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Abstract 

We calculate the spectrum of glueball masses in non-supersymmetric Yang­

Mills theory in three and four dimensions, based on a conjectured duality 

between supergravity and large N gauge theories. The glueball masses are 

obtained by solving supergravity wave equations in a black hole geometry. 

We find that the mass ratios are in good numerical agreement with the avail­

able lattice data. We also compute the leading (g~MN)- 1 corrections to the 

glueball masses, by taking into account stringy corrections to the supergravity 

action and to the black hole metric. We find that the corrections to the masses 

are negative and of order (g~MN)-312 • Thus for a fixed ultraviolet cutoff the 

masses decrease as we decrease the 't Hooft coupling, in accordance with our 

expectation about the continuum limit of the gauge theories. 

*Research Fellow, Miller Institute for Basic Research in Science. 



1 Introduction 

Recently Maldacena formulated a conjecture [1] stating that the large N limit of 

the maximally supersymmetric conformal theories in 3, 4 and 6 dimensions are dual to 

superstring/ M theory on AdS4 x S7 , AdS5 x S5 and AdS7 x S4 respectively, where AdSd 

is a d-dimensional anti-de Sitter space. More recently Witten proposed [2] that one can 

extend this duality to non-supersymmetric theories such as pure QCD. In this case the 

AdS space is replaced by the Schwarzschild geometry describing a black hole in the AdS 

space. When the curvature of the spacetime is small compared to the string scale and the 

Planck scale, superstring/ M theory is well-approximated by supergravity. It was found 

that the supergravity description gives results that are in qualitative agreement with 

expectations for QCD at strong coupling. This includes the area law behavior of Wilson 

loops, the relation between confinement and monopole condensation, the existence of a 

mass gap for glueball states, the behavior of Wilson loops for higher representations, and 

the construction of heavy quark baryonic states [2-7]. 

In this paper, we use the supergravity description of large N gauge theories to compute 

the scalar glueball mass spectrum explicitly for pure QCD3 and QCD4 • The glueball 

masses in QCD can be obtained by computing correlation functions of gauge invariant 

local operators or the Wilson loops, and looking for particle poles. According to the 

refinement of Maldacena's conjecture given in [8, 9], correlation functions of a certain 

class of local operators (chiral primary operators and their superconformal descendants) 

are related at large N and large g~MN to tree level amplitudes of supergravity. The 

correspondence between the chiral operators and the supergravity states has been worked 

out in [8-14]. For example, the operator trF2 in four dimensions corresponds to the 

dilaton field of supergravity in ten dimensions. Therefore the scalar glueball* jPC = o++ 
in QCD which couples to tr F 2 is related to the dilaton propagating in the black hole 

geometry. In particular, its mass is computable by solving the dilaton wave equation [2]. 

In (7], it was shown that the correlation function of Wilson loops is also expressed in 

terms of supergraviton exchange if the distance between the loops becomes larger than 

their sizes, leading again to the supergravity wave equation. 

In this paper we will solve the wave equations numerically to obtain the glueball 

masses. Since this description preserves all the symmetries of QCD, we can identify 

the spin and the other quantum numbers of the glueballs. The mass ratios turn out to 

be in excellent agreement with the available lattice data in the continuum limit. This 

*In the following we will use the notation JPC for the glueballs, where J is the glueball spin, and P, 

C refer to the parity and charge conjugation quantum numbers respectively. 
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is surprising since a priori the supergravity computations are to be compared with the 

strong ultraviolet coupling limit of the gauge theory g~MN » 1. 

As we will see, the supergravity computation at g~MN » 1 gives the glueball masses 

in units of the fixed ultraviolet cutoff Auv- For finite 't Hooft coupling A = g~MN, the 

glueball mass M would be a function of the form, 

(1.1) 

To take the continuum limit Auv --t oo, we have to simultaneously take A --t 0 so that 

the right-hand side of this equation becomes of the order of the QCD mass scale AqcD· 

This in particular requires that /(A) decreases as we decrease the 't Hooft coupling A. 

We compute the leading A- 1 corrections to the supergravity computation and show 

that this is indeed the case. On the superstring side, the A-1 corrections are due to the 

finite string tension. The leading order string correction to the low-energy supergravity 

action was computed in [15, 16]. This modifies both the background black hole metric and 

the supergravity wave equation in that background. Recently the stringy correction to 

the black hole metric was obtained in [17] by solving the modified supergravity equation. 

We use both this metric and the string corrected wave equation to compute the leading 

A - 1 corrections to the o++ glueball masses in QCD3 . We find: 

(1) The corrections to the masses are negative and of order A - 312 : 

(1.2) 

for the ground state and the first 5 excited levels of the o++ glueball. Thus, for a fixed 

ultraviolet cutoff, the masses decrease as we decrease the 't Hooft coupling, in accordance 

with the expectation about the continuum limit of QCD. 

