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Abstract 

We attempt to understand the final-state interaction in the two-body non­
leptonic decay of a heavy particle for which many multibody (N ~ 3) decay 
channels are also open. No matter how many multibody channels couple to 
the two-body channels, the analyticity of the S-matrix relates the phase and 
the magnitude of the two-body decay amplitude through a dispersion relation. 
In general, however, the phase cannot be determined by strong interactions 
alone. The dispersion relation requires on a general ground that the final­
state interaction phases be small for the two-body decay amplitudes when 
the initial pa.rticle is very he .... vy. We then an~yze the final-state interac­
tion phases in terms of the s-channel eigenstates of the S-matrix and obtain 
semiquantitative results applicable to the B decay with a random S-matrix 
hypothesis. We use the high-energy scattering data and the dual resonance 
model as a guide to the relevant aspects of strong interaction dynamics at 
long and intermediate distances. 
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I. INTRODUCTION 

The final-state interaction in the nonleptonic weak decay is difficult to estimate when 
a large number of multibody channels are open. While the short-distance final-state inter­
action is small [1] and its computation is noncontroversial, we have little understanding, 
theoretically or experimentally, of the long-distance final-~tate interactions. 

The long-distance final-state interaction phases were computed from the high-energy 
Regge exchange amplitudes in the elastic rescattering approximation [2,3]. The experimental 
data appeared in favor of large final-state interaction phases at least for the D decay [5]. 
It was asserted that the measured phases of the two-body D decay amplitudes can be 
reproduced in the elastic approximation to the final hadron interactions [6]. However, it is 
fairly obvious from an analysis of the partial-wave unitarity with the diffractive scattering 
[4] that the elastic approximation cannot be justified at high mass scales, for instance, in 
the B decay where the two-body final states can couple to a very large number of multibody 
final states. Even when we are interested in the final-state interaction phases of the two­
body channels alone, we cannot determine them without knowing the coupling of the two­
body channels to the multibody channels. The Regge amplitudes alone do not provide 
all necessary pieces of information. Actually, strong interactions and CP-conserving weak 
interactions are entangled in the decay phases. In this paper we shall make a modest attempt 
toward understanding of the inelastic final-state interactions. Because of the limitation in 
the numerical computation of the long-distance effects, we are able to present our results 
only in a semiquantitative way. 

We present two approaches here. The first one uses the analyticity of the S-matrix. For 
the two-body decay, the phase and the magnitude of amplitude are tightly related to each 
other by a dispersion relation no matter how many multibody channels couple to two-body 
channels. The same phase-amplitude relation does not hold for the multibody decay. So far 
no theorist has ever attempted to study the correlation between the phase and the magnitude 
from this aspect. No dynamical assumption is introduced in this approach. 

The origin of difficulty in the final-state interaction at high mass scales is in that so many 
channels are open and communicate with each other. In the second approach we analyze 
the decay in terms of the s-channel eigenstates of the S-matrix and treat a large number of 
open eigenchannels statistically by introducing a randomness hypothesis [7]. While we give 
up much of numerical predictability in this approach, we are still able to see general trends 
in the final-state interaction at high mass scales. Both approaches lead us to conclude that 
the long-distance final-state interaction phases should be small for two-body heavy hadron 
decay. Though our conclusion favoring small final-state interactions may be in line of some 
of the existing literature, our method and picture are completely orthogonal to them. 

In Section II, after a brief review of the analyticity of the decay amplitude into general N­
body channels, we derive for the two-body decay a dispersion relation which relates the phase 
and the amplitude through the Omnes-Mushkelishvili integral [8]. Using this dispersion 
relation we separate from the physical decay amplitude the final-state interactions below an 
arbitrarily chosen timelike energy scale. We see in this form that a final-state interaction 
phase of any origin cannot persist to very high energies. 

In Section III, we shall study the final-state interaction phases from the viewpoint of 
the eigenphase shifts of the strong-interaction S-matrix. We write the hadron scattering 
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amplitude in terms of the eigenphase shifts, and classify the eigenchannels into the resonant 
and nonresonant ones according to the dual resonance model. Then we express the final­
state interaction in terms of the eigenphase shifts. We study the high-energy behaviors of 
the eigenphase shifts from the scattering data. 

In Section IV we introduce the dynamical postulate that the composition of eigenchannels 
is statistically random when very many of them exist in degeneracy. We make a quantitative 
estimate of the decay amplitude phases within the limitation of the method. 

Finally in Section V, we apply our findings to the actual D and B decays. For the D 
decay, the elastic approximation combined with the Regge asymptotic behavior is not allowed 
in determining the final-state interaction phases. The random-phase method is probably a 
poor approximation. The observed large phase difference between different isospin channels 
can be accommodated but not predicted. The random phase approximation has the best 
chance in the B decay where the final hadron multiplicity is high. All two-body decay 
amplitudes are dominantly real up to CP violations in the B decay. If the color suppression 
exists prior to final-state interaction corrections, it should be preserved even in the presence 
of final-state interactions. Interestingly, the same high-energy behavior of the eigenphase 
shifts that makes the elastic scattering amplitudes purely imaginary leads to the almost real 
two-body decay amplitudes. 

II. BASIC PROPERTIES OF THE INELASTIC DECAY AMPLITUDES 

A. Analyticity 

We consider the weak decay 

H--+ hadrons (1) 

where H is a heavy particle such as the D and B mesons. The final state is generally a 
multiparticle state of N hadrons. Going off the H mass shell, we call the H mass squared 
as the variable s and examine the analytic property of the invariant decay amplitude M( s) 
in the complex s-plane. 

The analytic property of the S-matrix elements was extensively studied decades ago [9]. 
We obtained many rules of computation by examining the Feynman diagrams though a 
rigorous proof without referring to the diagrams was given only in the limited cases. To 
avoid inessential complications, we consider the case where H and the final hadrons are all 
spinless. We shall use the in-out formalism [10] to simplify our notations. The invariant 
amplitude for the decay into theN-hadron state f is defined by 

(2) 

where the one-particle states are normalized as (PIP')= (21r)3h(p- p'). M+(Pi) is actually 
the function of all possible Lorentz in,variants made of Pi and P. Aside from s(= P 2

), there 
are (N + 1)(N- 2)/2 independent invariants, which we may choose as 

Sij =(Pi+ Pi? (i > j(=f- N- 1)), (3) 
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since there is one linear dependency relation, 

s = 2L(Pi ·Pi)+ L:_m;. 
i>j 

(4) 

We may include short-distance strong interactions in Hw by using the QCD-corrected effec­
tive Hamiltonian. Though we shall treat Hw as a local operator, the analytic property to be 
discussed below does not depend on locality of Hw. What is important is that Hw transfers 
no energy-momentum. 

