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Abstract 

A theory of the van der Waals form is used to establish solid-fluid phase diagrams for 

aqueous solutions containing two kinds of globular proteins. Theory is based on a one-fluid 

model that uses a composition-dependent hard-sphere diameter and a composition-dependent 

solvent-mediated effective temperature to represent protein solutions. The hard-sphere reference 

equation of state is based on the model of Young that correlates computer simulations of fluid­

solid coexistence curves for binary hard-sphere mixtures. The attractive perturbation term uses 

the inverse-power potential with variable exponent 11. For single-protein systems, and for large 

11, our model predicts the observed metastable fluid-fluid coexistence curve that lies below the 

stable fluid-solid freezing line; the theoretical phase diagram with: n=7 agrees with aqueous 

solubility data for lysozyme. Based on the correlation of George and Wilson and Rosenbaum et 

al., the optimum range of effective temperature is determined for protein crystallization. For 

binary protein systems, as the size difference increases, the mutual solubility of unlike proteins 

declines sharply in the precipitated solid phase. Illustrative plots are presented to indicate how 

the two-protein phase diagram depends on mixture composition, solubility difference, effective 

temperature, and interaction between unlike proteins. The theoretical resul1s obtained here may 

be useful for design of protein-separation processes by crystallization. 

(Key words: equation of state; protein crystallization; protein mixtures.) 
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Introduction 

In polymer solutions, the polymeric solute can be separated by inducing phase separation. 

The precipitated phase is either a solid or a dense fluid phase rich in polymer. Similarly, a 

protein can be separated from an aqueous solution by precipitation, often achieved by using 

inorganic salts or nonionic polymers as precipitating agents. In the biotechnology industry, 

protein precipitation is widely used to recover and purify proteins from aqueous solutions 

(Rothstein, 1994). In addition, protein crystallization has been extensively studied by biologists 

performing X-ray crystallography of protein crystals (Rosenberger, 1996). However, phase 

diagrams of protein solutions remain less explored than those of solutions containing common 

polymers. 

Protein solutions are similar to colloidal solutions. To understand the phase behavior of 

protein solutions, it is necessary to consider both the fluid-fluid phase separation that leads to 

two fluid phases and the fluid-solid phase separation that results in a fluid phase and a solid 

phase (Asherie et al., 1996; Lowen, 1997). Recent theoretical and experimental studies show 

that, in a temperature-density diagram of colloidal solutions, the fluid-fluid coexistence curve lies 

below the fluid-solid freezing line when the range of attractive interaction is sufficiently small 

relative to the particle diameter. (Asherie et al., 1996; Berland et al., 1992; Bolhuis and Frenkel, 

1994; Broide et al., 1996; Daanoun et al., 1994; Hagen and Frenkel, 1994; Ilett et a!., 1995; 

Lekkerkerker et al., 1992; Lowen, 1997; Muschol and Rosenberger, 1997; Poon, 1997; 

Rosenbaum et al., 1996; Rosenbaum and Zukoski, 1996; Tanaka et al., 1997; Tavares and 

Sandler, 1997). 

In systems where the fluid-fluid coexistence curve lies below the fluid-solid freezing line, 

it is the fluid-solid phase separation that leads to the global minimum of the Gibbs energy. 

Fluid-fluid phase separation is metastable with respect to fluid-solid phase separation because the 

former only leads to a local minimum of the Gibbs energy (Poon, 1997). Under careful 

experimental conditions, however, fluid-fluid phase separation can be observed by light 

scattering before crystallization proceeds (Broide et al., 1991; Broide et al., 1996; Muschol and 
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Rosenberger, 1997; Taratuta et al., 1990; Thomson et al., 1987). Similarly, metastable fluid­

fluid phase separation is also possible for solutions of crystaJlizable polymers (Burghardt, 1989). 

In protein crystallization, the existence of fluid-fluid phase separation has an important 

consequence on the morphology of the protein precipitate (Rosenbaum et al., 1996; Rosenbaum 

and Zukoski, 1996; ten Wolde and Frenkel, 1997). When proteins are precipitated at effective 

temperatures where fluid-fluid phase separation is possible, fluid-fluid phase separation 

interferes with crystallization that proceeds much more slowly than fluid-fluid phase separation. 

Because fluid-fluid phase separation favors large density fluctuations, amorphous solids are 

produced that are not suitable for X-ray diffraction analysis (Poon, 1997). To precipitate proteins 

as crystals, moderately poor solvents are desirable, poor enough to precipitate proteins but not 

too poor to induce fluid-fluid phase separation (George and Wilson, 1994; Poon, 1997; 

Rosenbaum et al., 1996). 

With few exceptions, previous theoretical work has been confined to single-protein 

solutions. In this work, we are concerned with development of a molecular-thermodynamic 

model to compute phase diagrams for ternary solutions, that is, those that contain two types of 

globular proteins in addition to the solvent. We refer to these as binary solutions. The present 

work is stimulated by experimental results reported by Judge et a!. ( 1995) who demonstrated 

recovery and purification of ovalbumin from an aqueous mixture of ovalbumin, conalbumin, and 

lysozyme by salt-induced bulk crystallization. Their study indicates that bulk crystallization may 

be feasible for the recovery of a target protein from aqueous multicomponent protein mixtures. 