(2) The corrections to the ratios of the glueball masses are relatively small compared 

to the correction to each glueball mass, suggesting that the corrections are somewhat 

universal for all the glueball masses. This may indicate that the good agreement between 

the supergravity computation and the lattice gauge theory results is not a coincidence 

but is due to small A - 1 corrections to the mass ratios. 

This paper is organized as follows. 

In section 2, we solve the supergravity wave equations in the AdS5 black hole geometry 

to obtain glueball masses in QCD3 and compare the results with lattice computations. 

In section 3, we solve the supergravity wave equations in the AdS7 black hole geometry 

to obtain glueball masses in QCD4 and compare the results with lattice computations. 
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In section 4, we use the string theory corrections to the low-energy supergravity action 

and to the AdS5 black hole geometry to estimate corrections to the glueball masses in 

QCD3. 

We close the paper with a summary and discussions. 

2 Glueballs in Three Dimensions 

The N = 4 superconformal SU(N) gauge theory in four dimensions is realized as 

a low energy effective theory of N coinciding parallel D3 branes. One can construct a 

three-dimensional non-supersymmetric theory [2] by compactifying this theory on R3 x S1 

with anti-periodic boundary conditions on the fermions around the compa:ctifying circle 

S1
. Supersymmetry is broken explicitly by the boundary conditions. As the radius R of 

the circle becomes small, the fermions decouple from the system since there are no zero 

frequency Matsubara modes. The scalar fields in the 4D theory will acquire masses at 

one-loop, since supersymmetry is broken, and these masses become infinite as R --+ 0. 

Therefore in the infrared we are left with only the gauge field degrees of freedom and the 

theory should be effectively the same as pure QCD3 . 

According to Maldacena [1], the N = 4 theory in Euclidean R 4 is dual to type liB 
superstring theory on AdS5 x S5 with the metric 

ds2 4 
-:::--;:::::::=:;::;: = P-2dp2 + p2 L dx2 + dst~ 
z;J4ngsN i=l ~ 

(2.1) 

where ls is the string length related to the superstring tension, 9s is the string coupling 

constant and dS15 is the line element on S5 . The x1'2 '3 '4 directions in AdS5 correspond 

to R 4 where the gauge theory lives. The gauge coupling constant g4 of the 4D theory is 

related to the string coupling constant 9s as gJ = g8 • In the 't Hooft limit (N --+ oo with 

gJN = g8 N fixed), the string coupling constant vanishes g8 --+ 0. Therefore we can study 

the 4D theory using the first quantized string theory in the AdS space (2.1). Moreover if 

gsN » 1, the curvature of the AdS space is small and the string theory is approximated 

by classical supergravity. 

Upon compactificatlon on S1 and imposing the supersymmetry breaking boundary 

conditions, (2.1) is replaced by the Euclidean black hole geometry [2] 

d 2 ( b4) -l ( b4) 3 s 2· 2 2 2 2 2 2 
[2 J 4 N = P - 2 dp + P - 2 dT + p L dxi + dS15 
s ngs p p i=l 

(2.2) 

where T parameterizes the compactifying circle and the x1'2 '3 direction corresponding to 
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the R 3 where QCD3 lives. The horizon of this geometry is located at p = b with 

1 
b= 2R. 

Once again, the supergravity approximation is applicable for N --+ oo and gsN » 1. 

(2.3) 

According to [8, 9, 12-14], there is a one-to-one correspondence between supergravity 

wave solutions on AdS5 x S5 and chiral primary fields (and their descendants) in the 

N = 4 superconformal theory in four dimensions. The mass m of a p-form C on the AdS 

space is related to the dimension ~ of a ( 4 - p) form operator in the N = 4 theory by 

m 2 = (~- p)(~ + p- 4). (2.4) 

The supergravity fields on AdS5 x S5 can be classified by decomposing them into spher­

ical harmonics (the Kaluza-Klein modes) on 85 . They fall into irreducible representations 

of the S0(6) isometry group of 85 , which is also the R-symmetry group of the 4D super­

conformal theory. The spectrum of Kaluza-Klein harmonics of type liB supergravity on 

AdS5 x S5 was derived in [18, 19]. Among them, there are four Kaluza-Klein modes that 

are S0(6) singlets, coming from the s-wave components on S5 of bosonic fields. They 

are: 

(1) The graviton gl-'v polarized along the R 4 m (2.2). It couples to the dimension 4 

stress-energy tensor TJLv of the N = 4 theory. 

(2) The dilaton and the R-R scalar, which combine into a complex massless scalar field. 

Its real and imaginary parts couple to the dimension 4 scalar operators 0 4 = tr F 2 and 

6 4 = tr F 1\ F of theN= 4 theory respectively. 

