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Abstract 

It is shown that the one-loop coefficients of on-shell operators of 

standard supergravity with canonical gauge kinetic energy can be reg

ulated by the introduction of Pauli-Villars chiral and abelian gauge 

multiplets, subject to a condition on the matter representations of the 

gauge group. Aspects of the anomaly structure of these theories under 

global nonlinear symmetries and an anomalous gauge symmetry are 

discussed. 
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1 Introduction and preliminaries 

It, was shown in [1] that Pauli-Villars regulation of the one-loop quadratic 

divergences of a general N = 1 supergravity theory is possible. This re

sult was generalized [2] to the regularization of the one-loop logarithmic 

divergences of globally supersymmetric theories, including nonlinear sigma 

models, with canonical kinetic energy for Yang-Mills fields. It was. further 

assumed that the theory was free of gauge and mixed gravitational-gauge 

anomalies. The purpose of the present paper is to generalize further these 

results. 

In section 2 we give a full PV regularization of a general supergravity the

ory with canonical kinetic energ·y for the gauge fields and an anomaly-free 

gauge group. In section 3 we consider anomalies under Kahler transforma

tions, and in section 4 we show how the regularization procedure must be 

modified in the presence of an anomalous U(1) gauge group factor. Our re

sults are summarized in section 5, and some calculational details, as well as 

corrections to [3, 4], are given in appendices. 

We conclude this section with a brief review of the formalism used to 

evaluate the regularized Lagrangian. The one-loop effective action 51 is ob

tained from the term quadratic in quantum fields when the Lagrangian is 

expanded about an arbitrary background: 

1 r <~>(~2 ) 1- e .Cquad(<I>, 8, c) = - 2<I> Z D<I> + H<I> <I>+ 28z- (i .fl>e- Me) 8 

+~czc (b~ +He) c + 0('1/J), (1.1) 

where the column vectors <I>, 8, c represent quantum bosons, fermions and 

ghost fields, respectively, and '1/J represents background fermions that we shall 

set to zero throughout this paper. The fermion sector 8 includes a C-odd 

Majorana auxiliary field a that is introduced to implement the gravitino 

gauge fixing condition. The full gauge fixing procedure used here is described 
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in detail in (3], (4]. The one loop bosonic action is given by 

S1 ~Trln (b~ + H;p).- ~Trln (-i We+ Me)+ ~STrln (b~ +He) 

~STrln (b2 +H)+ T_, (1.2) 

where T_ is the helicity..:odd fermion contribution which contains no quadratic 

divergences, and the helicity-even contribution is given by 

b~ +He - ( -i We+ Me) (i We+ Me). (1.3) 

The background field-dependent matrices H ( cjJ) and b JL ( cjJ) = 8JL + r JL ( cjJ) are 

given in (3], (4], where the one-loop ultraviolet divergent contributions have 

been evaluated. 

We regulate the theory by including a contribution from Pauli-Villars 

loops, regarded as a parameterization of the result of integrating out heavy 

(e.g., Kaluza-Klein or string) modes of an underlying finite theory. The 

signature 'fJ = ± 1 of a PV field determines the sign of its contribution to the 

supertrace relative to an ordinary particle of the same spin. Thus rJ = + 1 ( -1) 

for ordinary particles (ghosts). The contributions from Pauli-Villars fields 

with negative signature could be interpreted as those of ghosts corresponding 

to heavy fields of higher spin. 

Explicitly evaluating (1.2) with an ultraviolet cut-off A and a massive 

Pauli-Villars sector with a squared mass matrix of the form 

M~v = HPv(<P) + (~: ;, ) - HPV + p.' + v, lvl' ~I''» HPV ~ H, 

gives, with H' = H + HPV: 

-I d4xp2dp2STrln (p2 + p,2 + H' + v) + 32?r2 (S~ + T_) 

327r2 (S~ + T_) - J d4xp2dp2STr In (p2 + p,2) 

-I d4xp2dp2STrln [ 1 + (p2 + p,2) -l (H' + v)] . (1.4) 
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s~ is a logarithmically divergent contribution that involves the operator 

GJ.LV = [1\, Dv]: 

2S' - 1 /d4 2d 28 1 G' 1 G'J.£V 327r 1 - - xp P Tr ( 2 2) J.Lv ( 2 2) ' 12 p + J-t p + J-t 

Finiteness of (1.4) when A --+ oo requires 

STrH' = STr (2JiH' + v2
) = STrvH' 

1 
STrH'2 + -STrG'2 + 2t' = 0 6 - ' 

(1.5) 

(1.6) 

where t'_ is the coefficient of InA 2 /327r2 in T _ + T!.:v. The vanishing of STr112
n 

is automatically assured by supersymmetry. Once the remaining conditions 

are satisfied we obtain 

2 Anomaly-free supergravity 

We consider here a supergravity theory in which the Yang-Mills fields 

have canonical kinetic energy. We further assume that there are no gauge or 

mixed gauge-gravitational anomalies: TrTa = Tr( {Ta, Tb}Tc) = 0, where Ta 
is a generator of the gauge group. 

To regulate chiral multiplet loops, we introduce Pauli-Villars chiral su

permultiplets Z~, that transform under gauge transformations like Z1
, Y?, 

that transform according to the conjugate representation, and gauge singlets 

Y 0
, Z 0

. Additional charged fields Xf and U~ transform according to the rep

resentation R~ and its conjugate, respectively, under the gauge group factor 

Ya, and V/ transforms according to a (pseudo)real representation that is 

traceless and anomaly-free. Their gauge couplings satisfy 

L rJ:c~ = L cia C~, (2.1) 
{),A i 
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where 

(2.2) 

for particles transforming according to the representation R (or R), and 

the subscripts i, A, refer to the light fields and to X, U, V, respectively. For 

example, if the theory has 2N1 fundamental representations of ga, (as in 

supersymmetric extensions of the Standard Model) we can take PV fields in 

the fundamental and anti-fundamental representations with signatures that 

satisfy I: .a 'T}~ = N1. If there are 2N1 + 1 fundamental representations, one 

needs an anomaly-free (pseudo)real representation r for some VA such that 

C~ = (2m+ l)Cj. If no such representation exists, the theory cannot be 

regulated in this way. 

To regulate gravity loops we introduce additional gauge singlets </>7 , as 

well as U(l) gauge supermultiplets wa with signature TJ 0 and chiral mul

tiplets za = e8
a with the same signature and U(l).a charge Qa8a.a, such 

that the Kahler potential K(B, iJ) = ~va(B + iJ) 2 is invariant under U(l).a: 
8.aBa = -8.aiJa = iqa8a.B· The corresponding D-term: 

D(B, iJ) = D8D!, D! = -i L K.a8a().B = Q0 V0 (0° + iJa), (2.3) 
.8 

vanishes in the background, but (0° + iJa)/v"i acquires a squared mass 

J.i,~ = (2x)- 1q;va equal to that of wa, with which it forms a massive vector 

supermultiplet, where x = g-2 is the inverse squared gauge coupling, taken 

here to oe a constant. 

Finally, to regulate the Yang-Mills contributions, we include chiral mul

tiplets cp~, cp~ that transform according to the adjoint representation of the 

gauge group. 

We take the Kahler potential1 

1 This choice is by no means unique, only illustrative. 
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+ 2: (eK<p~cp~ + <P~<P~) + 2: (K~ + K~) + 2: IV:I2 

~ a ~ 

K; J;J K.,z~zt + b; { ( K;; - K;K;) z~z~ + h.c.}] + [Z~ I', 

K~>3 [ 2: . . KiJYtYJ- aa (YtY!Ki + h.c.) + IY0al 2 
(1 + a!KiKi)l, 

I,J=~,J 

K~9 2: l5i1Y/Y) + IYil2, Ki = KimKm, (2.4) 
I,J=i,j 

where Kim is the inverse of the metric tensor Kim, the superpotential 

w "'["' z ziy-,13 + 0 zori + 1 "' ( 'P a a+ $ ~a ~a)] PV = ~ ~ J.La{3 a I J.la{3 a 0 2 ~ J.la{3<pa<p{3 J.la{3<pa<p{3 
~ I a 

+~ L [J.L~ (c/>')
2 + J.L~ (l1')

2
] + L (J.L;U1X~ + J.L~(Vl?) 

r Ar 

+ ~ L (aaWiZ~Yoa + wz~~a) + ~z[ztwij 
y2 a=4 

+If l; '1'~-2 [Yt(T.Z)' + g.V.Yo"] + ~ ~c.[Z~[2W, (2.5} 

and gauge field kinetic functions 

where the index a refers to the light gauge degrees of freedom. The function 

K = K ( Z, Z) is the Kahler potential for the light chiral multiplets zi = ( .Zt) t, 

W = W(Z) is the superpotential, and 

Properties of the metric tensor for YI, Yo, are given in Appendix A. The 

matrices J.Laf3, daf3, eaf3, are nonvanishing only when they couple fields of the 

same signature. The parameters J.L, v, play the role of effective cut-offs; they 

are constrained so as to eliminate logarithmically divergent terms of order 
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J.L2 ln A2 in the integral (1.4). The parameters a, b, c, d, e, are of order unity, 

and are chosen to satisfy: 

1, ba:;H = 0, - ~ y 2 2 a = ~ rJa aa = - ' 
et=4 

2e = 4g- 2, 9- L(aa + 9a)2, 
et=4 

The signatures of the chiral PV multiplets satisfy 

1, 

cp- z 
rJa - rJa+2' 

2.1 Quadratic divergences 

U X 
rJa = rJa ' 

z z z 1 'fJl = 'fJ2 = -rJ3 = - . 

