masses for 

the squarks and sleptons lead to too large flavor changing neutral currents. We 

show that two of the solutions to this problem, gauge mediation of supersymmetry 

breaking and making the scalars of the first two generations heavier than a few 

TeV, reintro~uce fine tuning in electroweak symmetry breaking. We also construct 

a model of low ene.rgy gauge mediation with a non-minimal messenger sector which 

improves the fine tuning and also generates required Higgs mass terms. We show 

that this model can be derived from a Grand Unified Theory despite the non­

minimal spectrum. 
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Chapter 1 

Introduction 

A Standard Model (SM) [1, 2] of elementary particle physics has developed 

over the last twenty five years or so. It describes the interactions of the ele­

mentary particles using gauge theories. The elementary particles are the matter 

fermions (spin half particles) called the quarks and the leptons, and the gauge 

bosons (spin one particles) which are the carriers of the interactions. There are 

three generations, with identical quantum numbers, of quarks and leptons: up ( u) 

and down (d) quarks, electron (e) and it's neutrino (v) {the leptons) in the first 

generation, charm (c) and strange ( s) quarks, muon (Jl) and it's neutrino in the 

second, and top (t) and bottom (b) quarks, tau (T) lepton and it's neutrino in 

the third. The W, B (the hypercharge gauge boson) and the gluon (g) are the 

gauge bosons. There is also one Higgs scalar. The particle content of the SM is 

summarized in Table 1.1. 

The gauge theory of the interactions of the quarks, Quantum Chromodynamics 

(QCD) [3], is based on the gauge group SU(3)c where the "~" stands for "color" 

which is the charge under 'QCD in analogy to electric charge. The interaction is 

mediated by eight massless gauge bosons called gluons. This theory is asymptot­

ically free, i.e., it has the property that it's gauge coupling becomes weak at high 

1 



particle sparticle SU(3)c SU(2)w U(1)v 

( d )i ( ~) i 3 2 1 
6 

uc -c 3 1 2 
U· -3 ~ ~ 

dC: de 3 1 1 
z z 3 

( ~ )i ( ~ )i 1 2 1 
-2 

eC: -c 1 1 1 C· l z 

w w 1 3 0 

g g 8 1 0 

B B 1 1 0 

( ~~·) ( %) 1 2 1 
2 

( J:!) ( :~) 1 2 _1 
2 

Table 1.1: The particle content of the SM (left column) and it's supersymmetric 

extension (the sparticles). The fermions are left-handed Weyl spinors. So, ec 

stands for the left-handed positron which is the antiparticle of the right-handed 

electron. i = 1, 2, 3 denotes the generation, for example, u3 is the top (t) quark 

and e~ is the anti-muon (p). The electric charge is given by Q = T3 + Y, where 

T3 is the third component of the SU(2)w isospin and Y is the hypercharge. 

2 



energies (much larger than rv 1 Ge V) and becomes strong at energies below rv 1 

GeV. Thus, at low energies the theory confines, i.e., the strong interactions bind 

the quarks into color singlet states called hadrons, for example the proton and the 

pion. So, we observe only these bound states of quarks and not the elementary 

quarks. However, when the proton is probed at high energies (large momentum 

transfers) or when the quarks are produced in high energy collisions, the quarks 

should behave as if they do not feel the strong interactions. This is indeed con­

firmed in a large number of experiments at high energies (see, for example, review 

of QCD in (4]). 

The weak and electromagnetic interactions of quarks and leptons are unified 

into the electroweak theory based on the gauge group SU(2)w x U(l)y (1]. This 

theory has four gauge bosons. This electroweak symmetry is broken to the U(1) of 

electromagnetism (Quantum Electrodynamics, QED). Three of the gauge bosons 

(called the W and Z gauge bosons) get a mass in this process whereas the photon 

(the carrier of electromagnetism) is massless. The theory predicts the relations 

between the W and Z masses and couplings of quarks and leptons to these gauge 

bosons. 1 The stringent tests of these predictions at the electron-positron collider 

at CERN (LEP) and at the proton-antiproton collider at Fermilab (up to energies 

of a few 100 Ge V) have been highly successful. 

One of the central issues of particle physics today is the mechanism of Elec­

troweak Symmetry Breaking (EWSB), i.e., how is SU(2)w x U(l)y broken to 

1 We assume that the mechanism for the symmetry breaking has a custodial SU(2) symmetry. 

3 



U(1 )em? In the SM, this is achieved by the Higgs scalar, H, which is a doublet of 

SU(2)w· The Higgs scalar has the following potential: 

(1.1) 

If m2 < 0, then at the minimum of the potential, the Higgs scalar acquires a 

vacuum expectation value (vev): 

(H)= ( 0 ) ' (1.2) 

where v = J-m2/(2>..). Thus two of the generators of the SU(2)w gauge group 

and also one combination of the third SU(2)w generator and U(1 )y are broken. 

The corresponding gauge bosons acquire masses given by "' g2 v and rv J g~ + g~ v 

respectively and are the Wand the Z. The Higgs vev and thus, if>.. rv 0(1), the 

mass parameter m2 has to be of the order of (100 GeV)2 to give the experimentally 

measured W and Z gauge boson masses. The other combination of the third 

SU(2)w generator and U(l)y is still a good symmetry and the corresponding 

gauge boson is massless and is the photon ( ry). There is also a physical electrically 

neutral Higgs scalar left after EWSB. This is the only particle of the SM which 

has not been discovered. 

To generate masses for the quarks and leptons, we add the following Yukawa 

couplings (the quark and lepton SU(2)w doublets are denoted by q and land i,j 

are generation indices): 

(1.3) 

4 



where repeated indices are summed over. These couplings become mass terms for 

the fermions when the Higgs develops a vev. There are 13 physical parameters in 

the above Lagrangian: 6 masses for the quarks, 3 masses for the leptons and 3 

mixing angles and a phase in the quark sector. The 3 mixing angles and the phase 

appear at the W vertex involving the qu.arks and constitute the 3 x 3 matrix called 

t~e Cabibbo-Kobayashi-Maskawa (CKM) matrix [5). These 13 parameters can be, 

a priori, arbitrary and are fixed only by measurements of the quark and lepton 

masses and the mixings (the latter using decays of quarks through a virtual W). 

In the SM, processes involving conversion of one flavor of quark into another flavor 

with the same electric charge, for example, conversion of a strange quark into a 

down quark resulting in mixing between the K-meson and it's antiparticle, do not 

occur at tree level, but occur at one loop due to the mixings. The experimental 

observations of these flavor changing neutral currents (FCNC's) are consistent with 

the mixing angles (as measured using decays of quarks). Since there is no right­

handed neutrino in the SM; we cannot write a Dirac mass term for the neutrino 

and at the renormalizable level, we cannot write a Majorana mass term since we 

do not have a SU(2)w triplet Higgs. So, neutrinos are massless in the SM. 2 This 

results in conservation laws for the individual lepton numbers, i.e., electron, muon 

and tau numbers. Thus, the FCNC decay, J.-L --1- e "f is forbidden in the SM and 

the experimental limits on such processes are indeed extremely small [4). 

The SM, thus, seems to describe the observed properties of the elementary 

2There is some evidence for non-zero neutrino masses, but it is not conclusive. 
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particles remarkably well, up to energies rv few 100 Ge V. Of course, the Higgs 

scalar remains to be found. But, the SM has some aesthetically unappealing 

features which we now discuss. 

The SM particle content and gauge group naturally raise the questions: Why 

are there three gauge groups (with different strengths for the couplings) and three 

generations of quarks and leptons with the particular quantum numbers? At­

tempts have been made to simplify this structure by building Grand Unified The­

ories (GUT's). The gauge coupling strengths depend on the energy /momentum 

scale at which they are probed (this was already mentioned for QCD above). In 

the GUT's it is postulated that these three couplings are equal at some very high 

energy scale called the GUT scale so that at that energy scale the three gauge 

groups can be embedded into one gauge group with one coupling constant. The 

GUT gauge group gets broken at that scale to the SM gauge groups resulting in 

different evolutions for the three gauge couplings below the GUT scale. Also, in 

the GUT's, the quarks and leptons can be unified into the same representation 

'of the gauge group. In the simplest GUT, based on the SU(5) gauge group [6], 

the de and the lepton doublet (l) form an anti-fundamental (5) under the gauge 

group. The Higgs doublets are in a 5 representation of SU(5) and so have SU(3)c 

triplet partners which are required to be heavy since they mediate proton decay 

[6]. When the three coupling constants were measured in the late 1970's, and 

evolved with the SM particle content to high energies, they appeared to meet at 

an energy scale of rv 1014 GeV [7]. But, the more accurate measurements in the 

6 



1990's show that this convergence is not perfect [8). 

The 13 parameters of the Yukawa Lagrangian of Eqn.(1.3) exhibit hierarchies 

or patterns, for example the ratio of the mass of the heaviest (top) quark and the 

lightest lepton (electron) is about 10-6 . One would like to have a more fundamen­

tal theory of these Yukawa couplings which can explain these hierarchies in terms 

offewer parameters. A GUT can make some progress in this direction by relating 

the quark masses to the lepton masses since they are in the same representation 

of the GUT group [6]. For example in many GUT's we get the relation mb = m7 • 

Perhaps the most severe "problem" of the SM is the gauge hierarchy prob­

lem [9] which we now explain. It concerns the Higgs mass parameter, m2 , of 

Eqn.(l.l). There are two issues here. The first issue is the origin of this mass 

parameter. As mentioned above, m2 
"' (100 GeV)2

• We would like to have one 

"fundamental" mass scale in our theory and "derive" all other mass scales from 

this scale. Particle physicists like to think that this scale should be the Planck 

scale, Mp1 ,..._, 1018 GeV, which is the scale at which the gravitational interactions 

have to be quantized. There is one other scale in the SM besides the Higgs mass 

parameter. It is the strong interaction scale of QCD denoted by AQCD· Naively, 

this is the scale at which the SU(3)c coupling constant becomes strong binding 

quarks into hadrons. Thus, this scale can be related to the Planck scale and the 

SU(3)c coupling constant at the Planck scale by the logarithmic Renormalization 
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Figure 1.1: The Feynman diagrams which give quadratically divergent contribu-

tions to the Higgs mass in the SM. 

Group (RG) evolution of the gauge coupling as follows: 

(1.4) 

This relation is valid, strictly speaking, at one loop. Thus, if g(MPt);::;l, there is a 

natural explanation for the hierarchy AQcD/MPl· We would like to have a similar 

explanation for the hierarchy mjMp1• 

The second issue is whether the mass scale m is stable to quantum corrections. 
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In the SM, the Feynman diagrams in Fig.l.1 give quadratically divergent contri-

butions to m2 , since the corresponding integrals over the loop momentum k are 

,...., J d4kf(k2 -m2). The corrections due to the top quark in the loop are important 

due to the large Yukawa coupling of the top quark. Thus, the renormalized Higgs 

mass parameter is given by: 

2 2 1 2 
mren. ""mbare + 161r2A ' (1.5) 

for all dimensionless couplings of order one. A is the cut-.off for the quadratically 

divergent integral. We know that the SM cannot describe quantum gravity. Thus, 

we certainly expect some new physics (string theory?) at MPl· There could, of 

course, be some new physics at lower energy scales as well, for example the GUT 

scale. In some such extension to the SM, it turns out that the scale A is the scale 

of new physics. Thus, in the SM, the Higgs mass gets driven due to quantum 

corrections all the way to some high energy scale of new physics (see Eqn.(1.5)). 

We need m;en. "" (100 GeV)2 so that EWSB occurs correctly. We can achieve 

this by a cancellation between m~are and the quantum corrections, which is of the 

order of one part in A2/(100 GeV)2 . For A= Mp1, this is enormous. Thus, in the 

SM, the bare Higgs mass parameter has to be fine tuned to give the correct W 

and Z masses. Such a problem does not occur for dimensionless couplings, since 

the quantum corrections are proportional to the logarithm of the cut-off or for 

fermion masses which are protected by chiral symmetries. 

Supersymmetry (SUSY) [10] provides a solution to the gauge hierarchy prob-

9 



lem of the SM. SUSY is a symmetry between fermions and bosons, i.e., a La­

grangian is supersymmetric if it is invariant under a (specific) transformation 

between fermions and bosons. In particular, the fermion and the boson in a rep­

resentation of the SUSY algebra have the same interactions. So, to make the SM 

supersymmetric, we add to the SM particle content fermionic (spin half) partners 

of the gauge bosons called "gauginos" (for example the partner of the gluon is the 

gluino) and scalar (spin zero) partners of the quarks and leptons called "squarks" 

and "sleptons", respectively (for example selectron is the partner of the electron). 

Similarly, the fermionic partners of the· Higgs scalars are called Higgsinos. We 

have to add another Higgsino doublet (and a Higgs scalar doublet) to cancel the 

SU(2)! x U(1)y anomaly. We denote the superpartners by a tilde over the cor­

responding SM particle. The supersymmetric SM (SSM) has the particle content 

shown in Table 1.1. The irreducible representation of the SUSY algebra containing 

a matter fermion and it's scalar partner is called a chiral superfield. We denote the 

components of a chiral superfield by lower case letters and the superfields by upper 

case letters except for the Higgs (and in some cases for other fields which acquire a 

vev) for which both the superfield and components are denoted by upper case let­

ters.3 The Yukawa couplings for the fermions can be written in a supersymmetric 

way in terms of a "superpotential": 

W = >.ijHuQiUJ + >.fiHdQiDj + >.~iHdLiEj + J-LHuHd, (1.6) 

3The chiral superfields appear in the "Kahler" potential and the "superpotential" (to be 

defined later) and the component fields appear in the Lagrangian. 
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where Q and L are the quark and lepton SU(2)w doublets. The J.l term is a mass 

term for the Higgs doublets. The superpotential gives the following terms in the 

Lagrangian: 

£, = 
2 

I: aw + I: '1/Ji'I/Jj aw aw + h.c. 
. a<Pi ... _.~. . . a<Pi a<P1· % w-o/ IJ <l>=t/J 

(where¢> and '1/J are scalar and fermionic components of <P). {1.7) 

Thus, to get a term in the Lagrangian with fermions from a term of the superpo-

tential, we pick fermions from two of the chiral superfields and scalars from the 

rest (if any). This gives the Yukawa couplings of Eqn.{1.3). We get the following 

terms in the scalar potential from the first term of Eqn.{l.7): 

{1.8) 

SUSY requires that the hermitian conjugates of the chiral superfields (anti-

chiral superfields) cannot appear in the superpotential. Thus, we cannot use Ht 

in Eqn.(1.6) to give mass to the down quarks. This is another reason for adding 

the second Higgs doublet. For the same reason, the J.l term is the only gauge 

invariant mass term for the Higgs chiral superfields and we cannot write down 

a term in the superpotential which will give a quartic Higgs scalar term in the 

Lagrangian. 

In addition to the terms from the above superpotential, there are kinetic terms 

for gauge fields (which can also be derived from a superpotential) and kinetic terms 

for matter fields which can be written in a supersymmetric and gauge invariant 

way in terms of a "Kahler" potential: L<I> <Ptev <P (where Vis the gauge multiplet). 
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The Kahler potential and the gauge superpotential generate two kinds of terms 

in the SSM (in the supersymmetric limit) which are relevant for us. The first 

one is a coupling between a matter fermion, a gaugino and the scalar partner of 

the fermion, for example, a quark-squt;trk-gluino coupling, i.e., qqtg. The second 

term is called the D-term which gives a quartic coupling between the scalars 

proportional to the gauge coupling squared: Ea g2 /2 ( "E<t> ¢tTa¢) 
2 

for each gauge 

group, where ra is a generator of the gauge group. This gives, in particular, a 

quartic term for the Higgs scalars. 

We now discuss how SUSY solves the gauge hierarchy problem. In a supersym­

metric theory, there is a cancellation between fermions and bosons in the quantum 

corrections since a Feynman diagram with an internal fermion has an opposite sign 

relative to the one with an internal boson. Thus, there is a non-renormalization 

theorem in a supersymmetric theory which says that the superpotential terms are 

not renormalized [11]. This means that the mass term for the Higgs, the f..l term, 

does not receive any corrections in the supersymmetric limit. In other words, due 

to supersymmetry, the chiral symmetry protecting the Higgsino mass also protects 

the Higgs scalar mass. The quantum corrections due to the Feynman diagrams of 

Fig.l.1 are exactly cancelled by their supersymmetric analogs, Fig.l.2. It is cru..: 

cial for this cancellation that the quartic interaction of the Higgs scalars is given 

by the gauge coupling since it is due to the D-terms mentioned above, i.e., the 

quartic coupling-\"' g2 in the SSM. 

We kno~ that SUSY cannot be an exact symmetry of nature since we have 
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Figure 1.2: The Feynman diagrams in SSM which cancel the quadratic divergences 

of the SM contributions to the Higgs mass. 

not observed a selectron degenerate with the electron. So, we add SUSY breaking 

terms to the Lagrangian which give a large mass to the unobserved superpartners 

(gauginos, sleptons and squarks) and the Higgs scalars: 

LsuSYbreaking = L m;j¢>!¢>j + BJ.LHuHd + L MA>.~ >.~ (1.9) 
iJ A 

where ¢>i denotes a scalar and >.: a gaugino of the gauge group A and B 11 is a SUSY 

breaking mass term for the Higgs scalars. 4 Since SUSY is broken, i.e., fermions 

and their partner bosons no longer have the same mass, the cancellation between 

fermions and bosons in the quantum corrections to the Higgs masses is no longer 

exact. The quadratically divergent corrections to the Higgs masses still cancel 

4 These terms, along with the trilinear scalar terms, A</>i</>j</>k, break SUSY softly, i.e., do not 

reintroduce quadratic divergences. 
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(between the diagrams of Fig.l.1 and Fig.l.2), but the logarithmically divergent 

corrections do not and are proportional to the SUSY breaking masses. This gives: 

(1.10) 

where the first one loop correction on the right is due top squarks and the second 

is due to gauginos. Here, A is the scale at which the SUSY breaking masses are 

generated. Even if it is the Planck scale, the logarithm is 0(10). It turns out 

that for a large part of the parameter space, the Higgs (mass)2 renormalized at 

the weak scale is negative due to the stop contribution (>.t is larger than g) and 

is of the order of the stop (mass)2 [12, 13]. The down type Higgs (mass)2 is also 

negative if the bottom Yukawa coupling is large. The Higgs scalar potential is: 

(1.11) 

where g~ = gi + g~. Using this potential, we can show that the negative Higgs 

(mass) 2 results, for a large part of the parameter space, in a vev for both the Higgs 

doublets, breaking electroweak symmetry. In particular, the Z mass is: 

(1.12) 

where tan {3 = vu/vd is the ratio of vevs for the two Higgs scalars. Thus, to get the 

correct Z mass, we need the p, term and the renormalized Higgs masses (and in turn 

the stop mass) to be of the order of the weak scale. If the stop mass is larger, say 

greater than rv 1 TeV, it drives the Higgs (mass)2 to too large (negative) values, 
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rv (500) GeV2• We can still get the correct Z mass (rv 100 GeV) by choosing 

the J.l term to cancel the negative Higgs (mass )2
• But, this requires a fine tuning, 

naively of 1 part in (500 GeV)2 /(100 GeV)2 
rv 25 (for large tan {3). Thus, EWSB is 

natural in the SSM due to the large top quark Yukawa coupling provided the stop 

masses are less than about 1 TeV (14, 15]. This solves the second part of the gauge 

hierarchy problem: in the SSM, the weak scale is naturally stabilized at the scale 

of the superpartner masses. Thus in the SSM, the first part of the gauge hierarchy 

problem, i.e., what is the origin of the weak scale, can be rephrased as: what is the 

origin of these soft mass terms, i.e., how is SUSY broken? As mentioned before, we 

do not want to put in the soft masses by hand, but rather derive them from a more 

fundamental scale, for example the Planck scale. If SUSY is broken spontaneously 

in the SSM with no extra gauge group and no higher dimensional terms in the 

Kahler potential, then, at tree level, there is a colored ticalar lighter than the up 

or down quarks (16]. So, the superpartners have to acquire mass through radiative 

corrections or non-renormalizable terms in the Kahler potential. For these effects 

to dominate over the tree level renormalizable effects, a "modular" structure is 

necessary, i.e., we need a "new" sector where SUSY is broken spontaneously and 

then communicated to the SSM by some "messenger" interactions. 

There are two problems here: how is SUSY broken in the new sector at the 

right scale and what are the messengers? There are models in which a dynamical 

superpotential is generated by non-perturbative effects which breaks SUSY [17]. 

The SUSY breaking scale is related to the Planck scale by dimensional transmu-
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tation and thus can be naturally smaller than the Planck scale (as in QCD). Two 

possibilities have been discussed in the literature for the messengers. One is grav-

ity which couples to both the ~ectors [18]. In a supergravity (SUGRA) theory, 

there are non-renormalizable couplings between the two sectors which generate 

soft SUSY breaking operators in the SSM once SUSY is broken in the "hidden" 

sector. The other messengers are the SM gauge interactions [19]. Thus, dynamical 

SUSY breaking with superpartners at rv 100 Ge V -1 Te V can explain the gauge 

hierarchy: SUSY stabilzes the weak scale at the scale of the superpartner masses 

which in turn can be derived from the mLe "fundamental" Planck scale. Also, 
I 

with the superpartners at the weak scale, the gauge coupling unification works 

well in a supersymmetric GUT [8]. 

If SUSY solves the fine tuning problem of the Higgs mass, z.e., EWSB is 

natural in the SSM, does it introduce any other fine tuning or unnaturalness? 

This is the central issue of this thesis. We show that consistency of the SSM 

with phenomenology (e~perimental observations) requires that, unless we impose 

additional symmetries, we have to introduce some degree of fine tuning or unnat-

uralness in some sector of the theory (in some cases, reintroduce fine tuning in 

EWSB). The phenomenological constraints on the SSM that we study all result 

. (in one way or another) from requiring consistency with FCNC's. 

We begin with a "problem" one faces right away when one supersymmetrizes 

the SM and adds all renormalizable terms consistent with SUSY and gauge invari-

ance. Requiring the Lagrangian to be gauge invariant does not uniquely determine 
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the form of the superpotential. In addition to Eqn.(1.6) the following renormaliz­

able terms 

(1.13) 

are allowed.5 Unlike the interactions of Eqn.(l.6), these terms violate lepton 

number (L) and baryon number (B). Thus, a priori, SSM has Land B violation 

at the renormalizable level unlike the SM where no B or L violating terms can be 

written at the renormalizable level. These terms are usually forbidden by imposing 

a discrete symmetry, R-parity, which is ( -1 )3
B+L+

2
S on a component field with 

baryon number B, lepton number L and spin S. If we do not impose R-parity, 

what are the constraints on these R-parity violating couplings? If both lepton 

and baryon number violating interactions are present, then limits on the proton 

lifetime place stringent constraints on the products of most of these couplings (the 

limits are ,..._, 10-24
). So, it is usually assumed that if R-parity is violated, then 

either lepton or baryon number violating interactions, but not both, are present. 

