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Abstract 

We investigate the chiral phase transition in SU (N) gauge theories as the 
number of quark flavors, Nf , is varied. We argue that the transition takes place 
at a large enough value of Nf so that it is governed by the infrared fixed point 
of the f3 function. We study the nature of the phase transition analytically and 
numerically, and discuss the spectrum of the theory as the critical value of N f 
is approached in both the symmetric and broj{en phases. Since the transition 
is governed by a conformal fixed point, there are no light excitations on the 
symmetric side. We extend previous work to include higher order effects by 
developing a renormalization group estimate of the critical coupling. . 
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1 Introduction 

In an SU(N) gauge theory with Nj massless quarks, it is expected that both con-

finement and spontaneous chiral symmetry breaking take place providing that N j 

is not too large. If, on the other hand, Nj is large enough, the theory is expected to 

neither confine nor break chiral symmetry. For example, if Nj is larger than 11N /2 

for quarks in the fundamental representation, asymptotic freedom (and hence con-

finement and chiral symmetry breaking) is lost. Even for a range of Nj below 

11N /2, the theory should remain chirally symmetric and deconfined. The reason is 

that an infrared fixed point is present [1, 2] determined by the first two terms in the ., 

renormalization group (RG) beta function. By an appropriate choice of Nand Nj, 

the coupling at the fixed point, I::t*, can be made arbitrarily small [3], making a per-

turbative analysis reliable. Such a theory is massless and conform ally invariant in 

the infrared. It is asymptotically free, but without confinement or chiral symmetry 

breaking. 

As Nj is reduced, I::t* increases. At some critical value of Nj (NJ) there 

will be a phase transition to the chirally asymmetric and confined phase. It is an 

important problem in the study of gauge field theories to determine NJ and to 

characterize the nature of the phase transition. 

In a recent letter [4], we suggested that the phase transition takes place at 

a large enough value of NJ so that the infrared fixed point I::t* reliably exists and 

governs the phase transition. The transition was then analyzed using the ladder 

expansion of a gap equation, or equivalently the CJT effective potential [5]. It was 

argued that confinement effects can be neglected to estimate NJ and to determine 
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the nature of the transition. It was then shown that the chiral order parameter 

vanishes continuously at N j -t NJ from below, but that the phase transition is 

not conventionally second order in that there is no effective, low energy Landau­

Ginzburg Lagrangian, i.e. the correlation length does not diverge as the critical 

point is approached. 

Once chiral symmetry breaking sets in, the quarks decouple at momentum 

scales below the dynamical mass leaving the pure gauge theory behind. The effective 

coupling then grows, leading to confinement at a scale on the order of the quark 

mass. Thus for Nj just below NJ, the fixed point is only an approximate feature 

of the theory governing momentum scales above the dynamically generated mass. 

This is adequate, however, since it is this momentum range that determines NJ and 

the character of the transition. 

Our discussion of this phase transition paralleled an analysis of the chiral 

transition in 2 + 1 dimensional gauge theories with Nj quarks [6]. Using a large N j 

expansion it was found [7] that the effective infrared coupling runs to a fixed point 

proportional to l/Nj. As N j is lowered this coupling strength exceeds the critical 

coupling necessary to produce spontaneous symmetry breaking. It was argued that 

this criticall/Nj coupling lies in a range where the large N j expansion is reliable [8]. 

These conclusions were also supported by lattice simulations [9]. It was then noted 

that as in the case of the 3+1 dimensional SU(N) theory, this phase transition is 

not conventionally second order [6]. 

For QeD the study of the chiral phase transition as a function of N j is of 

theoretical interest, but is unlikely to shed direct light on the physics of the real 

world. There remains the possibility, however, that if technicolor is the correct 
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framework for electroweak symmetry breaking, the transition could be physically 

relevant. In a recent letter [10], it was pointed out that in an SU(2) technicolor 

theory, a single family of techniquarks (NJ = 8) leads to an infrared fixed point 

near the critical coupling for the chiral phase transition. This can provide a natural 

origin [11] for walking technicolor [12] and has other interesting phenomenological 

features. 

In this paper, we explore further the features of the chiral phase transition 

as function of NJ. In Section 2, we summarize the properties of an SU(N) gauge 

theory with NJ massless quarks, and describe the existence and properties of an 

infrared (IR) stable fixed point. In Section 3, we review chiral phase transition 

lore in SU(N) gauge theories, both at zero temperature and finite temperature. 

We present our study of the chiral phase transition in Section 4. We examine 

the character of the phase transition by computing the quark-antiquark scattering 

amplitude for NJ > NJ (0'* < O'c) in the RG improved ladder approximation. We 

observe that for 0'* -+ O'c from below, there are no light scalar or pseudo-scalar 

degrees of freedom, showing that the phase transition is not conventionally second 

order. A light spectrum, in addition to the Goldstone bosons, does exist in the 

broken phase, and we describe what is currently known about it. In section 5, we 

include the effects of higher order contributions to both the RG f3 function and 

the estimate of the critical coupling, and then discuss the reliability of our results. 