In addition, we are also motivated by recent advances in modeling the phase behavior of single­

protein systems and those for computing fluid-solid equilibria of binary hard-sphere mixtures. 

This work presents an elementary van der Waals-type equation-of-state theory. For our 

reference equation of state, we use the model of Young ( 1993) that correlates the computer 

simulation of fluid-solid coexistence curves for binary hard-sphere mixtures (Kranendonk and 

Frenkel, 1991 ). For our perturbation term, we use an inverse-power (Sutherland) potential with 

variable exponent n combined with the model of Daanoun et al. (1994) for a solid with 
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coordination number z. In a temperature-density diagram for sufficiently large n, our model 

predicts the fluid-fluid coexistence curve that lies below the fluid-solid freezing line. 

In our model, the solid phase is, in general, a protein mixture. In previous theoretical 

work for polymer-induced precipitation of protein mixtures, Mahadevan and Hall ( 1990, 1992) 

assumed that only one type of protein precipitates in the solid phase except at the eutectic point 

where two pure solid phases and a fluid phase coexist. For a fluid phase that contains two types 

of proteins, Mahadevan and Hall ( 1990, 1992) used a theoretical two-component model. 

We use a much simpler one-component model. As is common in mixture 

thermodynamics, we use the one-fluid approximation: we obtain the equation of state for protein 

mixtures by semi-empirically extending the equation of state for single-protein systems using 

composition-averaged equation-of-state parameters. Here, "one-component" refers to the solute. 

The solvent is a continuous medium. We use the mean-field perturbation theory that is simpler 

than the first-order perturbation theory used by Mahadevan and Hall ( 1990, 1992). 

We begin with single-protein systems and determine a suitable exponent for the inverse­

power potential by correlating aqueous lysozyme solubility data. Next, we establish the 

optimum range of effective temperature for protein crystallization. Finally, for solutions of 

protein mixtures, we compute phase diagrams as functions of mixture composition, size 

difference, solubility difference, effective temperature, and interaction between unlike proteins. 

Theoretkal Framework 

For modeling protein solutions with a one-component model, we use the hard-sphere 

diameter and effective temperature that represent, respectively, the size of globular protein and 

solvent-mediated interaction between proteins. In a one-component model, where the solvent is 

a medium, the equation of state gives the osmotic pressure of' the solution. For solutions 

containing two kinds of proteins, equation-of-state parameters are averaged over (solvent-free) 

mixture composition using appropriate mixing rules. 
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In protein precipitation by inorganic salts or nonionic polymers, the effective temperature 

depends on several experimental variables such as absolute temperature, ionic strength, pH, salt 

type, and polymer molecular weight. For most typical condensed systems, external pressure has 

little effect unless the pressure is very large. Accurate one-component models are not yet 

available for quantitatively computing the effective temperature as a function of all experimental 

variables. Therefore, our discussion is given in terms of the effective temperature that, at least in 

principle, can be obtained from osmotic-second-virial-coefficient measurements. Such 

measurements can be made as a function of temperature, pH, salt type, and ionic strength (Coen 

et al., 1995; Curtis et al., 1998; Rosenbaum et al., 1996; Rosenbaum and Zukoski, 1996). 

Pair Potential 

We assume that globular proteins in solution interact through the pair potentialu(.R) for 

hard-sphere systems with an attractive inverse-power potential of variable exponent n: 

IP ( ~) I 00 R < I 
11 R = \ ~II 

-c/R (n>3) l~R 

(1) 

where R=Ria is the reduced center-to-center distance of spheres (R=center-to-center distance of 

spheres; a=hard-sphere diameter); £ is the potential energy parameter that specifies the strength 

of solvent-mediated attractive interaction between proteins; and superscript IP denotes inverse-

power potential. In eq. ( 1 ), parameter n systematically varies the range of attractive interaction 

relative to the hard-sphere diameter. As n increases, the reduced range of attractive interaction 

declines. We use the inverse-power potential because of its simplicity. 

For the inverse-power potential, the second virial coefficient is given by 

(2) 
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where k 8 is the Boltzmann constant; Tis the absolute temperature; and T is the effective reduced 

temperature for the inverse-power potential given by 

(3) 

In the colloid and protein literature, k8 T!c is often called the effective temperature. In our 

notation, tik8 is the effective temperature and k8T!c is the effective reduced temperature. 

For salt solutions, parameter £depends on pH, salt type, and ionic strength. For solutions 

containing a nonionic polymer, £ depends on polymer type, polymer molecular weight, and 

polymer concentration. Parameter c may also depend on the absolute temperature because 

aqueous protein solutions involve specific interactions such as hydrogen bonding whose effects 

are strongly dependent on the absolute temperature. Smaller effective temperatures represent 

more attractive interactions between proteins. 