If either LiQiDJ. or ur DjDk, terms are present, flavor changing neutral current 

(FCNC) processes are induced. It has been assumed that if only one R-parity 

violating (~) coupling with a particular flavor structure is non-zero, then these 

flavor changing processes are avoided. In this single coupling scheme [21] then, 

efforts at constraining R-parity violation have concentrated on flavor conserving 

processes [22, 23, 24, 25, 26, 27]. 

5 A term J.tiLiHu is also allowed. This may be rotated away through a redefinition of the L 

and Hd fields [20]. 
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In chapter 2, we demonstrate that the single coupling scheme cannot be realized 

in the quark mass basis. Despite the general values the couplings may have in the 

weak basis, after electroweak symmetry breaking there is at least one large fl,p 

coupling and many other~ couplings with different flavor structure. Therefore, 

in the mass basis the R-parity breaking couplings cannot be diagonal in generation 

space. Thus, flavor changing neutral current processes are always present in either 

the charge 2/3 or the charge -1/3 quark sectors. We use these processes to place 

constraints on R-parity breaking. We find constraints on the 'first and the second 

generation couplings that are much stronger than existing limits. Thus, we show 

that R-parity violation always leads to FCNC's, even with the assumption that 

there is (a priori) a "single" R-parity violating coupling (either Lor B violating), 

unless this "single" coupling is small. Thus, either we imposeR-parity (or L and 

B conservation) or introduce some degree of unnaturalness in the form of small 

couplings in order not to be ruled out by phenomenology. If we introduce flavor 

symmetries to explain the hierarchies in the Yukawa couplings, it is possible that 

the same symmetries can also explain why the R-parity violating couplings are so 

small. However, it turns out that, in general, the suppression is not sufficient to 

.evade the proton decay limits. The SSM with the particle content of Table 1.1 and 

with R-parity is called the minimal supersymmetric Standard Model (MSSM). 

The second problem we discuss is the SUSY flavor problem [16}. As mentioned 

b'efore, we have to add soft SUSY breaking masses for all squarks and sleptons. 

If these mass matrices are generic in flavor space, i.e.,. they are not at all cor-
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related with the fermion Yukawa couplings, we get large SUSY contributions to 

the FCNC's. To give a quantitative discussion, we need to define a basis for the 

squark and slepton mass matrices. We first rotate the quarks/leptons to their 

mass basis by a unitary transformation, U. We do the same transformation on 

the squarks/sleptons (thus, it is a superfield unitary transformation). In this ba­

sis for the quarks and squarks, the neutral gaugino vertices are flavor diagonal. 

The squark/slepton mass matrix in this basis can be arbitrary since, a priori, 

there is no relation between the squark/slepton and quark/lepton mass matrices 

so that they need not be diagonalized by the same U. Thus, there are off-diagonal 

(in flavor space) terms in the squark mass matrix in this basis and we get fla­

vor violation. For concreteness, we discuss the K -K mixing (see Fig.1.3}. For 

simplicity, consider the 2 x 2 mass matrices for the "left" and "right" down and 

strange squarks (which are the partners of the left and right handed quarks} and 

neglect left-right mixing (which is likely to be suppressed by the small Yukawa 

couplings). We denote the diagonal elements of the mass matrix by M~ and the 

off-diagonal element, which converts a down squark to a strange squark, by ~ and 

define o "' ~/ M§. A posteriori, we know that o has to be small and so we work 

to first order in o. We have to diagonalize this squark mass matrix to get the 

mixing angles and the mass eigenvalues. Then, o is also roughly the product of 

the squark mixing angle and the degeneracy (ratio of the difference in the mass 

eigenvalues to the average mass eigenvalue). We then get contributions to K -K 

mixing shown in Fig.l.3. 
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Figure 1.3: Some of the SUSY contributions to the 6.S = 2 four fermion operator. 

d(s) is the scalar partner of left-handed down (strange) quark and Jc(:sc) is the 

scalar partner of the antiparticle of the right-handed down (strange) quark. 
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In the first diagram the flavor violation comes from using (twice) the off diag-

onal element of the left squark mass matix, i.e., 6 LL (there is a similar diagram 

with insertion of two 6nn's) and in the second diagram both 6nn and 6LL are used. 

We can estimate the coefficient of the four fermion !:l.S = 2 operator to be: 

(1.14) 

where the function f comes from "the loop integral. Recall that the SM contribution 

to this operator (which already gives a contribution to K - K mass difference 

(!:l.mK) close to the experimental value) is 

(1.15) 

due to the Glashow-Iliopoulos-Maiani (GIM) suppression [2]. Thus with weak scale 

values of Ms and M9 and 6 "' 0(1), the SUSY contribution is huge. Similarly, 

there are contribution to other FCNC's, for example IL --t ery. Recall that in the 

SM, there is no contribution to this process. So, in order not to be ruled out by 

FCNC's, the 8's have to be very small if the scalar masses are"' 100 GeV- 1 TeV, 

i.e., the squarks and sleptons of the first two generations have to be degenerate 

to within"' few GeV [28] if the mixing angles are"' 0(1). 

The SUSY contribution to FCNC's thus depends on how the soft masses are 

generated. In SUGRA, unless one makes assumptions about the Kahler potential 

terms, the squark masses are arbitrary resulting in 6 "' 0(1). Thus with weak 

scale values of the superpartner masses, we either fine tune the 6's to be small or 

introduce approximate non-abelian or abelian flavor symmetries [29] to restrict the 
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form of the scalar mass matrices so that the 8's are small. These flavor symmetries 

can also simultaneously explain the Yukawa couplings. A related idea is squark­

quark mass matrix alignment (30] in which the quark and squark mass matices 

are aligned so that the same unitary matrix diagonalises both of them, resulting 

in 8 "" 0. 

In the other mechanism for communicating SUSY breaking mentioned above, 

i.e., gauge mediated SUSY breaking (GMSB), the scalars of the first two genera­

tions are naturally degenerate since they have the same gauge quantum numbers, 

thus giving 8 "" 0. This is an attractive feature of these models, since the FCNC 

constraints are naturally avoided and no fine tuning between the masses of the 

first two generation scalars is required. Since this lack of fine tuning is a com­

pelling argument in favor of these models, it is important to investigate whether 

other sectors of these models are fine tuned. We will argue, in chapter 3, (and 

this is also discussed in (31, 32, 33]) that the minimal model (to be defined in 

chapter 3) of gauge mediated SUSY breaking with a low messenger scale requires 

fine tuning to generate a correct vacuum (Z mass). Further, if a gauge-singlet and 

extra vector-like quintets are introduced to generate the "M" and "B Jl." terms, the 

fine tuning required to correctly break the electroweak symmetry is more severe. 

These fine tunings make it difficult to understand, within the context of these 

models, how SUSY can provide some understanding of the origin of electroweak 

symmetry breaking and the scale of the Z and W gauge boson masses. It turns 

out that in models of gauge mediation with a high messenger scale the fine tuning 
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is not much better than in the case of low messenger scale (34]. 

Typically, the models of gauge mediation have vector-like fields with SM quan­

tum numbers and with a non-supersymmetric spectrum. These fields communicate 

SUSY breaking to the SSM fields and are therefore called "messengers". In the 

minimal model of gauge mediation, the messengers form complete SU(5) repre­

sentations in order to preserve the gauge coupling unification. In chapter 3, we 

construct a model of low energy gauge mediation with split (5 + 5) messenger 

fields that improves the fine tuning. This model has additional color triplets in 

the low energy theory (necessary to maintain gauge coupling unification) which 

get a mass of 0(500) GeV from a coupling to a gauge-singlet. The same model 

with the singlet coupled to the Higgs doublets generates the J.l term. The im­

provement in fine tuning is quantified in these models and the phenomenology is 

discussed in detail. We show how to derive these split messenger (5 + S)'s from 

a GUT using a known doublet-triplet splitting mechanism. A complete model, 

including the doublet-triplet splitting of the usual Higgs multiplets, is presented 

and some phenomenological constraints are discussed. 

An obvious solution to the SUSY flavor problem, from Eqn.(l.14), is raising 

the soft masses of the first two generation scalars to the tens of Te V range so that 

even if 6 rv 0(1), the SUSY contribution to FCNC's is small (35, 36, 37, 38, 39, 

40, 41, 42]. Thus, the fine tuning of 6's is avoided. The phenomenological viability 

and naturalness of this scenario is the subject of chapter 4. We assume that there 

is some natural model to make these scalars heavy. We want to investigate if 
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this leads to unnaturalness in some other sector. To suppress flavour changing 

processes, the heavy scalars must have masses between a few Te V and a hundred 

Te V. The actual value depends on the degree of mass degeneracy and mixing 

between the first two generation scalars. 6 As we discussed before, only the stop 

masses have to be smaller than about 1 TeV to get natural EWSB. However, 

as discussed in reference (43], the masses of the heavy scalars cannot be made 

arbitrarily large without breaking colour and charge. This is because the heavy 

scalar masses contribute to the two loop Renormalization Group Equation (RGE) 

for the soft masses of the light scalars, such that the stop soft (mass)2 become 

more negative in RG scaling to smaller energy scales. This negative contribution 

is large if the scale at which supersymmetry breaking is communicated to the 

visible sector is close to the GUT scale (43]. With the first two generation soft 

scalar masses ~ 10 TeV, the initial value of the soft masses for the light stops . 
must be ~ few Te V to cancel this negative contribution (43] to obtain the correct 

vaccum. This requires, however, an unnatural amount of fine tuning to correctly 

break the electroweak symmetry (14, 15]. 

In chapter 4, we analyze these issues and include two new items: the effect of 

the large top quark Yukawa coupling, At, in the RG evolution, that drives the stop· 

soft (mass)2 more negative, and QCD radiative corrections in the !:lmK constraint 

[44]. This modifies the bound on the heavy scalar masses which is consistent with 

6 Once the amount of fine tuning (i.e., how small 8) we are willing to tolerate is given, we can 

estimate the Ms required from Eqn.(1.14). 
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the measured value of D.mK. This, in turn, affects the minimum value of the initial 

scalar masses that is required to keep the scalar (mass)2 positive at the weak scale. 

We note that the severe constraint obtained for the initial stop masses assumes 

that supersymmetry breaking occurs at a high scale. This leaves open the pos­

sibility that requiring positivity of the scalar (mass) 2 is not a strong constraint 

if the scale of supersymmetry breaking is not much larger than the mass scale of 

the heavy scalars. In chapter 4 we investigate this possibility by computing the 

finite parts of the same two loop diagrams responsible for the negative contribu­

tion to the light scalar RG equation, and use these results as an estimate of the 

two loop contribution in an actual model of low energy supersymmetry breaking. 

We find that in certain classes of models of this kind, requiring positivity of the 

soft (mass) 2 may place strong necessary conditions that such models must satisfy 

in order to be phenomenologically viable. 
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Chapter 2 

R-parity Violation, in Flavor Changing Neutral 

Current Processes 

In a supersymmetric extension of the SM without R-parity, we show that even 

with a "single" coupling scheme, i.e., with only "one" R-parity violating coupling 

(either L or B violating) with a particular flavor structure being non-zero, the 

flavor changing neutral current processes can be avoided only in either the charge 

+2/3 or the charge -1/3 quark sector, but not both. We use the processes K -K 

mixing, B- B mixing and K+ -+ 1r+vv (in the down sector) and D- D mixing 

(in the up sector) to place constraints on /'lp couplings. The constraints on the 

first and the second generation couplings are better than those existing in the 

literature. 

Flavor changing neutral current processes are more clearly seen by examining 

the structure of the interactions in the quark mass basis. In this basis, the >.ijk 

interactions of Eqn.l.13 are 

(2.1) 

where 

(2.2) 
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and N is the neutrino chiral superfield. The superfields in Eqn.(2.1) have their 

fermionic components in the mass basis so that the Cabibbo-Kobayashi-Maskawa 

(CKM) matrix [5] VKM appears explicitly. The rotation matrices UL and DR 

appearing in the previous equation are defined by 

(2.3) 

(2.4) 

where qi ( qi) are quark fields in the weak (mass) basis. Henceforth, all the fields 

will be in the mass basis and we drop the superscript m. 

Unitarity of the rotation matrices implies that the couplings A~ik and >.iik 

satisfy 

(2.5) 

So any constraint on the~ couplings in the quark mass basis also places a bound 

on the fir> couplings in the weak basis. 

In terms of component fields, the interactions, in Dirac notation, are 

(2.6) 

where e denotes the electron and e it's scalar partner and similarly for the other 

particles. 

The contributions of the R-parity violating interactions to low energy processes 

involving no sparticles in the final state arise from using the /Jp interactions an even 

number of times. If two .A' 's or .A" 's with different flavor structure are non-zero, 
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flavor changing low energy processes can occur. These processes are considered in 

references (20] and (45], respectively. Therefore, it is usually assumed that either 

only one )..' with a particular flavor structure is non-zero, or that the R-parity 

breaking couplings are diagonal in generation space. However, Eqn.(2.6) indicates 

that this does not imply that there is only one set of interactions with a particular 

flavor structure, or even that they are diagonal in flavor space. In fact, in this 

case of one A~ik =I= 0, the CKM matrix generates couplings involving each of the 

three down-type quarks. Thus, flavor violation occurs in the down quark sector, 

though suppressed by the small values of the off-diagonal CKM elements. Below, 

we use these processes to obtain constraints on R-parity breaking, assuming only 

one A~ik =1- 0. 

It would seem that the flavor changing neutral current processes may be "ro­

tated" away by making a different physical assumption concerning which fh cou­

pling is non-zero. For example, while leaving the quark fields in the mass basis, 

Eqn'.(2.1) gives 

where 

A~ik(Ni(VKM)jzDz- EiUi)D1. 

(A~ik VKMjz)(NiDz- Ei(Vi11p)Up)D1. 

~ijk(NiDi- Ei(Vi1ip)Up)Dk, 

)..imnDLmjD~nk· 
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(2.10) 



With the assumption that the ..\~ik coefficients have values such that only one j_ijk 

is non-zero, there is only one interaction of the form NLDLDc. There is then no 

longer any flavor violation in the down quark sector. In particular, there are no 

/'lp contributions to the processes discussed below. But now there are couplings 

involving each of the three up type quarks. So these interactions contribute to 

FCNC in the up sector; for example, D0-D0 mixing. We use D 0-D0 mixing to 

place constraints on R-parity violation assuming only one j_ijk =/= 0. Thus, there is 

no basis in which FCNC can be avoided in both sectors. 

It might be more natural to assume that there is only one large J'(p coupling 

in the weak basis, i.e., only one "51.ijk =/= 0. In general, there will be a rotation in 

both the up and the down quark sectors to go to the mass basis, i.e., UL, D L and 

DR are not equal to the identity matrix. Then, from Eqns.(2.2) and (2.10), we see 

that there are many X's and j_'s even -if one "5I. is non-zero leading to FCNC's in 

both the sectors. It is possible that DR and either UL or DL are identity matrices, 

but both DL and UL cannot be the identity matrix since their product is VKM· 

So, with one "5I. =/= 0, we get FCNC's in at least one of (and in general both) up 

and down quark sectors. 

The conclusion that FCNC constraints always exist in either the charged -1/3 

or charged 2/3 quark sectors follows solely from requiring consistency with elec­

troweak symmetry breaking, and is not specific toR-parity violation. For exam­

ple, a similar conclusion about leptoquark interactions, which are similar to fip 

interactions, is reached in reference [46]. 
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Figure 2.1: .lJ,p contributions to K 0-K0 mixing with one >.~ik "/= 0. Arrows indicate 

flow of propagating left handed fields. 

2.1 K 0-K0 Mixing 

With one >.iik "/= 0, the interactions of Eqn.(2.6) involve down and strange 

quarks. So, there are contributions to K 0-K0 mixing through the box diagrams 

shown in Fig.2.1. A constraint on the /Jp couplings is obtained by constraining the 

sum of the ]Jp and Standard Model contributions to the KL- Ks mass difference 

to be less than the measured value. 

Evaluating.these diagrams at zero external momentum and neglecting the down 

quark masses, the following effective Hamiltonian is generated 

(2.11) 

where mv; is the sneutrino mass and mJRk is the right-handed down squark mass. 

As this operator is suppressed by the CKM angles, it is largest when >.~jk is non-

zero for j = 1 or j = 2. 

The Standard Model effective Hamiltonian is (47] 

(2.12) 
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where the CKM suppressed top quark contribution, the up quark mass, QCD 

radiative corrections, and long distance effects have been ignored. 

The !!J.S = 2 effective Hamiltonian is then 

(2.13) 

(2.14) 

In the vacuum saturation approximation, this effective Hamiltonian contributes 

an amount 

(2.15) 

to the KL - Ks mass difference. With !K = 160 MeV [48), BK f'..J 0.6 [49), 

mK = 497MeV [50), and I(!!J.m)expl = 3.510 x 10-12 MeV [50), and me 2: 1.,0 GeV, 

the constraint is 

(2.16) 

where zi = m;;j(100 GeV) and wk = mdnj(100 GeV). This constraint applies for 

j = 1 or j = 2 and for any i or k. The constraint for j = 3 is not interesting as the 

CKM angles suppress the ]Jp operator relative to the Standard Model operator. 

2.2 B 0-B0 Mixing 

The ]Jp interactions also contribute to both B0-B0 mixing and B~-B~ mixing 

through box diagrams similar to those given in the previous section. As B~-B2 

mixing is expected to be nearly maximal, it is not possible at present to place 
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a constraint on any non-Standard Model effects that would add more mixing. 

However, B0-B0 mixing has been observed [5i] with a moderate xd "'0.7 [50]. 

The effective Hamiltonian generated by these .lh processes is 

(2.17) 

, This is largest when .A~3k is non-zero. 

The dominant contribution to B 0-B0 mixing in the Standard Model is [52] 

where Xt = m; / m~, and 

G( ) = 4 - llx + x2 

x 4(x- 1)2 

For a top mass of 176 GeV, G(xt) = 0.54. 

3x2 1nx 
2(1- x)3 . 

(2.18) 

(2.19) 

A constraint for .A~3k is obtained by demanding that the sum of the Stan-

dard Model and /lp contributions to the BL - Bs mass difference not exceed 

the measured value. With !B = 200 MeV [48], BB "' 1.2 [53], mB = 5279 MeV 

[50], J(~m)expl = 3.3 x 10-lO MeV [50] and JVKM13 J 2: 0.004 [50], a conservative 

constraint is 

(2.20) 

with Zi and wk as previously defined. In this case the Jh couplings are only weakly 

constrained. 

In addition to inducing B0-B0 mixing, these interactions also contribute to the 

b ---+ s + '"'( amplitude. However, with reasonable values for squark and sneutrino 

masses, the constraint is weak. 
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Figure 2.2: Ji,p contribution to K+ ~ 1r+vv with one A~ik =I= 0. 

The tree level Feynman diagram in Fig.2.2 generates an effective Hamiltonian 

which contributes to the branching ratio for K+ ~ 1r+vv. Using a Fierz rear-

rangement, a straightforward evaluation of this diagram gives 

1l - l~A~jkl2 (tr V* )(- J.l.d )(- ) 
f!.v - -

2 
2 v KMjl KMj2 BL"f L VLi"fJLVLi · 

m-
dRk 

(2.21) 

There is also a Standard Model contribution to this decay [52]. This is an 

order of magnitude lower than the existing experimental limit. To obtain a bound 

on the '/ip coupling, we shall assume that the Ji,p effects dominate the decay rate. 

As the matrix element for this semi-leptonic decay factors into a leptonic and 

a hadronic element, the isospin relation 

(2.22) 

can be used to relate r[K+ ~ 1r+vv] to r[K+ ~ 1r0ve+]. The effective Hamil-

tonian for the neutral pion decay channel arises from the spectator decay of the 
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strange quark. It is 

(2.23) 

So in the limit where the lepton masses can be neglected, 

(2.24) 

This ratio is valid for i = 1, 2 or 3, since in the massless neutrino and electron 

approximation, the integrals over phase space in the numerator and denominator 

cancel. So using BR[K+ --+ 1r+vv] :::; 5.2 x 10-9 [54] (90%CL) and BR[K+ ---+ 

1r0ve+] = 0.0482 [50], the constraint is 

(2.25) 

for j = 1 or j = 2. Using IVKMI31 > 0.004 [50] and IVKM23 I > 0.03 [50], a 

conservative upper bound for ,\~3k is 

(2.26) 

2.4 D0-D0 Mixing 

If there is only one 5..ijk i~ the mass basis, then from Eqn.(2.9) it is clear that 

flavor changing neutral current processes will occur in the charge +2/3 quark 

sector. Rare processes such as D 0-D0 mixing, D 0 ---+ f.l+ /1- and n+ ---+ 1r+ z+ z-' for 

example, may be used to place tight constraints on 5..ijk· For illustrative purposes, 

in this section we will consider D0-D0 mixing. 
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The interactions in Eqn.(2.9) generate box diagrams identical to those dis-

cussed in the previous sections if both the internal sneutrino (neutrino) propa-

gators are replaced with charged slepton (lepton) propagators and the external 

quarks lines are suitably corrected. Using the same approximations that were 

made earlier, the~ effects generate the following effective Hamiltonian 

With fv = 200 MeV [48], mv = 1864 MeV [50], and I(Llm)expl ~ 1.32 x 10-10 MeV 

[50] (90%CL), the constraint on 5..iik for j = 1 or j = 2 is 

(2.28) 

2.5 Summary 

In this chapter we have argued that R-parity breaking interactions always 

lead to flavor changing neutral current processes. It is possible that there is a 

single ~ coupling in the charge +2/3 quark sector. But requiring consistency 

with electroweak symmetry breaking demands that ~ couplings involving all the 

charge -1/3 quarks exist. That is, a single coupling scheme may only be possible 

in either the charge 2/3 or the charge -1/3 quark sector, but not both. As a result, 

flavor changing neutral current processes always exist in one of these sectors. We 

have used K+ --t 1r+vo, K 0- K 0 mixing, B 0- B0 mixing and D 0- D0 mixing 

to constrain the~ couplings. If there is CKM-like mixing in the charged -1/3 

quark sector, then the constraints are quite stringent; see Table 2.1. The tightest 
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con.straint is on IA~jkl for j = 1, 2 and any i and k. This comes from the rare decay 

K+ ~ 1r+vv. The constraints we obtain for the first two generation couplings are 

more stringent than those presently existing in the literature. 
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IA~jkl IA~jkl IA~jkl 

111 0.012a 211 0.012a 311 0.012a 

112 0.012a 212 0.012a 312 0.012a 

113 0.012a 213 0.012a 313 0.012a 

121 0.012a 221 0.012a 321 0.012a 

122 0.012a 222 0.012a 322 0.012a 

123 0.012a 223 0.012a 323 0.012a 

131 0.19b 231 0.19b 331 0.19b 

132 0.19b 232 0.19b 332 0.19b 

133 o.omc 233 0.19b 333 0.19b 

Table 2.1: Constraints on IA~jkl from: (a) K+ -t 1r+vr; (90%CL); (b) b -t svfJ 

(90%CL) (55]; (c) Ve mass (90%CL) (23]. These constraints were obtained as­

suming CKM-like mixing in the charged -1/3 quark sector. All limits are for 

100 Ge V sparticle masses. 
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Chapter 3 

Improving the Fine Tuning in Models of Low 

Energy Gauge Mediated Supersymmetry 

Breaking 

In this chapter, the fine tuning in models of low energy gauge mediated su­

persymmetry breaking required to obtain the correct Z mass is quantified. To 

alleviate the fine tuning problem, a model with a non-minimal messenger sector is 

presented. This chapter is organized as follows. In section 3.1, we briefly review 

both the "messenger sector" in low energy gauge mediated SUSY breaking models 

that communicates SUSY breaking to the Standard Model and the pattern of the 

sfermion and gaugino masses that follows. Section 3.2 quantifies the fine tuning 

in the minimal model using the Barbieri-Giudice criterion [14]. 