(3) The NS-NS and R-R two-forms, which combine into a complex-valued antisymmetric 

field AJLv, polarized along the R 4
. Its (AdS massf = 16 and using (2.4) we see that it 

couples to a dimension 6 two-form operator of theN= 4 theory. This operator has been 

identified as 0 6 = dabcF:
01

Fbaf3 F3v [22, 23]. 

( 4) The s-wave component of the metric g~ and the R-R 4-form Aaf31'~ polarized along S5
. 

They combine into a massive scalar with (AdS mass)2 = 32 and couple to a dimension 8 

scalar operator constructed from the gauge field strength FJLv of theN = 4 theory [24, 23]. 

Only these S0(6) singlet fields are related to glueballs of QCD3 since S0(6) non-singlets 

are supposed to decouple in the limit R --t 0. 

Let us discuss now how to identify the quantum numbers of the glueballs. The spin 

and the parity of a glueball in three dimensions can be easily found from the transforma­

tion properties of the corresponding supergravity field. The charge conjugation, C, for 
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gluons is defined by A~~j -+ -A~Tj~ where the ya•s are the hermitian generators of the 

gauge group [25]. In the string theory, charge conjugation corresponds to the worldsheet 

parity transformation changing the orientation of the open string attached to D-branes. 

Therefore, for example, the NS-NS two-form in supergravity is odd under the charge 

conjugation. This is consistent with the fact that it couples to 0 6 , which indeed has 

c = -1. 

From the point of view of QCD3 , the radius R of the compactifying circle provides 

the ultraviolet cutoff scale. To obtain large N QCD3 in the continuum, one has to take 

gl N -+ 0 as R -+ 0 so that gj N = gl N / R remains at the intrinsic energy scale of QCD3 . 

Here g3 is the dimensionful gauge coupling of QCD3 . This is the opposite of the limit that 

is required for the supergravity description to be valid. As we mentioned, the supergravity 

description is applicable for glN » 1. Therefore, with the currently available techniques, 

the Maldacena-Witten conjecture can only be used to study large N QCD with a fixed 

ultraviolet cutoff R-1 in the strong ultraviolet coupling regime. The results we find are, 

however, surprisingly close to those of the lattice computation, leading us to suspect that 

(gl N) - 1 corrections to the mass ratios are small. In section 4, we will estimate the leading 

(glN)- 1 correction to our computation. 

Consider first the o++ glueball masses. These can be derived from the 2-point function 

of the operator tr F,..vFf.Lv. In the supergravity description we have to solve the classical 

equation of motion of the massless dilaton, 

(2.5) 

on the AdS5 black hole background (2.2). In order to find the lowest mass modes we 

assume following [2] that <I> is independent ofT and has the form <I> = f(p)eikx. Using the 

metric of (2.2) one obtains the following differential equation for J: 

(2.6) 

Since the glue ball mass M 2 is equal to -k2 , the task is to solve this equation as an 

eigenvalue problem for k2. In the following we set b = 1, so the masses are computed in 

units of b. If one changes variables to x = p2 , the equation takes the form, 

d
2 
f ( 1 1 1 ) df k2 

-+ -+--+-- -- -0 
dx2 x x- 1 x + 1 dx 4x(x2 - 1) f- ' (2.7) 

namely it is an ordinary differential equation with four regular singularities at x = 0, ±1 
and oo. 
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Unlike the equation with three regular singularities (known as the hypergeometric 

equation), analytic solutions are not known for this type of equation. Fortunately there is 

an analytical method to compute its eigenvalues k2
. It is the exact WKB analysis recently 

developed by mathematicians at RIMS, Kyoto University [20]. To use their approach, we 

note that the differential equation (2.7) can be written as the Schrodinger-type equation 

(- d~2 + Q(x)) g(x) = 0, 

wher~ g(x) = Jx(x2 - 1)f(x) and 

To apply the WKB analysis, one can perturb the equation as 

(- ::2 + Q(x) + (1}
2

- 1)R(x)) g(x) = 0, 

(2.8) 

(2.9) 

(2.10) 

by introducing a large parameter 11· With a suitable choice of R(x), the secular equation, 

which determines the values of k2 so that the equation admits a solution regular at both 

x = 1 and oo, becomes explicitly solvable as a asymptotic power series expansion in 1}-1
. 

Assuming the expansion is Borel summable at 1} = 1, the eigenvalues are approximated 

by the following expression [21] 

k2 = -6n(n + 1) , (n = 1, 2, 3, ... ). (2.11) 

We should note that the differential equation in question is degenerate from the point of 

view of the exact WKB analysis and a mathematical proof of the Borel summability in this 

case has not been given. It is possible that the formula (2.11) receives small corrections. 