H elmho/tz Energy and Equation of State 

[n this work, the Helmholtz energy is given by a hard-sphere reference equation of state 

and a perturbation term that represent, respectively, the repulsive interaction for the hard-sphere 

system and attractive interaction for the inverse-power potential: 

(_A )=(-A ) +(-A ) 
Nk8 T Nk8 T ref Nk8 T pert 

(4) 

where A is the Helmholtz energy and N is the number of molecules. The equation of state is 

related to the Helmholtz energy by differentiating with respect to the number density: 

( 
pV ) [o(A/Nk8 T)] ( pV ) ( pV ) 

NkBT = p . dp T, N = Nk8 T ref+ Nk
8
T pert 

(5) 
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where pis the osmotic pressure; Vis the volume; and p=N!V is the number density. In eqs. (4) 

and (5), subscripts ref and pert denote reference and perturbation, respectively. 

Hard-Sphere Reference Equations 

For the reference Helmholtz energy, we use the model of Young (1993 ). This model is 

convenient bec~~se it gives analytic equations for correlations based on computer simulations of 

fluid-solid coexistence curves both in the one-component hard-sphere system and in binary hard­

sphere mixtures (Carnahan and Starling, 1969; Hoover and Ree, 1968; Kranendonk and Frenkel, 

1991; Young, 1993). 

Consider first binary mixtures of hard spheres wherein the mole fraction of component I 

is x and the hard-sphere diameter of component i isa ... By choosing component I as the hard 
. II 

sphere with larger diameter, we define parameter a as the ratio of smaller-to-larger hard-sphere 

diameters: 

(6) 

In a one-component model, the packing fraction (i.e., reduced density) of mixture y is 

given in terms of the average hard-sphere diameter:-

'" 3 r= !.j:_pa . 6 

Here, a is a composition-averaged hard-sphere diameter given by 

3 2 3 3 2 3 a =x a 11 +2x(l-x)a12 +(l-x) a 22 

where 

7 

(7) 
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(9) 

When ci is given by eq. (8), for mixtures with a;t1, eq. (7) is not equal to the "real" 

packing fraction of the mixture np (x 1 ai 1+x2a;2)!6. For mixtures, eq. (7) gives a pseudo 

packing fraction. 

Fluid Phase. For the fluid phase, the reference hard-sphere Helmholtz energy and 

equation of state are given by (Young, 1993) 

') 

( 
A 

) 
4y- 3y- 6y 

-- = · +In-+ x lnx + ( 1 - x)In( I - x) 
NkBT ref ( 1 _ y)2 Jre 

( lO) 

') 3 

( 
pV) I+y+y--y 

NkB T ref = (I _ y )3 . 
( Il) 

For one-component systems, eq. ( 11) is the Carnahan-Starling equation of state for the hard-

sphere fluid (Carnahan and Starling, 1969). 

Solid Plzase. For the solid phase, the hard-sphere reference Helmholtz energy and 

equation of state are given by (Young, 1993) 

( 
A ) V * - 1 * * .2 .3 

Nk T _=-3In * +5.124InV -20.78V +9.52V -5.95V /3 
B ref V 

+ 15.022 + x lnx + (1 -x)ln( 1 -x) (12) 

(Npkvr) =++2.566+ o.ss(v*-d- L19(v*-t}
2 

+5.9s(v*-t}
3 

B ref V ·-1 
(13) 
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where 

(14) 

( 15) 

( 

where 

f(a) = 1 + 13.5(1-a)
2

'
5 

. ( 16) 

Equations (12) and ( 13) are based on the fit to the computer-generated compressibility 

factor for a one-component hard-sphere solid (Hoover and Ree, 1968; Young, 1993 ). Equation 

(12) contains a constant 15.022. This constant is necessary to give the correct melting point of 

one-component hard-sphere systems determined by computer simulations (Hoover and Ree, 

1968; Young, 1993). 

For mixtures, the essential part of the model of Young is function f(a) given by eq. ( 16). 

Young determined f( a) such that the model approximately fits the corilputer-generated fluid­

solid coexistence curves for binary hard-sphere mixtures in the range 0.85 ~ a~ I (Kranendonk 

and Frenkel, 1991; Young, 1993). In the solid phase, the computer simulation of Kranendonk 

and Frenkel ( 1991) shows that the mutual solubilities of hard-sphere mixtures decline sharply as 

a decreases below about 0.9. 

Perturbation Terms 

The perturbation term represents the solvent-mediated attractive interaction between 

proteins whose magnitude is represented (inversely) by reduced effective temperature T. Using a 

one-fluid mixing rule, the reduced effective temperature of the mixture (at constant 7) is given by 
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--1 2--1 ...:....-1 2--1 
T = x T11 + 2x( 1-x)T12 + ( 1-x) T22 

where 

( 17) 

(18) 

(19) 

where k 1 2 is an adjustable parameter that relates the magnitude of attractive interaction between 

unlike proteins to those between like proteins. 

Similar to parameter a defined by eq. (6), we also define parameter f3 as the ratio of£?? to 

(20 a) 

At constant absolute temperature 

Fluid Phase. For the fluid-phase perturbation term, we use the van der Waals 

perturbation combined with the inverse-power potential given by eq. ( 1 ). For the Helmholtz 

energy, the van der Waals perturbation term is proportional to the product of number density and 

the average of the pair potential evaluated over the center-to-center intermolecular distance 

beyond the hard-sphere diameter. The equation of state is obtained from the Helmholtz energy. 