In Section 6, we summarize our results, compare them to those from other recent 

studies of SU(N) theories, and make some comparisons of our work to the phase 

structure of supersymmetric gauge theories. In an appendix, we discuss infrared. 

and collinear divergences, and issues of gauge invariance arising in the study of the 
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quark-antiquark scattering amplitude. 

2 Features of an SU(N) Gauge Theory with Nt Flavors· 

The Lagrangian of an SU(N) gauge theory is: 

(1) 

where 'IjJ is a set of NJ 4-component spinors, the Ta are the generators of SU(N), 

and g(J.l) is the gauge coupling defined by integrating out momentum components 

above J.l. With no quark mass, the quantum theory is invariant under the global 

The RG equation for the running gauge coupling is: 

(2) 

where a(ll) = g2(J.l)/47r. With NJ flavors of quarks in the fundamental representa-

tion, the first two coefficients are given by 

1 
b = - (l1N - 2NJ) 

67r 
(3) 

(4) 

These two coefficients are independent of the renormalization scheme. The theory 

is asymptotically free if b > 0 (NJ < 121 N). At two loops, the theory has an infrared 

stable, non-trivial fixed point if b > 0 and c < o. In this case the fixed point is at 

b 
a* = - - . 

c 
(5) 

The fixed point coupling a* can be made arbitrarily small by taking (l1N /2-

N J) / N to be small and positive [3]. This can be achieved either by going to large N 
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· and Nj with the ratio fixed, or by analytically continuing in Nj.With the coupling 

taken to run between zero in the ultraviolet and a* in the infrared, the higher order 

terms in (3(a) can then reliably be neglected. The theory is only weakly interacting. 

in the infrared, so that there is no chiral symmetry breaking or confinement. 

At two-loops the solution of the RG equation can be written as: 

(6) 

where a = a(q). For a, a(J.l) < a* we can introduce a scale defined by 

[
-1 (a* - a(J.l)) 1] 

A = J.l exp b a* log a(J.l) - b a(J.l) , (7) 

so that 

~ = b log (-Aq ) + ~ log ( ~ ). 
a a* a* a 

(8) 

Then for q ~ A the running coupling displays the usual perturbative behavior: 

1 
(9) a~ blog(f) , 

while for q ~ A it approaches the fixed point a*: 

(10) 

Thus for N j in the range where an infrared fixed-point exists, A represents the 

intrinsic scale of the theory: above the scale A the coupling becomes asymptotically 

free, while below A the coupling rapidly approaches the infrared fixed-point. 

It is interesting to note that the solution for a = a(q) can be written generally 

as 

(11) 
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where W(x) = F- 1 (x), with F(x) = xex , is the Lambert W function [13], [14] . In 

the limit of small x, W(x) ~ x, giving Eq. (10) for q ~ A. In the limit of large x, 

W(x) ~ log x, giving Eq. (9) for q ~ A. 

3 Chiral Symmetry Breaking 

The physics of an SU(N) gauge theory, even at zero temperature, depends strongly 

on the number of massless flavors. As we have just noted, if (llN /2 - Nj)/ N 

is small, the coupling remains small at all scales and the theory neither confines 

nor spontaneously breaks chiral symmetry. The quarks and gluons remain massless 

and the theory is governed by an infrared fixed point and is therefore conformally 

invariant in the infrared. 

For N j small compared to llN /2, the situation is quite different. With 

Nj = 0, lattice simulations indicate that the theory confines producing a physical 

spectrum of massive glueballs. In the case of real-world QCD (N = 3 with two light 

flavors), confinement and the spontaneous breakdown of the chiral symmetry from 

SU(2)L x SU(2)R X U(1)L+R to SU(2)L+RX U(1)L+R are approximate experimental 

features, seen also in lattice simulations. Small Nj can also be explored by taking 

the large N limit with Nj fixed. There the chiral symmetry is U(Nj)L X U(Nj)R, 

the chromodynamic anomaly being irrelevant to leading order. It was was shown 

by Coleman and Witten [15] that under reasonable assumptions, confinement then 

necessarily implies the spontaneous breaking of U(Nj)L x U(Nj)R to U(Nj)L+R. 

These two different phases of a zero-temperature SU(N) theory can be char­

acterized by a simple chiral order parameter, the expectation value of the quark 
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bilinear 

(12) 

a.k.a. the quark condensate. For some range of (lIN /2 - N f) / N small, the order 

parameter vanishes, while for Nf small compared to lIN /2, it is non-vanishing. 