Since the analytical expression (2.11) for k2 is still preliminary and we would like to 

find masses for the other glueball states, we also solved the differential equation (2.6) 

numerically. For large p, the black hole metric (2.2) asymptotically approaches the AdS 

metric, and the behavior of the solution for a p-form for large p takes the form p>-, where 

A is determined from the mass m of the supergravity field: 

(2.12) 

Indeed both (2.6) and (2.12) give the asymptotic forms f rv 1, p-4, and only the later is 

a normalizable solution [2]. Changing variables to f = '1/J/ p4 we have: 

(2.13) 
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For large p this equation can be solved by series solution with negative even powers: 

(2.14) 

Since the normalization is arbitrary we can set a0 = 1. The first few coefficients are given 

by: 

k2 
a2 -

12 
1 k4 

a4 2 + 384 
7k2 k6 

(2.15) a6 120 + 23040 ° 

For n ~ 5 the coefficients are given by the recursive relation: 

(2.16) 

Since the black hole geometry is regular at the horizon p = 1, k2 has to be adjusted so that 

f is also regular at p = 1 [2]*. This can be done numerically in a simple fashion using 

a "shooting" technique as follows. For a given value of k2 the equation is numerically 

integrated from some sufficiently large value of p (p » k2 ) by matching f(p) with the 

asymptotic solution set by (2.14) and (2.15). The glueball mass M is related to the 

eigenvalues of k2 by M 2 = -k2 in units of b2. The results of the numerical work are listed 

in Table 1. They agree with the formula (2.11). The 4% discrepancy of the two results 

are either due to some systematic error in the numerical analysis or due to corrections to 

the analytical formula (2.11 ). 

state numerical method exact WKB method ratio 
o++ 11.59 12 1.03 
o++* 34.53 36 1.04 
o++** 68.98 72 1.04 
o++*** 114.9 120 1.04 
o++**** 172.3 180 1.04 

o++***** 241.2 252 1.04 

Table 1: (Mass)2 of o++ glueball in QCD3 obtained by 

solving the supergravity wave equation in the black hole 

geometry (in units of b2
) using the two different methods. 

*We thank A. Jevicki and J.P. Nunes for communication on the boundary condition. 
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Since both methods give the same results within a 4% error, we are ready to compare 

them with the lattice gauge theory computations [27]. Since the lattice results are in 

units of string tension, we normalize the supergravity results so that the lightest o++ 
state agrees with the lattice result. The results are listed in Table 2. One should also 

expect a systematic error in addition to the statistical error denoted in Table 2 for the 

lattice computations. 

state lattice, N = 3 lattice, N --+ oo supergravity 
o++ 4.329 ± 0.041 4.065 ± 0.055 4.07 (input) 
o++* 6.52 ± 0.09 6.18 ± 0.13 7.02 

o++** 8.23±0.17 7.99 ± 0.22 9.92 

o++*** 12.80 

o++**** 15.67 

o++***** 18.54 

Table 2: o++ glue ball masses in QCD3 coupled to 

tr F~-tvF~-tv. The lattice results are in units of the square 

root of the string tension. The denoted error in the lat­

tice results is only the statistical one. 

Next we consider the two-form of the supergravity theory. As noted previously, it 

couples to the operator 0 6 • This operator contains 1 +- and 1-- components, which 

correspond to the fields ATi and Aij, where i, j = 1, 2, 3 correspond to the three coordinates 

Xi of R 3 . The remaining components ApT and Api can be set to zero by an appropriate 

gauge transformation. In the QCD3 limit R --+ 0, the 1-- component Aij is reduced to 

a o-- operator in 3D, and thus has a non-zero overlap with the o-- glueballt. On the 

other hand, the 1 +- components ATi couple to an operator which is supposed to decouple 

in the R --+ 0 limit. Therefore they do not correspond to glueball states in QCD3. 

The s-wave component of the two-form field satisfies the equation [18, 26] 

(2.17) 

where [ ] denotes antisymmetrization with strength one. As before we look for solutions 

which are independent ofT and are of the form Aj = hij (p )eikx. The PT and the pi com­

ponents of this equation simply result in a constraint which sets the transverse component 

of Aij to zero. For the remaining pseudoscalar component from Aij the equation reduces 

tThe parity P = -1 is due to the fact that the 2-form is dual to a pseudoscalar. The charge conjugation 

C = -1 is inferred from the string worldsheet parity. 
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to 

p (p4 
- 1) h" + ( 3 + p4

) h' - ( k2 p + 16 p3
) h = 0 , 

in units where b = 1. At large p the solution has the form 

h -4 ~oo -2n 
= P un=Oa2nP · 

(2.18) 

(2.19) 

Since the normalization is arbitrary we can again set a0 = 1. The first few coefficients are 

given by: 

k2 
a2 -

20 
640 + k 4 

a4 
960 

3520k2 + k6 

(2.20) a6 
80640 

We have solved the differential equation and obtained the eigenvalues k2 by the same 

numerical method described above. The results are shown in Table 3. The supergravity 

results are displayed in the same normalization as the one used in Table 2. 

state lattice, N = 3 lattice, N ---+ oo supergravity 
o-- 6.48 ± 0.09 5.91 ± 0.25 6.10 
o--* 8.15 ± 0.16 7.63 ± 0.37 9.34 

o--** 9.81 ± 0.26 8.96 ± 0.65 12.37 

o--*** 15.33 

o--**** 18.26 

o--***** 21.16 

Table 3: o-- glueball masses in QCD3 coupled to 0 6 . 