To study analyticity, we introduce the auxiliary (unphysical) amplitude, 

(5) 

We can obtain M-(Pi) by imposing the incoming boundary condition on theN hadrons in 
Eq.(2). Diagramatically, it amounts to flipping the sign of it in all Feynman propagators. 
If Hw is time-reversal invariant, it holds that 

(6) 

where Pi and P' are obtained from Pi and P by reversing the signs of their space components. 
Eq.(6) reads 

(7) 

where the asterisk denotes a complex conjugate. The reversal of the signs of the space 
components of Pi does not change the Lorentz invariants, Sij and s. Since both M+(pi) and 
M-(PD are real below all thresholds and therefore coincide with each other there, Eq.(7) 
means that they actually represent values of a single analytic function on two different 
Riemannn sheets. In terms of the Lorentz invariants, Eq.(7) can be written as 

M(s +it, Sij +it)= M(s- it, Sij- it)*. (8) 

When Hw is not T-invariant, it is convenient to work with each short-distance-corrected 
weak Hamiltonian individually after separating out a T -violating phase; Hw = H weiScp. 

Then Eq.(S) is valid for Hw. We shall use the words "T-violation" and "CP-violation" as 
equivalent, assuming the CPT invariance. 

One problem about the multibody decay amplitude is that there are so many variables; 
three independent variables even for the three-body decay, one more than in the Mandelstam 
representation for two-body scattering. More a serious obstacle is that the real analyticity 
relation Eq.(S) holds only when we go across all cuts in s and Sij from +it to -it simul­
taneously. We are able to write a dispersion relation in one of the variables keeping the 
others fixed, for instance, in variables keeping sij{(ij) # (N, N -1)) fixed to Sij +it. Then 
M(s -it, Sij +it), which is not simply related to the physical amplitude, enters the dis­
persion integral. In the case of a three-body final state, for instance, such an amplitude is 
the complex conjugate of the unphysi_cal amplitude M( s +it, Sij- it) in which the particle 
pairs (1,2) and (1,3) interact with the wrong sign phases -812 and -813, respectively, while 
the particle pair (2,3) interacts with the right sign phase 823• Only for the two-body decay 
amplitudes does Eq.(8) give the simple real analyticity relation: 
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M(s +it:)= M(s- it:)*, (9) 

so that the discontinuity in the complex s-plane is directly related to a physical process. For 
the decays of N ~ 3, we can write only multivariable dispersion relations as an extension of 
the Mandelstam representation. We see little chance of extrfl:_cting a useful information out 
of them. 

B. Dispersion relation 

The standard dispersion relation relates the real part of M(s) to the imaginary part. To 
relate the phase to the magnitude, we write the dispersion relation for logarithm of M(s). 
Notice that lnM(s) has the same analytic property as M(s) except for cuts due to zeros of 
M(s). Choosing the contour of the Cauchy integral as usual, we can write the dispersion 
relation in the once-subtracted form: · 

s loo 8(s') 
lnM(s) -lnM(O) =- ( ) ds', 

1r so s' s'- s 
(10) 

where s0 is the lowest threshold of final states. The phase 8 ( s) should be normalized to zero at 
s = s0 in this representation to keep lnM(s) finite at s = s0 . When Eq.(10) is exponentiated, 
it is the representation of Mushkelishvili which was first applied by Omnes to a study of 
the electromagnetic form factors. Hereafter we shall refer to this exponentiated dispersion 
relation as the Omnes-Mushkelishvili representation [8]. The application was limited to the 
energy region where the two-body scattering is elastic. Contrary to some misconception [3], 
however, the same dispersion relation can be derived for the two-body decay even in the 
presence of inelastic (;hi:mnels. We en phasize this point since otherwise the representation 
will be of no use in the heavy hadron decay. The key observation here is that once the phase 
along the cut is known, a real analytic function is unique. 

Actually there is one uncertainty that cannot be fixed by the analyticity. It arises fr9m 
possible zeros of M(s). If M(s) has zeros at Si-(i = 1,2,3,···), they generate logarithmic 
singularities for lnM(s) and contribute to the dispersion integral. When such zeros are 
included, the amplitude M(s) is expressed as 

M(s) = P(s)exp(~ioo ~t~s'). )ds'), 
'lrsoSS-S 

(11) 

where P(s) = M(O)IIi(1- s/si)· We need some physical argument to determine the poly­
nomial P(s). In the days of the bootstrap theory we used to resort to a certain philosophy 
of determinism: there must not be a free parameter which we cannot control on. We do not 
think that we can argue along the same line in the context of QCD. In our case we avoid 
this problem as follows. 

Let us write Eq.(ll) back in the form 

· 1 ( A
2 8(s') A

2 8(s') ) 
lnM(s) = lnP(s) + lim - I --ds' -1 -ds' 

A2 --+oo 7r }so S 1 - S so S 1 
(12) 

and then define M(s; m*2 ) by 
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1 ( A
2 8(s') A

2 8(s') ) 
lnM(s;m*2

) = lnP(s) + lim - f --ds' -1 --ds' . 
A2 -+oo 7r lm•2 S 1

- S so S 1 
· 

(13) 

M(s; m*2 ) is the unphysical decay amplitude in wliich the final-state interactions of the 
energy range from the threshold to y's = m* has been removed. In terms of this amplitude, 
the physical decay matrix element M(s) is expressed as 

. 
( 11m*2 

8(s') ) M(s) = M(s;m*2)exp - --ds' . 
1r so s'- s 

(14) 

In this form all strong-interaction corrections below y's = m* are explicitly factored out 
in the exponent. The correction factor includes both short- and long-distance corrections 
except for the interaction responsible for formation of hadrons. Concerning the hadron 
formation interaction, we encounter a fundamental issue in the final-state interaction theory. 
Both the final-state interactions and the formation of hadrons result from the same QCD 
force. Nonetheless, in order to formulate the final-state interaction theory, we must separate 
the hadron formation forces from the long-distance interactions between hadrons.1 The 
representation above provides one way to do so. While M(s; m*2 ) cannot be measured in 
experiment, it is the closest to what theorists have been calculating for decay matrix elements 
by various methods without final-state interactions. The appropriate choice of a value for 
m* in Eq.(14) is 

(15) 

A remark is in order on the two-body final state. The dispersion relation in Eq.(14) holds 
for any two-body final state. In the elastic energy region, we normally choose an isospin or 
an SU(3) eigenstate for it. The reason is that such a state is an eigenchannel of the strong 
interaction S-matrix, and therefore that the phase is identified with the strong interaction 
phase by Watson's theorem [11]. At high energies where two-body states couple to multibody 
final states, however, two-body final states are no longer eigenstates of the S-matrix, no 
matter which isospin states we may choose. Then it happens that the net phase 8(s) of 
the two-body decay amplitude depends not only on strong interactions but also on weak 
interactions, even when one computes amplitudes due to a single effective weak Hamiltonian. 
Though this was already pointed out [4] in the past, it is worth emphasizing since it is the 
origin of all complications when rescattering is inelastic. We shall see the point more clearly 
in Section III. From this viewpoint, two-body isospin eigenstates in the inelastic region are 
just as bad as the 13 eigenstates of indefinite isospin in the elastic region. When inelastic 
channels are open, writing for instance the decay amplitudes for B 0 ---+ D-1r+,---+ 1'f 1r0 in 
the I= 1/2 and 3/2 amplitudes contributes to very little to solving the problem. 