The location and character of the transition constitute an important and unresolved 

problem in the study of gauge field theories. This problem has been studied by the 

continuum gap equation method, by the consideration of instanton configurations, 

and by lattice simulations. After summarizing the results ·of the first approach here, 

we will comment on the other approaches and compare the results. 

It is also interesting to compare this phase transition with the finite temper­

ature transition of an SU(N) gauge theory. There, the transition is known to be 

second order [16] for Nf = 2 and has been argued to be strongly first order [17] 

for Nf ~ 3. An important distinction between finite and zero temperature is that 

at finite temperature, the quarks are screened at distance scales large compared to 

the inverse temperature. This is because in Euclidean field theory at finite temper-

ature, the integra} over the energy is replaced by a sum over Matsubara frequencies 

given by 2nrrT for bosans and (2n + l)rrT for fermions, where n is an integer. 

Only the n = 0 bosons survive at large distances. Thus to characterize a finite 

temperature transition in which the order parameter vanishes continuously, it isn't 

necessary to consider the quarks or fermionic bound states of quarks. This is not 

the case in the zero-temperature transition to be considered here. Furthermore, at 

zero temperature quarks experience long range interactions, which are screened at 

finite temperature. These differences have important consequences. 
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4 The Gap Equation with an Infrared Fixed Point 

We examine the chiral phase transition by making a set of simple assumptions whose 

validity we will examine later. First of all, we assume that the transition t9-kes place 

at a value of Nj such that the infrared coupling is reliably governed by the two-loop 

fixed point described above. Even though this may not be a very small coupling, 

we assume that the transition may be studied by focusing on the underlying quark 

and gluon degrees of freedom, ignoring other bound states or resonances that might 

be formed. Next we assume that the transition is governed to first approximation 

by a gap equation in RG-improved ladder approximation. The most attractive 

channel then corresponds to the breaking pattern SU(Nj)L X SU(Nj)R X U(l)L+R 

to SU(Nj)L+R X U(l)L+R. 

In the broken phase, a common dynamical mass ~(p), with p the magnitude 

of a Euclidean momentum, will then be generated for all the Nj quarks. It can be 

taken to serve as the order parameter for the chiral phase transition, and is related 

simply to the quark condensate. Although this quantity, unlike the quark conden­

sate, is gauge dependent, it is possible to extract gauge-independent information 

from it. 

With only the quark and gluon degrees of freedom employed, an analysis of 

the gap equation leads to the conclusion that the chiral transition is one in which 

the order parameter vanishes continuously at the transition. Near the transition, 

~(p) is small compared to the intrinsic scale A, and the equation can be linearized 

to study the momentum regime ~(p) < p < A that dominates the transition. At 

low momenta the running coupling a(k) appearing in the gap equation approaches 
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its fixed point value et*. It is well known that the gap equation has non-vanishing 

solution only when this coupling exceeds a gauge-invariant critical l value 

7r 27r N 
(13) 

It can be shown that When the coupling exceeds this critical value, the CJT effective 

potential [5] becomes unstable at the origin, indicating that a chirally-asymmetric 

solution is energetically favored and therefore represents the ground state of the 

theory. 

Setting Q* equal to etc gives an estimate [4] of the critical number of flavors 

NC = N (100N
2 

- 66) 
f 25N2 - 15· ' 

(14) 

above which there is no ·chiral symmetry breaking. Note that the ratio NJ/N is 

predicted to be very close to 4 for all N. 

We next discuss the critical behavior at this transition. Since the infrared 

behavior is governed by the fixed point et*, we can get a simplified look at the tran-

sition by taking the coupling to be constant and equal to et* > etc in a momentum 

range up to some cutoff A* < A. The well-known solution to this simplified model 

(often referred to in the literature as quenched QED) is a non-vanishing dynamical 

mass E(p) falling monotonically as a function' of p from some value E(O) [19, 20]. 

For et* -+ etc from above (Nf -+ NJ from below), E(O) exhibits the behavior 

(15) 

Thus the order parameter E(O) is predicted to vanish non-analytically as et* -+ et~. 

1 A more general definition [18] of the critical coupling is that the anomalous dimension of-;ftf; 
becomes 1. 
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We expect a similar critical behavior in the full theory. After all, the intrinsic 

scale A introduced in Eq. (7), where a(A) ~ 0.78 a*, plays the role of an ultravi-

olet cutoff. Asymptotic freedom sets in beyond this scale and the dynamical mass 

function falls rapidly (rv 1/p2). Indeed we find that with a running coupling the 

critical behavior is exponential as above, but that the coefficient in the exponential 

depends on the details of physics at scales on the order of A. It is not universally 

-Jr. 