The lattice results are in units of square root of the string 

tension. The normalization of the supergravity results is 

the same as in Table 2. 

Since the supergravity method and the lattice gauge theory compute the glueball 

masses in different units, one cannot compare the absolute values of the lowest glueball 

mass obtained using these methods. However it makes sense to compare the lowest glueball 

masses of different quantum numbers. Using Tables 2 and 3, we find that the supergravity 

results are in good agreement with the lattice gauge theory computation [27]: 

(Mo--) = 1.50 
Mo++ supergravity 

( ~o--) = 1.45 ± 0.08 . 
o++ lattice 

(2.21) 
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There are still two more 50(6) singlet supergravity fields. One of them is the s-wave 

component of the metric g~ and the R-R 4-form Aa.B'Yo polarized along 85 . From (2.4) we 

see that it should couple to a dimension 8 scalar operator 0 8 . In [23, 24], this operator is 

identified as a symmetrized form of [F4 
- HF2 ) 2]. By using the prescription of Tseytlin 

[28] to symmetrize the group indices, one finds that the operator is even under the charge 

conjugation. This is also seen from the fact that g~ is clearly even both spacetime and 

worldsheet parity transformations. Therefore g~ has the quantum numbers of the o++ 

glueball. The classical equation of motion of g~ is that of a massive scalar with (AdS 

mass) 2 = 32 (in units of b2
) [18] on the AdS5 black hole background (2.2). The mass 

spectrum that we get is given in Table 4. In the g5 N--+ oo limit the operators 0 8 and trF2 

are not mixed since they couple to different states in the supergravity theory. However, we 

expect that for finite g5 N these operators will mix, thus the full o++ spectrum is expected 

to be given by the interleaving of Tables 2 and 4. For example the o++** presumably 

corresponds to the first state in Table 4. 

g~ and Aa.B/'6 

8.85 

12.06 

15.00 

17.98 

Table 4: o++ glueball masses in QCD3 coupled to 0 8 , the 

normalization is the same as in Table 2. 

The remaining 50(6) singlet is the graviton gf.Lv· It couples to the energy-momentum 

tensor Tf.Lv and therefore corresponds to the 2++ glueball. It would be interesting to 

compute its mass and compare with the lattice result. 

3 Glueballs in Four Dimensions 

To construct QCD4 , one starts with the superconformal theory in six dimensions 

realized on N parallel coinciding M5-branes. The compactification of this theory on 

a circle of radius R1 gives a five-dimensional theory whose low-energy effective theory 

is the maximally supersymmetric 5U(N) gauge theory with gauge coupling constant 

gg = R 1 . To obtain QCD4 , one compactifies this theory further on another 8 1 of radius 

R2. The gauge coupling constant g4 in 4D is given by gJ = gV R2 = Rd R2. To break 

supersymmetry, one imposes the anti-periodic boundary condition on the fermions around 

the second 8 1 . 
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According to Maldacena [1], the large N limit of the six-dimensional theory isM theory 

on AdS7 x S4 . Upon compactification on 8 1 x 8 1 and imposing the anti-periodic boundary 

conditions around the second S\ we find M theory to be on the black hole geometry [2]. 

To take the large N limit while keeping g~N finite, we have to take R 1 « R2 . In this 

limit, M theory reduces to type IIA string theory and the M5 brane wrapping on 81 of 

radius R1 becomes a D4 brane. The large N limit of QCD4 then becomes string theory 

on the black hole geometry given by 

-~-- = + p3/2 1 - - dT2 + p3/2 L dx2 + pl/2dD? ~ dp2 ( ~) 4 

t;g'gN/4rr 4p3/2 ( 1 _ !~) p3 i=l ~ 4
' 

(3.1) 

with a dilaton e¢ ,......, p314 [29]. The location of the horizon p = b2 is related to the radius 

R2 of the compactifying circle as 

(3.2) 

As in the case of three dimensions, we will compute the spectrum of glueball masses by 

solving the classical equations of motions of Kaluza-Klein modes of the supergravity the­

ory. We will consider only singlets of the S0(5) isometry group of 8 4
, which corresponds 

to the R-symmetry group of the six-dimensional theory. 