For the fluid phase, the perturbation term for the van der Waals Helmholtz energy and 

that for the equation of state are identical, given by 
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(_A_) =- _ll__ y 
Nk8 T pert n - 3 T 

(21) 

(~) -- _ll__ y 
Nk8 T pert - n - 3 T 

(22) 

where y is the pseudo packing fraction of the fluid phase given by eq. (7). 

Solid Phase. For the solid-phase perturbation term, we follow the model of Daanoun et 

al. (1994) that represents the solid phase by a perfect crystal wherein the intermolecular 

separation is determined by the ratio of the system density to the close-packed density. In this 

model, the perturbation term for the Helmholtz energy is proportional to the product of lattice 

coordination number z and the pair potential evaluated at the system's intermolecular separation. 

Daanoun et al. considered only single-component crystals. We introduce a one-solid, analogous 

to a one-fluid, mixing rule for mixtures. 

For the solid phase, the perturbation term for the Helmholtz energy and that for the 

equation of state are given by (Daanoun et al., 1994) 

(_A_) = - L II (R) .!_ 
Nk8 T pert 2 T 

(23) 

(~) = - w.. u (R') l. 
Nk8 T pert 6 T 

(24) 

where u is the pair potential and R is the average reduced distance between closest neighbors in 

the lattice. R is given by 

(25) 
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where Yep is the close-packed packing fraction andy is the pseudo packing fraction of the solid 

phase given by eq. (7). 

In computing the perturbation term for the solid phase, it is a crude assumption to impose 

a particular structure on the solid phase. It is more appropriate to consider parameters z andycp 

as adjustable parameters whose values are limited by physical significance. Thus, z should lie 

somewhere between 6 and 12 and yep between 0.52 and 0.74. For our purposes here, we assume 

that the solid phase is the face-centered-cubic (fcc) lattice with z=12 andycp=0.74. We leave 

parameter n as an adjustable parameter. The other adjustable parameter is k 12. Parameter a;; is 

estimated from crystallographic data and parameter£;; is determined from solubility or osmotic-

second-virial-coefficient data. 

Computation Procedure 

In computing the fluid-solid coexistence curves in one-component models, we assume 

that the effective temperature of each component in the fluid phase is equal to that in the solid 

phase. In other words, we assume a uniform solvent composition throughout the (protein-free) 

fluid and solid phases. Calculations based on this simplifying assumption for one-component 

models are able to correlate observed solubility curves for several colloidal solutions (Poon, 

1997; Rosenbaum et al., 1996; Rosenbaum and Zukoski, 1996). 

Single-Protein Systems 

For single-protein systems, we compute reduced effective temperature-density diagrams 

by equating the osmotic pressure and chemical potential of protein J.1 of coexisting phases at the 

same temperature. The chemical potential of protein is defined by 

J.1 = (~~) . T. V 
(26) 

Equation (26) applies to both the fluid phase and the solid phase. 
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Binary-Protein Systems 

For aqueous solutions containing two kinds of proteins, the phase diagram is calculated 

by equating the osmotic pressure and, for each protein, chemical potential Jl; of coexisting phases 

at the same temperature. The .chemical potential of component i is defined by 

(()A) 
J.L; = oN· 

I T.v. Nj.; 
(27) 

where N; is the number of molecules of component i. Equation (27) applies to both the fluid 

phase and the solid phase. 

For binary-protein systems, we compute osmotic pressure-(solvent-free) composition 

diagrams at a fixed absolute temperature. In computing a fluid-solid coexistence curve and a 

solid-solid coexistence curve, we first fix the osmotic pressure or one of two solvent-free 

compositions of coexisting phases. Next, using the initial guesses for unknown variables, the 

reduced densities of coexisting phases are calculated from the equations of state. Iterations are 

repeated until the equality of chemical potential of coexisting phases is satisfied for each 

component. 

As shown later for some binary-protein systems, there is a eutectic point where a fluid 

phase is in equilibrium with two solid phases having different compositions. For a eutectic 

system. the osmotic pressure and three solvent-free compositions of coexisting phases are 

simultaneously determined by equating, for each component, chemical potential of coexisting 
. ~ 

phases. 

Results and Discussion 

As pointed out by numerous authors, m modeling the interaction between colloidal 

particles in solutions, the important parameter is the one that specifies the range of attractive 

interaction relative· to the particle diameter (Asherie et al., 1996; Bolhuis and Frenkel, 1994; 

Daanoun et al., 1994; Hagen and Frenkel, 1994; Ilett et al., 1995; Lowen, 1997; Poon, 1997; 
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Tavares and Sandler, 1997). In the inverse-power potential given by eq. (l ), parameter n 

determines the range of attractive interaction relative to the particle diameter. The reduced range 

of attractive interaction declines with increasing n. 