In the minimal model, the messenger fields form complete SU(5) representa­

tions. Section 3.3 describes a toy model with split (5 + 5) messenger represen­

tations that improves the fine tuning. To maintain gauge coupling unification, 

additional color triplets are added to the low energy theory. They acquire a mass 

of 0(500) GeV by a coupling to a gauge singlet. The fine tuning in this model is 

improved to,..._. 40%. The sparticle phenomenology of this model is also discussed. 
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In section 3.4, we discuss a version of the toy model where the above mentioned 

singlet generates the J-t and J.-t~ terms. This is identical to the Next-to-Minimal 

Supersymmetric Standard Model (NMSSM) [56] with a particular pattern for the 

soft SUSY breaking operators that follows from gauge mediated SUSY breaking 

and our solution to the fine tuning problem. We show that this model is tuned to 

"" 20%, even if LEP does not discover SUSY /light Higgs. We also show that the 

NMSSM with one complete messenger (5 + 5) (and extra vector-like quintets) is 

fine tuned to "" 2%. 

We discuss, in section 3.5, how it is possible to make our toy model compatible 

with a Grand Unified Theory (GUT) [6] based upon the gauge group SU(5) x 

SU(5). The doublet-triplet splitting mechanism of Barbieri, Dvali and Strumia 

[57] is used to split both the messenger representations and the Higgs inultiplets. In 

section 3.6, we present a model in which all operators consistent with symmetries 

are present and demonstrate that the low energy theory is the model of section 

3.4. In this model R-parity (Rp) is the unbroken subgroup of a Z4 global discrete 

symmetry that is required to solve the doublet-triplet splitting problem. Our 

model has some metastable particles which might cause a cosmological problem. 

In appendix A, we give the expressions for the Barbieri-Giudice parameters (for 

the fine tuning) for the MSSM and the NMSSM. 

3.1 Messenger Sector 

In the models of low energy gauge mediated SUSY breaking [31, 58] (henceforth 
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called LEGM models), SUSY breaking occurs dynamically in a "hidden" sector of 

the theory at a scale Adyn that is generated through dimensional transmutation. 

SUSY breaking is communicated to the Standard Model fields in two stages. First, 

a non-anomalous U(l) global symmetry of the hidden sector is weakly· gauged. 

This U(1)x gauge interaction communicates SUSY breaking from the original 

SUSY breaking sector to a messenger sector at a scale Amess rv ax Adyn/ ( 47r) 

as follvws. The particle content in the messenger sector consists of fields <I>+, 

<I>_ charged under this U(l)x, a gauge singlet field S, and vector-like fields that 

carry Standard Model quantum numbers (henceforth called messenger quarks and 

leptons). In the minimal LEGM model, there is one set of vector-like fields, ij, l, 

and q, l that together form a (5 + 5) of SU ( 5) .1 This is a suffucient condition 

to maintain unification of the SM gauge couplings. The superpotential in the 

minimal model is 

(3.1) 

The scalar potential .is 

V = 2:::: IFil2 + m~l¢+1 2 + m:.I<P-1 2
· (3.2) 

i 

In the models of [31, 58], the <I>+, <I>_ fields communicate (at two loops) with the 

hidden sector fields through the U(1) gauge interactions. Then, SUSY breaking in 

1 In this chapter, to avoid confusion with the SSM fields, we use the notation q and l for the 

messenger superfields and their fermionic components (with tildes for scalar components), and 

Q and L for the squark and slepton SU (2)w doublets of the SSM. 
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the original sector generates a negative value ""' - (ax Adyn) 2 
/ ( 47r )2 for the mass 

parameters m!, m:_ of the ¢>+ and if>- fields. This drives vevs of 0 (Amess) for the 

scalar components of both <I>+ and <f>_, and also for the scalar and F-component 

of S if the couplings As, 9x and A4> satisfy the inequalities derived in (32, 59].2 

Generating a vev for both the scalar and F-component of S is crucial, since this 

generates a non-supersymmetric spectrum for the vector-like fields q and l. The 

spectrum of each vector-like messenger field consists of two complex scalars with 

masses M2 ±Band two Weyl fermions with mass M where M =AS, B = AFs 

and A is the coupling of the vector-like fields to S. Since we do not want the 

SM to be broken at this stage, M 2 - B 2:0. In the second stage, the messenger 

fields are integrated out. As these messenger fields have SM ·gauge interactions, 

SM gauginos acquire masses at one loop and the sfermions and Higgs acquire soft 

scalar masses at two loops (19]. The gaugino masses at the scale at which the 

messenger fields are integrated out, Amess ~ M are (58] 

(3.3) 

The sum in Eqn.(3.3) is over messenger fields (m) with normalization 

Tr(TaTb) = N~(m)8ab where the T's are the generators of the gaug~ group Gin 

the representation R, JI(x) = 1+0(x), and Asusy _ B/M = Fs/S = xAmess with 

x = B/M2
• If all the dimensionless couplings in the superpotential are ""' 0(1), 

2This point in field space is a local minimum. There is a deeper minimum where SM is broken 

[32, 59). To avoid this problem, we can, for example, add another singlet to the messenger sector 

[32). This does not change our conclusions about .the fine tuning. 
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then x cannot be much smaller than one. Henceforth, we will set Asusv ~ Amess· 

The exact one loop calculation [60] of the gaugino mass shows that / 1(x) :::; 1.3 

for x :::; 1. The soft scalar masses at Amess are [58] 

.2 _ 2A2 '""NG( )CG( ·) (ac(Amess))
2 

f (~) m, - su sv L..- R m R 8 l 4 2 , 52 ' 
m,G n Am 

(3.4) 

where C~ ( si) is the Casimir of the representation of the scalar i in the gauge group 

G and f 2(x) = 1 +. O(x). The exact two loop calculation [60] which determines h 

shows that for x :::;0.8 (0.9), h differs from one by less than 1 %(5%). Henceforth 

we shall use f 1(x) = 1 and f 2 (x) = 1. In the minimal LEGM model 

ac(Amess) 
Mc(Amess) = 

4
n Amess, (3.5) 

2A~ess X (3.6) 

where Q = T3L+Y and a 1 is the SU(5) normalized hypercharge coupling. Further, 

c3 = 4/3 and c2 = 3/4 for colored triplets and electroweak doublets respectively. 

The spectrum in the models is determined by only a few unknown parameters. 

As Eqns.(3.3) and (3.4) indicate, the SUSY breaking mass parameters for the 

Higgs, sfermions and gauginos are 

(3.7) 

The scale of Amess is chosen to be rv 100 TeV so that the lightest of these particles 

escapes detection. It follows that the intrinsic scale of supersymmetry breaking, 
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Adyn' is rv 10000 TeV. The goldstino decay of the lightest standard model super­

partner then occurs outside the detector [61]. The phenomenology of the minimal 

LEGM model is discussed in detail in [61]. 

3.2 Fine Tuning in the Minimal LEGM 

A desirable feature of gauge mediated SUSY breaking is the natural suppression 

of FCNC processes since the scalars with the same gauge quantum numbers are 

· degenerate [19]. But, the minimal LEGM model introduces a fine tuning in the 

Higgs sector unless the messenger scale is low. This has been previously discussed 

in [31, 32] and quantified more recently in [33]. We outline the discussion in order 

to introduce some notation. 

The superpotential for the MSSM is 

(3.8) 

The scalar potential is 

where V'i-toop is the one loop effective potential. The vev of Hu (Hd), denoted by 

vu(vd), is responsible for giving mass tothe up (down)-type quarks, J.Li = m~d +J.L2 , 

f.L~ = m~ .. + J.L2 and J.L~, 3 m~u, m~d are the SUSY breaking mass terms for the 

3 JL~ is often written as B JL. 
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Higgs fields. 4 Extremizing this potential determines, with tan /3 = vu/vd, 

1 2 -mz 
2 

{Li- ii~ tan2 /3 
tan2 /3- 1 ' 

2 
. . 2/3 2 J.l3 
sm = -2 -2' 

J.ll + J.l2 

(3.10) 

(3.11) 

where M = J.l~ + 28Vl-loopf8v[. For large tan /3, m~/2 ~ -(m'i£ .. + JJ2
). This 

indicates that if lmi£ .. 1 is large relative to m~, the JJ2 term must cancel this large 

number to reproduce the correct value for m~. This introduces a fine tuning in 

the Higgs potential, that is naively of the order m~/(2lm'i£J). We shall show that . 

this occurs in the minimal LEGM model. 

In the minimal LEGM model, a specification of the messenger particle con-

tent and the messenger scale Amess fixes the sfermion and gaugino spectrum 

at that scale. For example, the soft scalar masses for the Higgs fields are 

~ et2(Amess)Amess/(4n). Renormalization Group (RG) evolution from Amess to 

the electroweak scale reduces m'i£ .. due to the large top quark Yukawa coupling, 

At~ and the squark soft masses. The one loop Renormalization Group Equation 

(RGE) for m'i£ .. is (neglecting gaugino and the trilinear scalar term (HuQ3ii3) 

contributions ) 

(3.12) 

which gives 

2 ( ffij 2 3..\~ ( 2 2 2 ) ( Amess) mH (t ~In -A )) ~ mH 0 - -
8 2 mH 0 + muc 0 + mQ 0 In -- , 

u mess ,., 1f u, 3 ' 3 ' ffij 
(3.13) 

4The scale dependence of the parameters appearing in the potential is implicit. 
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where the subscript 0 denotes the masses at the scale Amess· On the right-hand 

side of Eqn.(3.13) the RG scaling of m2Q- and m~c has been neglected. Since the 
3 3 

logarithm It! ::::::ln(Amess/mt) is small, it is naively expected that m~u will not be 

driven negative enough and will not trigger electroweak symmetry breaking. How-

ever since the squarks are :::::::: 500 GeV (1 TeV) for a messenger scale Amess = 50 

TeV (100 TeV), the radiative corrections from virtual top squarks are large since· 

the squarks are heavy. A numerical solution of the one loop RGE (including gaug-

ino and the trilinear scalar term (HuQ3ii3) contributions) determines -m~u =(275 

GeV)2 ((550 GeV)2
) for Amess =50 TeV (100 TeV) and setting At= 1. Therefore, 

m~/(2lm~J) rv0.06 (0.01), an indication of the fine tuning required. 

To reduce the fine tuning in the Higgs sector, it is necessary to reduce lrn~J; 

ideally so that m~u :::::::: -0.5m~. The large value of lm~u I at the weak scale is a 

consequence of the large hierarchy in the soft scalar masses at the messenger scale: 

m~R < m~ << m2Q- -c. Models of sections 3.3, 3.4 and 3.o attempt to reduce the 
u 3,U3 

ratio m~Jm~u at the messenger scale and hence improve the fine tuning in the 

Higgs sector. 

The fine tuning may be quantified by applying one of the criteria of [14, 15]. 

The value 0* of a physical observable 0 will depend on the fundamental param-

eters (..\i) of the theory. The fundamental parameters of the theory are to be 

distinguished from the free parameters of the theory which parameterize the so-

lutions to 0(..\i) = 0*. If the value 0* is unusually sensitive to the underlying 

parameters (..\i) of the theory, then a small change in ..\i produces ·a large change 
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in the value of 0. The Barbieri-Giudice function 

(3.14) 

quantifies this sensitivity [14]. This particular value of 0 is fine tuned if the 

sensitivity to Ai is larger at 0 = 0* than at other values of 0 [15]. If there are 

. values of 0 for w.hich the sensitivity to ).i is small, then it is probably sufficient 

to use c( 0, Ai) as the measure of fine tuning. 

To determine c(m~, Ai), we performed the following. The sparticle spectrum in 

the minimal LEGM model is determined by the four parameters Amess, J.l~, J.l, and 

tan (3. 5 The scale Amess fixes the boundary condition for the soft scalar masses, 

and an implicit dependence on tan (3 from At, ).b and Ar arises in RG scaling6 from 

J.l RG = Amess to the weak scale, that is chosen to be J.t1a = m; + ~ ( m; + m;c). The 

extremization conditions of the scalar potential (Eqns.(3.10) and (3.11)) together 

with mz and ffit leave two free parameters that we choose to be Amess and tan (3 

(see appendix for the expressions for the fine tuning functions). 

A numerical analysis yields the value of c(m~, J.t2 ) that is displayed in Fig.3.1 

in the (tan (3, Amess) plane. 

We note that c( m~, J.t2) is large throughout most of the parameter space, except 

for the region where tan (3 ::G 5 and the messenger scale is low. A strong constraint 

on a lower limit for Amess comes from the right-handed selectron mass. Contours 

meR = 75 Ge V (""' the LEP limit from the run at ..fi ~ 170 Ge V [ 62]) and 85 Ge V 

5We allow fot an arbitrary J.L~ at Amess· 

6The RG scaling of At was neglected. 
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Figure 3.1: Contours of c(m~; J.-L
2

) =(10, 15, 20, 25, 40, 60) for a MSSM with a 

messenger particle content of one (5 + 5). In Figs.( a) and (c) sgn(J.-L) = .,.-1 and in 

Figs.(b) and (d) sgn(J.-L) = +1. The constraints considered are: (I) meR =75 GeV, 

(II) mx.? + mx_g = 160 GeV, (III) meR =85 GeV, and (IV) mx.? + mx_g = 180 GeV. 

A central value of mtop =175 GeV is assumed. 
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(rv the ultimate LEP2 limit [63]) are also plotted. The (approximate) limit on the 

neutralino masses from the LEP run at JS ~ 170 Ge V, mx~ + mxg = 160 Ge V and 

the ultimate LEP2 limit, mx~ + mxg ""' 180 GeV are also shown in Figs.3.1a and 

3.1c for sgn(J.L) = -1 and Figs.3.1b and 3.1d for sgn(J.L) = +1. The constraints 

from the present and the ultimate LEP2 limits on the chargino mass are weaker 

than or comparable to those from the selectron and the neutralino masses and 

are therefore not shown. If mz were much larger, then c"' 1. For example, with 

mz = 275 GeV (550 GeV) and Amess= 50 (100) TeV, c(m~; J.,L2 ) varies between 

1 and 5 for 1.4 ~ tan ,8 ~ 2, and is ~ 1 for tan ,8 > 2. This suggests that the 

interpretation that a large value for c(m~; J.,L2
) implies that mz is fine tuned is 

probably correct. 

From Fig.3.1 we conclude that in the minimal LEGM model a fine tuning of 

approximately 7% in the Higgs potential is required to produce the correct value 

for mz. Further, for this fine tuning the parameters of the model are restricted to 

the region tan ,8 :<. 5 and Amess ~ 45 TeV, corresponding to meR ~ 85 GeV. We 

have also checked that adding more complete (5 + 5)'s does not reduce the fine 

tuning. 

3.3 A Toy Model to Reduce Fine Tuning 

3.3.1 Model 

In this section the particle content and couplings in the messenger sector that 

48 



are suffucient to reduce lm~J is discussed. The aim is to reduce m'¢Jm~ .. at the 

scale Amess· 

The idea is to increase the number of messenger leptons (SU(2) doublets) 

relative to the number of messenger quarks (SU(3) triplets). This reduces both 

m'¢Jm~ .. and m'¢Jm~R at the scale Amess (see Eqn.(3.4)). This leads to a smaller 

value of lm~J in the RG scaling (see Eqn.(3.13)) and the scale Amess can be lowered 

since meR is larger. For example, with three doublets and one triplet at a scale 

Amess = 30 TeV, so that meR ~ 85 GeV, we find lm~..(mQ3 )I ~ (100GeV)2 for 

At = 1. This may be achieved by the following superpotential in the messenger 

sector 

w - - - 1 3 
Aq1 SQ1Q1 + At1Sl1h + At2 Sl2l2 + At3 Shl3 + 3>-sS 

1 
+>.~$<1>_<1>+ + 3>.NN3 + Aq2Nq2Q2 + Aq3Nq3q3, (3.15) 

where N is a gauge singlet. The two pairs of triplets q2 , ij2 and q3, ij3 are required at 

low energies to maintain gauge coupling unification. In this model the additional 

leptons l2 , l2 and l3 , [3 couple to the singlet S, whereas the additional quarks couple 

to a different singlet N that does not couple to the messenger fields <l>+, <l>_. This 

can be enforced by discrete symmetries (we discuss such a model in section 3.6). 

Further, we assume the discrete charges also forbid any couplings between Nand 

S at the renormalizable level (this is true of the model in section 3.6) so that 

SUSY breaking is communicated first to S and to N only at a higher loop level. 
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3.3.2 Afass Spectrufln 

Before quantifying the fine tuning in this model, the mass spectrum of the 

additional states is briefly discussed. While these fields form complete represen­

tations of SU(5), they are not degenerate in mass. The vev and F-component 

of the singlet S gives a mass Amess to the messenger lepton multiplets if the 

F -term splitting between the scalars is neglected. As the squarks in qi + ifi 

(i=2,3) do not couple to S, they acquire a soft scalar mass from the same two 

loop diagrams that are responsible for the masses of the MSSM squarks, yielding 

mii ~ a3(Amess) AsusY/(v!fJJr). The fermions in q + ij also acquire mass at this 

scale since, if either Aq2 or Aq3 rv 0(1), a negative value for m'Jv (the soft scalar 

(mass) 2 of N) is generated from the A.qNqij coupling at one loop and thus a vev for 

N rv mq is generated. The result is mz/mq ~ VfJ1f/a3(Amess)(Amessl Asusy) ~ 85. 

The mass splitting in the extra fields introduces a threshold correction to 

sin2 Ow if it is assumed that the gauge couplings unify at some high scale 

McuT ~1016 GeV. We estimate that the splitting shifts the prediction for 

sin2 Ow by an amount ~ -7x 10-4 1n(mz/mq)n, where n is the number of split 

(5 + 5).7 In this case n =2 and mz/mq rv 85, so <5sin2 Ow rv -6 X 10-3
• If 

a3(Mz) and O!em(Mz) are used as input, then using the two loop RG equations 

sin2 Ow(MS) = 0.233 ± 0(10-3
) is predicted in a minimal SUSY-GUT [8). The 

7The complete (5 + 5), i.e., h, l1 and q1 , iJ.1. that couples to S is also split because A1 ¥- Aq 

at the messenger scale due to RG scaling from Maur to Amess· This splitting is small and 

neglected. 
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error is a combination of weak scale SUSY and GUT threshold corrections [8]. 

The central value of the theoretical prediction is a few percent higher than the 

measured value of sin2 Ow(MS) = 0.231 ± 0.0003 [4]. The split extra fields shift 

the prediction of sin2 Ow to,...., 0.227 ± 0(10-3) which is a few percent lower than 

the experimental value. In sections 3.5 and 3.6 we show that this spectrum is 

derivable from a SU(5) x SU(5) GUT in which the GUT threshold corrections to 

sin2 Ow could be ,...., 0(10-3) - 0(10-2
) [64]. It is possible that the combination 

of these GUT threshold corrections and the split extra field threshold corrections 

make the prediction of sin2 Ow more consistent with the observed value. 

3.3.3 Fine Tuning 

To quantify the fine tuning in these class of models 'the analysis of section 3.2 is 

applied. In our RG analysis the RG scaling of At, the effect of the extra vector-like 

triplets on the RG scaling of the gauge couplings, and weak scale SUSY threshold 

corrections were neglected. We have checked a posteriori that this approximation 

is consistent. As in section 3.2, the two free parameters are chosen to be Amess 

and tan ,B. Contours of constant c(m~, J..L2
) are presented in Fig.3.2. 

We show contours ofmx?+mx:g = 160 GeV, and meR= 75 GeV in Fig. 3.2a for 

sgn(J..L) = -1 and in Fig.3.2b for sgn(J..L) = +1. These are roughly the limits from 

the LEP run at JS ~ 170 Ge V [ 62]). The (approximate) ultimate LEP2 reaches 

[63]: mx? +mxg = 180 GeV and meR = 85 GeV are shown in Fig.3.2c for sgn(J..L) = 

-1 and Fig.3.2d for sgn(J..L) = + 1. Since J..L2
( ~ (100 Ge V) 2

) is much smaller in these 

51 



A (a) 
(TeV) r---~---~=========l 

70f 

10 allowed 

60 

50 

40 

----------- -----------
II 

A (b) 
(TeV)r---~---~=========-1 70f 

10 allowed 

60 

50 

3 
40 

0 20 25 30 0 10 15 20 25 30 
tan~ A (c) tan~ A (d) 

(Te~or~----:-----~----========1 (Te~hr-~~---========-1 

60 

50 

40 

30 

0 

10 

5 

allowed 

--~X-----------------

10 15 20 25 30 

tan~ 

60 

50 

40 

30 

0 5 

10 allowed 

IV 

10 15 20 25 30 
tan~ 

Figure 3.2: Contours of c(m~; J.-L2 ) =(1, 2, 3, 5, 7, 10) for a MSSM with a messenger 

particle content of three (l +[)'sand one (q + q). In Figs.( a) and (c) sgn(Jl) = -1 

and in Figs. (b) and (d) sgn(Jl) = + 1. The constraints considered are: (I) meR =75 

GeV , (II) mx-o + mx-o = 160 GeV, (III) meR =85 GeV, and (IV) mx-o + mx-o = 180 
1 2 1 2 

GeV. A central value of mtop =175 GeV is assumed. 
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models than in the minimal LEGM model, the neutralinos (X~ and xg) are lighter 

so that the neutralino masses provide a stronger constraint on Amess than does 

the slepton mass limit. The chargino constraints are comparable to the neutralino 

constraints and are thus not shown. It is clear that there are areas of parameter 

space in which the fine tuning is improved to "' 40% (see Fig.3.2). 

While this model improves the fine tuning required of the J-L parameter, it would 

be unsatisfactory if further fine tunings were required in other sectors of the model, 

for example, the sensitivity of m1 to J-L~, Amess and At and the sensitivity of mt to 

J..L2
, J-L~, Amess and At· We have checked that all these are less than or comparable 

to c(m1; J..L2
). We now discuss the other fine tunings in detail. 