Consider first the o++ glueball. The non-extremal D4 brane solution has a non con­

stant dilaton background. As shown in [30] the dilaton is a linear combination of two 

scalars. One of them is massless and couples to the relevant glueball operator. The 

equation of motion for the scalar is given by (2.5) in the background of the metric (3.1). 

Again assuming that the solution is independent ofT and of the form <I>= f(A.)eikx (with 

A.2 = p), one obtains the differential equation in the units where b = 1 as 

(A.7 - A.)J"(A.) + (10A.6
- 4)f'(A.)- A.3e J(A.) = o . (3.3) 

The asymptotic solutions to this equation are f,......, 1, A,-9 , with the latter corresponding to 

normalizable solutions. In order to solve the equation and find the allowed values of k2 we 

introduce the function g(A.) as J(A.) = A,-9g(A.). This way g(A.) has to be asymptotically 

constant for A. ---t oo, and one can again look for a solution in terms of a negative power 

series in A.. The differential equation for g(A.) is 

(3.4) 

The first few coefficients in the power series solution g = I:~=O a2nA. - 2
n are given by (for 

ao = 1) 

e 
22 
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k4 

1144 
61776 + k6 

102960 
(3.5) 

The regularity off at ). = 1, after numerically solving the equation (3.4) as described in 

the previous section, results in the allowed values of k2 . The first six masses (normalized so 

that the lightest o++ state agrees with the lattice calculation) together with the available 

lattice results (32, 33] are given in Table 5. 

state lattice, N = 3 supergravity 

o++ 1.61 ± 0.15 1.61 (input) 
o++* 2.8 2.38 
o++** 3.11 

o++*** 3.82 

o++**** 4.52 

o++***** 5.21 

Table 5: Masses of the first few o++ glue balls in QCD4 , in 

GeV, from supergravity compared to the available lattice 

results. Note that the authors of ref. (33] do not quote 

errors for the o++* since it is not yet clear whether it is 

a genuine excited state or merely a two glueball bound 

state. 

In order to calculate the masses of the o-+ glue ball in four dimensions we will consider 

the 3-form A~/1-r of the eleven dimensional supergravity. In this case, it is more useful to 

use the eleven-dimensional metric 

(3.6) 

which reduces to (3.1) upon compactifying x5 on 8 1 and by going to the string frame (2] 

by multiplying the metric by >., setting >.2 = p, and rescaling the other coordinates. The 

s-wave component of the 3-form in the harmonic expansion on 84 is a singlet of the 50(5) 

isometry group (31]. Its mass squared* is 36 in units of b2 and using (2.4) we see that it 

couples to a dimension 9 operator of the six-dimensional theory. The 3-form obeys the 

following equation of motion: 

(3.7) 

*The value of the mass term is fixed by matching the supergravity computation [31] to (2.4) (34]. 
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Choosing a gauge where ApTi and Apij vanish, where i, j = 1, ... , 5, and assuming that the 

remaining components are independent of the coordinate T and the only dependence on 

Xi is through eikx, one finds that there are two independent modes after compactification 

to 4D: 

(1) A three-index tensor Aijk· This is dual to a massive scalar and can be identified with 

the o-+ glueball of the 4D theory. 

(2) A massive vector ATij· This couples to an operator which is supposed to decouple in 

the limit R2 ..,..-t 0. Therefore it does not correspond to a glueball state in QCD4 . 

The scalar component of Aijk satisfies the differential equation 

(3.8) 

in the same units as in the equation (3.3) for the dilaton. The normalizable asymptotic 

solution behaves like 1/ -X6 , thus we introduce the function g(.X) by f(.X) = ,x-6g(.X). This 

satisfies 

(-X7
- .X)g"(-X)- (11-X6

- 17)g'(-X) - (72 + k 2 .X4 )g(.X) = 0. (3.9) 

The power series expansion g(-X) = I:~=O a2nA - 2
n with a0 = 1 has the first few coefficients 

k2 
a2 -

28 
k4 

a4 --
1792 
129024 + k6 

(3.10) a6 
193536 

The single-valuedness of the solution requires g' = 6g at A = 1. With this boundary condi­

tion, the numerical solution of (3.9) yields the allowed values of k2 , and the corresponding 

masses in the units defined above are displayed in Table 6. 

state lattice, N = 3 supergravity 

o-+ 2.19 ± o.32 1.83 

o-+* 

o-+** 

o-+*** 

o-+**** 

o-+***** 

2.67 

3.42 

4.14 

4.85 

5.55 

Table 6: Masses of o-+ glueball in QCD4 . The lattice 

result is in GeV. 
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Unlike .the 3D case, there exists little lattice data on the masses of the excited glue ball 

states. We can however compare the ratio of masses of the lowest glueball states o-+ and 
o++ 