We first show that as n rises, our model predicts a temperature-density diagram wherein 

the fluid-fluid coexistence curve lies below the fluid-solid freezing line. Next, we determine 

parameter n by correlating aqueous solubility data for lysozyme. We also calculate the optimum 

range of reduced effective temperature for protein crystallization, called the crystallization 

window or slot. Finally, we compute phase diagrams for aqueous protein mixtures as functions 

of mixture composition (x), size difference (a), potential-energy difference ({J), effective 

temperature (T ), and interaction between unlike proteins (k 1 2). Parameter f3 indicates solubility 

difference. For a fixed absolute temperature and for globular proteins of similar size, if £2>£1, 

the solubility of protein 2 is less than that of protein l. 

In the following figures, the fluid and solid regions of the phase diagram are denoted by F 

and S, respectively. Similarly, the fluid-solid two-phase regions are denoted by F-S or by S-F. 

Single-Protein Systems 

Effect of tlze Reduced Range of Attractive Interaction. For single-protein systems, parts a 

and b of Figure I show the theoretical temperature-density diagrams for n=5 and 6, respectively. 

In the perturbation term, we assume that the solid phase is the face-centered-cubic (fcc) lattice 

with z= 12 andy cp=O. 7 40. These figures show that parameter n has a significant effect on the 

location of the fluid-fluid coexistence curve relative to the fluid-solid freezing line. As the . 

reduced range of attractive interaction declines with increasing 11, theory predicts a phase 

diagram wherein the fluid-fluid coexistence curve is buried inside the fluid-solid domain. 

At temperatures where both fluid-fluid and fluid-solid phase separations are possible (part 

b of Figure I), only the fluid-solid phase separation leads to a global minimum of the Gibbs 

energy of the mixture. For the system in part b of Figure 1, fluid-fluid phase separation gives 
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two metastable fluid phases that lead to a local minimum of the Gibbs energy of the mixture 

(Poon, 1997). 

In the present model, there is no stable fluid-fluid phase separation for ll greater than 

about 5.5. However, both z a~dYcp in eqs. (23) to (25) affect the critical value for n that 

separates Figure 1 a-type phase behavior from Figure-1 b type phase behavior. In this work, we 

do not acljust z andycp but use only parameter n as a system-independent adjustable parameter 

determined from the observed phase diagram for a single-protein system. 

Comparison with Experiment. To compare theory with experiment, we need the hard­

sphere diameter and solvent-mediated effective temperature. For a reasonable approximation, 

the hard-sphere diameter is estimated from X-ray analysis of protein crystals. The effective 

temperature is obtained from osmotic-second-virial-coefficient measurements. However, the 

theoretical osmotic second virial coefficient depends on both hard-sphere diameter and reduced 

effective temperature. Therefore, to obtain better agreement of theory with experiment, it is 

advantageous to regress simultaneously the hard-sphere diameter and effective temperature using 

additional solubility data. To fit experimental solubility data for a given system, the effective 

temperature depends on the choice of hard-sphere diameter. 

Despite their simplicity, one-component models combined with two-parameter pair 

potentials have been successfully used to model phase diagrams of colloidal solutions, including 

.those that contain globular proteins. Recently, Rosenbaum et al. and Poon showed that, in terms 

of packing fraction (i.e., reduced density) and reduced effective temperature, observed phase 

diagrams of several colloidal solutions follow closely the th-eoretical phase diagram for the 

adhesive hard-sphere potential (Poon, 1997; Rosenbaum et al., 1996; Rosenbaum and Zukoski, 

1996). These results suggest that, \n terms of reduced variables, there is a universal phase 

diagram for colloidal solutions. These results imply that a corresponding-states description may 

be applicable to protein solutions. 
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We compare our model with aqueous solubility data for lysozyme reported by 

Rosenbaum et al. (Rosenbaum et al., 1996; Rosenbaum and Zukoski, 1996) who presented 

solubility data in terms of r, the reduced temperature for the adhesive hard-sphere potential. In 

the appendix, we discuss the procedure to express their data in terms of the effective temperature 

for our model given by eq. (3).· 

Figure 2 shows the phase diagram for aqueous lysozyme at pH 4.6. The open and solid 

circles show solubility data of Rosenbaum et al. (Rosenbaum et al., 1996; Rosenbaum and 

Zukoski, 1996) calculated with a=3.4 nm and a=3.2 nm, respectively. (Rosenbaum et al. 

obtained effective temperature r from osmotic-second-virial-coefficient data. Data shown by 

. open and solid circles are calculated from the same set of experimental data. Figure 2 also shows 

the reduced phase-separation temperatures associated with the metastable fluid-fluid phase 

separation measured by Taratuta et al. ( 1990); they are given by open and solid triangles for 

o=3.4 nm and o=3.2 nm, respectively (Rosenbaum and Zukoski, 1996). In Figure 2, the solid 

and broken curves are the theoretical fluid-solid and fluid-fluid coexistence curves, respectively, 

for the inverse-power potential with n~7 and z=l2. 