1Recall that the hadrons were conside~ed as elementary when the phase theorem was proved [11]. 

6 



C. High-energy behavior of the phase 

Imagine that 8(s) approaches the asymptotic v~lue 8( oo) at -some value m well below 
vs=mH:2 . 

8(s) ~ 8(oo) (m:::; Vs:::; mw). (16) 

The exponent of Eq. ( 14) can be estimated for such 8 ( s) as 

(17) 

The contribution of O(m2 /m'i£) from the region below yiS = m is negligibly small if 
m'i£ ~ m 2

• The dominant contribution comes from the asymptotic energy region. When ex­
ponentiated, this integral generates an enhancement or suppression factor of (m* /mH)26(oo)/1r 

for M(s). If, for instance, the phase reaches 8(oo) = ±7r'/2, the strong interaction correction 
would alter the amplitude by factor 16 for mH = mB and m* = mw. It means an enhance­
ment or a suppression of factor rv 250 in rate. There is no evidence for such a huge dynamical 
enhancement or suppression when we compare the observed two-body decay rates with the 
theoretical estimates in the D and B decays. The so-called color suppression observed in the 
B decay should be attributed not to a severe dynamical Suppression by strong interactions 
but to lack of strong-interaction corrections, since the suppression exists prior to final-state 
interactions. 

The obvious alternative to the asymptotic behavior of Eq.(16) i~ 

8(s)-+ 0 (m:::; y'S:::; mw). (18) 

The enhancement or suppression is milder in this case. 
The fractional power (m* /mH) 26(oo)/1r does not appear in the conventional calculation of 

the decay matrix elements. The short-distance QCD corrections enter in fractional powers 
of (ln m* / ln mH ). If we wish to reproduce the short-distance correction factor of the renor­
malization group with our final-state interaction integral, we. would choose such that 8( s) 
approach zero asymptotically as 

8(s)-+ 8/lns, (m:::; y'S:::; mw) (19) 

where lJ = lw/bo, /w is a constant determined by the anomalous dimension of Hw, and 
b0 is from the running QCD coupling. The asymptotic behavior of Eq.(19) leads to 

2Since there is no large characteristic el!-ergy scale of strong interactions, it is reasonable to assume 
that M( s) approaches its asymptopia as early as hadron scattering amplitudes do. If 6( s) should 
keep oscillating, lnM(s) would behave like elsl along some direction in the complex s-plane, which 
would prevent us from ·writing the dispersion relation to start with. 
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(ln m* / ln mH )28/1r for the amplitude. Since our correction factor includes both short.- and 
long-distance effects, Eq.(19) should represent only the portion of the asymptotic phase that 
is attributed to the short-distance interactions. We must study the long-distance effects by 
some other means. 

The main result of our dispersion relation is that the phase of the two-body decay 
amplitude of a heavy hadron should be zero or a small value for a large initial mass (s ~ oo ). 
It should certainly not be ±90°. It is worth noting that, unlike the phase, the magnitude of 
the amplitude can be subject to substantial final-state interaction corrections since it picks 
up the effects of all energies. 

III. EIGENPHASE SHIFTS 

In this Section we study the decay phases from the viewpoint of the eigenphases of 
the S-matrix of high-energy scattering. We need to know about the composition of the 
eigenchannels and their high-energy asymptotic behavior. We shall use the dual resonance 
model as our guide since it is the most successful model that incorporates the relevant 
aspects of the quark model spectroscopy and long-distance hadron scattering. 

The partial-waveS-matrix of strong-interaction is diagonalized in terms of the eigenchan­
nels carrying the quantum numbers of hadron H. Labeling the eigenchannels by Ia), lb), · · · 
we can express the S-matrix elements as 

(20) 

Without loss of generality we normalize the eigenphase shifts to zero at their respective 
thresholds. Experimentally observed are the hadronic states with each particle carrying 
definite momentum. We project those states onto the JP eigenstates and denote them by 
h. By completeness of eigenchannels, h can be expanded as 

(21) 
a 

where we can choose Oha to be an orthogonal matrix as a consequence of T-invariance for 
strong interactions. 

The partial-wave amplitude aJ (s) for elastic scattering is expanded in the eigenphase 
shifts as 

aJ (s) = L o~aeiSa sin ba, (22) 
a 

or in the real and imaginary parts, 

(23) 
a 

ImaJ ( s) --:- 2:.: o~a sin2 ba. 
a 

Both Oha and ba ares-dependent. Strictly speaking, once multibody states are included, we 
must label the eigenchannels with continuous parameters. Therefore the discrete summation 
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in Eqs.(21) and (24) is symbolic. The state density per unit energy in a volume characteristic 
of strong interactions ("' m;3 ) may substitute as the effective number of states for multi body 
channels. , 

Actually the dual resonance model [12] of the late 1960's answers to how many states 
exist at energy Js. In this model, the number of states was counted to be [13] 

1 
no"' (a's)(d+l)/2 exp(Vs/mo), (24) 

where a' is the Regge slope (~lGeV-2 ), d is the space-time dimension, and m0 = 
(3/2a'd) 112 j7r, which takes a value"' 200MeV ford= 4. This state density no contains the 
states of all angular momentum J ~ (a's) 112 at mass Js for the interv_al of"' lGeV-2 (~ a'). 
While the highest J state has no degeneracy, degeneracy of states rapidly increases with de­
scending J. It also includes the states of negative norm on the daughter Regge trajectories 
in the case of 4-dimensional space-time. Nonetheless the state density of Eq.(24), particu­
larly the exponential dependence, gives an order-of-magnitude estimate for the number of 
the J=O states in the dual resonance model. Hagedorn [14] introduced a statistical model of 
hadrons with quite a different motivation. It is amusing that his modelled to essentially the 
same state density with a very close value (rvl60 MeV) for m0 but with a slightly difference 
power of sin front. In Hagedorn's model, the closeness of m0 to the pion mass was explained 
by the fact that every time energy increases by m0 , one more pion evaporates and causes 
the exponential growth of the state density. 

The phenomenological success of the dual resonance model [15] confirmed that the s­
channel resonances are dual to the non-Pomeron Regge exchanges while the Pomeron is 
dual to the nonresonant continuum in the s-channel [16]. The dual resonance model at tree­
level incorporates only the non-Pomeron trajectories. The Pomeron term was included by 
adding the two-body nonresonant intcmediate states. At high energies, the resonant states 
are so broad in width that they are not recognized as resonances but make up the smooth 
Regge asymptotic behavior of non-Pomeron exchange. In the yet higher energy region, 
the diffractive scattering dominates so that the s-channel states consist almost entirely of 
nonresonant states. Henceforth we shall call the s-channel states dual to the Pomeron and to 
the non-Pomerons as the nonresonant and the resonant channels, respectively, even though 
no resonance peak appears in the resonant channels at high energies. We shall also use the 
words, the diffractive and nondiffractive channels, for them. In the dual resonance model, 
the effective number of the nonresonant channels is even larger than n0 of the resonant 
channels in the high-energy limit. 