( Mo-+) = 1.14 
Mo++ supergravity 

( ~o-+) = 1.36 ± 0.32 , 
o++ lattice 

(3.11) 

and the results are in agreement within the one a error. , 

4 Leading String Theory Corrections 

As we mentioned earlier, the supergravity computation is valid in the strong ultraviolet 

coupling limit g8 N » 1. In order to compare with the lattice computations in the 

continuum limit, we have to take g8 N ---+ 0 as we take the ultraviolet cutoff R-1 ---+ oo 

so that the scale set by the Yang-Mills coupling constant remains at the intrinsic energy 

scale of QCD. The fact that the glueball masses computed in the supergravity limit are 

in good agreement with the lattice results leads us to suspect that, for this particular 

computation, o/ corrections are small. In this section, we test this idea. 

For g8 N « 1, the curvature of the black hole geometry becomes larger than the 

string scale. Therefore stringy corrections (to be precise, the worldsheet sigma-model 

corrections) are expected to become important. The leading stringy corrections to the 

low-energy supergravity action were obtained in [15, 16]. Recently Gubser, Klebanov and 

Tseytlin [17] used the modified action to obtain the leading order string corrections to the 

black hole metric. We use their result to calculate the leading corrections to the glueball 

mass spectrum. We will perform this computation only for the o++ glueballs in QCD3 . 

We expect, however, that the conclusions will be similar for the other glueball states. 

According to [17], the leading (in units of the curvature) o/ = (4ng8 N)- 112 correction 

to the AdS5 black hole metric (2.2) is 

ds2 dp2 ( 2 b4) 2 2 3 2 V =(1+81)( b4 ) +(1+82) p -? dr +p L:dxi, (4.1) z; 4ng~N p2 
- p2 p- i=1 

where the correction terms 81,2 are given by the formulae 

(4.2) 
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and 'Y is given by 'Y = ~((3)a'3 . With these corrections of the metric, the dilaton is no 

longer constant, instead it is given by 

(4.3) 

There is also a correction to the ten-dimensional dilaton action (15, 16], given by 

1 J lo r;; [ 1 J.W~ ~ _.i!_.pw] 
ldilaton = - 167fGIO d Xy g -2g uJL<Puv<P + '-ye 2 

, {4.4) 

where W is given in terms of the Weyl tensor, and in our background W = 180/ p16 in 

units where b = 1. To the leading order in '-y, the dilaton perturbation does not mix with 

the metric perturbation, so we can study the dilaton equation derived from the action 

{4.4) in the fixed metric background (4.1). In subleading order in '-y, the term '-ye-~.PW 
would generate a mixing of the dilaton and the graviton. 

We now have all pieces needed in order to obtain the first order correction to the 

dilaton equation. We write <P =<Po+ f(p)eikx, with <P0 given by (4.3), and expand f(p) 

and k2 in 'Y as 

(4.5) 

Here f 0 (p) obeys the lowest order equation (2.6) and is a numerically given function, and 

k6 are the eigenvalues numerically obtained from the solution of (2.6). The first order 

term of the differential equation obtained from the action ( 4.4) using the background ( 4.1) 

and ( 4.3) is given by 

p-1 - (p4
- 1)p- - eh d ( dh). 

dp dp 0 

d2 f 

(75- '>40 -S + 165 - 12)-JO ~ p p dp2 

+(75 + 1680p-8
- 1815p-12)p-1 d"; 

+(6k2
- 120k~p- 12 - 405p- 14)f0 (p). (4.6) 

With f 0 (p) and k6 given, one may regard this as an inhomogeneous version of the equation 

(2.6). We solve this equation to determine h(p) and 15k2 . 

At large p the solution for the first order correction has the form 

h -4 ~oo b -2n = P L.Jn=O 2nP · (4.7) 

Since ( 4.6) is inhomogeneous for h(p), one can always add to a solution h(p) a constant 

multiple of the solution fo(p) to the corresponding homogeneous equation (2.6) to obtain 
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another solution. We use this freedom to set b0 = 0. The first few coefficients are then 

given by: 

8k2 

12 
14400 + 28k2 k5 

384 
13448k2 + 100800k5 + 38k2 k6 

23040 
(4.8) 

We can now determine 8k2 by the same "shooting" method described above for each 

eigenvalue of k5 and its corresponding eigenfunction f 0 (p). It turns out that, for each 

eigenvalue k5, there is is a unique solution with h being regular at p = 1. The first few 

solutions are shown in Table 7. 

state ( -k5) ( -8k2 ) 8k2/k~ 
o++ 11.59 89.75 7.74 
o++* 34.53 365.7 10.59 

o++** 68.98 809.8 11.74 

o++*** 114.9 1397 12.16 

o++**** 172 .. 3 2122 12 .. 32 

o++***** 241.2 2991 12.40 

Table 7: Leading string correction to the o++ glueball masses in QCD3 . The 

first column gives the zeroth order supergravity result for the mass squared, 

the second column gives the coefficient of the leading string correction and the 

third column gives their ratio. 