(2.8) 

(2.9) 

In [1] it was shown how to regulate the quadratic divergences of supergravity 

that are proportional to2 

STrH = 2 7 . - r 
-10V- 2M + -r + 4K·- V zzVJ.Lzm + 2V + Nc-

2 - J-1 2 

+2N ( V + M 2
- ~) + 2x-1VaDi(Taz)i 

-2~m (e-K AiAm + 'DvziVJ.Lzm), (2.10) 

where N and Nc are the number of chiral and gauge supermultiplets, re

spectively; in the light spectrum. In these expressions, r is the space-time 

curvature, ~m is the Ricci tensor associated with the Kahler metriC Kim,, 

V = V + V is the classical scalar potential with V = e-K AiAi - 3M2, V = 
(2x)- 1VaVa, Va = Ki(Taz)i, and M 2 = e-K AA is the field-dependent 

squared gravitino mass, with 

(2.11) 

2See Appendix D for corrections with respect to [3, 4). Our conventions and notations 

are defined in the Appendices of these papers. 
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where Di is the scalar field -reparameterization covariant derivative. 

In evaluating the effective one-loop action we set to zero all background 

Pauli-Villars fields; then the contribution of these fields to STr H is 

STrHPV = 2 L 1Ja [~va Dp(Taz)P- R~im (AiAme-K + VILziV~tzin) J 
p 

+2 L: 1Jp (v + M2
) - (L: 1]p - L: 11!) ~, (2.12) 

p p Q 

where P refers to all PV chiral multiplets, including (J<l. i,From (2.1) we 

obtain for the relevant elements of the scalar reparameterization connection 

rand Riemann tensor R (see Appendix A): 

DI(Taza)J 

(Rz")5km 

DI(TaYa)J 

Do(TaYa)1 

(RY")5km 

(R;")tkm 

Dc(Taif>)D 

R;km' (RY1 )5km = 0, 
i 2 i 0 ' -Dj(Taz) - aaKj(Taz), DJ(TaYa) = -aa(Taz)l, 

aa (KjDi(Taz)i- Kim(Taz)m + a~KiVa), Do(TaYa)0 = a~Va, 

-R1km- a~8kKim' (RY")8km = a~Kkm, (RY")~km = 0, 

[ 
i 2 ] aa KiRjkm + aa (KkKjm + KjKkm) , a =/= 1, 

(Ta)g + 8EacVa, Rgkm = 8EacKkm' if>c,n =/= Z, Y, (2.13) 

where a'P = 1, a<P = a 6 = 0. Using these relations with (2.9) we obtain an 

overall contribution from heavy PV modes: 

STrHpv = -~ (N'- N~)- 2a (KimV~tziV~tzm- 2V)- 2x-1VaDi(Taz)i 

+2V (N'- a)+ 2M2 (N'- 3a) + 2~m (e-K AiAm + Vvzi1)~tzm), 

a = L1Jcac, N' = L1JP- 2N, N~ = L1J~· (2.14) 
c p ~ 

With (2.10) the finiteness condition STrH' = 0 imposes the constraints 

N' = 7 - N, N~ = - Na, a = 2. (2.15) 
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The vanishing of STr(J.L2 H' +v2 ) in (1.6) further constrains the parameters 

J.L and v. If, for example, we set3 J.l~p = J.L~Oap, Qa = 1, J.l~# = {3:_ J.L, v~ = 

(f3~) 2 IJ.LI 2
, the finiteness constraint requires 

L rJ! (aaf3!) 2 
= N L rJ! (f3!)

2 
+ L rJc (f3c)2 

= 0, 
a=4 a=4 C,ac =0 · 

0 for fixed ac # 0, C # Z 1
, Y1. (2.16) 

As explained in [1] the O(J.L2) contribution to So+ sl = I d4x (.Co+ £1) takes 

the form: 

t 

8K 

(2.17) 

where [5] 

(e= -4, (~ = 0, 

KKQRKTS -e . J.lPSJ.lt'fl, (2.18) 

A2 plays the role of the (matrix-valued) effective cut-off. As emphasized 

previously [1], if there are three or more terms in the sum over a, the sign of 

Ap is indeterminate [5]. 

3The result is unchanged if the parameters p, ---7 p,(z), v ---7 v(z, z) depend on the light 

fields[l]. 
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In the following we require only on-shell invariance,4 so the quadratic 

divergences impose one less constraint than in (2.15). That is, we perform a . 

Weyl transformation to write the one-loop corrected Lagrangian as 

.Ceff = .Ct (gR)- ~STrH12 - E (!:. + V iVP-ztnK·- - 2V) ree 327f2 2 p, zm 

+0 (~~~:) + 0 [ c6:') '] +finite tenns, 

g::V = (1 + E)gp,v' E = 3~:2 (N + N'- Nc- N~- 7), (2.19) 

and we do not require E to vanish. Then the finiteness conditions reduce to 

N' = 3a + 1 - N, N~ =a- 2- Na. (2.20) 

In this case, the third finiteness condition in (1.6) becomes 

STr (2JJ?H' + v2
) = 28Tr (tt~- tt~) (~r +KimV,.ziVp,zm- 2v) = 0. 

(2.21) 

The supertrace on the right hand side vanishes identically because the su

pertraces of the squared mass matrices J.L~v vanish s~parately in the chiral 

(J.L~) and U(1) gauge (tt~) PV sectors. 

2.2 Logarithmic divergences 

l,From the results of [3, 4), if .C(g, K) is the standard Lagrangian [6, 7] for 

N = 1 supergravity coupled to matter with space-time metric gp,v, Kahler 

potential K, and gauge kinetic function !ab(Z) = bab, the logarithmically 

divergent part of the one loop corrected Lagrangian is 

lnA
2 

( AB A ) lnA
2 

.Ceff = .C (gR, KR) + 
32

7f2 X .CA.CB +X .CA + yfg 
32

7f2 L 

4The off-shell divergences are prescription dependent; the extension of this regulariza

tion procedure beyond one loop may require a choice of prescription in which they can 
also be made finite. 
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L Lo + £ 1 + £ 2 + £ 3 + NLx + NcL9 , 

{)£ 

[)cpA' 
(2.22) 

where ¢A is any light field, and5 

Lo = 3Cab' b (wab + h.c.) - 20-y-2 + 10-y-M2 + 5M4 + 88VM2 
a 3 3 3 

4 7x [2 W Wab (Fa - .F-a ) (Fpv .F-pv) V iVp. -mK ] + 6 X ab - PP. - Z PP. a + Z a vZ Z im 

- 7i V ziV zm K-- va Fp.v + ~ (25 V + 10M2) K·- V zmVp. zi 
3 

p. v tm a 
3 

tm p. 

+ 2
3
° (wab + Wab) VaVb + 11VKim.VpziVpzm 

14 ~ . . - -
-3VV + 15Vp.z1VP.ztVvzmvvzn KinKjm. 

(2.23) 

_::_(Fa - iFa) (Fpv + iFpv) V ziVI-LzmK--6 pp. pp. a a v tm 

+~ [x 2WabWb- V (Kim.VpziVpzm + 2V +4M2
)] 

+~ (v +2M2) K·-V -zmvp.zi- iv ziV -zmK--VaFf.LV 3 tm p. 3 f.L v tm a 

+~VM2 + M 4 + ~V ziVI-LziV -zmvv-znK·-K·- (2.24) 3 3 p. v tn )ffl! 

£1 - [wb Di(nz)i Di(Taz)i + h.c.] + ~Vf.LziVtLzm Rfm.jVaDk(Ta-z)i 

+ '!:.v e-KRki_A AnD·(Taz)i + 2iFa D·(T z)iR~- VP.zkvvzm a n t k J f.LV J a tmk 
X 

+V ziVf.LzmR~--V z.evv-znRi_ +V ziV -zmR~- .VP.z.evv-znRi-P. Jmt v tnk f.L v tmJ kn£ 
-V ziV -zmR~- .vv~VP.znRi- + 2e-KV ziVf.LzmRk_ .K-_i A An p. v tmJ kn£ P. · tmJ n k .f. 

