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1 

Elastic wave propagation in highly heterogeneous media is investigated and 

theoretical calculations and field measurements are presented. In the first part 

the dynamic composite elastic medium (DYCEM) theory is derived for one­

dimensional stratified media. A self-consistent method using the scattering 

functions of the individual layers is formulated, which allows the calculation 

of ,phase velocity, attenuation and waveform. In the low frequency limit the 

self-consistent formulation is consistent with the Reuss average and in the high 

frequency limit it yields the correct ray theory average velocity. The comparison 

with complete numerical solutions shows that the DYCEM theory predicts the 

coherent wave through randomly layered media. In the second part the DYCEM 

theory has been generalized for three-dimensional inclusions. The specific case 

of spherical inclusions is calculated with the exact scattering functions and com-
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pared with several low frequency approximations. Spectra and waveforms for 

materials with solid and liquid inclusions in a solid matrix are presented. The 

results show that the exact scattering functions are required to adequately de­

scribe wave propagation at all frequencies. In the third part log and VSP data 

of partially water saturated tuffs in the Yucca Mountain region of Nevada are 

analyzed. The anomalous slow seismic velocities can be explained by combining 

self-consistent theories for pores and cracks. The effective matrix velocities in 

the studied tuffs deviate strongly from the individual mineral velocities. This 

effect may be due to the presence of two dimensional inhomogeneities like cracks 

and grain contacts. The fourth part analyzes an air injection experiment in a 

shallow fractured limestone, which has shown large effects on the amplitude, 

but small effects on the travel time of the transmitted seismic waves. The large 

amplitude decrease during the experiment is mainly due to the impedance con­

trast between the small velocities of gas-water mixtures inside the fracture and 

the formation. The slow velocities inside the fracture allow an estimation of 

aperture and gas concentration profiles. The aperture estimates range from less 

than one millimeter to a few millimeters, which is comparable to previous tracer 

· tests. 
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Chapter 1 

Introduction 

Over the last three decades enormous strides have been made in understand­

ing the connections between physical properties of rocks and elastic wave prop­

agation. Scientists have discovered a variety of relations, such as wave velocity 

versus porosity, velocity versus fluid saturation and lithology. Unfortunately, 

most of the theories developed by the oil industry provide unreliable results 

at shallow depths. Small effective pressures, poor consolidation and inhomo­

geneities have been pointed out to be responsible for the discrepancy. 

The first major breakthrough in predicting the elastic moduli of porous media 

at low frequencies was achieved by Gassmann (1951 ). Gassmann's equations 

relate elastic moduli of fluid saturated rocks to the properties of the dry frame 

and the fluid and are still widely used, but they provide little insight into the 

physics of wave propagation. However, Gassmann's equations are consistent 

with the low frequency limit of Biot's theory (Biot, 1956a) and a special case of 

Berryman's theory (Berryman, 1980a), both discussed below. 
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Biot developed a theory of wave propagation in fluid saturated porous media 

that focuses on macroscopic fluid flow. Biot's theory (1956a; 1956b) shows that 

acoustic waves create relative motion between the fluid and the solid frame due 

to inertial effects. As the matrix is accelerated, the fluid lags behind, resulting 

in viscous dissipation of acoustic energy. At seismic frequencies, the predicted 

attenuation is usually too small compared to measurements. Many rocks show 

much more dispersion and attenuation than predicted by Biot 's theory. 

Another fluid flow mechanism, often called "local-flow" or "squirt-flow", 1s 

based upon microscopic fluid motion. The pore space of a rock is generally very 

heterogeneous, some regions being very compliant while others are very stiff. 

This can result in fluid being squeezed out of grain contacts into nearby pores, 

or squeezed between adjacent cracks having different orientations with respect 

· to a passing stress wave. While most of local fluid flow models can be fit to 

experimental data, they have not the predictive power of Gassmann's or Biot's 

theory, because they are all highly dependent on details of the microstructure 

that cannot yet be adequately quantified. 