For large tan ,8, the sensitivity of m1 to J-L~, c(m1; J..LD ex 1/ tan2 ,8, ahd is 

therefore smaller than c(m1; J..L2). Our numerical analysis shows that for all tan ,8 

In the one loop approximation m'ku. and m'kd at the weak scale are propor-

tiona! to A~ess since all the soft masses scale with Amess and there is only a 

weak logarithmic dependence on Amess through the gauge couplings. We have 

checked numerically that (A~essfm'kJ(8m'kj8A~esJ rv 1. Then, c(m1; A~ess) ~ 

the parameter space. 

In the one loop approximation, m'k, ( t) is 

3>.2 

2 ( ) 2 ( 2 2 2 ) ( _=.t..t ) mH t ~ mH 0 + mQ- 0 + mu-c 0 + mH 0 e s.-2 
- 1 . 

u u, a, 3' u., 
(3.16) 
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appendix) 

(3.17) 

This result measures the sensitivity of m~ to the value of At at the electroweak 

scale. While this sensitivity is large, it does not reflect the fact that At(Mp1) is 

the fundamental parameter of the theory, rather than At ( mweak). We find by both 

numerical and analytic computations that, for this model with three (5 + S)'s in 

•, 

addition to the MSSM particle content, bAt(mweak) ~ 0.1 XbAt(Mp1), and therefore 

(3.18) 

For a scale of Amess = 50 TeV (mQ
3 
~ 600 GeV), c(m~; At(MPl)) is comparable 

to c(m~; J..L
2

) which is ~ 4 to 5. At a lower messenger scale, Amess ~ 35 TeV, 

corresponding to squark masses of~ 450 GeV, the sensitivity of m~ to At(MPl) 

is~ 2.8. This is comparable to c(m~; J..L2
) evaluated at the same scale. 

We now discuss the sensitivity of mt to the fundamental parameters. Since, 

(3.19) 

Numerically we find that the last term in.c(mt; Ai) is small compared to c(m~; Ai) 

and thus over most of parameter space c(mt; Ai) ~ ~c(m~; Ai). As before, the 

sensitivity of mt to the value of At at the GUT /Planck scale is much smaller than 

t~e sensitivity to the value of At at the weak scale. 
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687 616 
ffiJ.c 

612 319 125 

mq
3 

mug 
656 546 

Table 3.1: Soft scalar masses in GeV for messenger particle content of three (l+l)'s 

and one q + ij and a scale Amess = 50 Te V. 

3.3.4 Sparticle Spectrum 

The sparticle spectrum is now briefly discussed to highlight deviations from 

the mass relations predicted in the minimal LEGM model. For example, with 

three doublets and one triplet at a scale of A = 50 Te V, the soft scalar masses 

(in GeV) at a renormalization scale J.t1c = mi + ~(m~3 + m~3 ) ~ (630 GeV) 2
, for 

At= 1, are shown in Table 3.1. 

Two observations that are generic to this type of model are: (i) By construe-

tion, the spread in the soft scalar masses is less than in the minimal LEGM model. 

(ii) The gaugino masses do not satisfy the one loop SUSY-GUT relation Mdai = 

5:11 to one loop. 

We have also found that for tan f3 .<. 3, the Next Lightest Supersymmetric 

Particle (NLSP) is one of the neutralinos, whereas for tan f3 ;;;; 3, the NLSP is the 

right-handed stau. Further, for these small values of tan {3, the three right-handed 

sleptons are degenerate within ~ 200 MeV. 
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3.4 NMSSM 

In section 3.2, the J.l term and the SUSY breaking mass J.l~ w~re put in by 

hand. There it was found that these parameters had to be fine tuned in order to 

correctly reproduce the observed Z mass. The extent to which this is a "problem" 

may only be evaluated within a specific model that generates both the J.l and J.l~ 

terms. 

For this reason, in this section a possible way to generate both the J.l term and 

J.l~ term in a manner that requires a minimal modification to the model of either 

section 3.1 or section 3.3 is discussed. The easiest way to generate these mass terms 

is to introduce a singlet N and add the interaction N HuRd to the superpotential 

(the NMSSM) [56]. The vev of the scalar component of N generates J.l and the 

vev of the F-component of N generates J.l~. 

We note that for the "toy model" solution to the fine tuning problem (section 

3.3), the introduction of the singlet occurs at no additional cost. Recall that in 

that model it was necessary to introduce a singlet N, distinct from S, such that 

the vev of N gives mass to the extra light vector-like triplets, qi, if.i (i = 2, 3) 

(see Eqn.(3.15)). Further, discrete symmetries (see section 3.6) are imposed to 

isolate N from SUSY breaking in the messenger sector. This last requirement is 

necessary to solve the fine tuning problem: if both the scalar and F -component of 

N acquired a vev at the same scale as S, then the extra triplets that couple toN 

would also act as messenger fields. In this case the messenger fields would form 
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complete (5 + 5)'s and the fine tuning problem would be reintroduced. With N 

isolated from the messenger sector at tree level, a vev for N at the electroweak 

scale is naturally generated, as discussed in section 3.3. 

We also comment on the necessity and origin of these extra triplets. Recall 

that in the toy model of section 3.3 these triplets were required to maintain the 

SUSY-GUT prediction for sin2 Ow. Further, we shall also see that they are required 

in order to generate a large enough -m~ (the soft scalar (mass)2 of the singlet 

N). Finally, in the GUT model of section 3.6, the lightness of these triplets (as 

compared to the missing doublets) is the consequence of a doublet-triplet splitting 

mechanism. 

The superpotential in the electroweak symmetry breaking sector is 

(3.20) 

which is similar to an NMSSM except for the coupling of N to the triplets. The 

superpotential in the messenger sector is given by Eqn.(3.15). 

The scalar potential is 8 

(3.21) 

The extremization conditions for the vevs of the real components of N, Hu and 

8In models of gauge mediated SUSY breaking, AH=O at tree level and a non-zero value of 

AH is generated at one loop. The trilinear scalar term AN N 3 is generated at two loops and is 

neglected. 
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Hd, denoted by VN, Vu and vd respectively (with v = Jv~ + VJ ~ 250 GeV), are 

with 

-2 m. 
~ 

1 2 
-mz 
2 

sin 2(3 

(3.22) 

ili - jl~ tan2 (3 
(3.23) 

tan2 (3- 1 ' 
J.l2 

2-2: -2' (3.24) 
J.l2 I-ll 

(3.25) 

(3.26) 

(3.27) 

We now comment on the expected size of the Yukawa couplings Aq, AN and 

AH. We must use the RGE's to evolve these couplings from their values at Maur 

or Mp1 to the weak scale. The quarks and the Higgs doublets receive wavefunction 

renormalization from SU(3) and SU(2) gauge interactions respectively, whereas 

the singlet N does not receive any wavefunction renormalization from gauge in-

teractions at one loop. So, the couplings at the weak scale are in the order: 

Aq "' 0 ( 1) > AH > AN if they all are 0 ( 1) at the GUT /Planck scale. 

We remark that without the N qij coupling, it is difficult to drive a vev for N 

as we now show below. The one loop RGE for m'Jv is 

dm'Jy 6A~ 2 · 2Xk 2 ) 2 2 3A~ 2 2 
-d- ~ - 2 mN(t)+-

8 2 (mH (t +mHd(t)+mN(t))+-
8 2 (mii(t)+mq(t)). (3.28) 

t 87r 1f " 1f 
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Since N is a gauge-singlet, m'Jv = 0 at Amess· Further, if Aq = 0, an estimate for 

m'Jv at the weak scale is then 

2 2Ak 2 2 ) (Amess) mN ~ --8 2 (mH o + mHd o ln -- , 
7r u, ' ffiHd 

(3.29) 

i.e., AH drives m'Jv negative. The extremization condition for VN, Eqn.(3.22), and 

using Eqns.(3.24) and (3.26) (neglecting AH) shows that 

(3.30) 

has to be negative for N to acquire a vev. This impliesthat m1-u and m1-d at Amess 

have to be greater than rv (350 GeV)2 which implies that a fine tuning of a few 

percent is required in the electroweak symmetry breaking sector. With Aq rv 0(1), 

however, there is an additional negative contribution to m'Jv given approximately 

by 

3-\~ ( 2 2 (Amess) -- m-o) +m.,_ )In -- . 
8n2 ~ ~0 m-q 

(3.31) 

This contribution dominates the one in Eqn.(3.29) since Aq > AH and the squarks 

ij, q have soft masses larger than the Higgs. Thus, with Aq =I 0, m'Jv + A~v2 /2 is 

naturally negative. 

Fixing mz and mt, we have the following parameters: Amess, Aq, AH, AN, tan (3, 

and VN· Three of the parameters are fixed by the three extremization conditions, 

leaving three free parameters that for convenience are chosen to be Amess, tan (3 ~0, 

and AH. The signs of the vevs are fixed to be positive by requiring a stable vacuum 

and no spontaneous CP violation. The three extremization equations determine 
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the following relations 

where 

(3.35) 

(3.36) 

The superpotential term NHuHd couples the RGE's for m'k,., m'kd and mt. Thus 

the values of these masses at the electroweak scale are, in general, complicated 

functions of the Yukawa parameters At, AH, AN and Aq. In our case, two of these 

Yukawa parameters (Aq and AN) are determined by the extremization equations 

and a closed form expression for the derived quantities cannot be found. To 

simplify the analysis, we neglect the dependence of m'ku and m'kd on AH induced 

in RG scaling from Amess to the weak scale. Then m'k .. and m'kd depend only on 

Amess and tan ,Band thus closed form solutions for AN, VN and mt can be obtained 

using the above equations. Once mt at the weak scale is obtained, the value of 

Aq is obtained by using an approximate analytic solution. An exact numerical 

solution of the RGE's then shows that the above approximation is consistent. 

3.4.1 Fine Tuning and Phenomenology 

, The fine tuning functions we consider below are c( 0; AH ), c( 0; AN), c( 0; At), 
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c( 0; Aq) and c( 0; Amess) where 0 is either m~ or mt. The expressions for the fine 

tuning functions and other details are given in the appendix. In our RG analysis 

the approximations discussed in subsection 3.3.3 and above were used and found 

to be consistent. Fine tuning contours of c( m~; AH) are displayed in Figs.3.3a and 

Fig.3.3b for AH = 0.1 and Figs.3.3c and 3.3d for AH = 0.5. We have found by 

numerical computations that the other fine tuning functions are either smaller or 

comparable to c(m~; AH ). 9 

We now discuss the existing phenomenological constraints on our model and 

also the ultimate constraints if LEP2 does not discover SUSY /light Higgs( h). 

These are shown in Figs.3.3a, 3.3c and Figs.3.3b, 3.3d respectively. We consider 

the processes e+e- -+ Zh, e+e--+ (h+pseudoscalar), e+e--+ x+x-, e+e--+ X~Xg, 

and e+e--+ eRe~ observable at LEP. Since this model also has a light pseudoscalar, 

we also consider upsilon decays T-+ ( 'Y + pseudoscalar). We find that the model 

is phenomenologically viable and requires a "' 20% tuning even if no new particles 

are discovered at LEP2. 

We begin with the constraints on the scalar and pseudoscalar spectra of this 

model. There are three neutral scalars, two neutral pseudoscalars and one complex 

charged scalar. We first consider the mass spectrum of the pseudoscalars. At the 

9In computing these functions the weak scale value of the couplings AN and AH has 

been used. But since AN and AH do not have a fixed point behavior, we have found that 

AH(Maur)/AH(mz) OAH(mz)/OAH(Maur) "' 1 so that, for example, c(m~; AH(Maur)) ~ 

c(m1-; >..H(mz)). 
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Figure 3.3: Contours of c(m~; >.H) for the NMSSM of section 3.4 and a messenger 

particle content of three (l+l)'s and one (q+q). In Figs.(a) and (b), c(m~; >.H)=( 4, 

5, 6, 10, 15) and >.H =0.1. In Figs.(c) and (d), c(m~; >.H) =(3, 4, 5, 10, 15, 20) and 

AH=0.5. The constraints considered are: 5(I) mh + ma = mz, (II) meR =75 GeV, 

(III) mx~ + mxg = 160 GeV, (IV) mh = 92 GeV, (V) meR =85 GeV, and (VI) 

mx~ + mxg = 180 GeV. For >.H =0.5, the limit mh ~ .70 GeV constrains tan ,B :V 5 

(independent of Amess) and is thus not shown. A central value of mtop =175 GeV 

is assumed. 
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boundary scale AmeSSl SUSY is softly broken in the visible sector only by the soft 

scalar masses and the gaugino masses. Further, the superpotential of Eqn.(3.20) 

has an R-symmetry. Therefore, at the tree level, i.e., with AH =0, the scalar 

potential of the visible sector (Eqn.(3.21)) has a global symmetry. This symmetry 

is spontaneously broken by the vevs of NR, H:!, and H{! (the superscript R denotes 

the real component of fields), so that one physical pseudoscalar is massless at tree 

level. It is 

(3.37) 

where the superscripts I denote the imaginary components of the fields. The 

second pseudoscalar, 

A 2 N 1 s; HJ 
rv -- + +--....:::..-

VN v sin fi v cos fi' 
(3.38) 

acquires a mass 

(3.39) 

through the IFNI2 term in the scalar potential. 

The pseudoscalar a acquires a mass once an AH-term is generated, at one loop, 

through interactions with the gauginos. Including only the wino contribution in 

the one loop RGE, AH is given by 

(3.40) 
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where M2 is the wino mass at the weak scale. Neglecting the mass mixing be-

tween the two pseudoscalars, the mass of the pseudo-Nambu-Goldstone boson is 

computed to be 

If the mass of a is less than 7.2 GeV, it could be detected in the decay 1 -7 a+ 'Y 

(4]. Comparing the ratio of decay width for 1 -7 a+ 'Y to 1 -7 J-l- + J-l+ (4, 65], 

the limit 

sin 2,8 tan· ,8 
0 v v 2 < .43 

( 2505e V )2 + sin 2,8 
(3.42) 

is found. 

Further constraints on the spectra are obtained from collider searches. The 

non-detection of Z -7 scalar + a at LEP implies that the combined mass of the 

lightest Higgs scalar and a must exceed "' 92 Ge V. Also, the process e+ e- -7 Z h 

may be observable at LEP2. For AH = 0.1, the constraint mh + ma ::G 92 GeV is 

stronger than mh ::G 70 GeV which is the limit from LEP at JS ~ 170 GeV (62]. 

The contour. of mh + ma = 92 Ge V is shown in Fig.3.3a. In Fig.3.3b, we show the 

contour of mh = 92 GeV (rv the ultimate LEP2 reach (66]). For AH = 0.5, we find 

that the constraintmh ::G 70 GeV is stronger than mh +ma ::G 92 GeV and restricts 

tan,B ;S 5 independent of Amess· The contour mh = 92 GeV is shown in Fig.3.3d. 

We note that the allowed parameter space is not significantly constrained. We 

find that these limits make the constraint of Eqn.(3.42) redundant. The left-right 
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mixing between the two top squarks was neglected in computing the top squark 

radiative corrections to the Higgs masses. 

The pseudo-Nambu-Goldstone boson a might be produced along with the light-

est scalar h at LEP. The (tree-level) cross section in u~its of R = 87/ s nb is 

2 ( 2 2)3 + - s 2 mh ma a(e e -tha)~0.15( 2 ) 2 ). v 1,-,- , 
s- mz s s 

(3.43) 

where g>.fcosOw is the Z(aBh- hBa) coupling, and 

v(x, y, z) = J(x- y- z)2- 4yz. If h = cNNR + euH:; + cdH{f, then 

, . 
2

(J cos (J Cu - sin (J cd 
A= Sill . V ( 25J5e V )2 + sin

2 2fJ 
(3.44) 

We have numerically checked the parameter space allowed by mh ~ 70 Ge V and 

).H ::=;0.5 and have found the production cross section for h a to be less than both 

the current limit set by DELPHI [67] and a (possible) exclusion limit of 30 fb [66] 

at ..jS ~ 192 GeV. The production cross-section for h A is larger than for h a 

and A is therefore in principle easier to detect. However, for. the parameter space 

allowed by mh ~ 70 GeV, numerical calculations show that mA ~ 125 GeV, so 

that this channel is not kinematically accessible. 

The charged Higgs mass is 

2 2 2 2 2 2 
m H± = mw + m H., + m Hd + J1 (3.45) 

which is greater than about 200 GeV in this model since m'kd ~ (200 GeV)2 for 

Amess ~ 35 Te V and as J12 
rv -m~ .... 

The neutralinos and charginos may be observabie at LEP2 at ..jS ~ 192 Ge V if 

m:x+ ~ 95 GeV and m:x~ +m:xg ~ 180 GeV. These two constraints are comparable, 
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and thus only one of these is displayed in Figs.3.3b and 3.3d, for )..H = 0.1 and 

)..H = 0.5 repectively. Also, contours of mx~ + mxg = 160 GeV (rv the LEP 

kinematic limit at vis ~ 170 Ge V) are shown in Figs.3.3a and 3.3c. Contours of 

85 Ge V (""' the ultimate LEP2 limit) and 75 Ge V (""' the LEP limit from vis ~ 170 

Ge V) for the right-handed select ron mass further constrain the parameter space. 

The results presented in all the figures are for a central value of mt · 175 GeV. 

We have varied the top quark mass by 10 GeV about the central value of mt= 175 

Ge V and have found that both the fine tuning measures and the LEP2 constraints 

(the Higgs mass and the neutralino masses) vary by ~ 30 %, but the qualitative 

features are unchanged. 

We see from Fig.3.3 that there is parameter space allowed by the present limits 

,, 

in which the tuning is ~ 30 %. Even if no new particles are discovered at LEP2, 

the tuning required for some region is ~ 20%. 

It is also interesting to compare the fine tuning measures with those found in 

the minimal LEGM model (one messenger (5 + 5)) with an extra singlet N to 

generate the p, and p,~ terms. 10 In Fig.3.4 the fine tuning contours for c( m1; AH) 

are presented for AH=O.l. 

Contours of meR = 75 GeV and mx? + mxg = 160 GeV are also shown in 

Fig.3.4a. For AH = 0.1, the constraint mh + ma ;:<:, 92 GeV is stronger than 

the limit mh ;:<:, 70 Ge V and is shown in the Fig.3.4a. In Fig.3.4b, we show the 

10We assume that the model contains some mechanism to generate -m"Jv "' (100GeV)2 
-

(200GeV) 2 ; for example, the singlet is coupled to an extra (5 + 5). 
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Figure 3.4: Contours of c(m~; AH) =(50, 80, 100, 150, 200) for the NMSSM 

of section 3.4 with AH =0.1 and a messenger particle content of one (5 + 5). 

The constraints considered are: (I) mh + ma = mz, (II) meR =75 GeV, (III) 

mx?+mxg = 160 GeV, (IV) mh =92 GeV, (V) meR =85 GeV, and (VI) mx?+mxg = 

180 GeV. A central value of mtop =175 GeV is assumed. 
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(approximate) ultimate LEP2 limits, i.e., mh = 92 GeV, mx~ + mxg = 180 GeV 

and meR = 85 Ge V. Of these constraints, the bound on the lightest Higgs mass 

(either mh + ma ~ 92 Ge V or mh ~ 92 Ge V) provides a strong lower limit on the 

messenger scale. We see that in the parameter space allowed by present limits the 

fine tuning is ~ 2% and if LEP2 does not discover new particles, the fine tuning 

will be ~ 1%. The coupling AH is constrained to be not significantly larger than 

0.1 if the constraint mh + ma ~ 92 GeV (or mh ~ 92 GeV) is imposed and if the 

fine tuning is required to be no worse than 1%. 

3.5 Models Derived from a GUT 

In this section, we discuss how the toy model of section 3.3 could be derived 

from a GUT model. 

In the toy model of section 3.3, the singlets Nand S do not separately couple 

to complete SU(5) representations (see Eqn.(3.15)). If the extra fields introduced 

to solve the fine tuning problem were originally part of (5 + 5) multiplets, then 

the missing triplets (missing doublets) necessarily couple to the singlet S(N). The 

triplets must be heavy in order to suppress their contribution to the soft SUSY 

breaking mass parameters. If we assume the only other mass scale is Mcur, 

they must acquire a mass at Mcur. This is just the usual problem of splitting a 

(5 + 5) [6]. For example, if the superpotential in the messenger sector contains 
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four (5 + 5)'s, 

then the SU(3) triplets in the (51 + 51)'s and the SU(2) doublet in (Sq + 5q) 

must be heavy at Mcur so that in the low energy theory there are three doublets 

and one triplet coupling to S. This problem can be solved using the method 

of Barbieri, Dvali and Strumia [57] that solves the usual Higgs doublet-triplet 

splitting problem. The mechanism in this model is attractive since it is possible 

to make either the doublets or triplets of a quintet heavy at the GUT scale. We 

next describe their model. 

The gauge group is SU(5) x SU(5)', with the particle content E(24, 1), 

E1(1, 24), <I>(5, 5) and <!>(5, 5) and the superpotential can be written as 

W = <!>~, (Mq,8$:8$ + .XE$8$: + A.1E1;;8$)<I>~' + 

1 2 1 12 
+2Mr:Tr(E ) + 

2
Mr:,Tr(E ) + 

1 3 1 13 

3.xr;TrE + 3.xr:,TrE . (3.47) 

A supersymmetric minimum of the scalar potential satisfies the F - flatness con-

ditions 

0 

0 

0 

(3.48) 
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With the ansatz 11 

~ = V!; diag(2, 2, 2, -3, -3), ~~ = V!;' diag(2, 2, 2, -3, -3), (3.49) 

the F4- = 0 condition is 

(3.50) 

matrix is the vev of <I>. To satisfy this condition, there is a discrete choice for the 

pattern of vev of <I> : i) V3 =I 0 and M3 = 0 or ii) v2 =/= 0 and M2 = 0. Substituting 

either i) or ii) in the F!: and F!:' conditions then determines v3 (or v2). With two 

sets of fields, <I> 1 , <f> 1 with v·3 =I 0 and <I> 2 , <f>2 with v2 =/= 0 , we have the following 

pattern of symmetry breaking 

SU(5) x SU(5)' (SU(3) X SU(2) X U(l)) X (SU(3) X SU(2) X U(l))' 

v~2 SM (the diagonal subgroup). (3.51) 

If the scales of the two stages o~ symmetry breaking are about equal, i.e. V!;, v!:', rv 

v3 , v2 rv Mcur, then the SM gauge couplings unify at the scale McuT· 12 

The particular structure of the vevs of <I> 1 and <I> 2 can be used to split repre-

sentations as follows. 
11 The two possible solutions to the F-flatness conditions are (~) = VE diag(2, 2, 2, -3, -3) and 

(~) = VE diag(1, 1, 1, 1, -4). 
12See [57] and [64] for models which give this structure of vevs for the <P fields without using 

the adjoints. 
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Consider the Higgs doublet-triplet splitting problem. With the particle content 

5h(5, 1), 5h(5, 1) and X(1, 5), X(1, 5) and the superpotential 

(3.52) 

the SU(3) triplets in 5h, 5h and X, X acquire a mass of order Mcur whereas the 

doublets in 5h, 5h and X, X are massless. We want only one pair of doublets in 

the low energy theory (in addition to the usual matter fields). The doublets in X, 

X can be made heavy by a bare mas~ term McurX X. Then the doublets in 5h, 5h 

are the standard Higgs doublets. But if all terms consistent with symmetries are 

allowed in the superpotential, then allowing Mcur<I> 1 <!>1, McurX X, 5hX<I>l and 

5hX<l>1 implies that a bare mass term for 5h5h is allowed. Of course, we can by hand 

put in a J.L term J.L5h5h of the order of the weak scale as in section 3.3. However, it 

is theoretically more desirable to relate all electroweak mass scales to the original 

SUSY breaking scale. So, we would like to relate the J.L term to the SUSY breaking 

scale. We showed in section 3.4 that the NMSSM is phenomenologically viable 

and "un-fine tuned" in these models. 