Solubility data calculated with o=3.2 nm agree with the fluid branch of the theoretical 

coexistence curve for our model with n=7. On the other hand, solubility data calculated with 

a=3.4 nm follow the fluid branch of the theoretical coexistence curve for the adhesive hard­

sphere potential presented by Rosenbaum and Zukoski ( 1996). In Figure 2, the primary 

difference between these models is in the high-density region. This discrepancy may be due to 

the mean-field perturbation theory used in our model. The fluid-solid lines shown by 

Rosenbaum et al. (Rosenbaum et al., 1996; Rosenbaum and Zukoski, 1996) are those obtained by, 

computer simulation (Hagen and Frenkel, 1994) for the attractive Yukawa potential. In the high­

density region of our model, the theoretical densities of coexisting .fluid and solid phases can be 

increased by adjusting z andycp· 

For the metastable fluid-fluid phase separation, the critical solution temperature for our 

model with n=7 is close to that for the adhesive hard-sphere potential obtained from the Percus-
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Yevick approximation for the hard-sphere radial distribution function (Watts et al., 1971 ). 

Therefore, for lysozyme, both models overestimate the critical solution temperature associated 

with the fluid-fluid phase separation. However, Rosenbaum and Zukoski (1996) also report that 

for I'Iccrystallin, the observed solubility curve and critical solution temperature agree with the 

prediction by the adhesive hard-sphere potential. 

Figure 2 shows semi-quantitative agreement of theory with experiment. In the present 

model, the solubility data for globular proteins are represented by the theoretical phase diagram 

for n=7 and z=l2. 

Crystallization Slot. The significant result from the work of Rosenbaum et al. (Rosenbaum et al.; 

1996; Rosenbaum and Zukoski, 1996) is that the phase diagrams of different colloidal solutions 

may be represented by a universal phase diagram when the phase diagrams are constructed in 

terms of reduced density and reduced effective temperature. Consequently, the effective 

temperature determined from osmotic second virial coefficient measurements may be used to 

identify the optimum condition for protein crystallization called the crystallization window or 

slot. The work by Rosenbaum et al. provides support for the earlier work by George and Wilson 

(1994) who proposed to identify favorable conditions for protein crystallization from osmotic­

second-virial-coefficient measurements. 

For the adhesive hard-sphere potential, the crystallization slot is approximately given by 

0.06<-r < 0.15 (Rosenbaum et al., 1996; Rosenbaum and Zukoski, 1996). Assuming that the 

hard-sphere diameter for the adhesive hard-sphere potential is equal to that for our model, the 

crystallization slot can also be expressed in terms of our reduced effective temperature T by 

converting r toT using eq. (A 3). 

For the present model, the crystallization slot is approximately given by 

0.18 < T <0.45 (for n=7 and z=l2). (28) 
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Next, we compute the phase diagrams of protein mixtures at reduced temperatures in the 

crystallization slot. 

Aqueous Mixtures of Proteins 

For aqueous mixtures of globular proteins, we present reduced osmotic pressure­

composition diagrams for several sets of parameters a, {3, andk 1 2 defined, respectively, by eqs. 

( 6), (20), and (19). Phase diagrams at high osmotic pressures correspond to those in the high­

reduced-density region. In the following figures, x is the (solvent-free) mole fraction of 

component 1 in the binary mixture of proteins. All calculations are made at effective reduced 

temperatures where fluid-fluid phase separation does not exist. 

a =1 and f3 :1:-1. Part a of Figure 3 shows theoretical phase diagrams for a= 1, /3> 1, and k 1 2=0 at 

T11 =0.45. In this figure, there is no difference in the hard-sphere diameters of components 1 and 

2. For {3> 1, component 1 has larger solubility than component 2. Therefore, the precipitated 

solid phase is rich in component 2. As f3 increases, the composition difference between fluid and 

solid phases rises at a given composition of the fluid phase. 

Part b of Figure 3 shows the effect of k 1 2 on the theoretical diagram for a= 1 and fJ=l.2 at 

T11 =0.45. Between unlike proteins, positive k 12 represents more unfavorable interaction than 

that with k 1 2=0. Conversely, negative k 12 represents more favorable interaction between unlike 

proteins than that with k 12=0. At a given composition of the fluid phase, the composition 

difference between fluid and solid phases fork 1 2=0.08 is larger than that fork 1 2=0 and /3= 1.2 in 

part a of Figure 3. Fork 12=-0.2, the composition difference between fluid and solid phases is 

smaller than that fork 12 =0 and f3= 1.2 in part a of Figure 3. 

a i:-1 and f3 =1. To elucidate the effect of size difference between unlike proteins, parts a, b, and 

c of Figure 4 show theoretical phase diagrams for a=0.95, 0.9, and 0.85, respectively, with f3= l 

and k 12=0 at T 11 =0.45. For the system in part a with a=0.95, there is little composition 
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difference between the liquid and solid phases. In the solid phase, the mutual solubility between 

unlike proteins decreases sharply as the size parameter a decreases below about 0.9. 

For the system in part c, there is a eutectic point where two solid phases and a fluid phase 

coexist. At osmotic pressures below that at the eutectic point, essentially only one type of 

protein precipitates in the solid phase. The type of solid precipitate depends on the overall 

composition of the mixture. At osmotic pressures above that at the eutectic point (i.e., at high 

protein densities), two almost immiscible solid phases coexist. 