(2.25) 

5 See Appendix D for corrections with respect to [3, 4] 
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£2 2_D·(T.z)iV (v ziVP.zmK·- +V+3M2 ) + 2iv ziV :zmv._vapp.v 
3

X t a a p. Jm 3 p. v .t Lim a 

+~Di(Taz)i [(wab + Wb) vb + ixF:vKmjVP.zivv:zm] 

+~ve-KRi.A-)li- ~V iv,.,.zm [e-KRkA AnK·- +D._ (V+3M2
)] 3 J t 3 IJ. n k tm .t Lim 

-~V ziV zmK·-R·- (vJLzjvv:zii -VvzjVJLzii)- ~e-2KRmA AnA·Aj 
3 

p. v tm Jn 3 n m J 

2.- . - 4 . -
-3Vpz'VPzm KimV,.,.z3VJLzn Rjn + 3VV,.,.z'VP.zm ~m,, (2.26) 

£3 V,.,.ziVP.zi R\ tiVvznvvzm Rnkmt 

+e-K [v,.,.ziVJLzi (AiktAnRknti- R~~(AmktAm- AktA)) + h.c.) 
-K 

+ex Va [(Taz)iR// AfAjk + h.c.] + e-2K (RinkiAjkAnAAi + h.c.) 

+e-K (2V ziVp.zm + e-K JiiAm) Rf- Rjk A An 
1J. Jmk t n f 

- (v,.,.ziVJLzm + e-K AiAm) [vi (e-K R~mjAkAif) + h.c.], (2.27) 

L
9 

~KimKjn ( 2~JLziVJLziVvzmvvzn + VJLziVp.znVvzmvv zi) 

1 ( i =:1'il. ) 2 2 -ab 1 ( - ) a b -3 VJLz VP.z Kim +X WabW + 3 Wab + Wab V V 

-~V2 + ~ (v + v) V ziVp.zmK·- - !:._V ziV zmK·- vapJLv 3 3 JL tm 3 p. v tm a 

2 vA V XK V ivJL-m (Fa ·p-a) (Fpv ·p-pv) (2.28) - 3 - 2 im vZ Z PJL + 'l PJL a - 'l a ' 

where F 2 = F:vFf:v with F:v the Yang-Mills field strength, 

1 ( - ) 1 W b = - F · Rb + F · F'Jb - -V Vb a 4 a a 2X a ' (2.29) 

and 
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The renormalized Kahler potential is 

In A 2 
[ K -. . A 2 ] KR K+-- e- A·At3 -2V-10M -4Ka-12V 327r2 tJ a ' 

Kb .!.(Taz)i(n.zyn Kim· (2.31) 
X 

The second term in the expression (2.24) for Leff does not contribute to the 

S-matrix. Since we are only interested in on-shell finiteness, we can drop 

it. We have also dropped total derivatives, including the Gauss-Bonnet term 

which can readily be extracted from the results of [3, 4]: 

r> r,;ln A 
2 

1 ( N. ) ( f.LVpu f.LV 2) ,._,eff~v9 321f248 41+N-3 G r r1wpu-4r rf.Lv+r , (2.32) 

in agreement with other calculations [8]. We similarly drop total derivatives 

in the logarithmically divergent PV contributions. 

The Pauli-Villars contribution to (2.24) is, after an appropriate additional 

space-time metric redefinition, 

Cpv = ;;;In A 
2 

[ , , "' ( p p) z L l v y 
32

1r2 NcL9 + N Lx + 7 TJP L 1 + L2 + L3 + Lw + e e 

' In A 2 - K "' - PQ ( ) +.6.K'C, K = 
32 2 e L TJpApqA , 2.33 

7f P,Q 

where 

(2.34) 

is the shift in .C/ yg due to a shift F(z, z) in the Kahler potential, and [see 

Appendix Band Eq. (B.38)] 

Lw x 2WabWab [2e2 + (d- 2e)2
], 

Le 2iVJ.LziVvzmKimvap;:v +4V (3M2 + v)- 4x2WabWb 

.+x (Fa - iFa) (Fpv + iFpv) V zi1)f.LzmK·-
~ ~ a a v -

+2VVJ.LziVJ.LzmKim- 4.6.vL, (2.35) 
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are the contributions from the gauge kinetic terms given in (2.6), o~tained 

by a straightforward generalization of the results of (4] to the case of a non

diagonal gauge kinetic function lab (see Appendix B). 
To evaluate K' and La we need the additional PV matrix elements (see 

appendix A): 

AYa,'{Jo-2 
I a 

(2.36) 

where we have not included J.L-dependent terms that are already contained 

in (2.17). Then, using (2.8-9) we obtain 

ln A2 
[ K -·. A 2 ] K' = --- e- A· ·AzJ + 2V +2M - 4Ka- 4(e + 1)V 

32~ D a . 
(2.37) 

La is determined by the expressions 

(2.38) 

giving 

Lf = -La+ 4~vL + 8~M2L- ~e-K (AutCi + h.c.) 

-4VJ.LziVJ.LziV,zmvv-zn (KinKjm + I4.mjn)- 4M2 (2V +3M2
) 

-4e-K (2VJ.LziVJ.Lzm + e-K .fiiAm) Rfm.nAt.An- 8VM2
, (2.39) 
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where relations among operators given in Appendix B of [4] were used. Lf 
is obtained directly from (2.13): 

2 
-£2- -aL 3 Q) 

(v + 3M2)
2

- 41) (Kim1Ypzi1)Pzm + V +3M2
) 

+2 (v +3M2) KimV!.J.zmV!.J.iKim + (vi.J.zmV!.J.ziKim)
2 

+V!.J.ziVvzn KinKjm (vi.J.ziVvzm -VI.J.zmVvzi) 

2 ·.-n j.-n -mK --napi.J.v (wab -;-;-:aW b) .-n .-n - Zvi.J.z.vvZ imv a - + VaVb· 

To evaluate Lf we need 

Di(Taz)i Di(nz)i, 

-8abCt-, 

R;kmRitn, 

R;kmDi(Tbz)i, 
. . 2 

Dj(Taz)tDi(nz)1 + aax (Kab + Kba), 

(2.40) 

DI(Taza)J DJ(nza)1 

DI(TaYI)J DJ(ny1) 1 

(Rz<> )5km(Rz<> )ftn 

(Rz<> )fkmDJ(nza)I 

Dp(TaYa)Q DQ(nYa( 

(RY<> )~km(RY<> )~tn 

(Ry<>)~kmDQ(Tbya)P 

Dc(Tacf>)D DD(ncf>f 

RgkmDD(ncfJ)c 

j i 2 4 RikmRjtn- 2aaRtnkm + aa (KkmKtn + KknKtm), 
. . 2 . 

RfkmDi(Tbz)1 + aaDk(Tbz)l Kim• a=/:- 1, 

Cc + 8ga~VaVb, RgkmR§tn = 8ga~KkmKtn, 
8ga~KkmVb, ¢>c,D =!=- Z, Y. (2.41) 

Then using the constraints (2.8) and the results given in Appendix B of [3], 

we obtain (see Appendix A) 

. - Ll - 3Ca8ab ( wab + h.c.) + a' La + Li, a' = L 1]ca~, 
c 

Lf 4 [~M2.C + M 2 (2V +3M2 + 2v)) 
+8~vL- x~ [va(Taz)i.Ci + iVI.J.z~(Taz)iKim.C~ + h.c.) 

+4VI.J.zi1)J.tzi1)vzmvvzn (~mjn + KinKjm) 

+4e-K (2VI.J.iV!.J.zm + e-K AiAm) RfmnAiAn. 
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Adding the above, we get for the total PV contribution: 

ln A 2 
( AB A ) ln A 

2 

Lpv 
32

7r
2 

X pvLALB +X pvLA + ..J§ 327r2 Lpv + LlKPv £, 

lnA2 

KPv K' + 
32

7f
2 

[4v +12M2 + sv] =- (KR- K), 

Lpv N~L9 + N' Lx - £1 - £2- £3 + Lw + eLe 

+ ( o/ - ~a) La· (2.43) 

The renormalization of the Kahler potential is seen to be finite. Setting 

2e2 + (d- 2e)2 = 2e, (2.44) 

and using the constraints (2.20), we obtain for the remaining contributions 

L + Lpv = - (6 +a- o/) [V 2 + VJ.LzmVJ.Lzi'Dvznvvzi (KimKjn- KinKjm)] 

(2- a+ 3a') (2V M 2 + 3M4 +2M2 KimVJ.LzmVJ.LiKim) 

+2 (4 +a') VKimVJ.LzmVJ.LziKim 

+ (14 +a+ a') VJ.LziVJ.Lzi'Dvzmvvzn KinKjm 

+4 (7 + a - 3a' + 3e) V M 2 

+ (6 +a- a') (wab + wab) 'Da'Db 

+2 (7 +a- e) x [xwabWab 

- ~ (Fa - iFa ) (Fpv + iFpv) V iVJ.L zin K· -] 2 PJ.L PJ.L a a v ~m 

~2 (1 +a'- e) (2VV + iVJ.LziVvz'mKim'DaF;:v) 

+2 (5 +a- 2a' +e) VKim'DpiVPzin. 

Finiteness is achieved by imposing 

a= -10, a'- -4 e = -3. - l 

(2.45) 

(2.46) 

Once all the infinities have been removed, the Lagrangian takes the form 

(1.7), with the matrix-valued effective cut-off a function of the scalar fields. 
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In particular, the terms of order In J-L are given by (2.22) with In A2 replaced 

by the matrix L.prt ln(J-L~). 