The distinction between the Pomeron and the non-Pomeron trajectories is best described 
by the quark diagram [17]. (See Figure 1.) The non-Pomeron exchange in the boson­
boson scattering is described by a pair of quark-antiquark 'in the intermediate state (Fig.la) 
which represents a tower of resonances in the s-channel and at the same time the Regge 
trajectory exchanges in the t-channel. In contrast, the Pomeron exchange corresponds to 
the" disconnected" quark diagram of the qqqq four-quark intermediate states in the s-channel 
as shown in Fig.lb. In the context of QCD one pair of qq exchanges relatively soft gluons 
with the other pair of qq in the Pomeron exchange [18]. This quark diagram not only ensures 
the exchange degeneracy for a pair of non-Pomeron trajectories with opposite signatures, 
as observed in scattering experiment [16], but also explains the absence of the inesons with 
exotic quantum numbers such as I~ 3/2 in meson spectroscopy. 
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A. Final-state interactions in eigenphase shifts 

The T-invariance relation in Section II can be e(tsily extended to the decay amplitude 
into the eigenchannels. Using the completeness condition L:a laout)(aoutl = 1 and (aoutlain) = 
e 2ilia we obtain 

' 

(25) 

where s = m'i£. Accordingly the decay amplitude Ma(s) into the eigenchannel a carries the 
eigenphase 8a(s). Inserting the complete set of eigenchannels and using the expansion of 
lh), we obtain 

(26) 
a 

The decay amplitude Mh(s) for H -t his now expres~ed in the terms of the eigenchannel 
decay amplitudes Ma ( s): 

(27) 
a 

Separating the phase 8a(s) from Ma(s) as 

Ma(s) = Ma(s)eilia(s), (28) 

we put Eq.(27) in the form 

Mh ( S) = I: OhaM a ( S )eilia(s). (29) 
a 

Comparing Eq.(29) with Eq.(22), we clearly see that the net phase of Mh(s) has little to do 
with that of aJ(s). The phase of Mh(s) agrees with that of aJ(s), barring an accident, only 
when there is only one eigenchannel so that the elastic unitarity holds, 

(30) 

It was pointed out that the partial-wave projection of the diffraction amplitude for the 1r1r 

scattering at the B mass is far short of the unitarity limit [4]; 11 + 2iaJ(s)l ~ 0.6. For the 
D decay, which occurs near the resonance region or a little above it, the nonleading Regge 
terms cannot be ignored in two-body scattering. We shall see in Section V that even after 
adding the non-Pomeron terms the elastic unitarity does not hold at the D mass. 

The amplitude M a ( s) defined in Eq.(28) still contains strong-interaction effects. To 
define the eigenchannel decay amplitude free of final-state interactions, we must separate 
out not only the phase correction but also the magnitude correction ~a(s) by Ma(s) = 
Moa(s)~a(s). If all inelastic channels are approximated as two-body or quasi-two-body 
states, ~a ( s) can be written in the Omnes-Mushkelishvili representation: 

~a(s) = exp(P 1mw 8;(s') ds'), 
1f' soa S - S 

(31) 
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where P stands for the principal value integral. One obvious property of ~a(s) is that it 
is positive definite. Whether ~a(mh-) gives an enhancement(> 1) or a suppression(< 1) 
depends on the sign of 8a(s) for all values of s from, the threshold soa to mt,, not just the 
on-shell value 8(mh-). In the nonresonant channels, we shall argue later that Da is small in 
magnitude and the sign of Da can be easily flipped as energy changes when a large number 
of channels mix. If so, a correlation of the magnitude correction ~a(mh-) with the on-shell 
phase value 8a(mh-) is tenuous, if any. With the magnitude enhancement factor written out, 
Eq.(29) turns into 

. Mh(s) = ,EOhaMoa(s)~a(s)eioa(s). (32) 
a 

For the resonant channels, one can compute the Feynman diagram for the decay process 
H --+ R(resonance) --+ h(two-body) through a resonance R. The decay amplitude for the 
resonant eigenchannel r takes the form, 

(33) 

where !HR is the H-R pole transition strength and rtot,r are the total and partial decay 
widths of R. Note that rtot = O(mn). In the quark model fnR is the overlap of the wave 
functions of H and R. Since the overlap does not increase with s, Mr ( s) decreases like 1/ s 
or faster ass--+ oo. If we express the resonant channel contributions in the form ofEq.(32), 
it means Mor(s)~r(s)--+ 1/s or faster for each resonant channel r. 

B. Strong interaction scattering 

Elastic scattering provides useful pieces of information about the eigenphase shifts. Ex­
periment shows that the imaginary part dominates over the real part for the invariant 
amplitude T(s, t) of elastic scattering at high energies. Theoretically, the dominance of 
ImT(s, t) is a general consequence of analyticity and crossing symmetry, not specific to the 
Regge theory, when the total cross section approaches a constant up to powers of logs. The 
amplitude of the fiat Pomeron trajectory, 

(34) 

gives a reasonably good description of the diffractive scattering in the whole high-energy 
region relevant to us.3 Eq.(34) leads to the elastic cross section,4 

3At energies above -JS ~ 100 GeV, the total cross sections actually rise very slowly with energy. 
One fit to pp-collisions gives O"tot(s) ~ f3p(sjs0)0·08 + /3p-J(sjs0)-0·56 [21]. This s-dependence 
requires that the forward scattering amplitude contains a real part: ReT(s, 0)/ImT(s, 0) -+ 

tan(u/2), where f = 0.08. The forward scattering amplitude contains a real part by about 
10% even at extremely high energies. However such high energies have no direct relevance to the 
final-state interaction of the B decay. 