Recalling that the squared mass of each glueball states is given by 

we see that the leading stringy corrections to the o++ glueball masses are 

M~++ 11.59 x (1 + 0.97((3)o/3 + .. ·)b2 

M~++• 34.53 x (1 + 1.32((3)a'3 + · · ·)b2 

M~++·• 68.98 x (1 + 1.47((3)a'3 + · · ·)b2 

M~++ ... 114.9 x (1 + 1.52((3)a'3 + · · ·)b2 

M~++ .... 172.3 x (1 + 1.54((3)a'3 + .. ·)b2 

M~++····· 241.2 x (1 + 1.55((3)a'3 +. · ·)b2 
. 
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It is important to note that the relation between the radius R of the compactifying circle 

R4 --t R3 x S1 and the location p = b of the horizon also receives an o/-correction. Instead 

of (2.3), we now have (17] 

( 
15 13 ) 1 b = 1- -((3)o: +... -. 
8 2R 

(4.11) 

Therefore, in units of the ultraviolet cutoff Auv = (2R)-I, the glueball masses are ex­

pressed as 

MJ++ 
MJ++• 

MJ++·· 
MJ++··· 

MJ++ .... 

11.59 X (1- 2.78((3)o:'3 + · · ·)A~v 
34.53 X (1- 2.43((3)o:'3 + · · ·)A~v 
68.98 X (1 - 2.28((3)o:'3 + · · ·)A~v 
114.9 X (1- 2.23((3)o:'3 + · · ·)A~v 
172.3 X (1- 2.21((3)o:'3 + · · ·)A~v 
241.2 x (1 - 2.20((3)o:'3 + · · ·)A~v . (4.12) 

Thus the glueball masses are indeed modified by the a' = ( 47rg5 N)-112 correction. 

The corrections are negative for all the 6 levels we computed and are of the order o/3 . 

Therefore the glueball masses decrease as we decrease the 't Hooft coupling A = g5 N. As 

we discussed in the introduction of this paper, this is in accordance with our expectation 

about the continuum limit of QCD. 

At the same time, the a' corrections to the ratios of the masses appear to be smaller 

than the corrections to each glueball mass, suggesting that the corrections are somewhat 

universal. This may indicate that the good agreement between the supergravity compu­

tation and the lattice gauge theory results is not a coincidence but is due to small A-1 

corrections to the mass ratios. Obviously, with the given data, we cannot tell whether 

the stringy corrections for the mass ratios remain small in the continuum limit A --t 0. It 

would be very interesting to see whether this trend continues in the subleading corrections 

in o:'. 

5 Summary· and Discussion 

In this paper, we computed the glueball masses of large N QCD in three and four 

dimensions by solving supergravity wave equations in the AdS black hole geometry. The 

supergravity approximation is valid for large N and large A = g~MN and therefore the 

results are to be compared with a fixed ultraviolet cutoff in the strong ultraviolet coupling 

regime. 
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We computed the ratios of the masses of the excited glueball states with the mass 

of the lowest state, as well as the ratio of masses of two different lowest glueball states. 

These ratios are in surprisingly good agreement with the available lattice data. We also 

computed the leading A - 312 corrections to the glue ball masses taking into account stringy 

corrections to the black hole geometry. We found that the corrections to the masses are in 

accordance with our expectation about the continuum limit of QCD. The corrections to 

the ratios of the masses appear to be smaller than the corrections to each glueball mass, 

suggesting that the corrections are somewhat universal. 

The above computations can be generalized to higher spin glueballs. As noted pre­

viously, the graviton couples to the energy-momentum tensor and solving its equation 

of motion will give the masses of the 2++ glueball. In general the higher spin glueballs 

will correspond to operators that couple to massive string excitations. The dimensions 

of these operators are Ll rv A114 for large A [8]. It would be interesting to see how to 

extrapolate this result to the continuum A -t 0. 

Another interesting issue is the existence of S0(6) non-singlet states in supergravity. 

For large A, their masses are of the same order as the S0(6) singlet states we studied in 

this paper. In the continuum limit, Auv -t oo and A -t 0, those states should decouple. 

Presumably A -l corrections make them heavy. 

Maldacena's conjecture reduces the problem of solving large N QCD in three and four 

dimensions to that of controlling the o/ corrections to the two-dimensional sigma-model 

with the Ramond-Ramond background. In this paper, we have extracted information 

about glue balls in strongly coupled QCD using the o/ -expansion of the sigma-model. It 

would certainly be interesting to understand properties of such a sigma-model better. 
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