3 Kahler anomalies 

Classically, supergravity theories are invariant Kahler transformations 

that redefine the Kahler potential and the superpotential in terms of a holo

morphic function H(z): 

K -+ K + H + fi, W -t eH W, (3.1) 

and that shifts the the fermion axial U(l) current: 

i( . - ) 1 r =- VI-LztK·- VI-LzmK- -t r --8 ImH. 
J.L 4 t m J.L 2 J.L (3.2) 

This invariance is anomalous at the quantum level due to the conformal 

and chiral anomalies. Consider for example the one-loop correction to the 

Yang-Mills term: 

t'YM _ 
-'-'1 - __ 1_ (~ FJ.Lv pa - 2_ V va) " rJpC~ In (A ~f3~) + · · · 16n2 4 a J.LV 2x a ~ ' 

p 

- -
1
- (~ FJ.LV pa - 2. v va) [3ca In (eK/311

2 p ) - ca In (eK 11
2 p ) ] 16n2 4 a J.LV 2x a G ,_.,<P <P M ,_., z z 

+ ... ' (3.3) 

in the notation of (2.16), where the dots represent operators of higher dimen

sion, and [5] 

In p<P = L In (!3;') 2
, lnpz = L In (!3;') 2

. (3.4) 
a,P=<P,<P a,P=Z,X,V 

Under (3.1) the quantum correction (3.3) changes by 

8.Cyl M = - ReH (~FJ.LV pa - 2.v va) (Ca - ca) (3.5) 
8n2 4 a J.LV 2x a . G M ' 
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Gauginos and chiral fermions have Kahler U(1) weights +1 and -1, respec

tively, so the corresponding chiral anomaly 

5 .t:,Y M = - ImH (~ FJLV pa - _2_ v va) (ca - ca ) . (3.6) 
X 1 B1r2 4 a JlV 2X a G M 

combines with (3.5) to give the superfield expression 

5.t:,YM = __ 1_fd40!i_WaWa (Ca- Ca). 
1 81r2 BR a a G M 

(3.7) 

The field dependence of the effective cut-offs was in fact determined in [15] 

by imposing the supersymmetric relation between the chiral and conformal 

anomalies associated with Kahler transformations; this in turn restricts the 

Kahler potential for charged PV fields. 

Sigma-models coupled to supergravity are invariant under a group of non

linear transformations Z --+ f ( Z) that effect a Kahler transformation of the 

form (3.1), (3.2). This is in general a classical invariance, and an interesting 

question is under what circumstances this invariance, which we will refer to 

as modular invariance, can be respected at the quantum level. If modular 

invariance is broken at the quantum level, the resulting chiral and conformal 

modular anomalies must form a supermultiplet. We consider some examples 

below. 

3.1 Nonlinear sigma-models 

Consider first an ungauged supergravity theory with no superpotential and 

with a Kahler metric typically of the form 

(3.8) 

that is classically invariant under the infinitesimal nonlinear transformations 

j j 
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where TJ = +(- )1 for a (non)compact symmetry group. Then the derivatives 

of the metric satisfy 

. (3.10) 

To regulate the theory, we need only include a subset of the chiral super

multiplets in (2.4). We take the Kahler potential 

"'el:A a~ KA ,J,."f J. + "'Kz + KY 
~ 'fJ 'fJ"( ~ A,a A,a, 

7 A,o: 

L_. [Ki1Z~,az{,a + b; (KiAKfZ~,az~,o: + h.c.)], 
I,J=t,J 

el:B a~"' K "' KAiJyiA,ay-J~,o:, Z Y - TJA ~ TJA,a = TJA,a = a' (3.11) 
I,J=i,j 

and the superpotential 

Wpv = L J.l~,o:,aZ~,aY/',a+LJ.L~,a4>7c{i, (3.12) 
I ,A,a,B a,B 

where J.laf) = 0 if TJa =f. TJ.B· 
Then (2.10) and (2.12) reduce to 

STrH 2 LVJLiVIlzm Kfm [2- kA (nA + 1)] + :_(7- N), 
A . 2 

N 

(3.13) 

Cancellation of the on-shell quadratic divergences requires 

(3.14) 
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and additional constraints on the parameters provide a cancellation of all 

one-loop ultraviolet divergences. 

The PV Kahler potentjal (3.11) is invariant under the Kahler transfor

mation (3.8), provided the PV superfields transform as 

8Z~ = B<5~~ Z~ = TJ (z~FA + z~ L,B~z~), 8q/:t =- La~FAq/X, 
~ j A 

A ( A -z- "' . A) A "' B B 8Y1 = = -TJ Y1 FA+ ,BA "7~YJ - Y1 ~aAF . 

To obtain a fully invariant· PV potential requires 

--... A 1 
Qt_Ba = ' 

(3.15) 

(3.16) 

in which case the superpotential (3.12) transforms under (3.8) as 8Wpv = 

-Wpv L:A FA, and the effective cut-offs A~Q are constant. However in this 

case 

aA = %N', Hpv = -N' (vJLiDJLzmKim + i), (3.17) 

which is removed by the Weyl transformation (2.19). Thus chiral supermul

tiplets with modular invariant masses do not contribute to quadratic diver

gences, nor do massive abelian gauge multiplets. Since modular invariance of 

their masses requires a0 = 0, 0-loops contribute only to the space-time cur

vature term and exactly cancel the corresponding gauge loop contributions. 

Therefore, modular invariant regularization cannot be achieved unless the 

massless theory is free of quadratic divergences. This requires a constraint 

on the total massless spectrum. If it includes Na gauge supermultiplets and 

Nq additional chiral supermultiplets qP with modular weights q~, that is, 

with Kahler potential 

K(qP, (/P) = L 14PI 2ei:A q~KA, (3.18) 
a 

the constraint reads 

2Lq~- Nq- N + Na + 3 + kA(nA + 1) = 0. (3.19) 
a 
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If this constraint is satisfied, the Kahler potential is not renormalized, and 

the classical Bagger-Witten quantization condition [9, 10], which relates the 

pion decay constant to the Planck mass in a compact a-model, is preserved 

at the quantum level. If this is not the case, one can still preserve the BW 

condition by imposing, in addition to (2.16), the additional constraints [see 

(2.17-18)] on the PV masses: 

L TJo:/3~!3 ln (f3af3) = 0 for fixed aa + af3 =J 1. 
Ot{3 

(3.20) 

If the group of modular transformations is noncom pact, a subgroup of the 

modular transformations (3.9) may be a classical invariance of the Lagrangian 

in the presence of a superpotential and of gauge interactions for a subset of 

the zi. An example is the Lagrangian for the "untwisted sector" of light 

fields in a class of orbifold compactifications of the heterotic string. The 

Kahler potential is (neglecting the dilaton) 

(3.21) 

It is invariant under an S £(2, R) group of modular transformations that leave 

K invariant, and the derivatives of K satisfy (3.10) with KA ---t G1 , kA ---t 

k1 = 1. The superpotential has the form 

W = L CAscltiJKI<I>f<I>~<I>~. (3.22) 
IJK,ABC 

This model has the property that 

AI A,J B = 0 if I = J, RimjnA·· _ 0 t)- ' (3.23) 

where the indices i, j, · · · run over all chiral fields zi, and the logarithmically 

divergent contributions (2.22-28) simplify considerably. However, the ansatz 

(3.11) is insufficient to cancel logarithmic divergent terms proportional to 

Di(Taz)i Dj(Taz)i and Di(Taz)i R{km' suggesting that modular invariant reg

ularization is not possible for any choice of spectrum, although invariance of 

the 0(!-l2
) term can always be imposed by conditions analogous to (3.20). 
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3.2 String-derived supergravity 

If the underlying theory is a superstring theory, there is generally invariance 

under a discrete group of modular transformations on the light superfields 

under which K -+ K + F(z) + F(z), W -+ e-F(zlw, which cannot be 

broken by perturbative quantum corrections [11]. For example, in the class 

of orbifold compactifications mentioned above the Kahler potential, including 

twisted sector fields, takes the S£(2, R) inv~riant form 

3 3 

K L l + f ( eL:q~I<I>AI 2) = L l + eL:q~I<I>AI 2 + 0 (I<I>AI 4
), 

l=l l=l 

l -In (T1 + T1), (3.24) 

which reduces to (3.21) when the twisted fields are set to zero. The gen

eral PV Kahler potential of (2.4) is modular invariant if the field Z~ has 

the same modular weight as zi and cpc has modular weight ac. The super

potential (2.5) can be made invariant under the discrete S£(2, Z) subgroup 

of S£(2, R) modular transformations, by an appropriate Trdependence of 

the PV masses: J.la -+ J.La(T1) = J.la I11[7J(T1 )]P~, where 7J(T) is the Dedekind 

function. This modification of the effective cut-offs could be interpreted as 

threshold effects arising from the integration over heavy modes. 