4We ignore all hadron masses as compared with -JS throughout this section. 
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(35) 

and to the partial-wave amplitude 

(36) 

When we parametrize T(s,t) by Eq.(34), the partial-wave elasticity u~/ufot (= ImaJ(s)) 
for J ~ (s/so) 112 is equal to twice the total elasticity, (1/utot)f(duerfdt)dt. The values for 
O"tot and b can be extracted from the experimental data on pp, 1rp, and Kp scattering. The 
factorization of the Regge residues5 relates the high-energy total cross sections by 

MM' Mp M'pj pp 
()"tot = 0" tot 0" tot U tot' (37) 

where M and M' stand for mesons. With ufcft = 37mb, u;tt = 21mb, and u!f = 17mb for 
the diffractive contribution of Utot at Vs = 2 "'8 GeV (19], we obtain 

u;:; = 12mb u!; = lOmb. (38) 

The numerical values are roughly in line with the empirical law of the quark number counting 
for the total cross sections: uf!tM' : uf:l : o-fcft = 22 : 2 x 3 : 32 • The diffraction width 
parameter b obeys the inequality bPP > b1rp > bKp· In one analysis [20] 

(39) 

The parameter b is related to the effective target size of colliding hadrons in elastic scattering. 
The inequality bPP > b1rp indicates that the proton is a little more spread than the pion. The 
electromagnetic form factors show the same trend: (r;/6)112 ~ v'2m;1 and (r'?r/6)112 ~ m;1

• 

The relation bKp < b'Trp may be interpreted as a result of the less intense interaction of the 
s-quark with the u/ d-quarks, which reduces the effective size of K as well as u!f. This line 
of argument leads us to the b-parameters for 1r1r and K 1r scattering somewhere around 

(40) 

If we extrapolate this reasoning to the D1r scattering and ignore the c-quark interaction with 
the u/d-quarks, we are led with u&; = u[o~/2 and bn1r < bK1r to 

( 41) 

When we substitute these values of parameters in the partial-wave projection of Eq.(36), we 
obtain 

(42) 

5The factorization can be proved only for relatively simple J-plane singularlities. It is an assump­
tion for the more general Pomeron. 
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The value of ImaJ(s) is even smaller for '1/nr and 'lj;K. The precise values of the right-hand 
side of Eq.( 42) are not important in the following. It is no surprise that the elastic unitarity 
is not satisfied for any of the above processes: 

11 + 2iaJ(s)l = 0.66 "'0.76. (43) 

Note that 11 + 2iaJ(s)l = 0.5 is the limit of the completely absorptive black target. When 
aJ(s) is purely imaginary, the value of 11 + 2iaJ(s)i does not tell the whole story. The 
partial-wave inelasticity reveals more of the scattering mechanism. The numbers in Eq.( 42) 
give the partial-wave inelasticity (=1-lmaJ) in the range of 

(44) 

It·should be pointed out here that the s-wave phase shift is dominated by long-distance 
physics. The largest contribution to aJ ( s) for small J comes from the region of the mo­
mentum transfer -1/b < t ~ 0. The contribution from the perturbative QCD region of 
large ltl is small. It is "' 1/lt1112 that determines the effective distance of interactions. It is 
true, however, that the s-wave contains a larger share of short-distance physics than high 
partial-waves. 

Comparing Eq.( 42) with lmaJ of Eq.(22), we find that the average or typical eigenphase 
shift of the diffractive channels should be in the range of 

(45) 

where the subscript d for the phase shift stands for" diffractive". The smallness of ReaJ jlmaJ 
for the diffractive scattering suggests that 8d ( d = 1, 2 · · ·) spreads over positive and negative 
values (modulo mr) in an approximately symmetric distribution with respect to 8d = 0. For 
such a distribution a large cancellation occurs among different eigenchannels in ReaJ (ex: 
cos 8d sin 8d) while every term adds up in lmaJ( ex: sin2 8d)· What about the mr ambiguity for 
8d? Since the diffractive channels are nonresonant, 8d starts at 0 and does not go over 1r /2. 
Because of Wigner's theorem [22] on the causality constraint on phase shifts, it is not very 
likely for 8d to turn clockwise and go over -1r /2. Therefore 8d's stay in -1r /2 < 8d < 1r /2, 
spreading symmetrically with respect to 8d = 0 over the range roughly 

-7f/8 < 8d < 1fj8. (46) 

Here again, the precise values of the upper and lower bounds are unimportant to us. 
Even in the decay into a diffractive multibody channel a resonance can appear in a 

subchannel giving rise to a large phase when the subchannel invariant mass coincides with 
the resonance mass. For instance, H---? R1r(nonresonant)---? KK1r at mKK = mR. If R 
is a sharp resonance of KK, we treat the process as a two-body decay into R1r. If not, 
the final-state is a three-body channel. Though the decay amplitude has a large phase at 
mKK = mR, this phase is washed out after the mKK is integrated over with ..jS fixed to mH. 

Let us turn to the nondiffractive channels. Their contribution to O"tot falls off like 1/ s112 

or faster relative to that of the diffractive channels. To obtain the subdominant terms in 
s, we add the nonleading Regge contributions. One may wonder about a possible isolated 
s-channel non-Regge singularity which may contribute only to a single angular momentum. 
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Especially relevant is the fixed singularity aJ ex: fJJo/ J. This singularity generates a constant 
term in T(s, t) for all values of s and t. Since hadrons are composites of the scale AQcD, 
there must not be such a hard interaction. 

According to the Regge duality, the nondiffractive and diffractive portions of the am­
plitude are separately dual to the resonant and nonresonant states, respectively, in the 
s-channel. Therefore the nondiffractive or resonant contribution af. ( s) to the partial-wave 
amplitude can be expressed as 

af.(s) = I:O~reiSrsinh'r, (47) 
T 

where the subscript r stands for "resonant". In these channels, the eigenphase shift br turns 
around counter clockwise slowly passing 1r /2 at the resonance and approaches 7r asymptoti­
cally. Comparison of the asymptotic energy dependences of the diffractive and nondiffractive 
amplitudes gives us 

L:r o~T sin
2 

h'r( S) = (-{3 ~-{3 ) -1/2 
'"' 02 . 2 $.: ( ) p-f p s ' L..Jd hd Sill Ud S 

(48) 

where f3P,p-f are the properly normalized Regge residues at t = 0 of the Pomeron and the 
p-fz trajectory, and s is in the unit of 1 Ge V2 • We can extract the Regge residues from the 
energy dependence of total cross sections. For 1r+p (1r-p) scattering (19], for instance, 

(49) 

We can relate the left-hand side of Eq.( 48) to the numbers of the resonant and nonresonant 
eigenchannels. By replacing sin2 h'r by unity for the resonant channels and substituting the 
average value for sin2 8d, we obtain 

L:r o~T sin2 8r(s) nT 
L:d0hdsin28d(s) ~ (n-nr)(sin2 8d). 

' (50) 

With Eqs.( 48) and ( 49), we obatin 

nr ~ n(sin2 h'd) / s112, (51) 

which agrees with our expectation nr ~ n. 