The vev structure of <I>2, <!>2 can be used to make the doublets in a (5 + 5) 

heavy. Again, we get two pairs of light triplets and one of these pairs can be given 

a mass at the GUT scale. 

We can use this mechanism of making either doublets or triplets in a (5 + 5) 

heavy to show how the model of section 3.3 is derivable from a GUT. The model 

with three messenger doublets and one triplet is obtained from a GUT with the 
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following superpotential 

(3.53) 

Here, some of the "extra" triplets and doublets resulting from splitting (5 + 5)'s 

are massless at the GUT scale. For example, the "extra" light doublets are used 

as the additional messenger leptons. After inserting the vevs and integrating out 

the heavy states, this corresponds to the superpotential in Eqn.(3.15) with the 

transcription: 

5,5 -+ ql, iit + lr, [1 

5t, 51 -+ h,l2 

Xt,Xt -+ l3, ~ 

5q,5q -+ q2, ii2 

Xq,Xq -+ q3, ii3· (3.54) 

We conclude this section with a remark about light singlets in SUSY-GUT's 

with low energy gauge mediated SUSY breaking. In a SUSY GUT with a singlet 

N coupled to the Higgs multiplets, there is a potential problem of destabilising 

the mweak! Maur hierarchy, if the singlet is light and if the Higgs triplets have 
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a SUSY invariant mass of O(Mcur) (68]. In the LEGM models, a B-type mass 

for the Higgs triplets and doublets is generated at one loop with gauginos and 

Higgsinos in the loop, and with SUSY breaking coming from the gaugino mass. 

Since SUSY breaking (the gaugino mass and the soft scalar masses) becomes soft 

above the messenger scale, Amess "'"' 100 TeV, the B-type mass term generated 

for the Higgs triplets is suppressed, i.e., it is O((a/47r)M2A~ess/Mcur). Similarly 

the soft (mass)2 for the Higgs triplets are O(m~eakA~essfM'/;ur)· Since the triplets 

couple to the singlet N, the soft scalar mass and B-term generate at one loop a 

linear term for the scalar and F-component of N respectively.· These tadpoles are 

harmless since the SUSY breaking masses for the triplets are so small. This is 

to be contrasted with supergravity theories, where the B-term"'"' O(mweakMcur) 

and the soft mass"'"' O(mweak) for the triplet Higgs generate a mass for the Higgs 

doublet that is at least"'"' O(v'mweakMcur/(47r)). 

3.6 One complete Model 

The model is based on the gauge group Gtoc = SU(5) x SU(5)' and the global 

symmetry group Gglo = z3 X z~ X Z4. The global symmetry acts universally on the 

three generations of the SM. The particle content and their Gtoc x G910 quantum 

numbers are given in Table 3.2. 

The most general renormalizable superpotential that is consistent with these 

symmetries is 

w = W1 + W2 + W3 + w4 + Ws + w6 + w7, 
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w 5i 10i 5h 5h 

Gloc (5, 1) (10, 1) (5, 1) (5,1) 
z3 1 a a a2 

Z' 3 b 1 1 b2 

z4 c c c2 c2 

w E E' cp2 cp2 cpl cpl 

Gtoc (24, 1) (1, 24) (5,5) (5,5) (5,5) (5,5) 
z3 1 1 1 1 1 1 

Z' 3 1 1 1 1 1 1 

z4 1 1 1 1 c2 c2 

w 5t 5l xl XI 5q 5q 

Gtoc (5, 1) (5, 1) (1, 5) (1,5) (5,1) (5,1) 
z3 a2 1 1 a 1 a2 

Z' 3 1 1 1 1 b2 b 

z4 c2 c2 1 1 1 1 .. 

w Xq Xq xh xh X X 

Gloc (1,5) (1,5) (1, 5) (1,5) (1,5) (1,5) 
z3 a 1 a a2 a2 a 

Z' 3 
b2 b b 1 1 b2 

z4 1 1 1 1 1 1 

w s N N' cp+ cp_ 

z3 a 1 a a a 

Z' 3 1 b b2 1 1 

z4 1 1 1 1 1 

Table 3.2: SU(5) X SU(5)' X z3 X z~ X z4 quantum numbers for the fields of the 

model discussed in section 3.6. The generators of z3 X z~ X z4 are labeled by 

(a, b, c). The three SM generations are labeled by the index i. 
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where, 

(3.56) 

(3.57) 

(3.58) 

A35q<P2Xq + .X35q<l>2Xq, (3.59) 

- - - - 1 3 
A6S5l5l + A7S5q5q + AsSXhXl + AgSXXh + 3AsS , (3.60) 

- 1 3 - -
-AH5h5hN + 3ANN + AqNXX 

+A10N'XXq + A11 N'XqX + lAN'N'3, (3.61) 

(3.62) 

The origin of each of the VVi 's appearing in the superpotential is easy to under-

stand. In computing the F=O equations at the GUT scale, the only non-trivial 

contributions come from fields appearing in W1 , since all other W/s are bilinear in 

fields that do not acquire vevs at the GUT scale. The function of W1 is to generate 

the vevs ~' ~' f"V diag [2, 2, 2, -3, -3], <l>f = <P2 f"V diag [0, 0, 0, 1, 1] and <l>f = <P1 f"V 

diag [1, 1, 1, 0, OJ. These vevs are necessary to break Gloc --*SU(3)cx SU(2) x U(1)v 

(this was explained in section 3.5). The role of W3 and W4 is to generate the nee-

essary splitting within the many (5 + S)'s of Gloc that is necessary to solve the 

usual doublet-triplet splitting problem, as well as to solve the fine tuning problem 

that is discussed in sections 3.2, 3.3 and 3.4. The messenger sector is given by 
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W5 • It will shortly be demonstrated that at low energies this sector contains three 

vector-like doublets and one vector-like triplet. The couplings in W6 and W7 at 

low energies contain the electroweak symmetry breaking sector of the NMSSM, the 

Yukawa couplings of the SM fields, and the two light vector-like triplets necessary 

to maintain the few percent prediction for sin2 Ow as well as to generate a vev for 

N. 

We now show that the low energy theory of this model is the model that is 

discussed in section 3.4 .. 

Inserting the vevs for <I>1 and <1> 1 into W3 and from W2 , the following mass 

matrix for the colored triplet chiral multiplets is obtained: 

0 Al Vq,l 0 0 0 
5h 
xh 

:X1vq,1 0 0 0 0 
(5h, Xh, 5t, Xt) 

0 0 0 A2Vq,1 0 
5t (3.63) 

xl 
0 0 :X2vq,1 0 M1 

X 

and all other masses are zero. There are a total of four vector-like colored triplet 

fields that are massive at McuT· These are the triplet components of (5h, Xh), 

(5h, X h), (51, Xt) and (Xt, TH ), where TH is that linear combination of triplets in 

51 and X that marries the triplet component of Xt. The orthogonal combination 

to T8 , TL, is massless at this scale. The massless triplets· at Mcur are (5q, 5q), 

(Xq, Xq) and (X, TL), for a total of three vector-like triplets. By inspection of W5, 

the only light triplets that couple to S at a renormalizable level are 5q and Sq, 

which was desirable in order to solve the fine tuning problem. Further, since X 

contains a component of TL, the couplings of the other light triplets to the singlets 
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Nand N' are 

(3.64) 

where Aq = Aq cos a', Au = Au cos a' and ci is the mixing angle between the 

triplets in 5t and X, i.e., TL = cosa'X- sina'5z. The AqNTLX coupling is also 

desirable to generate acceptable J.l and J.l~ terms (see section 3.4). 

In sections 3.3 and 3.4 it was also demonstrated that with a total of three 

messenger doublets the fine tuning required in electroweak symmetry breaking 

could be alleviated. By inserting the vev for <I>2 into W4 and from W2 , the doublet 

mass matrix is given as 

(3.65) 

and all other masses are zero. At Mcur the heavy doublets are (Xt, X), (5q, Xq) 

and (5q, Xq), leaving the four vector-like doublets in (5h, 5h), (51, 51), (X, X 1) and 

(Xh, X h) massless at this scale. Of these four pairs, (5h, 5h) are the usual Higgs 

doublets and the other three pairs couple to S (see W5 ). 

The (renormalizable) superpotential at scales below Mcur is then 

w 1 
AqNif2q2 + 3ANN3 + A10N'q3ih 

' N' ' 1 ,3 +Au q2i'h- AHNHuHd + 3AN'N 

+A6SL1h + A7Sihq1 + AsSL2l2 

- 1 3 
+AgSl3h + 3AsS + W1, (3.66) 
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where the fields have been relabeled to make, in an obvious notation, their SU(3) x 

SU(2) x U(l) quantum numbers apparent. 

We conclude this section with comments about both the choice of Z4 as a 

discrete symmetry and about non-renormalizable operators in our model. 

The usual R-parity violating operators 10sM5sM5sM are not allowed by the 

discrete symmetries, even at the non-renormalizable level. In fact, R-parity is a 

good symmetry of the effective theory below MauT· By inspection, the fields that 

acquire vevs at Maur are either invariant under Z4 or have a Z4 charge of 2 (for 

example, <P1 ), so that a Z2 symmetry is left unbroken. In fact, the vevs of the 

other fields S, N, N' and the Higgs doublets do not break this Z2 either. By 

inspecting the Z4 charges of the SM fields, we see that the unbroken Z2 is none 

other than the usual R-parity. So at Maur, the discrete symmetry Z4 is broken to 

Rp .. We also note that the Z4 symmetry is sufficient to maintain, to all orders in 

1/ Mpc operators, the vev structure of <P1 and <P2 , i.e., to forbid unwanted couplings 

between <P 1 and <P2 that might destabilize the vev structure [64]. This pattern of 

vevs was essential to solve the doublet-triplet splitting problem. It is interesting 

that both R-parity and requiring a viable solution to the doublet-triplet splitting 

problem can be accommodated by the same Z4 symmetry. 

The non-SM matter fields (i.e., the messenger 5's and X's and the light triplets) 

have the opposite charge to the SM matter fields under the unbroken Z2• Thus, 

there is no mixing between the SM and the non-SM matter fields. 

Dangerous proton decay operators are forbidden in this model by the discrete 
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symmetries. Some higher dimension operators that lead to proton decay are al­

lowed, but are sufficiently suppressed. We discuss these below. 

Renormalizable operators such as lOsM 10sM5q and 10sM5sM5q are forbidden 

by the Z3 symmetries. This is necessary to avoid a large proton decay rate. 

A dimension-6 proton decay operator is obtained by integrating out the colored 

triplet scalar components of 5q or Sq. Since the colored scalars in 5q and Sq 

have a mass rv0(50 TeV), the presence of these operators would have led to an 

unacceptably large proton decay rate. 

The operators 10sM10sM10sM5sMIMPt and 10sM10sM10sM5sM 

( iP~ I M~1)n I MPll which give dimension-S proton decay operators, are also forbid­

den by the two Z3 symmetries. The allowed non-renormalizable operators that 

generate dimension-S proton decay operators are suffuciently suppressed. The 

operator lOsM lOsM 10sM5sMN'I(MPt)2
, for example, is allowed by the discrete 

symmetries, but the proton decay rate is safe since VN' rv 1 TeV. 

The operators 10i5j~1 (X or Xq)IMPt could, in principle, also lead to a large 

proton decay rate. Setting ~1 to its vev, the superpotential couplings, for example, 

>.ij(UicDjX(3)+QiLjX(3)) are generated with Aij suppressed only by vcpJMp1• In 

this model the colored triplet (scalar) components of X and Xq have a mass mq rv 

500 GeV, giving a potentially large proton decay rate. But, in this model these 

operators are .forbidden by the discrete symmetries. The operator 10i5j~1X S I M~1 

is allowed giving a four SM fermion proton decay operator with coefficient rv 

(vcp 1 vsiM~1 ) 2Im~ rv 10-34GeV-2
• This is smaller than the coefficient generated 
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by exchange of the heavy gauge bosons of mass MauT, which is rv gbuT/M'/;uT rv 

1/2 X w-32Gev-2 and so this operator leads to proton decay at a tolerable rate. 

· With our set of discrete symmetries, some of the messenger states and the 

light color triplets are stable at the renormalizable level. Non-renormalizable op­

erators lead to decay lifetime for some of these particles of more than about 100 

seconds. This is a problem from the viewpoint of cosmology, since these particles 

decay after Big-Bang Nucleosynthesis (BBN). With a non-universal choice of dis­

crete symmetries, it might be possible to make these particles decay before BBN 

through either small renormalizable couplings to the third generation (so that 

the constraints from proton decay and FCNC are avoided) or non-renormalizable 

operators. This is, however, beyond the scope of this chapter. 

3. 7 Conclusions 

We have quantified the fine tuning required in models of low energy gauge­

mediated SUSY breaking to obtain the correct Z mass. We showed that the 

minimal model requires a fine tuning of order "' 7% if LEP2 does not discover 

a right-handed slepton. We discussed how models with more messenger doublets 

than triplets can improve the fine tuning. In particular, a model with a messenger 

field particle content of three (l +f)'s and only one (q + ij) was tuned to "' 40%. 

We found that it was necessary to introduce an extra singlet to give mass to 

some color triplets· (close to the weak scale) which are required to maintain gauge 

coupling unification. We also discussed how the vev _and F-component of this 
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singlet could be used to generate the J.l and B J.l terms. We found that for some 

region of the parameter space this model requires "' 25% tuning and have shown 

that limits from LEP do not constrain the parameter space. This is in contrast to 

an NMSSM with extra vector-like quintets and with one (5 + 5) messenger field, 

for which we found that a fine tuning of "' 1% is required and that limits from 

LEP do significantly constrain the parameter space. 

We further discussed how the model with split messenger field representations 

could be the low energy theory of a SU(5) x SU(5) GUT. A mechanism similar to 

the one used to solve the usual Higgs doublet-triplet splitting problem was used 

to split the messenger field representations. All operators consistent with gauge 

and discrete symmetries were allowed. In this model R-parity is the unbroken 

subgroup of one of the discrete symmetry groups. Non-renormalizable operators 

involving non-SM fields lead to proton decay, but at a safe level. 
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Chapter 4 

Supersymmetry Breaking and the 

Supersymmetric Flavour Problem: An Analysis 

of Decoupling the First Two Generation Scalars 

The supersymmetric contributions to the Flavor Changing Neutral Current 

processes may be suppressed by decoupling the scalars of the first and second 

generations. It is known, however, that the heavy scalars drive the stop (mass)2 

negative through the two loop Renormalization Group_ evolution. To avoid nega­

tive stop (mass)2 at the weak scale, the boundary value of the stop mass has to 

be large leading to fine tuning in EWSB. This tension is studied in detail in this 

chapter. 

The chapter is organised as follows. In section 4.1, an overview of the ingre­

dients of our analysis is presented. Some philosophy and notation are discussed. 

Section 4.1.1 discusses the constraints on the masses and mixings of the first two 

generation scalars obtained from !:1m~ after including QCD corrections. It is 

found, in particular, that a mixing among both left-handed and right-handed first 

two generation squarks of the order of the Cabibbo angle (.A), i.e., rv 0.22 requires 

them to be heavier than 40 TeV. Section 4.1.2 discusses the logic of our RG anal-

82 



ysis, and some formulae are presented. This analysis is independent of the tlmK 

analysis. Sections 4.2 and 4.3 apply this machinery to the cases of low energy and 

high energy supersymmetry breaking, respectively. 

Section 4.2 deals with the case in which the scale at which SUSY breaking is 

communicated to the SM sparticles is close to the mass of the heavy scalars. We 

use the finite parts of the two loop diagrams to estimate the negative contribution 

·of the heavy scalars. We find that a mixing among both left-handed and right­

. handed first two generation squarks of the order of A, i.e., rv 0.22, implies that 

the boundary value of the stop masses has to greater than rv 2 Te V to keep the 

stop (mass)2 positive at the weak scale. This results in a fine tuning of naively 

1% in electroweak symmetry breaking [14]. We also discuss the cases where there 

is 0(1) mixing among only the right or left squarks of the first two generations, 

and find that requiring positivity of the slepton (mass)2 implies a constraint on 

the stop masses of rv 1 Te V if gauge mediated boundary conditions are used to 

relate the two masses. This is comparable to the direct constraint on the initial 

stop masses. 

In section 4.3, we consider the case where the SUSY breaking masses for the 

SM sparticles are generated at a high scale ( rv 1016 Ge V). In this case, the neg­

ative contribution of the heavy scalars is RG log enhanced. We consider various 

boundary conditions for the stop and Higgs masses and find that with a degener­

acy between the first two generation squarks of the order of the Cabibbo angle, 

the boundary value of the stop mass needs to be larger than rv 7 Te V. This gives a 
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fine tuning of naively 0.02% [14]. For 0(1) mixing between the left (right) squarks 

only, the minimum initial value of the stop mass is rv 4(2). TeV. We conclude 

in section 4.4. In appendix B, we discuss the computation of the two loop dia- . 

grams which give the negative contribution of the heavy scalars to the light scalar 

(mass)2
. 

4.1 Preliminaries 

The chiral particle content of the Minimal Supersymmetric Standard Model 

(MSSM) contains 3 generations of 5 + 10 representations of SU(5). The super­

symmetry must be softly broken to not be excluded by experiment. Thus the 

theory must also be supplemented by some 'bare' soft supersymmetry breaking 

parameters, as well as a physical cutoff, MsusY· The 'bare' soft supersymmetry 

breaking parameters are then the coefficients appearing in the Lagrangian, defined 

with a cutoff MsusY· It will be assumed for simplicity that the bare soft masses, 

m},o' the bare gaugino masses MA,o, and a bare trilinear term for the stops, AtAt,o, 

are all generated close to this scale. The MSSM is then a good effective theory at 

energies below the scale Msusy, but above the mass of the heaviest superpartner. 

The physical observables at low energies will depend on these parameters. If 

an unnatural degree of cancellation is required between the bare parameters of 

the theory to produce a measured observable, the theory may be considered to be 

fine tuned. Of course, it is possible that a more fundamental theory may resolve 

in a natural manner the apparent fine tuning. The gauge-hierarchy problem is a 
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well-known example of this. The Higgs boson mass of the SM is fine tuned if the 

SM is valid at energies above a few TeV. This fine tuning is removed if at energies 

close to the weak scale the SM is replaced by a more fundamental theory that is 

supersymmetric as discussed in chapter 1. 

One quantification of the fine tuning of an observable 0 with respect to a bare 

parameter Ao is given by Barbieri and Giudice (14] to be 

(4.1) 

It is argued that this only measures the sensitivity of 0 to -X0 , and care should be 

taken when interpreting whether a large value of c necessarily implies that 0 is 

fine tuned [15]. It is not the intent of this chapter to quantify fine tuning; rather, 

an estimate of the fine tuning is sufficient and Eqn.(4.1) will be used. In this 

chapter the value of 0 is considered extremely unnatural if c( 0; Ao) > 100. 

The theoretical prediction for !::lmK (within the MSSM) and its measured value 

are an example of such a fine tuning: Why should the masses of the first two gener-

ation scalars be degenerate to within 1 GeV, wheri their masses are 0(500 GeV)? 

• Phrased differently, the first two generation scalars must be extremely degenerate 

for the MSSM to not be excluded by the measured value of !::lmK. An :important 

direction in supersymmetry model building is aimed at attempting to explain the 

origin of this degeneracy. 

One proposed solution to avoid this fine tuning is to decouple the first two 

generation scalars since they are the ones most stringently constrained by the 
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flavor violating processes [35, 36, 37, 38, 39, 40, 41, 42]. In this scenario, some 

of the first two generation scalars have masses Ms » mz. To introduce some 

notation, n5 (n10 ) will denote the number of 5 (10) scalars of the MSSM particle 

content that are very heavy. 1 We will refer to these scalars as "heavy" scalars 

and the other scalars as "light" scalars. Thus at energy scales E ~ Ms the particle 

content is that of the MSSM, minus the n5 5 and n10 10 scalars. In the literature 

this is often referred to as 'The More Minimal Supersymmetric Standard Model' 

[38]. 

There are, however, other possible and equally valid sources of fine tunings. 

The measured value of the Z mass is such an example [14]. The minimum of the 

renormalized Higgs potential determines the value of the Z mass which is already 

known from experiment. The vev of the Higgs field is, in turn, a function of the 

bare parameters of the theory. The relation used here, valid at the tree level, is 

(4.2) 

It is clear from this equation that requiring correct electroweak symmetry breaking 

relates the value of the soft Higgs masses at the weak scale, m'kd (J..tc) and m ku (J..tc ),• 

to the supersymmetric Higgs mass f..l· A numerical computation determines the 

dependence ofm'kJJ..tc) and m'kd(J..tc) on the bare parameters MA,o, mi,0,and Ms. 

In the MSSM, the cancellation required between the bare parameters of the theory 

so that it is not excluded by the Z mass increases as the scale of supersymmetry 

1 It is assumed that the heavy scalars form complete SU(5) multiplets to avoid a large Fayet-

Illiopoulus D- term at the one loop level [38, 42]. 
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breaking is increased. The bare mass of the gluino and stops, and the first two 

generation squarks must typically be less than a few TeV and ten TeV, respectively, 

so that successful electroweak symmetry breaking is not fine tuned at more than 

the one per cent level (14, 15, 42]. 

These two potential fine tuning problems - the supersymmetric flavor problem 

and that of electroweak symmetry breaking - are not completely independent, for 

they both relate to the size of supersymmetry breaking [42, 43]. Thus the consis­

tency of any theoretical framework that attempts to resolve one fine tuning issue 

can be tested by requiring that it not reintroduce any comparable fine tunings in 

other sectors of the theory. This is the situation for the case under consideration 

here. Raising the masses of the first two generation scalars can resolve the super­

symmetric flavor problem. As discussed in [42], this results in a fine tuning of mz 

through the two loop dependence of m'k,. (!lc) on M8 . There is, however, another 

source of fine tuning of mz due to the heavy scalars: these large masses require 

that the bare masses of the light scalars, in particular the stop, be typically larger 

than a few TeV to keep the soft (mass) 2 positive at the weak scale (43]. This large 

value for the bare stop mass prefers a large value for vev of the Higgs field, thus 

introducing a fine tuning in the electroweak sector. Further, this fine tuning is 

typically not less than the original fine tuning in the flavor sector. This is the 

central issue of this chapter. 