For aqueous· binary mixtures of globular proteins, the disparity in size between unlike 

proteins has a significant effect on the partitioning of protein mixtures between coexisting fluid 

and solid phases. In fluid-fluid phase separations for a>0.85 at sufficiently small T 11 , however, 

there is no significant size effect on the partitioning of protein mixtures between coexisting fluid 

phases. For mixtures of globular proteins with sufficient disparity in size, sharp separation of a 

target protein may be best achieved through fluid-solid precipitation, not by inducing fluid-fluid 

phase separation. 

When there is favorable interaction between unlike proteins, we expect that the effect of 

size disparity declines. In the present model, favorable interaction between unlike proteins is 

represented by negative k 1 2. Parts a and b of Figure 5 show theoretical phase diagrams fork 1 2=-

0.1 and k 12=-0.2, respectively, with a=0.85 and /3= I at 1\ 1=0.45. As expected for decreasing 

k 1 2, in part b of Figure 5, the magnitude of the size effect that favors phase separation declines 

and the composition difference between coexisting phases decreases relative to that in part a of 

Figure 5. 

Variation of Effective Reduced Temperature. We next examme how effective reduced 

temperature affects the phase diagrams of protein mixtures at fixed .parameters a, f3, andk 1 2• As 

the effective reduced temperature decreases, the solubility of globular proteins declines. We now 

discuss how the partitioning of protein mixtures between coexisting fluid and solid phases varies 

with the effective reduced temperature. 
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Parts a, b, and c of Figure 6 show theoretical phase diagrams for 711=0.45, 711=0.4, and 

T11=0.35, respectively, with a=0.9, {3=1, andk 12=0. As the effective reduced temperature 

declines, the composition difference between coexisting phases increases and theory predicts 

solid-solid phase separation in the high-density region of the phase diagram. 

Finally, we examine the system where both a and {3 differ from unity. Parts a and b of 

Figure 7 show theoretical phase diagrams for f3= 1 and {3=0.9, respectively, with a=0.9 andk 12=0 

at T 11 =0.35. 

Because the solubility of pure component 2 increases as {3 declines, at a given 

composition of the fluid phase, the mole fraction of component 1 in the solid phase increases as {3 

declines. Consequently, for the system in part b of Figure 7, the composition difference between 

coexisting fluid and solid phases is smaller than that for the system in part a of Figure 7 when x 

* is smaller than the mole fraction of component I at the eutectic point x . Conversely, for the 

system in part b of Figure 7, the composition difference between coexisting fluid and solid 

* phases is larger than that for the system in part a of Figure 7 when xis larger thanx . 

For systems shown in Figure 7, phase diagrams are very sensitive to parameter {3 that 

represents the difference in pure-component solubility. In addition, the eutectic point is also 

* sensitive to parameter {3. For {3=1, 0.9, and 0.8, the eutectic compositionx =0.4, 0.16, and 0.06, 

respectively. 

Comparison with Experiment. At present, for aqueous protein mixtures, there is no published 

work that systematically examines the variation of the fluid-solid phase diagram with 

experimental variables. However, avai.Jable studies (Hung, 1998; Judge et al., 1995; Mahadevan 

and Hall, 1992; Polson, et al., 1964) indicate that crystallization from protein mixtures produces 

crystals of high purity when there is little affinity between unlike proteins and when the disparity 

in size is sufficiently large. 
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Upon inducing bulk crystallization with ammonium sulfate, Judge et al. ( 1995) 

demonstrated recovery and purification of ovalbumin (45 kDa) from an aqueous mixture that 

contains 12 g ovalbumin, 1 g conalbumin (80 kDa), and 1 g lysozyme (14.6 kDa). In their 

experiment, the purity of the recovered ovalbumin crystals was greater than 99 %. According to 

the present model, the high selectivity demonstrated by this experiment may follow because 

ovalbumin is the major component of the protein mixture and because there is sufficient size 

difference between ovalbumin and conalbumin and between ovalbumin and lysozyme. 

Another aqueous protein mixture wherein pure components crystallize separately is the 

system thaumatin (23 kDa) and lysozyme (14.6 kDa) (Hung, 1998). 

Conclusions 

A simple van der Waals-type theory is presented to compute phase diagrams of aqueous, 

solutions containing binary mixtures of globular proteins. Theory is based on a one-component 

model that uses a composition-dependent hard-sphere diameter and a composition-dependent 

solvent-mediated effective temperature to represent solutions of globular proteins. Compared to 

other theories for protein solutions, we use a much simpler van der Waals-type perturbation 

theory based on the inverse-power potential of variable exponent 11. 

In a temperature-density diagram, our model correctly represents the phase diagram 

where the metastable fluid-fluid coexistence curve lies below the stable fluid-solid coexistence 

domain. For single-protein systems, despite its simplicity, the theoretical phase diagram with 

n= 7 and z= 12 shows good agreement with the observed solubility of lysozyme (Rosenbaum et 

al., 1996; Rosenbaum and Zukoski, 1996). For our model, in terms of the effective reduced 

temperature T, the crystallization slot for globular proteins is approximately given by 0.18 < 

T <0.45. 