On the other hand, it is known that at least some of the modular invari

ance is restored by a universal Green-Schwarz counter term; this is in partic

ular th~ case for the anomalous Yang-Mills coupling [12]-[15]. To study the 

conformal anomalies arising from the noninvariance of the effective cut-offs, 

consider the helicity-even part6 of the one-loop action, given by 

(3.25) 

where Mpv is the PV mass matrix. Under a transformation on the PV fields, 

represented here by a column vector Xi, that leaves the tree Lagrangian, as 
6The chiral anomaly can be obtained by a resummation [16] of the derivative expan

sion of the helicity-odd contribution T_, which gives the standard results for the terms 
condsidered here. 
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well as the PV Kahler potential, invariant: 

'ffii) 
0. ' 

(3.26) 

because all the operators in the determinant except M PV are covariant, and 

the PV contribution to (3.25) changes by 

(SI)pv ---+ !:_ L 7JiSTr ln { 9i [DJ + Hi(9i 1 M~v9i)] 9i1
} 

2 i 

~ ~7JiSTrln (Df + Hi(9i 1 M~v.9i)], 
z 

(3.27) 

where 'f/i is the signature, and the last equality holds if the integrals are finite. 

The PV Kahler potential Kpv = kimXi xm is invariant provided kim ---+ 

9i1kim9;;/, kim---+ 9ikim9m· If the PV mass is introduced via a superpotential 

term W 3 J.-lijXiXi, J.-l =constant, the PV mass is 

(3.28) 

If the transformation is abelian: 9i = e<P;, and the metric is diagonal: Kim ex: 

8im, we just get 

(3.29) 

if, e.g., J.-lij ex: 8ij· 

If, following section 2, we introduce regulators X A, X~ for <I> A with signature

weighted average modular weights -qf, and xa for the gauge fields with 

average weights qJ == 1/3, and the superpotential term 

Wpv = LJ.-lAXAX~ + LJ.-laXaXa, 
""' . I 

m . _ eK/2-L..I qjg ~~.. 
Z- /""Zl (3.30) 

A a 
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(3.31) 

the contribution (3.3) shifts by 

- 64~2 0 {F; [3Ca ln(lm~l)- ~ c: ln(lm~l)l} + · · · 

= - 32~2 ~ReF1F; [ca- ~c: (1- 2q~)J + ···, (3.32) 

and the conformal anomaly matches the chiral anomaly arising from the axial 

currents 

(A!)~= -rJL + ~ (vJLzir~i- h.c.), 
(3.33) 

for gauginos and charged chiral fermions, respectively. The Casimirs and 

modular weights satisfy the sum rules: 

ca- 'L)1- 2q~)C~ = CEs- b~. (3.34) 
A 

For orbifolds such as Z3 and Z7 that contain no N=2 supersymmetric twisted 

sector [17], b~ = 0, the anomaly (3.32) is completely cancelled by a Green

Schwarz term. For other models the residual anomaly is cancelled by string

loop threshold effects [12] that can be incorporated in the present formalism 

by making the. cpa masses moduli-dependent: 

Jl~---+ Il[ry(TI )]b~ Jl~. (3.35) 
I 

Note that since the masses are not modular invariant, additional condi

tions, analogous to (3.20), must be imposed to make the quadratically diver

gent terms anomaly free. Possibilities for cancelling the remaining modular 

anomalies will be studied elsewhere. 
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4 Anomalous· U(l) 

In this section we include an anomalous U(l )x gauge factor: TrTx, TrTl ::J 
0. To regulate a nonanomalous gauge theory we introduced heavy vector-like 

pairs of states with gauge invariant masses. Explicitly, under a gauge trans-
c t· xA xA X' -lx x- A -lx-A x-, x- M' tOrma lOll ---+ 9A , A ---+ 9A A, ---+ 9A , A ---+ 9A A' = 
gMg-I, i.e., the mass matrix (3.26) is covariant, and no anomaly is intro

duced by the regularization procedure. 

However, the quadratically divergent piece contains the term 

If TrTa ::J 0, one cannot regulate the quadratic divergences 7 without intro

ducing a mass term for PV states Xi with the same U(l)x charge qi. As a 

consequence the effective cut-off is noninvariant, which gives the conformal 

anomaly counterpart to the chiral anomaly. 

Thus, in addition to the PV regulators introduced in section 2, we intro

duce chiral fields Xi with signatures 'T/i that carry only U(l)x charge qi: 

Their contribution to the chiral U(l )x anomaly vanishes; the explicit break

ing through the mass terms cancels their contribution to the true anomaly. 

We have been working with the covariant superspace formalism of [7], in 

which the veCtor potential8 AtL is introduced as the lowest component of an 

anti-hermetian one-form superfield, and matter superfields <I> are defined to 

be covariantly chiral: 

(4.3) 

7 In the context of renormalizable theories one can use dimensional regularization or 

reduction and the quadratic divergence never appears. 
8iAp -+ iam = Ami in the notation of [7). 
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where the covariant derivative VM contains the gauge connection AM, and 

M is a coordinate index in superspace. Under a gauge transformation: 

A -+A g-lD g n..A-+ gq~n..A 1 9-1 __ gt. M M- M, '*' '*' (4.4) 

The chiral Yang-Mills superfield wa is obtained as a component of the two

form :FMN, which is the Yang-Mills field strength in superspace. The authors 

of [7] point out that one can introduce the commonly used Yang-Mills super

field potential Vx such that 

1 ( -2 ) W. = -- V - R V Vx a 
4 

a , (4.5) 

where R is an element of the supervielbein and V2
- R is the chiral projection, 

but this field does not appear in the construction of the action which is 

invariant under an additional gauge transformation 

, 1 ( -) Vx -+ Vx = Vx + "2 A +A , (4.6) 

that is independent of ( 4.4). Since the gauge invariant superpotential is 

invariant under the complex extension of the gauge group, there is no conflict 

between ( 4.4) and holomorphicity of the superpotential. 

However, the superpotential ( 4.2) changes by a nonholomophic function 

under U ( 1) x if Xi -+ gq; Xi. Therefore holomorphicity requires Xi -+ 

e-q;A Xi, A holomorphic, under a U(1)x gauge transformation. To preserve 

gauge invariance of the Kahler potential, we take Xi chiral in the ordinary 

sense, that is, we define VMXi = DMXi, where DM contains no gauge con

nection, and modify the Kahler potential ( 4.2) to read 

(4.7) 

As shown in Appendix C, one obtains the standard Lagrangian when this 

expression is evaluated in the Wess-Zumino gauge. This choice is not justified 

unless the full theory is gauge invariant. In fact, we are interested in the 

25 



special case in which the U(1)x anomaly satisfies the "universality" condition 

(4.8) 

and- in string derived supergravity- is cancelled by a Green-Schwarz term [18]. 

Thus provided this term is included and evaluated in the WSgauge, there is 

no ambiguity. 

Including the fields Xi we get a quadratically divergent contribution: 

STrH 3 2g
2
dx ( ~qi + ~ 7Jiqi). (4.9) 

where the first term is the light field contribution and dx = I:A KAqi ¢A, <PA = 
<J>A I· Finiteness requires 

(4.10) 

Once all the infinities are cancelled one gets a finite contribution that grows 

with J.L2
. Setting /-Li = f3iJ.L, we get a contribution of the form (2.17) with now 

2 (l2 KK-21 12 
mi = tJi e i~ J.li · (4.11) 

Taking, for example, the modular invariant form 

(4.12) 

the correction to the bosonic Lagrangian is [see (2.34) and Appendix C] 

~.c = 

(4.13) 

Note that a mass term is induced for the anomalous U(1)x gauge boson Aw 

Thus if the full quantum theory is not anomalous we must impose 

(4.14) 
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The logarithmically divergent contribution from Xi contains a term 

(4.15) 

Under U(1)x, (4.6), JmiJ 2 -+ e-2q;(A+A)JmiJ 2 , so the quantum Lagrangian 

changes by 

o.Cx 3 
3

;7r2 ~ 1Ji (A+ A*) qf Fl + · · ·, 
t 

(4.16) 

where A= AJ. The light fermion contribution gives the chiral anomaly: 

iox -
o.Cx = -(lngJ)l:FaFa+···, 

2 a 
(4.17) 

For pa = F x, the anomalies ( 4.16,4.17) form a supermultiplet if we take 

(4.18) 

To make the full anomaly determined by ( 4.8) supersymmetric, we must 

include PV fields with both U(1)x and the nonanomalous gauge charges. 

This can be accomplished by assigning the same U(1)x charge QA to the 

previously introduced PV fields XA,X~, defining the superspace derivative 

as VM = DMX + TaAt, A a =/:- Ax, and setting 

in the Kahler potential. The generalization of the Lagrangian of Appendix 

C to this case is tedious but straightforward. Once supersymmetry of the 

anomaly is imposed, with the appropriate constraints on the PV U(1)x 

charges, the full anomaly is cancelled by a Green-Schwarz term that gives 

the variation of the Lagrangian under the U(1)x transformation (4.6): 

o.C&s = -
0
: I ~ATr(WaWa) + h.c. 