4.1.1 !:imK Constraints 

87 



At the one loop level the exchange of gluinos and squarks generates a tlS = 2 

operator (see Fig.1.3). In the limit M3 << Ms (where M3 is the gluino mass) that 

we are interested in, the llS = 2 effective Lagrangian at the scale Ms obtained 

by integrating out the squarks is 

(4.3) 

Terms that are O(M'#,IM'f,) are subdominant and are neglected. We expand the 

exact result in powers of 8LL,RR = 8L,RCL,R1JL,R(m~- m~)L,R/m~V,L,R' where m~V 

is the average mass of the scalars, and where 1JL,R is the phase and s L,R is the 1 - 2 

element of the WL,R matrix that appears at the gluino-squark-quark vertex.2 This 

approximation underestimates the magnitude of the exact result, so our analysis 

is conservative (43]. The coefficients Ci to leading order in 8LL, 8RR, are 

(4.4) 

The coefficient G\ is obtained from cl with the replacement 8fL --t 8~R· The 

operators oi are 

(4.5) 
2 In this chapter only 1-2 generation mixing is considered. Direct L- R mass mixing is also 

neglected. 
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and 0 1 is obtained from 0 1 with the replacement L-+ R. The Wilson coefficients, 

C1 -'C5 , are RG scaled from the scale of the squarks, M8 , to 900 MeV using the 

anomalous dimensions of the operators, 0 1 - 0 5 . The anomalous dimension of 

0 1 is well known [69] and is pdCifdp = a 8Cif7r. We have computed the other 

anomalous dimensions and our result agrees with that of [44] (see this reference 

for a more general analysis of QCD corrections to the SUSY contributions to 

K- K mixing). These authors , however, choose to RG scale to !ihad, defined 

by as(f..lhad)=l. The validity of the pertubation expansion is questionable at this 

scale; we choose instead to RG scale to 900 MeV, where a 8 (900 MeV) ""0.4. The 

result is 

1 
;;,4C4(Ms) + 3(;;,4 - "'s)Cs(Ms), 

"'sCs(Ms), (4.6) 

where 

(4.7) 
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The effective Lagrangian at the hadronic scale is then 

r n~(Ms) ( (~d )2 /1'\ (~d )2 /ll 
J..,eff = 

216
M§ -22 ULL ~lVl- 22 uRR ~1v1 

+ofLo~R (~(4~4 + 5~s)04- 40~s0s) + h.c.). (4.8) 

The SUSY contribution to the K - K mass difference is 

(4.9) 

The relevant matrix elements (with bag factors set to 1) are 

( 4.10) 

in the vacuum insertion approximation. We use (4] mK = 497 MeV, !K = 160 

MeV, m 8 = 150 MeV , (~mK)exp = 3.5 x 10-12 MeV, and a8 (Mz) = 0.118. 

This gives a 8 (mb) = 0.21, a 8 (mc) = 0.29 and n8 (900 MeV) = 0.38 using the 

one loop RG evolution. A minimum value for Ms is gotten, once values for 

(ns, nw, oiL, o~R) are specified, by requiring ~mK,SUSY~(~mK )exp· In the case 

that both ORR =/:. 0 and OLL =/:. 0, we assume that both the left-handed and right-

handed squarks are heavy, so that (n5 , n10 ) = (2, 2). In this case we require that 

only the dominant COntribution to ~mK, which is rv ofLO~R' equals the measured 

value of ~mK. If oRR =/:. 0 and oLL = 0, we assume that only the right-handed 

squarks are heavy, and thus (n5,n10 ) = (2,0). Similarly, if OLL =/:. 0 and oRR= 0 

then (n5 , n10) = (0, 2). Limits are given in Tables 4.1 and 4.2 for some choices 
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JRe( ofLo~R) (n5,nw) = (2,2) (n5,nw) = (2,2) 

QCD incl. noQCD 

1 182 TeV 66 TeV 

0.22 40 TeV 15 TeV 

0.1 18 TeV 7.3 TeV 

0.04 7.3 TeV 3.1 TeV 

Table 4.1: Minimum values for heavy scalar masses Ms obtained from the mea­

sured value of flmK assuming Mj / M'J ~ 1. The limits labeled 'QCD incl.' include 

QCD corrections as discussed in the text. Those labeled as 'no QCD' do not. 

of these parameters. These results agree with reference [44] for the same choice 

of input parameters. For comparison, the limits gotten by neglecting the QCD 

corrections are also presented in Tables 4.1 and 4.2. We consider ofL (o~R) = (i) 

1, (ii) 0.22, (iii) 0.1, and (iv) 0.04. These correspond to: (i) no mixing and no de­

generacy; (ii) mixing of the order of the Cabibbo angle (.X), i.e.,,...., 0.22; (iii) 0(.\) 

mixing and ,...., 0.5 degeneracy; and (iv) 0(-X) mixing and 0(.\) degeneracy. We 

expect only cases (i), (ii) and (iii) to be relevant if the supersymmetric flavor 

problem is resolved by decoupling the first two generation scalars. From Table 

4.2 we note that for (n5 , n10 ) = (2, 0), M 8 must be larger than ,...., 30 TeV if it is 

assumed there is no small mixing or degeneracy ( o~R = 1) between the first two 

generation scalars. 

The limits gotten from the measured rate of CP violation are now briefly 
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Re(c5~R) (c5fL = 0) (n5, n10) = (2, 0) (n5, n10) = (2, 0) 

QCD incl. no QCD 

1 30 TeV 38 TeV 

0.22 7.2 TeV 8.9TeV 

0.1 3.4 TeV 4.1 TeV 

0.04 1.4 TeV 1.7 TeV 

Table 4.2: Minimum values for heavy scalar masses Ms obtained from the mea-

sured value of b.mK assuming Mf / M§ « 1. The limits labeled as 'QCD incl.' 

include QCD corrections as discussed in the text. Those labeled as 'no QCD' do 

not. The limits for (n5 , n10) = (0, 2) obtained by c5fL +-+ c5~R are similar and not 

shown. 

discussed. Recall that the C P violating parameter t is approximately . 

ltl "' lim < KI.CeJJIK > I 
· -/2b.mK 

(4.11) 

and its measured value is ltl "' I7Jool =2.3x 10-3 [4). In this case, the small value 

of t implies either that the phases appearing in the soft scalar ma~s matrix are 

extremely tiny, or that the masses of the heavy scalars are larger than the limits 

given in Tables 4.1 and 4.2. In the case where the phases are 0(1), 

Im < KI.CeJJIK >"' Re < KI.CeJJIK > and thus the stronger constraint on Ms · 

is obtained from t and not b.mK, for the same choice of input parameters. In 

particular, the constraint from CP violation increases the minimum allowed value 

of Ms by a factor of 1/V2-/2t rv12.5. This significantly increases the minimum 

value of the initial light scalar masses that is allowed by the positivity requirement. 
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4.1.2 RGE analysis 

The values of the soft masses at the weak scale are determined by the RG 

evolution. In the DR' scheme [70, 71, 72], the RG equations for the light scalar 

masses, including the gaugino, the trilinear term- >.tAtHuq3ii.3 and At contributions 

at the one loop level and the heavy scalar contribution at the two loop level [73], 

are 

(4.12) 

with fJ = (3, 2, 1) for h = Hu, [c, i, respectively, and zero otherwise. For simplicity 

it is assumed that MA,o/aA,o are all equal at MsusY· The initial value of the gluino 

mass, M3,0 , is then chosen to be the independent parameter. To avoid a large 

Fayet-Illiopoulus D-term at the one loop level, we assume that the heavy scalars 

form complete SU(5) representations [38, 42]. There is still the contribution, 

in the above RGE, of the Fayet-Illiopoulus D-term due to the light scalars "" 

ad ( 47r) Yi L:i YjmJ. We do not include it for two reasons. The first is that this 

contribution depends on the soft masses of all the light scalars which is clearly 

very model dependent. Also, ·we have checked that, if all light scalar masses at 

the boundary are roughly the same, this contribution changes the constraints on 
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the initial scalar masses by at most only a few percent, for example, it changes 

the coefficient of m},o in the numerical solutions, Eqns.(4.16), (4.17), (4.19) and 

( 4.20), by a few percent. We use SU(5) normalisation for the U(1)y coupling 

constant and Q = T3 + Y. Finally, C~ is the quadratic Caismir for the gauge 

group GA that is 4/3 and 3/4 for the fundamental representations of SU(3) and 

SU(2), and 3/5 ~2 for the U(1)y group. The cases (n5 , n10 )= (I) (2, 2), (II) (2, 0), 

(III) (0, 2) are considered. The results for the case (3, 0) is obtained, to a good 

approximation, from Case (II) by a simple scaling, and it is not discussed any 

further. 

Inspection of Eqn.(4.12) reveals that in RG scaling from a high scale to a 

smaller scale the two· loop gauge contribution of the heavy scalars to the soft 

(mass) 2 is negative, and that of the gauginos is positive. The presence of the large 

At Yukawa coupling in the RGE drives the value of the stop soft (mass) 2 even 

more negative. This effect increases the bound on the initial value for the stop 

soft masses and is included in our analysis. 

In the MSSM there is an extra parameter, tan ,8, which is the ratio of the 

vacuum expecations values of the Higgs fields that couple to the up-type and 

down-type quarks respectively. Electroweak symmetry breaking then determines · 

the top quark mass to be mt = At/ vf2v sin ,8 with v "' 24 7 Ge V. In our analysis we 

consider the regime of small to moderate tan ,8, so that all Yukawa couplings other 

than At are neglected ·in the RG evolution. In this approximation the numerical 

results for h # i or [c are independent of tan ,B. In our numerical analysis we 
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considered tan /3=2.2. We have also checked the results for tan /3=10, and have 

found that they differ by less than 10% percent. 

In the case of low energy supersymmetry breaking, the scale Msusy is not 

much larger than the mass scale o( the heavy scalars. Then the logarithm 

rvln(Msusy/Ms) that appears in the solution to the previous RG equations is 

only 0(1). In this case the finite parts of the two loop diagrams may;· not be negli-

gible and should be included in our analysis. We use these finite parts to estimate 

the size of the two loop heavy scalar contribution in an actual model. 

The full two loop expression for the soft scalar mass at a renormalization scale 

J.tR is m}uu(J.tR) = mk,(J.tR) + m}inite(J.tR), where mk,(J.tR) is the solution to the 

RG equation in DR scheme, and m}inite(J.tR) are the finite parts of the one and 

two loop diagrams, also computed in DR' scheme. The finite parts of the two 

loop diagrams are computed in appendix B and the details are given therein. The 

answer is (assuming all heavy scalars are degenerate with common mass M8 ) 

(4.13) 

where the gaugino and fermion masses are neglected. Since we use the DR' scheme 

to compute the finite parts of the soft scalar masses, the limits we obtain on the 

initial masses are only valid, strictly speaking, in this scheme. This is especially 
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relevant for the case of low scale SUSY breaking. So while these finite parts 

should be viewed as semi-quantitative, they should s.uffice for a discussion of the 

fine tuning that results from the limit on the bare stop mass. For the case of high 

scale SUSY breaking, the RG logarithm is large and so the finite parts are not 

that important. 

Our numerical analysis for either low energy or high energy supersymmetry 

breaking is described as follows. 

The RG equations are evolved from the scale MsusY to the scale at which the 

heavy scalars are decoupled. This scale is denoted by J-ls and should be O(M8 ). 

The RG scaling of the heavy scalars is neglected. At this scale the finite parts 

of the two loop diagrams are added to mj; (J-Ls). We note that since the two loop 

information included in our RG analysis is the leading O(M.§) effect, it is sufficient 

to only use tree. level matching at the scale J-Ls. Since the heavy scalars are not 

included in the effective theory below Ms and do not contribute to the gauge 

coupling beta functions, the numerical results contain an implicit dependence on 

the number of heavy scalars. This results in a value for a3 (J-Ls) that is smaller 

than the case in which all sparticles are at rv 1 TeV. This tends to weaken the 

constraint, and so it is included in our analysis.3 The soft masses are then evolved 

using the one loop RGE to the mass scale at which the gluinos are decoupled. 

This scale is fixed to be J-lc=l TeV. 

3This is the origin of a small numerical discrepancy of "' 10% between our results and the 

analysis of [43] in the approximation At = 0. 
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A constraint on the initial value of the soft masses is obtained by requiring 

that at the weak scale the physical scalar (mass )2 are positive. The experimental 

limit is rv 70 Ge V for charged or colored scalars [7 4). The physical mass of a 
__ , 

scalar is equal to the sum of the DR soft scalar mass, the electroweak D-term, 

the supersymmetric contribution, and the finite one loop and two loop contri-

butions. The finite one loop contributions are proportional to the: gaugino and 

other light scalar masses, and are smaller than the corresponding RG logarithm 

that is summed in mk' (J.LR)· So we neglect these finite one loop parts. Further, 

the electroweak D-terms are less than 70 GeV. For the scalars other than the 

stops, the supersymmetric contribution is negligible. In what follows then, we 

will require that m}; (J.Lc) > 0 (including the finite two loop parts )4 for scalars 

other than the stops. The discussion with the stops is complicated by both the 

large supersymmetric contribution, m;, to the physical mass and by the L - R 

mixing between the gauge eigenstates. This mixing results in a state with (mass )2 

less than min(mf + m;, m~ + m;}, so it is a conservative assumption to require 

that for both gauge eigenstates the value of m¥; + m; is larger than the experi-

mental limit. This implies that mf;-:<,(70 GeVf-(175 GeV) 2 = -(160 GeV) 2 . In 

what follows we require instead that mf; ~ 0. This results in an error that is 

(160GeV) 2 /2ml;,o ~ 26 GeV if the constraint obtained by neglecting mt is rv 1 

TeV. For the parameter range of interest it will be shown that the limit on the 

4 As mentioned earlier, in the case of high scale SUSY breaking, the finite two loop parts are 

also smaller than the RG logarithm and thus are not so important. 
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initial squark masses is rv 1 TeV, so this approximation is consistent. 

We then combine the above two analyses as follows. The tlmK constraints of 

section 4.1.1 determine a minimum value forMs once some theoretical preference 

for the c5's is given. Either a natural value for the c5's is predicted by some model, 

or the c5's are arbitrary and chosen solely by naturalness considerations. Namely, 

in the latter case the fine tuning to suppress tlmK is roughly 2/8. Further, a 

model may also predict the ratio M3/Ms. Otherwise, Eqns.(4.1) and (4.2) may 

be used as a rough guide to determine an upper value for M3 , based upon nat­

uralness considerations of the Z mass. Without such a limitation, the positivity 

requirements are completely irrelevant if the bare gluino mass is suffuciently large; 

but then the Z mass is fine tuned. Using these values of M3 and Ms, the RGE 

analysis gives a minimum value for the initial stop masses which is consistent with 

tlmK and positivity of the soft (mass)2
• This translates into some fine tuning of 

the Z mass, which is then roughly quantified by Eqns,(4.1) and (4.2). 

4.2 Low Energy Supersymmetry Breaking 

In this section we investigate the positivity requirement within a framework 

that satisifes both of the following: (i) supersymmetry breaking is communicated 

to the visible sector at low energies; and (ii) multi-TeV scale soft masses, Ms, are 

generated for some of the first two generation scalars .. This differs from the usual 

low energy supersymmetry breaking scenario in that we assume M'j, » mto· In 

the absence of a specific model, however, it is difficult to obtain from the posi-
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tivity criterion robust constraints on the scalar spectra for the following reasons. 

At the scale MsusY it is expected that, in addition to the heavy scalars of the 

MSSM, there are particles that may have SM quantum numbers and supersymme­

try breaking mass parameters. All these extra states contribute to the soft scalar 

masses of the light particles. The sign of this contribution depends on, among 

other things, whether the soft (mass) 2 for these additional particles is positive or 

negative - clearly very model dependent. The total two loop contribution to the 

light scalar masses is thus a sum of a model dependent part and a model indepen­

dent part. By considering only the model independent contribution we have only 

isolated one particular contribution to the total value of the soft scalar masses near 

the supersymmetry breaking scale. We will, however, use these results to estimate 

the typical size of the finite parts in an actual model. That is, if in an actual 

model the sign of the finite parts is negative and its size is of, the same magnitude 

as in Eqn.(4.13), the constraint in that model is identical to the constraint that 

we obtain. The constraint for other values for the finite parts is then obtained 

from our results by a simple scaling. 

Before discussing the numerical results, the size of the finite contributions are 

estimated in order to illustrate the problem. Substituting Ms rv 25 TeV, a 3 (25 

TeV) ""0.07 and a 1(25 TeV) ""0.018 into Eqn.(4.13) gives 

6m~ ~ -(410 GeV) 2 (n5 + 3n10 ) (
25
i.v) 

2 

( 4.14) 
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for squarks, and 

8m~ ~ - ( (n5 + 3ni0)(70 GeV)2 + (n5- n10)(100 GeV)2
) (25~V) 

2 

( 4.15) 

for the right-handed selectron. The negative contributionois large if Ms rv 25 TeV. 

For example, if n5 = n10 = 2 then 8m~c ~ -(200 GeV)2 and c5m~ ~ -(1.2 TeV) 2 . 

If n5 = 2, n10 = 0, then 8m~c ~ -(170 GeV) 2 and c5m~ ~ -(580 GeV)2 . 

In this low energy supersymmetry breaking scenario, it is expected that 

MsusY "' Ms. In our numerical analysis we will set MsusY = J..Ls since the 

actual messenger scale is not known. The scale J..Ls is chosen to be 50 TeV. At the 

scale J..Ls =50 TeV the J..Ls-independent parts of Eqn.(4.13) are added to the initial 

value of the soft scalar masses. The soft masses are then evolved using the RG 

equations (not including the two loop contribution) to the scale J..Lc= 1TeV. 

First we discuss the constraints the positivity requirement implies for h =I= h 

or iR. In this case m1~0 is renormalised by Ml 0 , M'§ and m2
1
-o 

0
. We find 

' ' t) 

2 ° 
0 2 2 

m~;,0 + (0.243C3 + 0.0168C2 + 0.00156}i )M3,0 

0 0 2 1 3 2 
-(0.468C~ + 0.095C2 + 0.0173}i )2(n5 + 3n10) x 10- _Ms 

-0.0174(n5 - n10)Yi x 10-3M'§, (4.16) 

where the strongest dependence on (n5, n10 ) has been isolated. The numerical 

coefficients in Eqn.(4.16) also depend on (n5,n10 ) and the numbers presented in 

Eqn.( 4.16) are for (n5, n10 ) = (2,0). This sensitivity is, however, only a few percent 

between the three cases under consideration here.5 Requiring positivity of the soft 

5This dependence is included in Fig.4.1. 
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scalar (mass)2 directly constrains m},,0/M'J and Mj,0 jM§. 

The positivity requirement m}. (J.Lc) > 0 for h =/:- i or [c is given in Fig.4.1 

for different values of n5 and n10 • That is, in Fig.4.1 the minimum value of 

mj,,o/Ms required to keep the soft (mass) 2 positive at the scale J.Lc is plotted 

versus M3,0 / Ms. We conclude from these figures that the positivity criterion is 

weakest for n5=2 and n10=0. This is expected since in this case the heavy particle 

content is the smallest. We note that even in this 'most minimal' scenario the 

negative contributions to the (mass)2 are rather large. In particular, we infer 

from Fig.4.1 that for n5 = 2, n10 = 0 and Ms rv 25 TeV, om~c ~ -(190 GeV) 2 

for M3,0 as large as 1 Te V. In this case it is the two loop contribution from the 

hypercharge D-term that is responsible for the large negative (mass)2 . In the case 

(n5 , n10)=(2, 2), we obtain from Fig.4.1 that for Ms rv ~;f5 TeV, om~c ~ -(200 

GeV)2 and om~ ~ -(1.2 TeV) 2 for M3,0 as large as 1 TeV. 

We now apply the positivity requirement to the stop sector. In this case it is not 

possible to directly constrain the boundary values of the stops for the following 

simple reason. There are only two positivity constraints, whereas the values of 

ml (J.Lc) and m~ (J.Lc) are functions of the three soft scalar masses ml,o• mlc ,o and 

m'ku,o· To obtain a limit some theoretical assumptions must be made to relate the 

three initial soft scalar masses. 

The numerical solutions to the RG equations for tan {3=2.2 and (n5, n 10 ) 

(2, 0) are: 

-0.0303Az + 0.00997 AtM3,o + 0.322Mf,o 
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Figure 4.1: Limits for m1,,0 /Ms from the requirement that the (mass) 2 are positive 

at the weak scale, for low energy supersymmetry breaking. The regions below the ; ' 

curves are excluded. For the case (2,0), the limits for the other squarks are very 

similar to that for ij and are therefore not shown. 
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m~(J.Lc) -0.0606At2 + 0.0199AtM3,o + 0.296Ml,o 

-0.0909A~ + 0.0299AtM3,o - 0.0298Ml,o 

+0.880m~u,O- 0.119(mf,o + mfc,o) + 0.0000748cHM~. (4.17) 

The numerical coefficients other than that of M s do not vary more than a few per-

cent between the different values for (n5 , nw). For Ms, we find that (cL, cR, CH) 

is (1, 1, 1), (3.6, 3.8, 4.5), (2.8, 3, 3.65), for (n5 , n 10) = (2,0),(2, 2) and (0, 2), re-

spectively. We find from Eqns. ( 4.1) and ( 4.2) that to keep m~ fine tuned at less 

than 1% ( c :::::; 100) in each of the bare parameters, we must have: J.L~ 500 Ge V; 

M3,0~3.7 TeV; ml,o~l.8 TeV; and Ms1!A7 TeV for (n5 , n 10) = (2, 2). Finally, for 

other values of these parameters the fine tuning increases as C = 100 X m2/m6, 

where mo is the value of m that gives c = 100. 

To constrain the initial values of the stop masses we will only consider gauge 

mediated supersymmetry breaking ( G MSB) mass· relations between the stop and 

Higgs boundary masses. From Eqn.( 4.17) we see that to naturally break elec-

I o 
troweak symmetry a small hierarchy m2

t-· 0 > m'k 0 is required. This is naturally 
t' u., 

provided by gauge mediated boundary conditions. 6 The relations between the soft 

scalar masses when supersymmetry breaking is communicated to the visible sector 

6In fact, low energy gauge mediated supersymmetry breaking provides "too much" elec-

troweak symmetry breaking [75]. 
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by gauge messengers are (19] 

2 _ 3 '"'Ci a~(MsusY) 2 
mi o - - L A 2( ) 2( )/ mtc o· ' 4 A a3 MsusY + a1 MsusY 5 ' 

(4.18) 

Substituting these relations into Eqn. ( 4.17) and assuming At,o =0 determines 

mf(J..ta) and m~(J..ta) as a function of M3,o, M§ and mlc,o· In Fig.4.2 we have 

plotted the minimum value of mt<:,o/ M3,0 required to maintain both mf(J..ta) 2 0 

and m~(J..ta) 2 0. 