For mixtures of globular proteins, our model takes into account the size difference 

between unlike proteins that has a significant effect on the partitioning of protein mixtures 

between coexisting fluid and solid phases. In fluid-solid phase equilibria, as the disparity in size 
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increases, the mutual solubility between unlike proteins declines sharply in the precipitated solid 

phase. For significant size differences, the solid phase approaches a pure component. The type 

of precipitated protein depends on the composition of the protein mixture. For fixed a, {3, and 

k 12, the mutual solubility in the solid phase also declines as the effective reduced temperature 

decreases. 

For systems with large size difference, there is a eutectic point where two solid phases 

and a fluid phase coexist. For a given size ratio, the eutectic composition is sensitive to the 

solubility difference between unlike proteins. 

Immiscibility in the solid phase due to the size effect declines as the interaction between 

unlike proteins becomes more attractive. 
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Appendix 

Because Rosenbaum et al. (Rosenbaum et al., 1996; Rosenbaum and Zukoski, 1996) 

report their data in terms of the reduced temperature for the adhesive hard-sphere potential, it is 

necessary to express their data in terms of the effective temperature for our model given by eq. 

(3). We first review the adhesive hard-sphere potential. 

The adhesive hard-sphere (AHS) potential is given by 
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R<a 

(A l) 

where r is the effective reduced temperature for the adhesive hard-sphere potential. The second 

virial coefficient for this potential is given by 

(R=Ria) . (A 2) 

For 0.13<r<2. the theoretical phase diagram has not been reported for the adhesive hard-

sphere potential. Therefore, Rosenbaum and coworkers approximated the fluid-solid coexistence 

curve for the adhesive hard-sphere potential by that for the short-range attractive Yukawa 

potential obtained from computer simulations by Hagen and Frenkel ( 1994 ). For the short-range 

attractive Yukawa potential, this approximation is satisfactory when the phase diagram for the 

Yukawa potential is compared with that for the adhesive hard-sphere potential at the same 

second virial coefficient. 

We express the data from Rosenbaum et al. in terms ofT by equating the second-virial 

coefficient for the inverse-power potential to that for the adhesive hard-sphere potential: 

B
IP _ BAHS 
2 - 2 (A 3) 

where B~P and s;Hs are given by eqs. (2) and (A 2), respectively. Because the theoretical 

second virial coefficient depends on both hard-sphere diameter and effective reduced 

temperature, the hard-sphere diameter reported by Rosenbaum and Zukoski may be adjusted to 

obtain better agreement of our model with t!Xperiment. Although Rosenbaum and coworkers 
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obtained hard-sphere diameters such that the fluid branch of the theoretical coexistence curve 
' 

agrees with experiment in the high-density region, the regressed hard-sphere diameters for 

several colloidal particles are very close to those estimated from other measurements. 
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Figure Captions 

Figure 1. Theoretical temperature-density diagrams for single-protein systems (F=fluid, 

S=solid): (a) n=5, (b) n=6. In the perturbation term, the solid phase is the face­

centered-cubic lattice with z=12 andycp=0.74. In part b, the broken curve is the 

coexistence curve for the metastable fluid-fluid phase separation. 

Figure 2. Phase diagram for aqueous lysozyme solution at pH 4.6. The open and solid circles 

are the solubility data from Rosenbaum and Zukoski ( 1996) for a=3.4 nm and a=3.2 

nm, respectively. The open and solid triangles are the phase separation temperatures 

associated with the metastable fluid-fluid phase separation for a=3.4 nm and 0'=3.2 

nm, respectively. (Data shown by open and solid symbols are from the same set of 

experimental data.) The solid and broken curves are theoretical fluid-solid and fluid­

fluid coexistence curves, respectively, for n=1. 

Figure 3. Theoretical phase diagrams for aqueous protein mixtures for a= I at T11 =0.45 

(F=fluid, S=solid): (a) {3:t:.l and k12 =0, (b) {3=1.2 and k12:t:.O. In these figures, there 

is no difference in the hard-sphere diameter between components 1 and 2. For {3> 1, 

component 1 has larger solubility than component 2. 

Figure 4. Theoretical phase diagrams for aqueous protein mixtures with different size ratios 

(F=fluid, S=solid): (a)a=0.95, (b) a=0.9, (c) a=0.85. For all systems f3=0,k 12 =0 and 

T11 =0.45. In part c, there is a eutectic point where two solid phases and a fluid phase 

coexist. 

Figure 5. Theoretical phase diagrams for aqueous protein mixtures with different k12 (F=fluid, 

S=solid): (a)k12 =-0.1, (b)k12 =-0.2. For all systems a=0.85, {3=1, and T11 =0.45. 
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Figure 6. Theoretical phase diagrams for aqueous protein mixtures at different effective 

temperatures (F=fluid, S=solid): (a) f 11 =0.45, (b) f 11 =0.4, (c) f 11 =0.35. For all 

systems a=0.9, fJ=l, and k12 =0. 

Figure 7. Theoretical phase diagrams for aqueous protein mixtures (F=fluid, S=solid): (a) f3= 1, 

(b) /3=0.9. For all systems a=0.9, k12 =0, and T11 =0.35. 
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