-
0
; ( ReA~FaFa + ImA~FaFa) + · · ·. (4.19) 
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This mechanism introduces a D-term with a well-defined coefficient that has 

been used in many applications to phenomenology. Note that there is also 

a D-term in ( 4.13), that may be removed by an additional condition on the 

fk One needs further information on the underlying theory to determine 

whether or not this term is present. 

5 Concluding remarks 

We have shown that on-shell one-loop Pauli-Villars regularization is possible 

for supergravity theories with canonical kinetic energy for gauge superfields. 

The resulting Lagrangian depends on the PV masses J.L that play the role 

of effective cut-offs. It remains an open question as to whether PV regu

larization remains possible at higher order without the addition of higher 

derivative terms. However since the chiral anomalies of the effective field 

theory are completely determined at one loop order, and their partner con

formal anomalies are thereby fixed by supersymmetry - through constraints 

on the Pauli-Villars massess - at the same order, one loop calculations are 

sufficient to study the field theory anomalies. 

We found that nonlinear sigma-model symmetries can be preserved at the 

quantum level only for ungauged theories with restricted particle spectra, 

such that there are no quadratic divergences. It is nevertheless possible to 

impose invariance of the O(J.L2 ) correction, thereby preserving the Bagger

Witten condition at the quantum level. Similarly, the 0(J.L2
) correction to an 

anomalous U(l) gauge symmetry may be made gauge invariant. There is also 

an 0(J.L2 ) D-terin that does not automatically vanish when gauge invariance 

is imposed; further information on the underlying theory is needed to fix this 

term. 

In string-derived supergravity a discrete subgroup of the sigma-model 

symmetry is preserved to all orders in perturbation theory; a study of the 

anomaly structure provides information on the type of counterterms that 
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must be included to cancel the field theory anomalies. In these theories the 

gauge kinetic energy term is noncanonical, and is governed by couplings to a 

universal dilaton. The full loop corrections including the dilaton, and a more 

detailed study of supergravity theories based on orbifold compactifications 

of the heterotic string, will be presented elsewhere. 
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Appendix 

A. The metric tensor for Y 

The metric tensor derived from K-;_> 3 in (2.4) is the inverse of that derived 

from the Kahler potential 

[ 
'""" I - J ( 2 ) ( I - 0 ) 0 2] k = L....-.. Ya Ya Kif+ aaKiKJ + aa Ya Ya Ki + h.c. + IYa I . (A.l) 

I,J:=.z,J 

It is straightforward to evaluate the derivatives of the metric kp(J, P, Q = 

YI, Yo. Denoting by 'YGi, rGim the corresponding elements of the affine con

nection and Riemann tensor, respectively, we have 

-(Ta)j, Dy1 (TaY)J = -Di(Taz)i, 

-'Y~i' (RY)~im = -r~im' (A.2) 

giving the results listed in (2.13) and (2.42). In addition we have, 
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-p K PQ -- -
A "'= e K K"'"' Aq.p = kpqAq.p, (A.3) 

giving the results listed in (2.37). 

B. Nondiagonal gauge kinetic function 

Here we sketch the generalization of [4] to the case of a nondiagonal gauge 

kinetic function involving Pauli-Villars fields. Although in this paper, we 

assume a canonical kinetic energy term for the light gauge fields, we give the 

results here for the case of a universal dilaton. The case relevant to section 2 

of this paper is recovered by setting s = constant. With an arbitrary kinetic 

function !ab(Z), the Lagrangian for the auxiliary fields Da of the Yang-Mills 

supermultiplets takes the form [7], upon solving for Da, 

(B.1) 

Writing rb = fa8ab + fab, we may expand in f to obtain 

(B.2) 

Here we introduce a single Pauli-Villars abelian multiplet, denoted by 0, and 

take gauge. kinetic functions of the form 

fo = 1, Kpv = ek L lr.pal2, 
a 

1 
ek=-

2x 
(B.3) 

In addition to scalar curvature terms, 

(B.4) 
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we have 

D taO _ f'Pc taO _ k s:a _ 1 s:a 
sJ<pb - - s<pbJ<pc-- sube- 2xube. (B.5) 

The relevant part of the tree Lagrangian [ 6), [7) is (setting all background 

fermions to zero) 

1 Fa FIW ea [ a (Fa FfLV .F-f.LVFet) h J -4 fJ,V Ct - 4 r.p fJ,V a - 'l a fJ,V + .C. 

+~:\Ct 1/J>-.a + iek (x11/Jx1 + xC:Z 1/JxC:Z) 

--V- ea [i:\~ (;xva + laf.LvFciv) x1 + h.c.J, 

Following the procedure described in [19), we introduce off-diagonal con

nections in the bosonic sector so as to cast the quantum Lagrangian in the 

form 

This introduces corresponding shifts in the background field-dependent "squared 

mass" matrices: 
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We have the following relations among derivatives of the kinetic function: 

fa 

!sa 

e 
Daf = e, fa= 2xe, !sa= DsDaf = -, 

2x 

Dsfa = 0, R~sbfaXss = - 4:2xss, 

D (!gah~) 
J.L 2x 

2~ [aJ.Ls (Dsf!a) h~ + h.c.) - ;: 8p,x = 0, (B.9) 

In evaluating the matrix elements needed for PV loop contributions, we 

set background PV fields to zero and show explicitly only the terms involving 

the parameters e and d. The remainder of this Appendix closely parallels 

Appendix C of [4]. 

1. Matrix elements 

The elements of HIJ, I, J = <pa, are 

(B.lO) 

where 

'D! = ;:'Da'Db + ~'Dc(Tc)!, .'Dab= 4~2 (e2
- d) 'Da'Db. (B.ll) 

The additionalnonvanishing elements of Z;pH;p are -Nap,,f3v and Sap,,a with 

(B.l2) 
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Finally we need 

(Gz + Gg + Ggz)p,v, 

ap,savs - ap,savs ba ± ·pc (T. )a b = { <pa,b 
4x2 b 2 p,v c b' a, r:pa,b ' ( G~~ ): 

( G~v ): e:x (Fap,pF~P =F iFap,pF~P)- (JL H v), a, b = { ~:: ::, 
(cgz) p,v ap,a (cgz) p,v a,ap 

e;vJ.LF!P +::aiL (;) F!P- (JL H v), a= { ~:, 
(Gtvtp,,61T bo:,ar1Tpp,v + ~eae,a [Fap,pF:11 + Fap,pF:11·- (JL H v)]. (B.l3) 

The matrix elements of Me are given by 

Mg 0, 

Mo + MJ.Lv Ma _ 1 -k ( + MJ.Lv ) a ffia a ~Jl.Vl 0 - 2e ffia a ~J.LV l 

- Mp,v = - ze (Fp,v ..,- iFp,v) a 8 a ..,- a ' { 
<pa 

a-- cpa' 

with covariant derivatives as defined in (3, 4): 

DpM/:v -DpM/:v =- (DpM/:v)* = (DpM!:v)* 

- i: ( 1) p + ~:) ( Fap,v - iFap,v) , 

Dpma Dpma = (Dpma)* 
Bps ie ( - . ) 

-i 
4
x

2
eDa + 

2
x Kjm,(Taz)mDpz1 + h.c .. 

The matrix elements of G~v are 
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{ 
<pa 

1 
<pb 

a,b = · b. -a -<p,<p 

(B.l4) 

(B.l5) 

(B.16) 



As in [4], we double the quantum fermions degrees of freedom and rep

resent them as 8-component Dirac spinors. In the following Tr denotes the 

full trace of fermion mass and field strength (Gp.v = [Dp., Dv]) which are 

8n1 x 8n2 matrices, where ni is the number of intrinsic fermion degrees of 

freedom: ni = Nc(N(;) for xa(Aa). The explicit calculation given below is 

for just one nonvanishing ea : N(; -+ 1. 

2. Chiral multiplet supertrace 

Defining 

1 2 i j i. 1 ( IJ 0) 
2sTrHx = HiHi + HiiH 1 

- STr H0 HIJ , h~i = (mm)mi, (B.17) 

we have 

Thus: 

where 

4 2 

Tr h~ + ;
2

vaVbF:vFfv, (hX)~ = :xVaVb, 

(hx)b + 8b (v + M2- M2- a~-~sa~-~s) + !!_v vb + 2.v (Tc)b 
a a .\ 4X2 4X a X c a' 

~ ( d- e2
) Wab· (B.18) 

~Tr (Hf}
2 

Tr(sn2 

~Tr(Hn2 
8 

~TrHxHx 
4 3 1 

Tf 

4 . 