Another interesting constraint on these class of models is found if it is assumed 

that the initial masses of all the light scalars are related at the supersymmetry 

breaking scale by some gauge mediated supersymmetry breaking relations, as in 

Eqn.(4.18). This ensures the degeneracy, as required by the flavor changing con-

straints, of any light scalars of the first two generations. This is required if, for 

example, one of n5 or n10 are zero. Then iri our previous limits on mj,,o for Ji f. i 

or [c, constraints on the initial value of mic are obtained by relating mj;,o to mic,o 

using Eqn.(4.18). In this case the slepton masses provide the strongest constraint 

and they are also shown in Fig.4.2. This result may be understood from the fol-

lowing considerations. The two loop hypercharge D-term contribution to the soft 

mass is rv Yi(n5 - n 10)a1a 3M.§ and this has two interesting consequences. The 

first is that for n 5 f. n 10 , the resulting 6m2 is always negative for one of ec or l. 

Thus in this case there is always a constraint on mlc once gauge mediated bound-

ary conditions are assumed. That this negative contribution is large is seen as 

follows. The combined tree level mass and two loop contribution to the selectron 
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mass is approximately m~c,o - ka1a3M§ where k is a numerical factor. Substi-

tuting the gauge mediated relation m~c,o "" aifa~m~,O' the combined selectron 

mass is aifa~(mfc,o - k(a3ja1 )a~M.§). Since the combined mass of the stop is 

""mfc 0 - k'a~M'§, the limit for mrc 0 obtained from the positivity requirement for 
' ' 

m~ is comparable to or larger than the constraint obtained from requiring that 

m~ remains positive. For example, with n5 = 2, n10 = 0 and Ms ""25 TeV, the 

right-handed slepton constraint requires that mfc 0 "" 1.1 TeV. For n 10=2, n5=0 
' 

and Ms "" 25 TeV, lis driven negative and implies that mfc,o ,...., 1 TeV. From 

Fig.4.2 we find that these results are comparable to the direct constraint on mfc,o 

obtained by requiring that color is not broken. 

The positivity analysis only constrains mt;,o/ Ms for a fixed value of M3,o/ Ms. 

To directly limit the initial scalar masses some additional information is needed. 

This is provided by the measured value of tlmK. If some mixing and degeneracy 
0 

between the first two generation scalars is assumed, parameterized by (oLL, oRR), 

a minimum value for Ms is obtained by requiring that the supersymmetric contri-

bution to limK does not exceed the measured value. We use the results given in 

section 4.1 to calculate this minimum value. This result together with the positiv-

ity analysis then determines a minimum value for mfc 0 for a given initial gluino 
' 

mass M3,0 . The RG analysis is repeated with J-ls = Ms, rather than J-ls=50 TeV. 

We only present the results found by assuming G MSB mass relations between 

the scalars. These results are shown in Fig.4.3. The mass limits for other h are 

easily obtained from the information provided in Fig.4.1 and Table 4.2 and are 
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Figure 4.2: Limits for mic,o/Ms from the requirement that the stop and slepton 

(massf are positive at the weak scale. The regions below the curves are excluded. 

Low energy gauge mediated supersymmetry breaking and tan j3 =2.2 are assumed. 
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not shown. From Fig.4.3 we find that for (n5 , n10) = (2, 2) and a large range of 

M3,0 , mic,o must be larger than 7 TeV for J8LL8RR = 1, and larger than 2 TeV for 

J8LL8RR = 0.22. This results in c(m~, m~,0 ) of 1500 and 100, respectively. In this 

case both the squark and selectron limits for mlc,o are comparable. The limits for 

other choices for J8LL8RR are obtained from Fig.4.3 by a simple scaling, since to 

a good approximation !:1mK rv 8LL8RR/M§. For the cases (n5, nw) = (2, 0) and 

(0, 2), the corresponding limits are much weaker. In the case (n5 , n10 ) = (2, 0), 

for example, only for 8RR rv 1 does the constraint that the selectron (mass) 2 > 0 

require that mfc 0 rv1 TeV. The limits for a smaller value of 8 are not shown. 
' 

We conclude with some comments about how these results change if C P vio-

lation is present in these theories with 0(1) phases. Recall from section 4.1 that 

for the same choice of input parameters; the limit on M 8 and hence, if the gluino 

mass is small, the limit on the initial stop mass increases by about a factor of 

12. This may be interpreted in one of two ways. Firstly, this constrains those 

models that were relatively unconstrained by the !:1mK limit. We concentrate on 

the models with n5 = 2 and n 10 = 0, since this case is the most weakly constrained 

by the combined !:1mK and positivity analysis. The conclusions for other models 

will be qualitatively the same. We find from Fig.4.3 the limit mic ,o > 1 Te V 7 is 

true only if 8RR rv 0(1). Smaller values of 8RR do not require large initial stop 

masses. From the CP violation constraint, however, smaller values for 8RR are 

now constrained. For example, if 8RR ,...., 0.1 and 0(1) phases are present, then 

7 For GMSB relations only. The direct constraint on the stop masses is slightly weaker. 
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mlc ,o > 1 Te V is required. Secondly, the strong constraint from € could partially or 

completely compensate a weakened constraint from the positivity analysis. This 

could occur, for example, if in an actual model the negative two loop contribu­

tion to the stop (mass)2 for the same initial input parameters is smaller than the 

estimate used here. For example, if the estimate of the two loop contribution in 

an actual model decreases by a factor of rv (12.5)2 and 0(1) phases are present, 

the limit in this case from € for the same 6 is identical to the values presented in 

Fig.4.3. 

4.3 High Scale Supersymmetry Breaking 

In this section, we consider the case in which SUSY breaking is communicated 

to the MSSM fields at a high energy scale, that is taken to be Mour = 2 x 1016 

GeV. In this case, the negative contribution of the heavy scalar soft masses to 

the soft (mass )2 of the light scalars is enhanced by rv In ( Mour /50 Te V), since the 

heavy scalar soft masses contribute to the RGE from Mour to mass of the heavy 

scalars. It is clear that as the scale of SUSY breaking is lowered the negative 

contribution of the heavy scalar soft masses reduces. 

This scenario was investigated in reference [43], and we briefly discuss the 

difference between that analysis and the results presented here. In the analysis of 

reference [43], the authors made the conservative choice of neglecting At in the RG 

evolution. The large value of At can change the analysis, and it is included here. 

We find that for some pattern of initial stop and up-type Higgs scalar masses, for 
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example, universal scalar masses, this effect increases the constraint on the stop 

masses by almost a factor of two. This results in an increase of a factor of"' 3-4 

in the amount of fine tuning required to obtain the correct Z mass. Further, in 

combining the positivity analysis with the constraints from the llmK analysis, 

the QCD corrections to the Flavour Changing Neutral Current (FCNC) operators 

have been included, as discussed in section 4.1. In the case (n5 , n 10) = (2, 2), 

this effect alone increases the limit on Ms and hence the limit on the stop mass 

by a factor of "' 2 - 3. The combination of these two elements implies that the 

positivity constraints can be quite severe. 

We proceed as follows. First, we solve the RGE's from Mcur to f.1s where the 

heavy scalars are decoupled. At this scale, we add the finite parts of the two loop 

diagrams. Next, we RG scale (without the heavy scalar terms in the RGE's) from 

/1s to /1G using these new boundary conditions. Except where stated otherwise, 

the scales 11s and f.1c are fixed to be 50 TeV and 1 TeV, respectively. 

For ji =f l, fc we find, 

2 . . 2 2 
mho+ (2.84C~ + 0.639C; + 0.159Jli )M3,0 

. . 2 1 3 2 
-(4.38C~ + 1.92C~ + 0.622Jli )2(ns + 3nw) x 10- M8 

' 3 2 -0.829(ns- nw)Yi x 10- M8 . ( 4.19) 

These results agree with reference [43] for the same choice of input parameters. 

As in the previous section, the numerical coefficients in Eqn. ( 4.19) depend on 

. (n5 , n 10) through the gauge coupling evolution, and the numbers in Eqn.(4.19) are 
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for (n5 , n 10 ) = (2, 0). 8 In Fig.4.4 we plot the values of mj;,
0

/ Ms that determine 

mji(J.La) = 0 as a function of M3 /Ms, for h = li, iji, uf, df and ef. We emphasize 

that the results presented in Fig.4.4 are independent of any further limits that 

FCNC or fine tuning considerations may imply, and are thus useful constraints on 

any model building attempts. 

For the stops, the numerical solutions to the RGE's for tan ,8 = 2.2 are 

m~(J.La) -0.021A; + 0.068AtM3,0 + 3.52M},0 

-0.142(m~u,O + m~,o) + 0.858m~,o- C£0.00567MJ, 

-0.042A; + 0.137 AtM3,o + 2.35M},0 

-0.283(m~ ... o + m~,o) + 0.716m~,o- cR0.00259M~, 

-0.063A; + 0.206AtM3,o - 1. 73Mi,o 

-0.425(m~,o + m~,o) + 0.574m~u,O + cH0.00218MJ, (4.20) 

where (cL, cR, CH) = (1, 1, 1), (3.9, 4.7, 4.5), (3, 4, 3.6) for (n5, nw) = (2, 0), (2, 2) 

and (0, 2), respectively. The mixed two loop contribution to the RG evolution is 

ex (n5 - n 10 ) and is not negligible. Thus there is no simple relation between the 

c's for different values of n5 and n10 . From Eqns.(4.2) and (4.1) we find that to 

keep m~ fine tuned at less than 1% (c ~ 100) in each of the bare parameters, 

we must have: J.L;:;; 500 GeV; M3,0;>;;500 GeV; mi;,0 ;>;;1 TeV; and M8 ;>;;7 TeV for 

(n5, nw) = (2, 2). The fine tuning of the Z mass with respect to the heavy scalars 

is discussed in [42]. Finally, for other values of these parameters the fine tuning 

8The numerical results presented in Fig.4.4 include this dependence. 
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increases as C = 100 X m2 /m5, where mo is the value of m that gives C = 100. 

As in section 4.2, some relations between m¥,0 , m¥c,o and m~ .. ,o are needed to 

obtain a constraint from Eqn.(4.20), using mf(!lo) > 0 and mfc(!lo) > 0. We 

discuss both model dependent and model independent constraints on the initial 

values of the stop masses. The outline of the rest of this section is as follows. 

First, we assume universal boundary conditions. These results are, presented in 

Fig.4.5. Model independent constraints are obtained by the following. We assume 

that m~ .. ,o = 0 and choose At,o to maximize the value of the stop masses at 

the weak scale. These results are presented in Fig.4.6. We further argue that 

these constraints represent minimum constraints as long as mt,o 2 0. To obtain 

another set of model independent constraints, we use the electroweak symmetry 

breaking relation to eliminate m~ 0 in favor of ll· Then we present the positivity 
"' 

limits for different values of jif Ms, where [t2 = 112 + ~m~, and assume that 

mt- 0 = 0 to minimize the value of 11.9 These limits are model independent and are 
d> . 

presented in Fig.4.7, for the case n5 = n 10 = 2. We then combine these analyses 

with the limits on Ms obtained from !:lmK. We conclude with some discussion 

about the anomalous D-term solutions to the flavor problem. 

We first consider universal boundary conditions for the stop and Higgs masses. 

Th . h 2 2 2 -2 at 1s, we assume t at ml,o = mlc,o = mH .. ,o = m0 . In Fig.4.5 we plot for 

9 Strictly speaking, this last assumption is unnecessary. Only the combination ji,h = ji,2 -

m'hd,o/ tan2 (3 appears in our analysis. Thus for m'hd.o -:/:- 0 our results are unchanged if the 

replacement ji, ---+ [LH is made. 
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tan f3 = 2.2 the minimum value of m0 / Ms required to maintain mf(J.Lc) > 0 and 

m~(J.Lc) > 0. This value of tan/3 corresponds to At(Mcur) = 0.88, in the case 

that (n5 , n10) = (2, 0). For comparison, the results gotten assuming At = 0 may 

be found in reference (43]. For n5 = n10 = 2 we note from Fig.4.5 that if Ms = 20 

TeV and the gaugino masses are small, the limit on the stop mass is mic,o ~ 6 TeV. 

This limit is weakened to 5.6 TeV if M3 0;;; 300 GeV is allowed. Even in this case, , 

this large initial stop mass requires a fine tuning that is c "' (5.6 TeV)2 /m~ "' 

3700, i.e., a fine tuning of"' 10-3 is needed to obtain the correct Z mass. 

We now assume m'ku,o = 0 and choose the initial value of At,o to maximize the 

. value of m1/J.Lc)· The values of mf,o and mlc,o are chosen such that mf(J.Lc) > 0 

and mfc (J.Lc) > 0. We note that in this case the constraint is weaker because the 

At contribution to the RG evolution of the stop (mass) 2 is less negative. These 

results are plotted in Fig.4.6. 

We discuss this case in some more detail and argue that the minimum value 

of mi;,o obtained in this way will be valid for all m'k .. ~ 0 and all At,O· Eliminate 

the At,o term by choosing At,o = kM3,o such that the At contributions to ml (J.Lc) 

is maximized. Other choices for At,o require larger values for mL0 to maintain 

m¥; (J..lc) = 0. The value of k is determined by the following. A general expression 

for the value of the soft masses of the stops at the weak scale is 

ml(J..tc) = -aA;,o + bAt,oM3,o + cMl,o + · · ·, (4.21) 

m~(J..lc) = -2aA;,o + 2bAt,oM3,o + dM],0 + · · ·, (4.22) 
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with a, c and d positive. The maximum value of mri (J..tc) is obtained by choosing 

At,o = bM3,0 j2a. The value of the stops masses at this choice of At,o are 

(4.23) 

2 b2 2 
mic(J..tc) = (d + 2-

4 
)M30 + · · ·. a , (4.24) 

An inspection of Eqn.(4.20) gives b = 0.068 and a= 0.021 for tan,B == 2.2. In this 

case the 'best' value for At,o is Af,0 ,....., 1.6M3 ,0 . It then follows that the quantity 

b2 / 4a = 0.055 is a small correction to the coefficient of the gaugino contribution 

in Eqn.( 4.20). Thus the difference between the minirimm initial stop masses for 

At,o = 0 and At,o= Af,0 is small. Next assume that mt,.,o = 0. Requiring both 

mi(J..tc) = 0 and m~(J..tc) = 0 determines a minimum value for m¥ 0 and m~ 0 . , , 

Now since the mt,.,o contribution to both the the stop soft (mass) 2 is negative 

(see Eqn.(4.20)), the minimum values for mL0 found by the preceeding procedure 

are also minimum values if we now allow any mt 0 > 0. ,., 

We conclude that for all At,o and all mt,.,o 2: 0, the limits presented in Fig.4.6 

represent lower limits on the initial stop masses if we require that the soft (mass)2 

remain positive at the weak scale. Further, the limits in this case are quite strong. 

For example, from Fig.4.6 we find that if Ms ,....., 20 TeV and M3,0 .-v 200 GeV 

(so that M3,0 /Ms .-vl0-2
), then the initial stop masses must be greater than 3.5 

TeV in the case that (n5, n10) = (2, 2) The results are stronger in a more realistic 

scenario, i.e., with mtu,o > 0. If, for example, mt .. ,o,....., m~,0/9 the constraints are 

larger by only a few percent. In the case that mtu,o = m~,o = m¥,0, presented in 
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Fig.4.5, however, the constraint on the initial [c mass increases by almost a factor 

of two. 

To obtain constraints on the initial stop masses we have thus far had to assume 

some relation between mi£ 0 and m'i 0 , for example, mi£ 0 = 0 or mi£ 0 = m~ 0. 
u., "-, u., u, (,-' 

Perhaps a better approach is to use the EWSB relation, Eqn.(4.2), to eliminate 

mi£ .. ,0 in favor of J.12
• This has the advantage of being model independent. It is also 

a useful reorganization of independent parameters since the amount of fine tuning 

required to obtain the correct Z mass increases as J.l is increased. To obtain some 

limits we choose mi£d 0 = 0 10 to minimize the value of J.l2 , and require that mi£ 0 , "' 

is positive. The minimum value of mic,o/ Ms and m;_,0 / M8 for different choice" 

of [1,/ Ms are gotten by solving m~ (J.la) = 0 and m1 (J.la) = 0. These results are 

presented in Fig.4.7. In this Figure the positivity constraints terminate at that 

value of M3,o whi.ch gives m'k,.,o = 0. 

As discussed above, reducing the value of m'k .. ,o decreases the positivity limit 

on mi;,o· Consequently the fine tuning of mz with respect to mi;,o is also reduced. 

But using Eqns.(4.20) and (4.2), it can be seen that decreasing mi£ 0 while keeping 
'" 

m~(J.la) = 0 and ml(J.la) = 0 results in a larger J.l, thus increasing the fine tuning 

with respect to J.l. This can also be seen from Fig.4. 7. We find, for example, 

that if M3,o/Ms "'0.01, the small value ii/Ms = 0.01 requires mi;,o/Ms rv 0.25. 

For Ms = 10 TeV, this corresponds to J.l rv 100 GeV and mi;,o 2: 2.5 TeV. A 

further inspection of Fig.4.7 shows that for the same value of M 3,0 jM8 , a value 

10This assumption is unnecessary. See the previous footnote. 
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ofmt.,o/Ms = 0.17 is allowed (by reducing mt-,.,o) only if ft/Ms is increased to 

0.14. This corresponds to p, = 1.4 TeV for Ms = 10 TeV; this implies that 

c(m1; p,) rv 930. We find that the limit on the initial stop masses can only be 

decreased at the expense of increasing p,. 

Finally, the limits become weaker if mt-.. ,o < 0. This possibility is theoretically 

unattractive on two accounts. Firstly, a nice feature of supersymmetric extensions 

to the SM is that the dynamics of the model, through the presence of the large 

top quark Yukawa coupling, naturally leads to the breaking of the electroweak 

symmetry [12]. This is lost if electroweak symmetry breaking is already present 

at the tree level. Secondly, the fine tuning required to obtain the correct Z mass 

is increased. From Fig.4. 7 we infer that while reducing mt-,..,o beiow zero does 

reduce the limit on the initial stop masses, the value of p, increases beyond the 

values quoted in the previous paragraph, thus futher increasing the fine tuning of 

the Z mass. This scenario is not discussed any further. * 
We now combine the positivity analysis of this section with the results of 

section 4.1 to place lower limits on the soft scalar masses. For given values of 

oLL, ORR, a minimum value. of Ms, Ms,min' is found using the results of section 4.1. 

This is combined with the positivity analysis in Fig.4.6, to produce the results 

shown in Fig.4.8. We also show other limits gotten by assuming mt-,.,o = m~,o· 

These results are presented in Fig.4.9. In Fig.4.10 we also present the stop mass 

limits for different values of p,, and restrict to mt-... ,o ~ 0 and JoLLoRR = 0.04. In 

all cases the heavy scalars were decoupled at Ms,mim rather than 50 TeV, and so 
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the positivity analysis was repeated. The value of At,o was chosen to maximize 

the value of the stop masses at the weak scale. For completeness, the results for 

the cases (n5 , n10 ) = (2, 0) and (0, 2) and m"ku,o = 0 are presented in Fig.4.11. 

We repeat that the minimum allowable values for the stop masses consistent with 

m"k,.,o > 0, gotten by setting m"k,.,o = 0, are given in Figs.4.8 and 4.11. 

We next briefly discuss some consequences of this numerical analysis. We 

concentrate on the case n5 = n 10 = 2, since this is the relevant case to consider 

if the supersymmetric flavor problem is solved by decoupling the heavy scalars. 

Other choices for n5 and n10 require additional physics to explain the required 

degeneracy or alignment of any light non-third generation scalars. From Figs.4.8 

and 4.9 we find that for VbLLbRR = 0.22 and M3,o :::; 1 TeV, IDf;,o >7 TeV is 

required. If instead we restrict both c(m1; M~) and c(m1; M} 0) to be less than , 

100, then we must have M8 %; 7 TeV and M3,0%; 500 GeV. To not be excluded 

by 6.mK, we further require that .j8LL8RR :::; 0.04 which leads to a fine tuning of 

one part in "' 2/8 , i.e., "" 50. An inspection of Figs.4.8 and 4.9 implies that for 

VbLL8RR ~ 0.04, mi 0 must be larger than 0.9-1.3 TeV, depending on the value , 

of m"k,.,o· Alternatively, if we also restrict J.L :::; 500 GeV, then from Fig.4.10 we 

find that ml;,o 2: 800 GeV. Thus c(m1; mt0 ) = 64-170. This fine tuning can be 

reduced only by increasing the c(m1)'s for the other parameters to more than 100 

(or by increasing the fine tuning of 8 to more than one part in 50). We conclude 

that unless V8RR8LL is naturally small, decoupling the heavy scalars does not 

provide a natural solution to the flavor problem. 
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To conclude this section we discuss the constraint this analysis implies for 

those models which generate a split mass spectrum between the third and the first 

two generations through the D-term contributions of an anomalous U{1) gauge 

symmetry [37, 40, 41]. These models can "explain" the hierarchy of the Yukawa 

couplings. In the model of set D of [40], the two S's of the first two generations 

are at 7 TeV and 6.1 TeV and the two lO's are at 6.1 and 4.9 TeV, respectively, 

so that ~mK is suppressed. These values must be increased by a factor of 2.5 to 

correct for the QCD enhancement of the SUSY contribution to ~mK, as discussed 

in section 4.1. To obtain a conservative bound on the initial stop masses from the 

positivity requirement, we first assume that all the heavy scalars have a common 

mass Ms = 2.5 x 5TeV= 12.5 TeV. (It would have been 5 TeV without the QCD 

correction.) Then assuming a weak scale value of the gluino mass which is less 

than 1.5 TeV (so that c(m~, M},0 ) is less than 100) and setting mku,o = 0 (mfc,o), 

we find from Fig.4.6 (4.5) that mf,o 2: 2.0 (3.4) TeV is required. This leads to 

c(m~; m~,0 ) 2: 400 (1100). To obtain a better bound, we repeat our analysis using 

nsm~+3n10mi0 = ((7 TeV) 2 +(6.1 TeV) 2 +3x (6.1 TeV) 2 +3 x (4.9 TeV) 2 ) x (2.5) 2
. 

It is possible to do this since only this combination appears in the RG analysis 

for (ns, n10) = (2, 2). We find (assuming m'ku,o = 0 and the gluino mass at 

the weak scale is less than 1.5 TeV) that ml,o ~ 3 TeV. In the model of [41], 

bRR ~ bLL ~ 0.01. To obtain a limit on the initial stop masses, we use the bound 

obtained from either Figs.4.8 or 4.9 for bRR = bLL ~ 0.04, and divide the limit 

by a factor of 4. By inspecting these Figures we find that this model is only 
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weakly constrained, even if m'k,.,o ""mf,o· We now discuss the limits in this model 

when 0(1) CP violating phases are present. To obtain the minimum value of 

Ms in this case, we should multiply the minimum value of Ms obtained from the 

!lmK constraint for 8LL = 8RR = 0.04 by 12.5/4; dividing by 4 gives the result 

for 8LL = 8RR = 0.01 and multiplying by 12.5 gives the constraint on Ms from 

E. The result is M8 ';<:, 23 TeV. Next, we assume that M 3,0 is less than 600 GeV, 

so that the value of the gluino mass at the weak scale is less than "" 1.5 TeV. 