A different approach to study porous media is to calculate elastic scattering 

from pores and grains. Elastic scattering occurs whenever velocity or density 

heterogeneities are present. Although the scattered energy is not absorbed by 

the rock as heat, it results in energy loss to the primary pulse. In one-dimensional 

stratified media, scattering has been studied extensively and is regarded as the 
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main attenuation mechanism for acoustic waves. A three-dimensional scatter-

ing approach to calculate the elastic properties of spherical inclusions in the low 

frequency limit was presented by Kuster and Toksoz (1974). Berryman (1980a) 

modified their approach and obtained the self-consistent theory for spherical 

inclusions, which is consistent with Gassmann's equations if Gassmann's as-

sumption that the saturated and dry shear modulus are the same is fulfilled 

(Appendix A). However, Berryman's theory is only valid in the low frequency 

limit without considering scattering attenuation. Although Berryman's the­

ory provides more insight into the physics of elastic wave propagation, it has 

rarely been used by other authors. Many critics believe that a major flaw of 

the self-consistent theory is its prediction of a threshold of rigidity at a finite 

concentration of fluid in a solid matrix. 

In Chapter 2, I develop a self-consistent theory for one-dimensional strati­

fied media to demonstrate the validity and limitations of self-consistent theories. 

The theory, called the DYnamic Composite Elastic Medium theory (DYCEM), 

is based upon the scattering function of the individual layers in a stack of lay­

ers. The theory is applied to perturbed and binary media and the results are 

compared with the exact propagator method by Kennett (1983). 

Chapter 3 explores the generalized self-consistent theory used in Chapter 2 

for three-dimensional inclusions. First, the effect of one single inclusion upon 

an incident plane wave is discussed. Then, the obtained scattering function is 
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incorporated into the self-consistent theory to compute the elastic properties 

of many three-dimensional inclusions at any frequency. For the special case of 

spherical inclusions, I present spectra and waveforms of materials with solid and 

liquid inclusions in a solid matrix. 

The case study of seismic rock properties of highly porous tuffs in the Yucca 

Mountain region is presented in Chapter 4. The Yucca Mountain region in the 

southwestern part of Nevada is currently being evaluated as a potential site for a 

nuclear waste repository. Several seismic reflection surveys have been conducted 

in the past, which provided small penetration depths with discontinuous layers. 

I use log and VSP data to derive the elastic properties of the matrix material. 

Berryman' theory is used to describe the pores and O'Connell and Budiansky's 

theory (1974) the grain contacts and microcracks. 

Chapter 5 describes the importance of a priori knowledge and the large 

impact of volatiles on seismic waves. Crosswell surveys before and after an 

air injection experiment into a local fracture zone are analyzed. Travel times 

show no significant change due to the experiment, but the amplitudes decrease 

by orders of magnitudes. I use a single vertical fluid layer with variable air 

concentration to simulate the experiment and to invert for fracture apertures. 



Chapter 2 

Dynamic composite elastic medium theory. 

Part I. One-dimensional media 

2.1 Abstract 

5 

Wave propagation in stratified media may be described by scattering theory, 

effective medium theory or ray theory, depending upon the frequency range. 

We present a dynamic composite elastic medium (DYCEM) theory which de­

scribes wave propagation at all frequencies. In the first part of the series we 

consider randomly layered one-dimensional media and in the second part media 

with three-dimensional inclusions. Non-self-consistent and self-consistent meth­

ods using the scattering functions of the individual layers are formulated which 

allow the calculation of phase velocity, attenuation and waveforms. In the low 

frequency limit only the self-consistent method agrees with the Reuss average 

and in the high frequency limit it yields the correct ray theory average velocity. 

The comparison with complete numerical solutions shows that our theory pre­

dicts the coherent wave through randomly layered media. Hence, the dynamic 



6 

composite elastic medium theory can be used to compute frequency dependent 

elastic properties of randomly layered media without calculating the complete 

wave propagation solution. 

2.2 Introduction 

An almost universal feature of materials encountered in the earth is that they 

tend to be heterogeneous on many scales. These heterogeneities include varia­

tion in mineral composition, grain size, porosity, pore size, pore fluid properties, 

and conditions of temperature and stress. In the past fifty years the character­

ization of such inhomogeneities on different scales and their influence on wave 

propagation have been studied extensively. The first major breakthrough in pre­

dicting the elastic moduli of porous media was achieved by Gassmann (1951). 

Biot (1956a, 1956b) developed independently a theory to predict velocity and 

attenuation in porous media by taking fluid flow within the pores into account. 

Biot's theory was later successfully modified by Dvorkin et al. (1995) to account 

for squirt flow between soft and stiff pores. 