This can be understood analytically 111 the following manner. Following 

Ref. [21], the gap equation can be converted to differential form with appropriate 

boundary conditions, and the solution to the linearized equation can be written as 

c2:(0)2 I P dk V 2:(p) = sin -k a(k)/ac - 1 
P aI:(O) 

(16) 

for momenta p below the scale Ac at which a(Ac) = ac, where c is chosen so that 

2:(2:(0)) = 2:(0). We have dropped terms explicitly proportional to derivatives of 

a(k) since the coupling is near the fixed point in this range and we have taken 

the lower limit of the integral to be of order 2:(0) (a = 0(1)). For k >' Ac , the 
¢ 

solution takes a different form, expressible in terms of a hyperbolic sine function 

when the running is slow. The two solutions must match at p = Ac and the upper 

solution must satisfy the ultraviolet boundary condition. Note that Ac/ A vanishes 

like (r - l)l/ba* as r -+ 1, where r == a*/ac. 

The matching condition at Ac says simply that 

l Ac dk V 
-k a(k)/ac - 1 

aI:(O) 
(17) 

takes on some value depending on the details of the upper solution. It can be 

seen to be finite in the limit l' -+ 1 and it must be less than Jr if the' dynamical 
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mass is to remain positive for all momenta. (Solutions with nodes also exist, but 

a computation of the vacuum energy [5, 22] indicates that the nodeless solution 

represents, the stable ground state.) Because a(k) ~ a* for small momenta, it 

can then be seen that 1/ 10g(Ac/.B(O)) vanishes like Jr=l as r -t 1. Since Ac/ A 

behaves like (r - l)l/ba., it follows that 1/ 10g(A/.B(O)) also vanishes like Jr=l as 

r -t 1. 

This can also be seen in a direct, numerical solution of the integral gap 

equation. In Landau gauge and after Wick rotation to Euclidean space, this equation 

can be written in the form 

.B(p) = (18) 

where M = max(p, k) and the approximation a((p - k)2) ~ a(M2) has been made 

before doing the angular integration. We solve this equation with a numerical 

ultraviolet cutoff much larger than A and plot 10g(.B(O)/ Ac) versus 1/0=1 in 

Figure 1. The result is insensitive to the numerical cutoff and exhibits straight line 

behavior as r -t 1. The slope of the line is O.827r. If the theory is modified in 

some way at scales on the order of A, straight line behavior is still exhibited, but 

with a slope depending on the details of the modification. Thus the only feature of 

the critical behavior determined purely by the infrared, fixed point behavior is that 

1/ 10g(A/.B(O)) vanishes like yr:--=-r as r -t 1. 

Below the scale of the dynamical mass .B(p), the quarks decouple, leaving a 

pure gauge theory behind. One might worry that this would invalidate the above 

analysis since it relies on the fixed point which only exists when the quarks con-

tribute to the (3 function. This is not a problem, however, since when .B(O) ~ A, 
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the dominant momentum range in the gap equation, leading to the above critical 

behavior (15), is E(O) < p < A. In this range, the quarks are effectively massless 

and the coupling does appear to be approaching an infrared fixed point. Below the 

scale E(O) confinement sets in. The confinement scale can be estimated by noting 

that at the decoupling scale E(O), the effective coupli~g constant is of order Q'c. A 

simple estimate using the above expressions then shows that the confinement scale 

is roughly the same order as the chiral symmetry breaking scale, E(O). 

If N f .is reduced sufficiently below NJ so that Q'* is not close to Q'o both 

E(O) and the confinement scale become of order A. The linear approximation to the 

gap equation is then no longer valid and it is no longer the case that higher order 

contributions to the effective potential can be argued to be small. The methods of 

this paper are then no longer useful. 

From the behavior of E(O) near the transition, the corresponding behavior 

of the Goldstone boson decay constant, the quark condensate, and other physical 

scales can be estimated. We return to this question after considering further the 

nature of the chiral phase transition we have just described. 

The smooth vanishing of the order parameter E(O), Eq. (15), suggests that 

the chiral symmetry phase transition at Nj = NJ (Q'* = Q'c) might be second order. 

In a second order transition, however, an infinite correlation length is associated 

with a set of scalar and pseudoscalar degrees of freedom, with vanishing masses, 

described by an effective Landau-Ginzburg Lagrangian. In the broken phase, the 

Goldstone bosons are massless and the other scalar masses vanish at the transition. 

There are no other light degrees offreedom. In the symmetric phase, the scalars and 

pseudoscalars form a degenerate multiplet. The situation here is quite different. We 
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first demonstrate this by showing that in the symmetric phase, there are no light 

scalar and pseudoscalar degrees of freedom. We then comment more generally on 

the physics of the transition. 