IV. RANDOM S-MATRIX APPROXIMATION 

When a very large number of eigenchannels are present, studying individual channels is 
impractical. To study the spacings and widths for hundreds of the densely populated reso­
nances in complex nuclei, nuclear physicists introduced a certain randomness hypothesis in 
the multichannel S-matrix. The work was started by Wigner [23], pursued by many [25], and 
brought into a mathematical sophistication by Dyson [26]. It succeeded in reproducing vari­
ous features of those resonances [25]. A similarity of the nuclear resonances to the multitude 
of the hadron channels in our problem suggests us to study physics of the uncontrollably 
many eigenchannels with the randomness hypothesis. 
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The randomness of the channel mixing Oha can arise in our problem when a very large 
number of eigenchannels exist in degeneracy with the two-body final-states. Since even 
a small coupling strongly mixes a pair of degenerate states, any two-body state in the 
highly inelastic energy region is a linear combination of many eigenchannels. The expansion 
coefficients of a given state into eigenchannels, namely Oha, is sensitive to the strength of 
channel couplings, but many features of physics, for instance Sa, should not be sensitive to 
small variations of channel couplings. It is therefore reasonable to postulate that quantities 
of our interest can be computed by replacing products of Oha with their statistical averages 
over the phase space of the O(n) rotations of Oha· After the O(n) average has been taken 
for products of Oha, we are left with Sa. In our problem unlike the nuclear resonances, we 
cannot postulate a complete randomness for the distribution of Sa. If we assumed that both 
Sa and Oha are completely random or chaotic, Eq.(24) would lead us to (OhaOkb) = SabShk/n, 
(sin2 Sa) = 1/2, and (cosSasinSa) = 0. Consequently 

ReaJ = 0, ImaJ = 0.5. (52) 

This corresponds to the scattering from a black disc that gives the 50% elasticity due to 
the shadow scattering in disagreement with Eq.( 42). in the actual high-energy scattering, 
CJ'el/C!tot is considerably less than 50%. It means that a hadron target behaves like an opaque 
disc at high energies. To describe such a target, we must postulate randomness only within 
the restricted range as specified in Eq.(46).6 

A. Dominance of the real part for decay amplitudes 

We start with Eq.(32) and isolate all eigenchannel dependences by expressing Ma(s) = 
Moaflaei6

a back in terms of the decay amplitudes of the hadron basis k which are free of the 
final-state interaction (of Vs:::; mw). We denote such decay amplitudes by Mok(s). Writing 
the nonresonant and resonant channels separately, we have 

Mok(s) = LOkdMod(s) + LOkrMor(s). (53) 
d r 

Substituting the inverted relation of this in Eq.(32), we obtain 

Using (OhaOkb) = ShkSab/n, we obtain the random phase values for the real and imaginary 
parts of Mh(s): 

Mh(s) = Moh(s)((tlcosS) + i(tlsinS)), (55) 

6We previously studied mainly the magnitude of the squared decay amplitude in this statistical 
model [7]. Here we focus on the decay phase by refining some of the previous postulates. In Ref 
[7], the magnitude factor ~a(s) was not separated but ignored for simplicity. 
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where 

(56) 

and cosh -+ sinh for (~sin h). 
Let us leave out the resonant eigenchannels for the moment. Then, first of all, the phase 

of Mh(s) approaches a common limit in Eq.(55) independent of isospins or charge states of h, 
say, K-1r+ and JC11r0 . The common limit does not depend on the effective weak interaction 
Hw. This marked simplicity is valid only in the random phase limit. Considering that lmaJ 
takes roughly the same value for all meson-meson scatterings (cf. Eq.(42)), we expect the 
common decay phase is not very sensitive to the final hadrons. 

We have pointed out earlier that in the quasi-two-body approximation to the inelastic 
channels, ~a(s) is positive definite and uncorrelated with the on-shell ha(s). If this is the 
case, the terms of different eigenchannels cancel each other in lmMh( s) because of the 
random signs of sin hd: 7 

(57) 

In contrast, all eigenchannels add up in the real part since cos hd > 0 in the restricted range 
of Eq.(46). It is similar to the situation in the elastic scattering amplitude of Eq.(24), but 
this time the cancellation occurs in the imaginary part instead of the real part. Because 
of the deviation of ~d( s) from unity due to enhancement and suppression, the cancellation 
may not be as good as in the scattering. We can set with Eqs.(55) and (56) a loose upper 
bound on the imaginary-to-real ratio for Mh(s). In terms of tanhh = lmMh(s)jReMh(s), it 
is given by8 

ltanhhl < l(sinh)l/(cosh). (58) 

The right-hand side is less than rv0.4 acccording to Eq.( 45). This number would be realized 
when no cancellation occurs in Eq.(57). Since ~d(s) and the sign of the on-shell hd(s) are 
only tenuously correlated, we expect in reality a fairly high degree of cancellation between 
the terms of hd > 0 and hd < 0. Therefore the actual value of the imaginary-to-real ratio is 
most likely much smaller than 0.4. By pushing our approximation further, let us set ~d to 
a common number 9 and cos hd ~ 1. Then we obtain 

J . Rea . 2 tanhh ~ -
1 

J(sm h). 
ma 

(59) 

7The possibility of many phases averaging out to a small net decay phase was mentioned earlier 
by Wolfenstein (24] to the author. 

8In Section II, Oh was simply written as 8(s). 

9If the sign of the on-shell od is not correlated with b..d > 1 or < 1, setting b..d to a number 
independent is justifiable. 
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The right-hand side is zero for the purely diffractive amplitude. Even if we use the 
parametrization <Ytot "' s0·08 fitted to much higher energies which requires a nonnegligible 
real part for T(s, 0), the right-hand side is ~ 0.047r >:< (sin2 8) ~ 2 X w-2

• 

Next we look into the contribution of the resonant channels to the decay phase. It 
falls like s01P-r1 ~ s-112 relative to the diffractive contribution. In addition to the s-1/ 2 

suppression, the chiral structure of the weak interaction suppresses the transition from the 
initial state H of JP = o- to the resonant channels. Let us examine this suppression. 

Keeping in mind that in the dual resonance model the resonant channels are made of 
two-quark states in the quark diagram (Fig.1a), we examine the transition of H( = qQ) to 
the resonant state R( = qq').10 The bare weak Hamiltonian which causes the transition is 
the four-quark operator, 

(60) 

where we have suppressed the Dirac structure of the quark bilinears. The short-distance 
QCD corrections to Hw induce the effective interactions such as (q'L().a/2)qL)(qL('Aa/2)QL) 
and the penguin interaction (7iR('Aa/2)qR)(lf£()..a/2)QL)· The weak transition H--+ R is the 
so-called annihilation or exchange process. The matrix elements of the annihilation and 
exchange processes are suppressed by the decay constant fH( = O(f1r)) of the meson H and, 
for the non-penguin interactions, also by the factor ( mq' + m9 ) of chirality mismatch on the 
side of R. The suppression due to the first one, fH /mH, together with the energy dependence 
suppression s-112 or nr/n is severe enough to make the phase difference contribution of 
the resonant channels negligibly small. It should be reminded that the resonances in the 
resonant channels are so broad (r H = 0( m H)) that no sharp resonance enhancement arises. 
The suppression of fH /mH occurs for the transition H--+ R through the penguin interaction 
too. 