Tr h~ + ;
6 

[ (wab + Wab) VaVb + 4V2
] , 

1 
0, BTrHi = O(Nc), 

~Tr(TaTb)F:vFfv + O(Nc), 

-Tf + ~Tr hX, (B.19) 

(B.20) 
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and the chiral fermion contributions to the helicity-odd operator T_ (see [4]) 

are 

TX 
r 

Then we obtain 

e2'D + O(Na), 

-Ti- (wab + Wab) [Tr(TbTa) + ~:'Da'Db]-: r'D 

e4 
+-'D2 + 2e2 (v + M 2 - Mn v 

2 . 
2 

_.!!._vaJLsa s + (d- e2)2x2W bwab 2x2 Jl. a 

ie2 (aJl.savs 1) i1) -m K.-) va FJLV + 2 x2 + p.Z vZ Jffl a 

2 

+ e
2 

'Da'Db (wab + Wb) + 2e2'D2 + O(Na). (B.22) 

Finally we have 

(B.23) 

so 

3. Mixed chiral-gauge supertrace 

For the bose sector we have H$9 = -S, and, using (B.17) of [4], 

TrS2 = e2x (b FJLV)2 e2 p+vJL p-aap a - e2 (F-aav h ) A FPJL 4 v a + 16X a PJl. S vS- B VJL S + .c. Dp a 
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e2 1 - . . - 2 e2 

4
x [g-2.CaJL- iKim (vwzm(Taz)t- VtLzt(Taz)m)] + 

16
xF:vtLp;aaps8vs 

2 

- :x (F~aavs + h.c.) [g-~.CaJL- i (KimVtLz~(Taz)i- h.c.)]. (B.25) 

To evaluate the fermion matrix elements we use Eqs. (3.36) and (C.24-27) 

of [4): 

with 

and 

0, 

8 (v MtLv)i (VP M )~ = ~TrS2 
tL a pv t 2 ' 

2 

2 (VtLm)~ (VtLm): = 
4
ex

2 
(81Lx81Lx + 81Ly81Ly) V 

2 

+ ~ { KinKjm,VtLzi (Taz)m [ (Taz)iVtL.zn + (Ta.z)nVtLzi] + h.c.} 
~X 

2 . 

-
2
:

2
8tLxVaKim [(Taz)iVtL.zm + (Taz)mVtLzi], (B.27) 

yxg = t}9 =-
1

3
6_(vu MuJL): (VpMPIL): = -~TrS2 . (B.28) 

In addition we have 

4 (G9z) (cgz)i,ap = ~Tr (6~Y) 2 

JLV ap,i JLV 2 0 

64 (vtLMvp ): (VtL Mvp- vv MtLP): = -4TrS2
. (B.29) 

Using the classical equations of motion (B.17) of [4), we obtain, 

1 2 1 A2 

2sTrHx9 +Tx9 -
12

STrGx9 

2e2 e2 e2 

- vgD..v.C - 2gx .CaJL.CaJL + 2xvg ( F:tLav x + P:tLav y) .CalL 

36 



2 

+X~ [i.Ca~' ( KimVj!zm(Taz)i- h.c.) + va(Taz)1 .cd 
+2e2V (2M2+ 2M}.+ 2Re(MM.x) + v) 

5e2 -n~ ~~'- e2 (Fv~' .F-v~') (F ·p- ) ~ ~P-+ 
4
x2 vu~'Su S - Bx2 - z PI' + z PI! uvSu s 

2 

-
2
:

2 
[(81Lx + 2i8~'y) Kim(Ta~)iV~'zm + h.c.) va 

. 2 

- ;x (F;:JLavx + P;:JLavy) [Kjm(Taz)iVwzm- h.c.] 

2e2 e2 e2 
- -J§b.v.C-

29
x.CaJL.CaJL + 2x-J§ (F;:JLovx + P;:JLavy) .Ca~' 

+ x~ [ .c•• { i ( K,,.v .Z"'(T.z )' - h.c.) + 8"':" Y F;"v•} + V'(T.z V .c1] 
+2e2V (2M2+ 2M}.+ 2Re(MM.x) + v) 

5e2 -n ~ ~~'- e2 (FvJL .F-VJL) (F ·p- ) ~ ~P-+ 
4
x2 vu~'Su S- Bx2 - z PI' + z PI' uvSu s 
2 

-
2
:

2 
[(ixF~aovs + fJILsva) Kjm(Taz)iVJLzm + h.c.], (B.30) 

where in the last expression (C. 76) of [4] was used with (B.9) above. 

4. Yang-Mills supertrace 

For the remaining bosonic contributions, we have Hg = -N; we write Na/3 = 
N~/3 + Oaf3n, and evaluate here only N~/3 -+ N00 . 

TrN 

TrN2 

(B.31) 

where we dropped total derivatives and used (B.12-B.l4) of [4], as well as 

the Yang-Mills Bianchi identity. Finally, writing ( G~v r = ( G~v r + fJJLvO~' 
. (3 /3 
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we have 
2 

N' fl + xe (4rv FP-P pa - rP- pa pvp) 
G 2 p, a vp v p,p a 

- x:e
4 

[ (F:vFtv) 
2 
+ ( F:vFtv) 

2
] , 

where we used (B.12-14) of [4]. For the fermions we obtain: · 

~TrH9 
8 1 

1Tr(Hf)2 

-1Tr(Hn
2 

~Tr (H1H3)9 

The nonvanishing contributions to T!l = Tf + Tf + T.J are: 

T !l -
3 -

T !l -4 -

For the supertraces we obtain [using (B.l7-20) of [4]] 

N~STrh9 - e2V, 

~N' STrh2 + e4 [x2Wabw + ~V v (wab + Wb)] 2 G !1 ab 16 a b 

- T!l - xe2 (rP- pa F~P - ~r pa pp,v) - e2 rV 
3 2 v p,p a 4 p,v a 4 
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(B.33) 

(B.34) 



. 2 2 

+.:._.e K ·- V ziV -zmva Fp.v + ~ V V (wab + Wb) + 2e2V 2 

2 Jm p. v a 
2 

a b , 

1
1

2 STrG~ .!_Nc' STrgA2 - .!._STrG2 - T4
9 - T4x- T 9 - TX 

12 12 X r r 
4 

- ~ [4V2 + VaVb (wab + Wb)] + O(Nb). (B.35) 

The space-time curvature dependent terms in the supertraces evaluated 

above give a contribution Lr of the form (2.23) of [3) with 

g In A 2 2 (Fa F P 1 a per) 
Hp.v - 321f2 e X P.P av - 4_9p.vXFperFa ' 

Eo 
9 

In A2 
2 

Eo- 321f2 e V, 

O(Nb), (J = O(Nb). 

The metric redefinition in (2.24-25) of [3) gives a correction 

In A2 

321f2 flrL, 

O(Nb) + e2 (vp.iVP.zmKim- 2V) V 

(B.36) 

+e2 X (Fa FPVV ziVP. zm K·- - I.. Fa Fperv ziVP. -zm K·- ) pp. a v ~m 
4 

per a p. ~m 

-2e2 [x2WabWab + ~ (wab + Wab) VaVb + V2
] . (B.37) 

The result for constant x, given in (2.35) of section 2, is obtained by 

setting M>. = 0, y = 0, s = x = g-2 constant in the above equations. In 

section 2 the fields rp~ are taken to be canonically normalized. Combining the 
. A AB above results and evaluating £1-Lr+flr£-flK£-flx£-CAX -LALBX 

yields the results given in (2.35), with <pa --t .Jfir:p~ and 

e
2 

--t L e~,a = 2e, e4 
--t L e0 e,ae'Ye0 = 4e

2
, 

t3'Y 0,6"(0 

(d- e)
2 

--t L (d'Y,a- L e'Yaea.a) 
2 

(d- 2e)2. 
t3'Y (l 

(B.38) 
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C. Lagrangian with a vector potential superfield 

In this appendix we follow the notation of [7]: Greek letters are used for two

component spinorial indices, Roman letters for tangent space and coordinate 

indices, and the metric is (-+++), i.e. the negative of the one used elsewhere 

in the text. We include the chiral fields xx = {Xi, za}, where the Xi are 

PV regulator fields charged only under an anomalous U(1)x, and za are the 

physical, light fields of the effective low energy theory. 

Defining, in analogy with the chiral superfield Xa = -~ (152
- 8R) DaK 

introduced in [7], 

X~=-~ (152
- 8R) Da (kie2

q;Vx), Xa = -~ (152
- 8R) Dak\ (C.1) 

the PV Lagrangian gets contributions (in WZ gauge) 

3 - - D + -~'· {j + .c. = - - v X + -~1• {j X 1 ax' I i - mx'l h 1 '1"'\a I i - m I 
4 a 2 'I-'m 4 a 2 'I-'m 

- +~kiq-~1. ifm A - i --12.!. ifnamx-xk~a - ~q?kia am+ iq-a Dmzxki 
2 z 'I-'m X 2 'I-'m x m 2 z m t m x 

1 kiD In x \ ki 1 ki -ti m x +2qi X + qiV 2x AX X + 2qiam xyX a X + h.c. 

1 I i-
1

1-- V2- _ _ - -Dax + -~1• ifmx + -d2
• 1• a-m A - i-~1• o-namx-x K'-(T x)2a 

4 
a 2 'I-'m 2 'I-'m X 2 'I-'m zx X m 

1 (T )i(T -)zK' m . '1"'\m x(T -)zK' 1 ..nD -2 xx xX izama + zamv z xX x'i + 2u x 

+-J2xx Ax(Txx)z K~z + ~qiamk~tixtiamxx + h.c., (C.2) 

where K' = K + ki and the last equality follows because 

qiki = (Txx)iKI = di, qik~ = (Txz)iKix, qfki = (Txx)i(Txx)fKiz· 

(C.3) 
The first two terms are the contributions to i5 M of [7] quadratic in Xi without 

the gauge connections for Xi, and 

etc., a =I i, x,y = z,a. (C.4) 
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The remaining terms covariantize OmXi and give the correct 7/J, .Ax, Dx terms. 