4.1 The Symmetric Phase 

To search for light, scalar and pseudoscalar degrees of freedom in the symmet-

ric phase, we examine the color-singlet quark-antiquark scattering amplitude in the 

same (RG-improved ladder) approximation leading to the above critical behavior. If 

the transition is second.order, then poles should appear which move tOo zeto momen-

tum as we approach the transition. We take the incoming (Euclidean) momentum 

of the initial quark and antiquark to be q/2, but keep a non-zero momentum trans-

fer by assigning outgoing momenta q/2 ± p for the final quark and antiquark. Any 

light scalar resonances should make their presence known by producing pole in the 

scattering amplitude (in the complex q2 plane). 

If the Dirac indices of the initial quark and antiquark are oX and p, and 

the those. of the final state quark and antiquark are a and T, then the scattering 

amplitude can be written for sufficiently small q as: 

(19) 

where the dots indicate pseudoscalar, vector, axial-vector, and tensor components, 

and we have factored out 1/p2 to make T(p, q) dimensionless. We contract Dirac 

indices so that we obtain the Schwinger-Dysoll (SD) equation for the scalar s-channel 

scattering amplitude, T(p, q), containing only t-chan!\el gluon exchanges. If p2 ~ q2, 

then q2 will simply act as an infrared cutoff in the loop integrations. 
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The SD equation in the scalar channel is: 

T(p, q) 

For the purpose of this discussion we neglect the running of the gauge coupling Q 

up to the scale A*. This is a good approximation at the low momenta of interest 

here, where the coupling is near the infrared fixed point Q*. For convenience, we use 

Landau gauge (.; = 1) where the quark wavefunction renormalization vanishes. The 

issue of gauge invariance is addressed in the Appendix. The first term in Eq. (20) is 

simply one gluon exchange, while the second term arises from a chi rally symmetric, 

four-quark interaction, i.e. a Nambu-Jona-Lasinio (NJL) [23] interaction, which 

we have introduced here for purposes of this analysis. It allows us to make contact 

with the familiar study of light degrees of freedom in the NJL theory when it is 

near-criticaL 

For momenta p2 > q2, Eq. (20) can be converted to a differential equation: 

(21 ) 

with appropriate boundary conditions determined from Eq. (20). The solutions of 

Eq. (21) have the form. 

(22) 

where the coefficients A and B are functions of q2j A;, and for Q* < Qc, 

(23) 
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The coefficients A and B can be determined by substituting the solution back into 

Eq. (20). This gives: 

(24) 

and 

(25) 

where 

A == [~+ ~71]2 a 2 2"/ , (26) 

and 

(27) 

If we denote the location of the poles of the functions A and B in the complex 

q2 plane by Q6, we then have 

(28) 

We see immediately that as A --+ Aa (the critical NJL coupling) for et* < etc the pole 

approaches the origin Q6 = 0, indicating the existence of light degrees of freedom. 

This is to be expected for a second order phase transition. As et* is increased the 

corresponding particles become broad resonances [24]. Of course in this region our 

analysis is not complete, precisely because of the existence of the light scalar and 

pseudoscalar degrees of freedo!ll. These light degr-ees of freedom must be incor-

porated into the analysis, for example they will have an effect on the two loop f3 

function. Furthermore as discussed by Chivukula et. al. [25] one generally expects 

that, with more than two flavors of quarks, as A is tuned towards Aa the theory 
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undergoes a Coleman-Weinberg transition [26] to the chirally broken phase before 

A reaches AO'. 

Now consider the limit 1] ~ 0 (a* -+ a c), with A < 1/4, we have 

Iq51 -+ A~ ( 1 + 1/41]_ A) * 
-+ A~ exp (1 _4 4A) . (29) 

Thus we see that at a* -+ a c , with A < 1/4, there are no poles in the complex q2_ 

plane with q;5 ~ A*. There are therefore no light scalar and pseudoscalar degrees 

of freedom to constitute an effective Landau-Ginzburg theory, so the chiral phase 

transition is not second order along the line a* = a c . This is in agreement with the 

analysis of Ref. [27]. 

Now imagine starting out with a* < a c and A ~ AO', so that we have a 

light scalar resonance, and then dialing the parameters so that a* increases and A 

decreases in such a way that we approach the critical line a* = a c . We then see 

from Eqs. (28) and (27) that we must first cross the line A = A*, and that as we 

approach this line, the mass of the scalar grows and actually diverges. Thus the 

scalar resonance disappears from the physical spectrum before we reach a* = a c . 

Even before we reach this point, the width of the scalars becomes as large as their 

mass, and they can no longer be considered resonances. 

