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Abstract 

Spectra of glueball masses in non-supersymmetric Yang-Mills theory in 

three and four dimensions have recently been computed using the conjectured 

duality between superstring theory and large N gauge theory. The Kaluza­

Klein states of supergravity do not correspond to any states in the Yang-Mills 

theory and therefore should decouple in the continuum limit. On the other 

hand, in the supergravity limit g}MN --7 00, we find that the masses of the 

Kaluza-Klein states are comparable to those of the glueballs. We also show 

that the leading (g}MN)-l corrections do not make these states heavier than 

the glueballs. Therefore, the decoupling of the Kaluza-Klein states is not 

evident to this order. 



1 Introduction 

Spectra of glueball masses in non-supersymmetric Yang-Mills theory in three and four 

dimensions have recently been calculated [1] using the conjectured duality between string 

theory and large N gauge theory [2-5]. The results are apparently in good numerical 

agreement with available latt5ce gauge theory data, although a direct comparison may 

be somewhat subtle, since the supergravity computation is expected to be valid for large 

ultraviolet coupling A = g~MN, whereas we expect that QCD in the continuum limit is 

realized for A -t 0 [5,6]. As explained in [6,1], the supergravity computation at A » 1 

gives the glueball masses in units of the fixed ultraviolet cutoff Auv. For finite A, the 

glueball mass M is expected to be a function of the form 

(1.1 ) 

In the continuum limit Auv -t 00, M should remain finite and of order AQCD . This 

would require F(A) -t 0 as A -t O. In [1], the leading string theory corrections to the 

masses were computed and shown to be negative and of order A -3/2, in accordance with 

expectation. 

Witten has proposed [5] that three-dimensional pure QCD is dual to type lIB string 

theory on the product of an AdS5 black hole and S5. This proposal requires that certain 

states in string theory decouple in the continuum limit A -t O. One class of such states 

are Kaluza-Klein excitations on S5. The supergravity fields on the AdS5 black hole x S5 

can be classified by decomposing them into spherical harmonics (the Kaluza-Klein modes) 

on S5 [7,8]. They fall into irreducible representations of the isometry group 50(6) of S5, 

which is the R-symmetry of the four-dimensional .N = 4 supersymmetric gauge theory 

from which QCD3 is obtained by compactification on a circle. Consequently, only 50(6) 
singlet states should correspond to physical states in QCD3 in the continuum limit. These 

are the glueball states studied in [1]. However, we find that, in the supergravity limit, 

masses of the 50(6) non-singlet states are of the same order as the 50(6) singlet states. 

Since these states should decouple in the limit A -t 0, it was speculated in [1] that 

the string theory corrections should make the non-singlet states heavier than the singlet 

states. 

The purpose of this paper is to test this idea. We compute the masses of the 50(6) non­

singlet states coming from the Kaluza-Klein excitations of the dilaton in ten dimensions. 

We find the masses in the supergravity limit to be of the same order as those of the 50(6) 
singlet states. We then calculate the leading string theory corrections to the masses. We 

find that the leading corrections do not make the Kaluza-Klein states heavier than the 
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glueballs. Therefore, the decoupling of the Kaluza-Klein states is not evident to this 

order. This suggests that the quantitative, agreement between the glueball masses from 

supergravity and the lattice gauge theory data should be taken with a grain of salt. 

2 The Supergravity Limit 

We calculate the masses of the Kaluza-Klein states following the analysis of [1]. Ac­

cording to [5], QCD3 is dual to type lIB superstring theory on the AdS5 black hole x 55 

geometry given by 

d 2 d 2 (b4) 3 X P 2 22 32 
2) 2 = (2 ~) + p - 2" dT + p ?= dXi + do5 , 

is 47fgyMN p - p2 P z=1 

(2.1 ) 

where do5 is the line element on the unit 55 and is is the string length. The horizon of 

the black hole is located at p = b. In order for the geometry to be regular at the horizon, 

the coordinate T must be periodic with period 27f R, where R = (2b )-1. The inverse radius 

R-1 serves as the ultraviolet cutoff of QCD3 ; namely, Auv = (2R)-1 = b. 

To compute the mass of an 50(6) non-singlet state, we express the dilaton field <P as 

(2.2) 

where Yt(05) is the i-th spherical harmonic on 55, and solve the dilaton equation in the 

geometry (2.1). This equation reduces to a second-order ordinary differential equation for 

fo(p); in units in which b = 1, 

(2.3) 

The mass in three dimensions is equal to -k6 [5]. Since the geometry (2.1) is smooth 

everywhere, we require that fo(p) be regular everywhere, and in particular at p = 00 and~ 

at the horizon p = 1. The equation admits a regular solution fo(p) for discrete values of 

k5. This determines the mass spectrum. 

As in [1], we determine M2 = -k5 numerically by the shooting method. We first solve 

the differential equation (2.3) as an asymptotic expansion in p-2 and compute the first 

few terms in the expansion. We then numerically integrate the equation, with boundary 

conditions derived from the asymptotic expansion imposed at a sufficiently large value 

of p (p »k5). The solution must be regular at the horizon p = 1. This requirement 

determines the spectrum of k5. In the numerical evaluation, we find it convenient to set 

the boundary condition to be f~ = 0 at the horizon. As we will show in the Appendix, 

2 



this shooting method can be used to compute k5 and the wavefunction fo{p) to arbitrarily 

high precision. The results of the numerical work are listed in Table 1. As expected, the 

masses are all of the order of the ultraviolet cutoff Auv = b. 