This gives M3,0/Ms ::; 0.026. Using these values of M3,o and Ms, an inspection 

of Figs.4.5 and 4.6 implies that mi,o must be larger than 3.9 TeV to 6.7 TeV, 

depending on the value of m'k,.,o· This gives c(m~; mf,o) ~ 1600. In the model 

of [37], M3,0 /Ms ~ 0.01 and mj,o/Ms ~ 0.1. Inspecting Figs.4.5 and 4.6 we find 

that these values are excluded for (n5 , n 10 ) = (2, 2) and (0, 2). The case (2, 0) is 

marginally allowed. The model of [37] with (n5 , n10 ) = (2, 2) and At = 0 was also 

excluded by the analysis of reference [43]. 

4.4 Conclusions 

In this chapter we have studied whether the SUSY flavor problem can be solved 

by making the scalars of the first and second generations heavy, with masses Ms 

(.Z.few TeV), without destabilising the weak scale. If the scale, Msusy, at which 

SUSY breaking is mediated to the SM scalars is close to the GUT scale, then 

the heavy scalars drive the light scalar (in particular the stop) (mass)2 negative 

through two loop RG evolution. In order to keep the (mass)2 at the weak scale 
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positive, the initial value of the stop (and other light scalar) soft masses, m1;,o' 

must typically be ~ 1 TeV, leading to fine tuning in EWSB. We included two 

new effects in this analysis: the effect of At in the RG E's which makes the stop 

(mass)2 at the weak scale more negative and hence makes the constraint on the 

initial value stronger, and the QCD corrections to the SUSY box diagrams which 

contribute to K - k mixing. 

Some results of our analysis for MsusY = Mcur can be summarized as follows. 

We restrict the gluino mass (at the weak scale) to be less than about 1.5 TeV, so 

that the fine tuning of m~ with respect to the bare gluino mass, M3,0 , is not worse 

than 1%. This requires that M 3,0 ;::;600 GeV. We also assume that m~ .. ,o = 0 

to maximize the value of the stop masses at the weak scale. We find that if 

JbLLbRR = 0.22 then Ms ~ 40 TeVis required to be consistent with t:lmK· With 

these assumptions, this implies that for M3,0 less than 1 TeV, mi;,o > 6.5 TeV is 

needed to not break color and charge at the weak scale. Even for VbLLbRR = 0.04, 

we find that we need Ms ~ 7 TeV. This implies that mf,o > 1 TeVis required if 

M 3,0 ~ 500 GeV. This results in a fine tuning of 1%. For 6LL = 1 and 6RR = 0, we 

find that Ms ~ 30 TeV and mi,o > 4 TeV. For 6LL = 0.22 and 6RR = 0, we find that 

Ms ~ 7 TeV and mt.,o > 1 TeV (this holds for an initial gluino mass less than about 

300 GeV). For 6LL = 0 and 6RR = 1, we find that Ms ~ 30 Te'v and mfc,o > 2 

TeV. The constraints are weaker for smaller values of 6. In a realistic model, mk,o 

might be comparable to m1,o and the constraints on mi,o in this case are stronger. 

This is also discussed. We note that independent of the constraint from K - k 
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mixing, our analysis can be used to check the phenomenological viability of any 

model that has heavy scalars. We also discuss the phenomenological viability of 

the anomalous D-term solution, and find it to be problematic. 

We then considered the possibility that MsusY = Ms. In this case, there is no 

RG log enhancement of the negative contribution of the heavy scalar masses to the 

light scalar (mass )2 . For this case, we computed the finite parts of the two loop 

diagrams and used these results as estimates of the two loop contributi.on of the 

heavy scalars to the light scalar soft (mass) 2 • We then combined these results with 

the constraints from K- K mixing to obtain lower limits on the boundary values 

of the stop mass. As an example, we assumed gauge mediated SUSY breaking 

boundary conditions for the light scalars. If n5 =f n 10 then one of the selectron 

masses, rather than the stop masses, provides the stronger constraint on mr 0 ,, 

once gauge mediated boundary conditions are used to relate mec,o and ml,o to 

mi;,o· Some of our results can be summarized as follows. We restrict the gluino 

mass at the weak scale to be less than about 3 TeV, again to avoid more than 2% 

fine tuning of m~ with respect to the gluino mass. For JoLLoRR = 0.22 we find 

that mf;,o ~ 1 Te V is required. The fine tuning of m~ with respect to the stop 

mass is rv 3% in this case. For the cases OLL = 0 and ORR = 1, and 0LL = 1 and 

oRR= 0 we find that mfo .(, 1 TeV. As before, the constraints on mio for smaller 
' . ' 

values of o are weaker than rv 1 TeV. Again, we emphasize that the constraints 

in an actual model of this low energy supersymmetry breaking scenario could be 

different, and our results should be treated as estimates only. Finally, we also 
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Chapter 5 

Summary 

In this thesis, we studied some fine tuning and naturalness issues in the su-

persymmetric Standard Model (SSM). SUSY solves the gauge hierarchy problem 

of the SM, if the superpartners of the SM particles are at the weak scale: the 

Higgs (mass)2 is stabilized at the scale of the SUSY breaking masses of the super-

partners and is negative due to the large top quark Yukawa coupling. Therefore, 

electroweak symmetry breaking occurs naturally. However, we argued that con-

straints from phenomenology (the ones we discuss all come from FCNC's) require 

that, unless we add some global symmetries to the SSM, there is some degree of 

fine tuning/unnaturalness in some (other) sector of the SSM (in some cases, the 

fine tuning of the weak scale is reintroduced). 

We showed that supersymmetric R-parity breaking ( fip) interactions always 

result in Flavor Changing Neutral Current (FCNC) processes. Within a single 

coupling scheme, these processes can be avoided in either the charge +2/3 or 

the charge -1/3 quark sector, but not both. These processes were used to place 

constraints on ]Jp couplings. The constraints on the first and the second generation 

couplings are better than those existing in the literature. Thus, we have to either 

impose R-parity or tolerate some unnaturalness in the form of small values of the 
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R-parity violating couplings. 

Non-degenerate squarks and sleptons of especially the first two generations 

lead to FCNC's; this is the SUSY flavor problem. If SUSY is mediated by gravity 

(supergravity theories), then we have to either fine tune the scalar masses to 

give, the required degeneracies or introduce flavor symmetries or quark-squark 

alignment. Another way of communicating SUSY breaking to the sparticles is by 

the SM gauge intercations. In this case, scalars with the same gauge quantum 

numbers are degenerate leading to very small SUSY contributions to FCNC's. 

However, the models of low energy gauge mediation predict a large hierarchy 

in the scalar mass spectrum resulting in a large and negative value for the Higgs 

soft (massf at the weak scale. This means that the J.l term has to be fine tuned 

to give the correct Z mass. We found that if LEP2 does not discover SUSY, then 

these models would lead to a 7% fine tuning. We constructed a model with a non­

minimal messenger sector (more messenger SU(2)w doublets than SU(3)c triplets) 

which reduced the fine tuning to rv 40%. Our model has some extra vector-like 

quarks (to maintain gauge coupling unification) which get a mass at the weak 

scale from a coupling to a singlet. We used the same singlet to generate the J.l 

and BJ.l Higgs masses by coupling it to the Higgs doublets. This model requires 

rv 25% fine tuning. We showed that these models with the split (5 + 5) messenger 

fields can be derived from a SU(5) x SU(5) GUT using a doublet-triplet splitting 

mechanism. 

The SUSY flavor problem can also be solved by making the scalars of the first 
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two generations heavy (with mass M8 ~few TeV). A priori, this does not result 

in any fine tuning in EWSB since only the stop mass has to be smaller than "' 1 

Te V to get the weak scale naturally. However, the heavy scalars drive the light 

scalar (in particular the stop) (mass)2 negative through two loop Renormalization 

Group Equations (RGE), if the scale at which SUSY breaking is mediated to the 

sparticles (MsusY) is high (say the GUT scale). Thus, the boundary value of 

the stop mass has to be large to avoid negative stop (mass)2 at the weak scale, 

in turn, leading to fine tuning in EWSB. Two new effects were included in our 

analysis: the effect of the top quark Yukawa coupling in the RGE which makes 

the constraint on the stop mass stronger since it makes the stop (mass )2 more 

negative, and the QCD corrections to the SUSY contributions to K - f< mixing. 

-< 

Even with a degeneraty between the squarks of the first two generations of the 

order of the Cabibbo angle, i.e., "'0.22, these squarks must be heavier than "'40 

TeV to suppress tlmK. This implies, in the case of a high scale of supersymmetry 

breaking, that the boundary value of the stop mass has to be greater than "' 7 

TeV to keep the stop (mass) 2 positive at the weak scale. 

We also studied the case where MsusY is of the order of the mass of the heavy 

scalars. We computed the finite parts of the same two loop diagrams and used 

these as estimates of the two loop contribution of the heavy scalar masses to the 

stop (mass) 2
. It was found that for mixing between the squarks of the order of 

the Cabibbo angle, the stop mass at the boundary needs to be larger than "' 2 

TeV to avoid negative stop (mass) 2 at the weak scale. Thus; for both cases, the 
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Appendix A 

Fine Tuning Functions 

In this appendix the Barbieri-Giudice fine tuning parameters for both the 

MSSM and NMSSM in a gauge mediated SUSY breaking scenario are presented. 

In an MSSM with gauge mediated SUSY breaking, the fundamental parameters 

of the theory (in the visible sector) are: Amess. At. J.L, and J.L~· Once electroweak 

symmetry breaking occurs, the extremization conditions determine both m~ and 

tan j3 as a function of these parameters. To measure the sensitivity of m~ to one 

of the fundamental parameters >.i, we compute the variation in m~ induced by a 

small change in one of the >.i. The quantity 

(A.1) 

where 

(A.2) 

measures this sensitivity [14]. In the case of gauge mediated SUSY breaking 

models, there are four functions c(m~; >.i) to be computed. They are: 

c m2· 2 __ 1 1 2 2J.L2 ( tan2 j3 + 1 4 tan2 j3([t2 
- [t2

) ) 

( z, J.L ) - m~ + (tan2 j3- 1)2 (Pi- PD(tan2 j3 + 1)- m~(tan2 j3- 1)) ' 

(A.3) 
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4 2 a tan2 (3 + 1 it~ - it~ 
- tan v 

(tan2 (3- 1)3 m~ 
4 -2 -2 

~ MI - p,2 for large tan (3, 
tan2 (3 m~ 

(A.4) 

This measures the sensitivity of m~ to the electroweak scale value of At, At(mweak)· 

The Yukawa coupling At(mweak) is not, however, a fundamental parameter of the 

theory. The fundamental parameter is the value of the coupling at the cutoff 

A 0 = Mcur or MP1 of the theory. We really should be computing the sensitivity 

of m~ to this value of At· The measure of sensitivity is then correctly given by 

We remark that for the model discussed in the text with three l + [and one q + ij 

messenger fields, the numerical value of (At(A0 )/At(mweak))8At(mweak)/8At(A0
) is 

typically rv 0.1 because At(mweak) is attracted to its infra-red fixed point. This 

results in a smaller value for c(m~; At) than is obtained in the absence of these 

considerations. 

With the assumption that m~,. and m~d scale with A~ess• we get 
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J.-L
2 tan2 {3 + 1 

1+2-- X 
m1 (tan2 {3- 1)2 

4tan2 {3(mk,. + mkJ(fti- ft~)/m1 
(ili- ft~)(tan2 {3 + 1)- m1(tan2 {3- 1)" 

The Barbieri-Giudice functions for 'Tnt are similarly computed. They are 

(A.7) 

(A.8) 

(A.9) 

(A.lO) 

(A.ll) 

Since mz and mt are measured, two of the four fundamental parameters may 

be eliminated. This leaves two free parameters, which for conveinence are chosen 

to be Amess and tan {3. 

In a NMSSM with gauge mediated SUSY breaking, the scalar potential for 

N, Hu. and Hd at the weak scale is specified by the following six parameters: 

the N 3 coupling, AN. In minimal gauge mediated SUSY breaking, the trilinear soft 

SUSY breaking term N HuHd is ~ero at tree level and is generated at one loop by 

wino and bino exchange. In this case, AH(>..i) = >..HA(>..i)· Since the trilinear scalar 

term· N 3 is generated at two loops, it is small and is neglected. The extremization 

conditions which determine m1 = g~v2 /4 (v = Jv~ + VJ), tan {3 = Vu/Vd and VN as 

a function of these parameters are given in section 3.4. Eqn.(3.22) can be written, 

137 



(A.12) 

Eqn.(3.23) is 

(A.13) 

Substituting v~ from Eqn.(3.22) in Eqn.(3.26) and then using this expression for 

tt~ in Eqn.(3.24) gives 

2 2 2 . AH ( 2 1 2 2) ( 2J.L 1 v2>.~sin2,8) 
(mHu +mHd +2tt ) sm 2,8+ AN mN + 2)..Hv +AH - AH - 4 tLAN = 0. 

(A.14) 

The quantity c = "(>.dm~)(om~jo>.i) measures the sensitivity of mz to these 

parameters. This can be computed by differentiating Eqns.(A.12), (A.13) and 

(A.14) with respect to these parameters to obtain, after some algel5ra, the following 

set of linear equations: 

(A.15) 

where 

A 

1 JLi-1-'~ 2tan fl. l, v2 {1-tan 2 {3) 2 

1 _l~ l-tan2 {! (A.16) 2 AN (Htan2 {3) 2 

si~2fl.v2
2 l-tan2 fl. 

~-'1 +1-'2 (Htan 2 {3) 2 

(A.17) 

0 
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( 

1 8m

2

) v2~ 
_l.Qj£_ 
v2 8>.; ' 
otan(J 

8>.; 

a:~ 
:~ , ( i = u, d, N), 

( 

8 2 l 
V

2 otan.B 
8 2 m; 

-!~ ' 
( 

0 l 
-~ 2(Jli:JlD 

( 

tan

2 

{J l 1-tan2 ,8 

0 ' 
2 sin 2{3 

-v 2(JL~+JL~) 

( 

1 l tan2 /3-1 

0 ' 
2 sin 2{3 

-v 2(Jl~+llD 

A~n ( 

0 

- >.1£ sin 2/3 
4>.~ 

~ v2 sin2,8 
- 8>..~ JLhJL~ 
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(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

l (A.26) 



neglected. Inverting these set of equations gives the c functions. We note that 

these expressions for the various c functions are valid for any NMSSM in which 

the N3 scalar term is negligible and the N HuHd scalar term is proportional to 

AH. In general, these 6 parameters might, in turn, depend on some fundamental 

parameters, Ai· Then, the sensitivity to these fundamental parameters is: 

(A.27) 

For example, in the NMSSM of section 3.4, the fundamental parameters are 

mt leaves 3 free parameters, which we choose to be Amess' AH and tan /3. As ex-

plained in that section, the effect of AH in the RG scaling of m'k,. and m'kd was 

neglected, whereas the sensitivity of m'Jv to AH could be non-negligible. Thus, we 

have 

(A.28) 

We find, in our model, that c(m~; m'Jv) is smaller than c(m~; A.H) by a factor of 

"' 2. Also, using approximate analytic and also numerical solutions to the RG 

equation for m'Jv, we find that (A.H/m'Jv)(8m'Jvj8A.H) is;:; 0.1. Consequently, in 

the analysis of section 3.4 the additional contribution to c(m~; A.H) due to the 
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dependence of m'Jv on )..H was neglected. A similar conclusion is true for AN. Also, 

(A.29) 

We find that (Aq/m'Jv)(om'Jyfo>.q) is ~ 1 so that c(m~; Aq) is smaller than 

c(m~; AH) by a factor of 2. 
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Appendix B 

Two Loop Calculation 

In this appendix we discuss the two loop contribution of the heavy scalar soft 

masses to the light scalar soft masses. These contributions can be divided into 

two classes. In the first class, a vev for the hypercharge D-term is generated at 

two loops. The Feynman diagrams for these contributions are given in Figure 

B.1 and are clearly "" a 1ai. These diagrams are computed in a later portion 

of this appendix. In the other class, the two loop diagrams are "" a;. These 

have been computed by Poppitz and Trivedi [76]. So, we will not give details of 

this computation which can be found in their paper. However, our result for the 

finite parts of these diagrams differs slightly from theirs and we discuss the reason 

for the discrepancy. When one regulates the theory using dimensional reduction 

[70, 71] (compactifying to D < 4 dimensions), the vector field decomposes into aD-

dimensional vector and 4- D scalars, called £-scalars, in the adjoint representation 

of the gauge group. Thus the number of Bose and Fermi degrees of freedom in 

the vector multiplet remain equal. The £-scalars receive, at one loop, a divergent 

contribution to their mass, proportional to the supertrace of the mass matrix of 

the matter fields. Neglecting the fermion masses, this contribution is 

2 a (2 ) 2 6mf = -- -+In 4?r- '"'/ (n5 + 3n10 )M8 . 
4?r £ 

(B.1) 
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In our notation D = 4- c. Poppitz and Trivedi choose the counterterm to can-

eel this divergence in the M S scheme, i.e., the counterterm consists only of the 

divergent part, proportional to 1lc. When this counterterm is inserted in a one 

loop £-scalar graph with SM fields (scalars) as the external lines, one obtains a 

divergent contribution to the SM scalar soft masses (the 1 I c of the counterterm is 

cancelled after summing over the c adjoint scalars running in the loop). Poppitz 

and Trivedi use a cut-off, Auv, to regulate this graph, giving a contribution from 

this graph that is: 

(B.2) 

with no finite part. We, on the otli'er hand, choose the £-scalar mass counterterm 

in the MS scheme, i.e., proportional to 2lt-')'+ln4?r (where/'~ 0.58 is the Euler 

constant) and use dimensional reduction to regulate the graph with the insertion 

of the counterterm. This gives a contribution 

" i 1 (aA)2 2 (2 )2 
- L...-(ns + 3n10)CA- -- M8 -- ')' + ln4?r c 

A 16 7f c 

"( i 1 (aA)2 2 I - L...- ns + 3n10)CA- - M 8 (2 c- 2')' + 2ln47r). 
A 8 7f 

(B.3) 

In the first line the first factor of (2lt-')'+ln47r) is from the counter-term insertion, 

the second factor is the result of the loop integral, and the over-all factor of c 

counts the number of £-scalars running in the loop. In the MS scheme, i.e., after 

subtracting 2lt-')'+ln4?r, we are left with a finite part1 proportional to -')'+ln47r. 

The remaining diagrams together give a finite result and we agree with Poppitz 

1The same finite part is obtained in the MS scheme, regulated with DR' . 
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________ r __ --- 8 
___________ _jL_ __________ _ 

Q .. ~ ... 

_________ ,,.IT) ________ _ 
Figure B.l: Mixed two loop corrections to the scalar mass. Wavy lines, wavy 

lines with a straight line through them, solid lines, and dashed lines denote gauge 

boson, gaugino, fermion and scalar propagators, respectively. The double line 

denotes the hypercharge D-term propagator. 
" 

and Trivedi on this computation. Our result for the finite part of the two loop 

diagrams (neglecting the fermion masses) is 

m?,/inite(J1) = -l (ln(4n) -1 + ~
2 

- 2- In ( ~})) 
""(aA(Jl-))2 ( . )Ci M2 x '7 -n- ns + 3n10 A s' (B.4) 

whereas the Poppitz-Trivedi result does not have the In( 4n) -1 in the above result. 

This result was used in Eqn.( 4.13). The computation of the two loop hypercharge 

D-term, which gives contribution to the soft scalar (mass)2 proportional to a 1a 8 

and a 1a 2 (i.e., the "mixed" two loop contributon) is discussed below in detail. 

Two-loop hypercharge D-term 

We compute the two loop diagrams of Figure B.l in the Feynman gauge and 
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set all fermion and gaugino masses to zero. It is convienent to calculate in this 

gauge because both the scalar self-energy and the Dy-term vertex corrections are 

finite at one loop and thus require no counter-terms. We have also computed the 

two loop diagrams in the Landau gauge and have found that the result agrees 

with the calculation in the Feynman gauge. The calculation in the Landau gauge 

requires counter-terms and is more involved, and hence the discussion is not in-

eluded. Finally, in the calculation a global SU(5) symmetry is assumed so that a 

hypercharge D-term is not generated at one loop [38, 42). 

The sum of the four Feynman diagrams in Figure B.1 is given in the Feynman 

gauge by 

where the sum is over the gauge and flavour states of the particles in the loops. If 

the particles in the loop form complete 5 and 10 representations with a common 

mass Ms, the sum simplifies to 

-iiTD,t .3 . 2 (4 3 1 ) z5 16n o:1Y1(n5- n10) 30:3-40:2-
12

o:1 

X ( 4!1(M~)- 4!2(M~) + h(M~)). (B.6) 

The functions 11 , 12 and 13 are 
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We now compute these functions. 

Evaluating !1 

After a Feynman parameterization and performing a change of variables, !1 = 

and 

1 dDp dDk 1 
J2(m

2
) = f(3) fo dx(1- x)(2x -1)

2 I (21r)D I (21r)D (p2 _ (m2 _ x(l'- x)k2))3 · 

(B.ll) 

After some algebra we find that 

J (m2) = f(3 - D) (m2)D-3 2D B(2- D/2 3- D/2) (B.12) 1 (47r)D D/2-1 ' ' 

r~~~~) (m2 )D-J x (4B(3- D/2, 2- D/2)- 4B(2- D/2, 2- D/2) 

+ B(1- D/2, 2- D/2)), (B.13) 

where B(p, q) = f[p]f[q]/f[p + q] is the usual Beta function. 

Combining these two results gives 

Evaluating !2 

- I dDp I dDk 1 k2
- k. p 1 

(27r )D (27r )D (p2 - m2)2 k2 (p- k )2 

1 2 D-3 
(
4
7r)Dr(3- D)(m ) B(D/2, 1- D/2). 
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Evaluating 13 

We may now combine 11, 12 and h to obtain 

T(m2) 41I(m2)- 412(m2) + 13(m2) 

- (7:;~;
3 

x ( 4 (~ -_ ~B(3- D/2, 2- D/2)- B(D/2, 1- D/2)) 

xf(3- D)- D/; _1 f(2- D/2)2
). 

Writing D = 4 - € and expanding in E gives 

T(m2) = ( 16~2)2 (; + ( 6- ~1r2 + 4(ln( 47r) -')') - 4ln m2) m2 + O(E)) . 

(B.15) 

In the MS scheme the combination 2 (2/E + ln(47r)- /') is subtracted out. The 

finite piece that remains is 

(B.16) 

Thus in the MS scheme Eqn.(B.6) is 

-iiiv,f = 

(B.17) 

which was used in Eqn.(4.13). 
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