There is nothing special about the scalar and pseudoscalar channels in the 

above analysis. A similar analysis of the other channels, such as vector and axial-

vector, would also reveal that there are no light excitations in the symmetric phase 

near the critical coupling a c • That this should be the case is not surprising. With 

the transition governed by a long-range gauge force with an infrared fixed point, 
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approximate conformal invariance should be exhibited at momentum scales small 

compared to A. in the symmetric phase. (For further discussions on this point see 

Ref. [28].) Thus no light scales will be present, in contrast to phase transitions 

governed by short range forces as in the NJL or the finite temperature theories. 

4.2 The Broken Phase 

In the broken phase near the transition, one light scale, ~(O), appears. It is therefore 

natural (in the assumed absence of instanton effects) to expect that the entire 

/ physical spectrum of the theory will be set by ~(O) and scale to zero with it as 

N f -+ N'j from below. This point has been stressed recently by Chivukula [29]. 

Thus there will clearly be no effective Landau-Ginzburg Lagrangian. No finite 

set of light degrees of freedom can be isolated in the broken pha.se in the limit 

Nf -+ NJ, and no light degrees of freedom (other than quarks and gluons) exist in 

the symmetric phase! 

Within this general picture, it is important to describe the spectrum of res­

onances in more detail. If, for example, a near-critical theory is the basis for a 

technicolor theory of electroweak symmetry breaking [10], then the the light scale 

:E(O) will correspond to the electroweak scale and the spectrum of resonances at this 

scale will have a direct im pact on precision electroweak measurements. In partic­

ular, the S parameter [30] will depend sensitively on this spectrum. An especially 

interesting question in this regard is whether parity doubling or even inversion of 

parity partners appears in this light spectrum as NJ is approached. 

The Goldstone boson decay constant F'Jr is also proportional to ~(O). A 

simple dimensional estimate suggests that F; ~ N~2(0)/167r2. Because of the 
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dominance of the fixed point at scales below A, this is clearly a "walking" theory. 

If the coupling stays close to a c then the dynamical mass E(p) falls roughly like 

lip in this range. As a consequence, the condensate (qiqk) is enhanced well above 

the value it would have in a QeD-like theory. A simple estimate gives < qiqk >~ 

NE(0)2A/16rr2. 

Finally, it is important to note that with the entire spectrum of physical 

states collapsing to zero with E(O) at the transition, the analysis of the transition 

using only the quark and gluon degrees of freedom is open to question. It seems 

reasonable, however, to conjecture that these states will not be important at the 

momentum scales E(O) < k < A dominating the transition. Some evidence for this 

is provided by estimates of higher order effects to which we now turn. 

5 Higher Order Estimates 

We have so far analyzed the chiral symmetry breaking phase transition using the 

ladder gap equation, i.e. the SD equation with the lowest order kernel, and the 

running gauge coupling determined by the two-loop (3 function. In order to consider 

higher order effects we first develop a gauge-invariant technique to estimate the 

critical coupling without relying on the intricacies of the SD equation. 

In Ref. [31], it was noted that to lowest order the SD criticality condition 

can be written in the form 

1'(2 - 1') = 1 , (30) 

where l' is the anomalous dimension of the quark mass operator. To all orders in 

perturbation theory, this condition is gauge invariant (since l' is gauge invariant) 
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and is equivalent to the condition [18] / = 1 mentioned previously in the text. 

However if these conditions are truncated at a finite order in perturbation theory . 
they lead to different results. We will take Eq. (30) to define the critical coupling 

order by order, since it allows us to reproduce the known leading order result. 

Through three loops / is given in the MS scheme by [32]. 

(31) 

where 

/0 
2rr 

(32) 

/1. 
_1_[3 C (R)2 _ 10 C2(R) Nf 97 C2(R) N] (33) 
16 rr2 2 3 + 3 

/2 
_1_[129C (R)3 _ 70C2(R) NJ _ 129C2(R)2 N 11413C2(R) N 2 

64 rr3 2 27 2 + 54 . 

+C2(R)NfN (_5;76 
-48((3)) + C2(R)2 Nf (-46+48((3))] (34) 

Inserting this result in Eq. (30) and truncating to one-loop we find 

(35) 

Solving for 0' we find a one-loop estimate of the critical coupling that agrees with 

standard result: 

3(N2-1) 
(36) 

At two-loops the critical condition is 

(37) 

Solving for 0' we find a two-loop estimate of the critical coupling: 
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The + sign gives the positive root. We compare this with the one-loop estimate by 

taking N large and using the value Nf ~ 4N corresponding to criticality: 

(2) '" (JI1868 - 72) 7r '" 1.67 
a c '" 69N '" N . (39) 

Numerically it can be seen that the O(a2
) terms in the criticality condition, Eq. 

(37), evaluated at a = aF) are typically about 25% to 30% of the leading term for 

Nf ~ 4N. It can also be seen numerically that for for Nf ~ 4N the four-loop term 

[32] in 'Y is larger than the three-loop term, so it is not appropriate to go beyond two 

loops in this expansion for these values of Nf, and we should only use the three-loop 

term as an estimate of the error in our calculation. 