All fermion derivatives include the Kahler U(1) connection that has a piece: 

Aal 3 _.!_at3a [v V·] (kie2q;Vx)l = _.!_at3a [v V·] kil + iq·kiv 16 a' {3 16 a' {3 2 z a 

3 lK{(oa+iqiaa)xi-h.c.. (C.5) 

In other words Aa includes the gauge connection for U(1)x. The fully co

variant derivative for the fermions contains the additional gauge connection 

terms: 

Dmxx 3 iam [(Txxt + (Txz)Y r;:zxz], 

Dmx~ 3 iamqi (x~ + xir~~Xa) + O(X3
) = iamqi (X~+ ~1: Xa) + O(X

3
) 

iamqixir~~i + O(X4
) = iamqiKab ( k~b- k~tn) Xb + O(X

4
), (C.6) 

where we used the fact that 

Dmxa 3 

K'az = -Kabk~i + O(X3) 
k!. ' u 

(C.7) 

So the fully covariant kinetic energy term contains the terms: 

-~ (Dmxx) xfi K~fi + h.c. 3 qiamk~fix_fio-mxx + h.c. + O(X4
), (C.8) 

which is just the last term in (C.2). Thus we get the standa~d form of the 

tree Lagrangian, and loop corrections from Xi are also of standard form. 

Converting to the notation used previously (e.g., amam -+ -AJLAIL), we ob

tain the results ( 4.9,4.13,4.15) given in section 4, where we used the classical 

equation of motion Dx = -g2dx. The right hand side of (4.13) is given by 

the RHS of (C.2) with fermion fields set to zero and ki-+ p,2 = constant. 

D. Errata 

Here we list corrections to [3, 4]. 
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1. The term +l (gp.pTvu + 9vpTp.u + 9p.uTvp + 9vuTp.p) is missing from the ex

pression for Xp.v,pu in (2.22} and (B3} of [3]. As a consequence (B6} should 

read 

TrX = -20V +2r, TrX2 = 40V2-24rV +22rp.vr~'v -2r2+total derivative, 

the following replacements should be made in (B20}: 

N+1 2 N-7 2 12r --+ ~r -5Vr--+ -13Vr, Tp.vrp.v--+ 8rp.vr~'v, 

the first three equations in (B22} should read: 

lnA2 N+89lnA2 

a - 2 327r2' f3 = 6 327r2 ' 

_InA
2 {e-K (A- .jiii _ ~Ri·A·Ai) 2N + 68V 2N +16M2} 

EO 327r2 ZJ 3 J Z + 3 + 3 1/J ' 

and (B23} (as well as footnote 23 of [4]} should read: 

_1_.6. £ = InA2 [ {-2 -K (A .jiik- ~Rk A An) - 3N + 95V- 4N +32M2} V 
..j§ r 327r2 e kt 3 n k 3 . 3 1/J 

[K·- {N+55VA -K(A ·A-ik_~RkA A-n) 2N+16M2} iv._vA]v ivp-m + zm 
3 

+ e kz 
3 

n k + 
3 

1/J + 
3 

~ t.tm pZ Z 

{ 
2 (R l6K ) v ivp-m N + 113 (v iv -m v iv -m) K } VJ.L ivp.-nK·-- 3 im + im pZ z 9p.v -

6 
p.Z vZ + vZ p.Z im z z zn 

In addition, in Eq. (C.55} of [4], the replacements 

F a F~-'v 5 pa F~-'v X p,v a r --+ X p.v a r, 2 p. pa Fvp 12 p. pa Fvp + r v X P.P a --+ - r v x P.P a ' 

should be made in the expression for TrX2, the replacements 

3x pa pp.v 5x pa pp.v -4r JW a --+ +4r p.v a ' +2 p. pa pvp 5 p. pa pvp 
r vX J.LP a --+ - r vX P.P a ' -5rV--+ -13rV, 

should be made in the second equation of (C.62}, the first two equations of 

(C.63} should read: 

H 0 H9 ( 2 i) In A 
2 

( a p 1 pa ppu) p.v Hp.v + p.v- X 10 +X PiP 327r2 Fp.pFav - 49p.v pu a ' 

( ) 9 In A 
2 

{ 70 V 2 iV 2 V D ( a )i} 
Eo Eo 0 + Eo - 327r2 3 + 2x PiP + 3x a i T z ' 

42 



2. The sign of the last term in the expression for D 2 + Hch in (2.12) of [3] and 

in (C.l4) of [4] is incorrect. As a consequence, -18f 11vfi'w in footnote 22 

of [4] and -6r 11vfJlV in (B18) of [3] should both be replaced by -2r 11vfJlV 

in (C.61}. 

3. In the expressions for [D/1, Dv] for fermions, r JW --+ r JlV- ~F:vDa. As a con

sequence of this and the above item, the coefficient -24 should be replaced 

by +2 in TrH't;h, Eq. (C.61) of [4], and the coefficient of'Da'Db F:vFbv should 

be ~ instead of 2 in the same equation. In addition the final results (4.6-8) 

and (5.2) of [4] are modified by the addition of the terms 

-~ (N + 7 + Nc) [ivap~w1J11 ziKim'Dvzm + ~Va'Db (wab + Wab) + 21J2
] 

+~ [i1J~Ftiv'D11ziRim'Dvzm + Di(Taz)i {'Db (wab + Wab) + ;;V'Da}] 

from contributions proportional to [D11 , DvJ2 from fermion loops and fjTrGbh, 
the term 

+2x2 rJ Pi [vaVb (wab + Wab) + 4V2
] 

from -i_TrHfH: + tx- i_TrHfHK + T9 , Eqs. (C.34,35,59) of [3], and an 

identical contribution from and an additional term 
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from -! Tr Hf Hf. In addition the contribution of Rf.I.v was neglected in the 

calculation of 2tx; this gives an additional contribution 

-2i'Df.l.zk [x'Dvz171Pmjk + Pjk (8vx- i8vy)] [xpiva F/:v + 2(Taz)i ( Ff:v- iF/:v)] 

+2pi Pi8f.£x8vy'Da F/:v + h.c., 

which does not contribute to (2.22}, and only the last term contributes when 

the string dilaton is present. 

4. The coefficient of Vf.l.ziVvz171 KimRjn (Vf.l.ziVvzn- vvziVf.l.zii) in footnotes 

6, 13 and 21 and the coefficient of 

~V ziV z171 K·- '"'(N + 1} Kq._ (vf.l.zivv:zn- vv ziVILzn) 3 f.£ v zm ~ o Jn 
Q 

in footnote 8 of [4] should be multiplied by -2. 

5. The last term in brackets in the expression for Tr(H~) 2 in (C.33) of [4] 

should be multiplied by !, and the last term in (C.38) should be multiplied 

by -2, with corresponding changes in (C.36} and the final results . 

. 6. There are errors in the coefficients of the the expressions following - T"f9 

in the second equality for iTr (Hf-9)
2

, Eq. (C.41), and in similar terms in 

the other traces. For the canonical gauge kinetic energy case considered 

here the corrections to amount to the changes: -2VV- 6VM2 in (C.41), 

-28VM2 in the expressions for !S'frH~, Eq.(C.36), +8VM2 and -8VM2 in 

~Tr (Hf.G) 2 , and ~STr ( Hf-G) 2 , respectively, Eqs. (C.50,51), and +4VM2 

in ~Tr ( Hf+G) 2 
, Eq.( C.58). 

7. In (3.33) the expression for T3 is missing a term: 

T T 't f.£"'- (M- M-vp M"'" Mvp) 
3 -+ 3- 3p2 r v .Ll f.I.P - f.I.P ' 

the last line of 'fr'R'R5 in (3.35) has the wrong sign, and the last term in 

the second line of the RHS of (3.36) should be multiplied by -2/3. As a 

consequence, i -+ -l2 in Tf, (C.35), and in Tj, (C.59); i -+ g in the 
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fourth line of (C.62}. In addition ! -+ i in the second line of STrG~+G in 

(C.62}, and the terms proportional to x3 pipi in Hp,v in (C.63} and in the 

last three terms in (C.64} should be multiplied by two. 

8. The following are misprints in [4]: 

The second line of (B.20} should be multiplied by x-1. 

Tr ( G~9) 2 
should be multiplied by ~ in the first line of ( C.46}; the sign of 

the last term in footnote 23 is incorrect. 

(N + 5}/r2 -+ 5/r2 in (C.58}. 
In addition, a factor Dp,zmV~'zi is missing from the coefficient of 

2Kim (v + 2MJ) in the expression for !Tr1Dp,Mol2 in (B12} of [3]. 
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