In short, the dominant decay process is through the spectator diagrams which lead to 
qqqq not qq in the final state. The decay H --+ qqqq followed by a pair annihilation into qq is 
no other than the annihilation or exchange process, as we can see by drawing the diagram. 
The rescattering of qqqq without a qq annihilation is a diffactive process not a resonant one 
in the sense of the dual resonance model. Therefore, we can conclude that the decay phase 
due to the resonant channels are negligibly small. We estimate a typical magnitude of the 
phase differences of this origin as 

(61) 

for the decay modes where the spectator process dominates. When the chiral mismatch 
occurs for R, a decay matrix element is suppressed by the additional factor of m 9,/mH. 

B. Phase difference between amplitudes 

What we can measure in experiment is not the absolute phases but the phase differ­
ences. Though the phase of (Mh ( s)) is independent of the charge or isospin states of h, 

10The following argument is valid also for H -t R( = q" q') with minor modifications. 
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the fluctuation around the average value can be isospin dependent and therefore generate 
phase differences. The physical origin of this type of phase differences can be explained as 
follows: A pair of decay amplitudes have different compositions of diffractive eigenchannels. 
Therefore the interference between eigenchannels sums up to different net phases for the 
amplitudes. The phases of this origin are washed out in the random limit. The interference 
between the diffractive and nondiffractive eigenchannels is another possible source of the 
relative phases. 

We first examine the relative phase due to the fluctuations. The fluctuation is the 
standard deviation from the random phase limit of (Mh(s)). Averaging out the product of 
four Oha in the phase space of O(n) group1

\ we obtain for n ~ nr 

I~ImMh(s)l2 = ((IrnMh(s)- (IrnMh(s)))2
), (62) 

= (IMol2
)( (~2 sin2 h) -(~sin h)?)+ 0 (~1Mh(s)l 2), 

I~ReMh(s)l2 =(sinh~ cosh), 

where the brackets denote the averages such as 

-2 1"- 2 (IMol ) =- L..,.IModl . 
n d 

(63) 

The sum L:a=(d,r) IMoal 2 /2mH is the total rate for the decays induced by Hw without strong 
interaction corrections. Since the decay amplitude is dominantly real, the phase difference 
is more sensitive to ~IrnMh(s) than to ~ReMh(s). The relative magnitude of the standard 
deviation ~Mh(s) to the average IMh(s)i depends on the channel number n. If n is nearly 
as large as the dual resonance model indicates, or even a small fraction of it, I~Mh(s)l 
is negligibly small and no relative phase arises from fluctuations. In this case, the two­
body channel couples to an enormous number of inelastic nonresonant channels though its 
couplings to individual channels are very weak accordingly. The fluctuations almost even 
out when this happens. On the other hand, if n is so small that 1/n is comparable to the 
branching fraction to the channel h, ~ImMh(s) can be close to llmMh(s)l itself. When 
IMh(s )I is small by an accidental cancellation of high degree among different eigenchannels, 
the fluctuation can be large in proportion. To ensure that the random phase is a good 
approximation, therefore, we should apply its predictions only to the two-body modes having 
relatively large branching fractions. 

The phase differences arising from an interference with the resonant eigenchannels are 
suppressed by the chiral structure of the weak interaction operators and decrease like s-112 

with energy. Their contribution is of the order of ~h as given in Eq.(61) in general. How­
ever, our argument fails in the modes where the spectator process is forbidden or highly 
suppressed. In such processes the diffractive eigenchannels dual to the Pomeron are missing 
or highly suppressed so that large phases and phase differences inay potentially arise. It is 
unfortunate that the decay branching is generally very small for them. 

111t is straightforward to obtain (OkaOzaOmbOnb) = (8kl8mn + OkmOzn + OknOzm)/n( n + 2) for a= b 
and= [(n + l)ok/Omn- OknOzm- OknOlm]/(n- l)n(n + 2) for a f. b [7). 
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V. THE D AND B DECAYS 

We shall look into the specific cases of the D and B mesons with a few critical remarks on 
some of the recent attempts to compute the final-state interaction phases of the two-body 
decays of D and B. 

A. The D meson 

The most prominent two-body decay of the D meson is the K 1r modes. From the observed 
decay rates of n+ --+ XO'lr+ and D 0 --+ 7r+ K-' Jtl'lro' the phase and magnitude of the decay 
amplitude were determined for D --+ 1r K of definite isospin. They discovered a large relative 
phase between the 1=1/2 and 3/2 decay amplitudes [5]; 

(64) 

with the amplitude ratio 

IM3/2/ Ml/21 = 0.27 ± 0.03. (65) 

Since the D meson mass is too low for the Pomeron to dominate in the K 1r scattering, our 
argument in the preceding Section does not apply with a good accuracy. The phases of the 
s-wave K1r elastic scattering amplitudes a1(s) at energy mD was computed with the Regge 
theory and identified with the phases of the decay amplitudes for the K 1r isospin eigenstates. 

The result of calculation in Ref. [6] happens to be in a good agreement with the observed 
phase difference, Eq.(64), withil! the uncertainties in the values of the Regge parameters. We 
argue however that such an agreement is fortuitous. In order to identify the scattering phases 
with the decay phases, the scattering must be elastic. The authors of Ref [6] computed only 
the phase difference of the K 1r amplitudes, not the magnitudes of them. If they had done 
so, they would have obtained 

al/2(m1) = 0.08 + 0.21i 

a3/2(m1) = -0.35 + 0.18i. 

(66) 

They do not satisfy the elastic unitarity: 11 + 2ia1;2l = 0.60 and 11 + 2ia3/21 = 0.95. 
The I = 1/2 amplitude is deep inside the Argand diagram while the I = 3/2 amplitude 
nearly satisfies the elastic unitarity. Actually, if one insists that K 1r scattering be elastic at 
yiS = mD, one can make a3; 2 unitary in a model-independent way. Since the I= 3/2 channel 
is exotic, i.e., contains no s-channel resonances dual to the non-Pomeron trajectories, the 
imaginary part of a3; 2 in Eq.(67) comes entirely from the Pomeron. The non-Pomeron 
trajectories can contribute only to the real part in the case of a3; 2 • Therefore one should 
make up for the unitarity violation of a3 j 2 by adjusting its real part: 

a3/2(m1) = -0.38 + 0.18i, (67) 

which gives 

(68) 
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Unlike a312 the unitarity deficit of a112 is very large. To recover the elastic unitarity for 
a112 , the Pomeron daughters and the exchange-degenerate pairs of trajectories such as the 
daughters of p-h and of K*-K2 must contribute ju_st as much as or more than the parent 
trajectories. If so, the Regge expansion itself would be unjustified at this energy. 