Through three-loops, the f3 function is given by 

where band c are given by Eqs. (3) and (4), and in the MS scheme, 

d ( 40) 

Since the three-loop term is scheme dependent we cannot obtain a scheme indepen-

dent answer without going to the same order in f3 and 'Y, so we will only use the 

three-loop term for error estimates. 

In Table 1 we list some numerical results. We have computed the value of 

Nj for SU(N) gauge theories for values of N ranging form 2 to 10, showing the 

results at different orders in perturbation theory. In section 4 (using the leading 

order estimate of the critical coupling) it was shown that Nj goes like 4N for large 
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lVc lV, (1,2) lVJ (2,2) lV, (2,3) (1) 
O'c 

(2) 
O'c 

2 7.86 8.27 7.12 1.4 1.11 
3 11.9 12.4 10.9 0.785 0.595 
4 15.9 16.6 14.6 0.559 0.412 
5 20.0 20.8 18.3 0.436 0.317 
6 24.0 24.9 22. 0.359 0.258 
7 28.0 29.1 25.7 0.305 0.218 
8 32.0 33.3 29.4 0.266 0.189 
9 36.0 37.4 33.1 0.236 0.166 

10 40.0 41.6 36.8 0.212 0.149 

Table 1: Estimates of lVJ. The two numbers in parentheses give the order used in 
the critical condition on 'Y and the (3 function. The comparison of the (2,2) and 
(2,3) give an estimate of the error in truncating the (3 function at two-loops. 

lV. We see that going ,to two loops in the criticality condition produces a small 

shift in this relation. We also list the estimated value of the critical coupling at one 

and two loops. We see that even though the percentage shift of the value of lVi is 

small, the higher order terms of the beta function make a significant contribution 

at the critical point. For lVc between 3 and 10 we estimate that the error in lVi at 

two-loops is about 12% from the truncation of the (3 function and about 10% from 

the truncation of 'Y, while for lVc = 2 the errors are somewhat larger, around 14% 

from each. It is important to emphasize that these are simply numerical estimates 

of the next to leading contributions. Even at large N, there is no obvious small 

parameter here leading to a controlled expansion. Thus the smallness of still higher 

order terms is not guaranteed. 
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6 Summary and Conclusions 

In this paper, we have explored features of the chiral phase transition in SU(N) 

gauge theories. We have argued that the transition takes place at a relatively large 

value of Nj (NJ ~ 4N) where the infrared coupling is determined by a fixed point 

accessible in the loop expansion of the f3 function, and that the transition can be 

studied using a ladder gap equation. Our higher order estimates suggest that the 

estimate of NJ is good to about 20%. To phrase things in physical terms, the 

. effect of the light quarks is to screen the long range force, eventually disordering 

the system and taking it to the symmetric phase. That the transition takes place 

at a relatively large value of Nj means that the quarks are relatively ineffective at 

long range screening. 

With an infrared fixed point governing the transition, the order parameter 

vanishes in a characteristic exponential fashion and all physical scales vanish in the 

same way. There is no finite set of light degrees of freedom that can be identified to 

. form an effective, Landau-Ginzburg theory. In the symmetric phase (Nj > NJ) , no 

light degrees of freedom are formed as Nj -+ NJ. Thus the transition is continuous 

but not conventionally second order. The validity of the approach is considered by 

estimating higher order terms in both the f3 function and the anomalous dimension 

of the mass operator. 

In Ref. [33], it was noted that single instanton effects in a theory with an 

infrared fixed point seem capable of triggering a chiral phase transition at similarly 

large values of Nj/N. A detailed computation was carried only out for an SU(2) 

gauge theory but the analysis indicated that this could be the case at larger values 
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of N as well. 

It is interesting to compare our results with the phase structure of super-

symmetric SU(N) theories where exact results are available [34]. In such theories 

there is also a large range of Nj where the theory is asymptotically free and an 

infrared fixed point occurs. A transition to a strongly coupled phase occurs at 

NC = 3N/2. Thus it seems plausible that infrared fixed points are fairly f,SUSY 

generic in asymptotically free gauge theories with a large number of flavors. One 

prominent difference between the supersymmetric and non-supersymmetric cases 

is that the strongly coupled phase N + 1 < N j ~ Nf,susy does not have chiral 

symmetry breaking or confinement for N > 3. However a class of supersymmetric 

chiral gauge theories (with antisymmetric tensor fields) have been found [35] where 

the theory does go fro~ an infrared fixed point to confinement upon the removal of 

one flavor. 