1 0 1 2 3 4 5 6 7 

M? 11.59 19.43 29.26 41.10 54.93 70.76 88.60 108.4 

Mt2 34.53 48.07 63.60 81.11 100.6 122.1 145.6 171.1 
M**2 

I 68.98 88.24 109.5 132.7 157.9 185.1 214.3 245.5 

Table 1: 3d (Mass)2 of the l-th Kaluza-Klein modes on 

S5 and their excited states, in units of b2 

3 Leading String Theory Corrections 

Witten's proposal requires that the Kaluza-Klein states decouple in the continuum 

limit .A -+ O. Here we examine whether this efffect is evident from the leading string 

theory corrections. 

According to [9], the leading (x' = (47fg}MN)-1/2 correction to the AdS5 black hole 

metric is 

(3.1) 

where 

(3.2) 

and, = k((3)d3
• In this geometry, the dilaton is no longer constant, but is given by 

(3.3) 

There is also a correction to the ten-dimensional dilaton action [10,11], 

I - 1 fd10 ;;; [ 1 J.LV£:!.if..£:!.if.. -~<l>W]' dilaton--
167f

G
lO 

Xyg -29 uJ.L'¥uv'¥+,e 2 , (3.4) 

where W is given in terms of the Weyl tensor. In our background and in units where 

b = 1, W = 180/ p16 . The relation between the location of the horizon p= b and the 
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periodicity 21f R of T is also modified to 

( 
15 13 ) 1 R = 1 - -((3)0 +... -. 
8 2b 

(3.5) 

It is the inverse radius R-l that serves as the ultraviolet cutoff of QCD3 . 

To solve the dilaton wave equation in the o'-corrected geometry (3.1), we write 

(3.6) 

where cI>o is the dilaton background given by (3.3), and expand f(p) and k2 in I as 

(3.7) 

Here fo(p) obeys the lowest order equation (2.3) and is a numerically given function, and 

k6 is likewise determined from (2.3). The second-order differential equation obtained from 

the action (3.4) in the background metric (3.1) and dilaton field (3.3) is, in units in which 

b = 1, 

(3.8) 

With fo(p) and k6 given, one may regard this as an inhomogeneous version of the equation 

(2.3). We solve this equation for h(p) and ok2• 

We are now ready to present our results. Let us denote the-lowest mass of the l-th 

Kaluza-Klein state by MI. In units of the ultraviolet cutoff Auv = (2Rtl, with R given 

by (3.5), we find 

M2 
0 11.59 x (1 - 2.78((3)0'3 +--. ·)A&v 

-M; 19.43 x (1 - 2.66((3)0'3 + .. ·)A&v 

M2 
2 29.26 x (1 - 2.62((3)0'3 + .. ·)A&v 

M2 
3 41.10 x (1 - 2.61((3)0'3 + .. ·)A&v 

M2 
4 54.93 x (1 - 2.63((3)0'3 + ... )A&v 

M? 5 70.76 x (1 - 2.66((3)0'3 + ... )A&v 
M2 

6 88.60 x (1 - 2.69((3)0'3 + ... )A&v 

M.2 7 108.4 x (1 - 2.72((3)0'3 + .. . )A&v. (3.9) 
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Similar behavior is observed for the excited levels of each Kaluza-Klein state. 

Thus the corrections do not make the Kaluza-Klein states heavier than the glueballs, 

and the decoupling of the Kaluza-Klein states is not evident to this order. According 

to Maldacena's duality, the).. -1/2 expansion of the gauge theory corresponds to the ct'­

expansion of the two-dimensional sigma model with the AdS5 black hole x S5 as its 

target space. It is possible that the decoupling of the Kaluza-Klein states takes place only 

non-perturbatively in the sigma model. 
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Appendix: The Boundary Condition at the Horizon 

In this appendix, we show that the boundary condition at the horizon p = b used in 

the shooting method [1 J is consistent, and that the eigenvalue k2 and the wavefunction 

J(p) can be evaluated to an arbitrarily high precision using this method. 

In the neighborhood of p = b, the dilaton wave equation takes the form 

(3.10) 

Its general solution is of the form 

J(p) = C1 [1 + a(p - b) + ... J + C2 [log(p - b) + ... J (3.11) 

with arbitrary coefficients C1,2 (the constant a is determined by the wave equation and is 

in general non-zero). The regularity of the dilaton field requires C2 = O. In the shooting 

method, we numerically integrate the differential equation starting from a sufficiently 

large value of p down to the horizon. For generic P, the function thus obtained, when 

expanded as in (3.11), would have C2 =1= O. The task is to adjust k2 so that C2 = O. 
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Since J(p) is divergent at p = b for generic P, it is numerically difficult to impose the 

boundary condition directly at p = b. Instead, in [1] and in this paper, we required f' = 0 

at p = b + t: for a given small t: (for example, t: = O.OOOOOOlb in this paper). By (3.11), 

this condition implies 

(3.12) 

Therefore, C2 c~n be made arbitrarily small by adjusting t:. This justifies the numerical 

method used in [1] and in this paper. 

We thank Aki Hashimoto for discussions on the numerical method. 
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