In the I= 1/2 channel there is an obvious candidate for a cause of inelasticity, that is, 
K"' channel which should enter according to the flavor SU(3) symmetry. Then the (K 1r )r=1/ 2 

involves at least two eigenchannels, the I= 1/2 channels of the 8 and 27 representations of 
SU(3). In addition, there are multibody channels. The D meson decays into K 1r1r1r of both 
I= 1/2 and 3/2 including the modes such asK* p and Ka1 . The combined branching frac­
tion of all K 1r1r1r modes is even larger than that of K 1r. Many J P = o+ states are contained 
in K 1r1r1r, with which K 1r mixes in general. It is not surprising if many eigenchannels are 
open for both I= 1/2 and 3/2 already at the energy of the D meson 

Is there any chance to identify the D --+ K 1r decay phase with the K 1r scattering phase 
all the way up to high energies despite the presence of inelastic channels ? We do not think 
so. In Eq.(67) the real part of a1 is positive for I= 1/2 and negative for I= 3/2 at the D 
meson mass. If it happens that a112 and a312 approach purely imaginary numbers at high 
energies, 0112 ( s) would turn counter clockwise to 1r /2 and 0312( s) would turn clockwise to 
-1r /2. The phase-amplitude dispersion of Section II then requires that M112(D --+ K 1r) is 
enhanced over M312 (D--+ K1r) by factor (m*/mv)2, where m* is the highest energy up to 
which one is willing to make the identification of the decay phase with the scattering phase. 
This relative enhancement factor is far too large unless m* is chosen to be comparable to 
mv. 

To summarize, the D-meson mass is not low enough to allow identification of the final­
interaction phase with the elastic scattering phase. Yet it is not high enough for our random 
S-matrix approximation to work with a good accuracy. The large phase difference obtained 
by experimentalists can be accommodated but not predicted. 

B. The B decay 

The meson-meson scattering at energy vfS = ms is most likely asymptotic for 1r1r, K 1r, 

D1r or even for DDs· The resonances exist only at much lower energies, which means that 
the contribution of the nondiffractive scattering, i.e. 1 the non-Pomeron exchanges, to the 
asymptotic scattering amplitude is negligible. For instance, if we make an estimate for the 
elastic K 1r scattering at energy ms using the Regge parametrization of Ref [6], the diffractive 
contribution gives 

11 + 2iaii = 0.64 (I= 1/2, 3/2). (69) 

The nondiffractive contributions modify it only slightly into 11 + 2ia1J21 = 0.63 and 11 + 
2ia3J21 = 0.65. The two-body scattering is clearly in the asymptotic energy region. The 
s-wave inelasticity for K 1r is 

(70) 

from our estimate in Eq.(42). There is no chance for the elastic approximation to work at 
this energy. The fact that the largest branching fractions observed in the B decay are at 
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the level of 1% is a clear evidence for the presence of very many open channels. The B 
decay is the process where our results of Section IV should apply best. We shall restate our 
predictions for the B decay below. 

First of all, the two-body B decay amplitudes should be dominantly real up to CP viola­
tion phases. According to our very crude estimate made in Eq.(59), the decay phases should 
be 7° or smaller. The relative phases should be even smaller. As has already been pointed 
out, this is in a sharp contrast to the conclusion of the elastic approximation which predicts 
that the phase differences are small but the phases themselves are close to 90°. Though some 
of the existing literature reach the same or similar conclusions, our s-channel picture for the 
origin of the almost real decay amplitudes is quite different from and orthogonal to them. 
Our phase-amplitude dispersion relation corroborates the smallness of the decay phases. Up 
to the short-distance QCD corrections, the magnitude of the final-state interaction phase 
is independent of isospins in the first-order app;roximation. This small and common final­
state interaction phase is the reason why the color suppression appears to hold well in the 
B-decay. 

As for a phase difference between a pair of decay amplitudes, the portion of the relative 
phase that arises from the first-order correction to the random phase limit is not calculable, 
but small when the channel number n is large. The typical branching fraction for the two­
body modes B-+ DM,D*M···, where M is 7r,p,.;., is somewhere between 0.1% and 1% 
while the inclusive nonleptonic branching due to b -+ cud should be close to 70%. Therefore 
the effective number of open channels n with this set of quantum numbers is a hundred or 
more. For the decay modes such as B -+ n- p+ that have relatively large branching fractions, 
the randomness approximation gives reliable predictions while the phases of the suppressed 
decay modes such as B 0 -+ If p0 cannot be reliably predicted in this approximation. In 
other words, the phase of the B 0 -+ If p0 amplitude can be large. The reason is that the 
two isospin amplitudes (DPh/2,3/2 of B 0 -+ If p0 nearly cancel each other in the B 0 -+ If p0 

combination, thus enhancing the phase fluctuation contributions. 
The relative phase which arises from the interference with the subdominant nondiffractive 

eigenchannels is negligibly small since the contribution of the nondiffractive channels is 
suppressed by fB/mB. According to our estimate in Eq.(61), the phase difference of this 
origin is expected to be 

/:!.8 rv 1/300. (71) 

The phase difference due to the fluctuations is more important in comparison. We are unable 
to estimate the relative importance between the fluctuations and the short-distance effects 
to the phase differences. Notable exceptions are the decay modes for which the annihilation 
or exchange process dominates. For example, the decay B 0 -+ K+ K- for which no spectator 
diagram can be drawn. In this case the decay proceeds only through B -+ R -+ K+ K- in 
the picture of the dual resonance model. There are no diffractive eigenchannels in the s­
channel for this mode. Therefore the B 0 -+ K+ K- amplitude can h~ve a large phase unlike 
the amplitude for the spectator-dominated mode B 0 -+ K 0X0. The rescattering from K 0X0 
to the K+ K- final state can occur through a qq pair exchange, namely, the non-Pomeron 
exchange. By stretching the corresponding quark diagram out, however, we find that the this 
rescattering decay process is actually due to one of the annihilation diagrams. Unfortunately 
the branching fraction is too small for such interesting decay modes. 
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VI. CONCLUDING REMARKS 

A reliable computation of the long-distance fina!-state interaction phases is nearly an 
impossible task. The elastic rescattering approximation is probably not viable even for 
the D decay. It is out of question for the B decay. Nonetheless we are able to extract a 
few relevant pieces of information with the phase-magnitude dispersion relation and with 
the eigenphase analysis. The conclusion from the dispersion relation is rigorous while the 
argument based on the eigenphase shifts resorts to the random channel-mixing postulate 
and the dual resonance model. The complexity of long-distance strong interactions appears 
formidable if we try to go any step further along this line. It may be possible to reach 
essentially the same qualitative conclusions with more an intuitive qualitative reasoning 
[27]. We have tried in a way different from anybody else, maybe in a hard way. We hope 
that our approach sheds a light on some aspects of the problem which have so far not been 
appreciated. 
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FIGURES 

(a) (b) 

FIG. 1. Duality in the quark diagrams for the elastic boson-boson scattering. (a) The resonant 
channels dual to the non-Pomeron Regge trajectories. Being made of a qq pair, the intermediate 
resonant states cannot have the exotic (non-qq) quantum numbers. (b) The nonresonant channels 
dual to the Pomeron consist of qqqq. In the Pomeron exchange process, one boson ( qq) exchanges 
gluons with the other boson (qq). Since gluons carry no flavors, the Pomeron is necessarily a flavor 
singlet. The s-channel intermediate states consist of a pair of hadrons or hadron resonances which 
does not resonante. 
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