The results of this paper can be contrasted with preliminary lattice work 

[36] and the instanton liquid model [37] which suggest that the chiral transition 

takes place at much -smaller values of NJ contrary to earlier lattice results [38]. The 

transition would then be an intrinsically strong coupling phenomenon inaccessible 

to the methods used here. The quarks would have to be much more effective at long 

range screening than indicated by the gap equation, disordering the system even 

in the presence of a strong, attractive long range force. Further work on all these 

approaches will be required to help to resolve this difference. 

Appendix - Gauge Invariance and Collinear Divergences 

We first discuss the gauge dependence of the quark-antiquark scattering am-
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plitude used in Section 4 to demonstrate the absence of light excitations in the 

symmetric phase. We will then discuss the presence of collinear divergences in this 

amplitude. To demonstrate gauge invariance to leading order, we follow the analysis 

of [39]. As was done before we will take the incoming (Euclidean) momentum of 

the initial quark and antiquark to be q/2, and have a non-zero momentum transfer 

by assigning outgoing momenta q/2 ± p for the final quark and antiquark. The SD 

equation in the scalar channel (and in a covariant gauge with gauge parameter ~) 

IS: 

T(p, q) 

( 41) 

The renormalization factors ZI, Z2, Z3, and Z4 correspond to the gauge vertex, 

the quark wavefunction, the gauge boson wavefunction, and the four-quark vertex 

respectively; and 

1r 
(42) 

Using the definition of the renormalized couplings 

( k) _ 9 Zt{p, k) 
gR p, - JZ3(p - k) Z2(k)Z2(P) 

(43) 

A Z4(P, k) 
AR(p, k) = Z2(k)Z2(P) ( 44) 

and the approximations 

(45) 
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and 

(46) 

we can perform the angular integrations to obtain 

T(p, q) = 

( 47) 

. In order to get a gauge invariant result, it is helpful to divide the scattering am-

plitude by the gauge dependent normalization factors of the four quark legs, so we 

introduce 

( 48) 

We then have 

T(p, q) -= 

, (49) 

where we have used the fact that O'(p) approaches a fixed point for p ~ A. Here we 

will be satisfied with a result to leading order in O'*,.neglecting terms suppressed 

by 0';, ,X2, and O'*A. With this approximation we can also neglect the running of 'x. 

This is actually not a bad approximation, since in the infrared A(p) approaches a 

fixed-point given by equation (27). Now the RG solution for the quark wavefunction 

renormalization is: 

(.50) 
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where 

(51) 

Next we substitute the form 

(52) 

into equation (49). Integrating this equation we see that to leading order in 0'* the 

~ dependent terms take the form 

(53) 

So our solution for the scattering amplitude (equations (24) and (25)) and the 

conclusion that there are no light scalar degrees of freedom as one approaches the 

critical point from the symmetric side of the critical curve are gauge invariant results 

to leading order. 

We I!ext discuss the collinear divergences present in T(p, q). Consider the 

differential cross-section for the scattering of the quark and antiquark at 0(0:3 ). If 

the invariant amplitude at 0(0'2) is given by M, then from equations (22)-(25) we 

have, to next-to-leading order, 

The differential cross section is: 

(55) 

which gives 

. (56) 
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This is not, however, a physically observable cross-section. To obtain a physically 

observable cross-section we must combine this with the differential cross- section 

where a collinear gluon (with momentum k and implicit summation on the gauge 

index a) is emitted: 

(57) 

A physical experiment cannot separately resolve the collinear gluon and quark, so it 

is appropriate to frame the discussion in terms of the momentum of the observed jet 

(we consider first the case where k is approximately collinear with Q2, so qj = q2 + k). 

Changing variables we have 

Thus, to see the cancellation of the collinear divergence we must add 1M 12 to the 

final integral in equation (58). 

In order to project out the scalar channel of the gluon emission amplitude, 

we must contract the amplitude with opA/4 and [,t>, 'Y.6]<7r/16, where p and A (0" and 

T) are the Dirac indices of the initial (final) quark and ·antiquark. We then have 

(59) 

where fa is the gluon polarization vector. Squaring and summing over gluons and 

gluon polarizations we have: 

(60) 

Putting the gluon on shell (k 2 = 0), and performing the integration (with the 

requirement that the gluon momentum k be within a small cone of opening angle 0 
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around the quark momentum q2) we have: 

where we have only kept terms which diverge as q~ ---+ O. When combined with the 

integration over the region of phase space corresponding to k being approximately 

collinear with ql, and setting ql = q2 = q, we see that these terms cancel with the 

In(q2) dependence in equation (54), as expected [40]. 
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Figure Caption 

Figure 1. Numerical solution of the Schwinger-Dyson equation with a running 

coupling possessing an infrared fixed point. Here Eo is the dynamical mass and r 

is the ratio of the fixed point coupling to the critical coupling. 
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