In this study we consider a different approach to the study of heterogeneous 

media that involves scattering. One of the best known works using this approach 

is the theory for a stratified medium by O'Doherty and Anstey (1971), who 

predicted the attenuation and time delay of a pulse through a randomly layered 

medium. There was some controversy about the derivation of their theory, which 



7 

led to a number of modified theories (e.g., Schoenberger and Levin, 1974; Banik 

et al., 1985a; Banik et al., 1985b; Burridge et al., 1988; Shapiro et al., 1994). 

The properties of these theories for one-dimensional media are relatively easy to 

check because numerical methods are available for calculating complete solutions 

for layered media. 

A truly three-dimensional scattering approach to calculate the elastic prop­

erties of spherical inclusions in the low frequency limit was first presented by 

Kuster and Toksoz (1974). Berryman (1980a) showed that their theory is not 

self-consistent and therefore not valid for large inclusion concentrations. Berry­

man modified Kuster and Toksoz's theory and obtained a self-consistent theory 

for spherical inclusions and elliptical inclusions in the low frequency limit (Berry­

man, 1980a; Berryman, 1980b ). Berryman's self-consistent theory is only valid 

in the low frequency limit and does not consider attenuation due to scattering. 

Using a self-consistent dynamic composite elastic medium (DYCEM) theory, we 

have been able to compute attenuation and phase velocity of a medium with 

spherical inclusions at all frequencies (chapter 3). However, controversy still 

exists about the validity of self-consistent theories, and, in the case of three­

dimensional problems, complete numerical solutions are not available to help 

resolve the controversy. Hence, in this paper we formulate a dynamic com­

posite elastic medium theory for the one-dimensional problem analogous to the 

three-dimensional problem. The method is applied to numerical simulations of 
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perturbed and binary media and compared with a complete numerical solution 

to illustrate the validity, interpretation and limitations of the dynamic compos-

ite elastic medium theory. Having demonstrated the validity of this approach for 

one-dimensional media, the method is extended to the case of three-dimensional 

media in a companion paper. 

2.3 Dynamic composite elastic medium theory 

In order to calculate the first arrival of seismic waves through a stack of layers, 

we perform the following thought experiment. First, we assume a homogeneous 

medium of thickness L, velocity v0 and density p0 • For a normally incident plane 

wave, the resulting wave field at distance L is 

(2.1) 

where k0 is the complex wavenumber and U and U0 are the spectra of the wave 

field at distance L and of the incident wave, respectively. Equation (2.1) can 

also be written in terms of the attenuation a 0 and phase velocity v0 

(2.2). 

where w is the angular frequency. Comparing equation (2.1) and (2.2) we obtain 

-SS{ko}, (2.3) 

where the symbol SS represents the imaginary part and ?R the real part. 
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Z=O 

Z=L 

Figure 2.1: Schematic illustration of a transmitted wave through a homogeneous 
background with velocity v0 and density p0 , and one layer with velocity v1 , 

density p1 and thickness d1 . The transmitted wave and all reverberations within 
one layer are considered in the dynamic composite elastic medium theory. 

2.3.1 Non-self-consistent theory 

Next we introduce one layer with thickness d1, velocity v1 and density p1 

into the previously homogeneous medium (Figure 2.1). The wave field U1 at 

distance L becomes 

(2A) 

with 

1 - Rio -i(k1-ko)d1 
-1---R-2::--e--'_::.:=i2....,..k-1 d:-1 e 

10 

P1 v1 - PoVo 

P1 v1 + PoVo' 

where A10 is the scattering function of the new layer for a normally incident 
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wave and R10 is the reflection coefficient between the background and the new 

layer (Aki and Richards, 1980). The wave field U1 can also be expressed in 

terms of the non-self-consistent wavenumber kNs 

(2.5) 

and with equation (2.4), we obtain 

z 
ko + L lnA10• (2.6) 

Equation (2.6) is exact since it takes into account all the reverberations within 

the new layer. Next we randomly place more layers into the background medium 

and assume that the distances between the layers are much larger than the layer 

thicknesses. Hence, the first arrival shows no considerable contribution of rever-

berations between the different layers. Using this approximation, equation (2.4) 

for N 1 layers becomes 

and equation (2.6) becomes 

with 

N1 

Uo IT Anoe-iko~ 
n=l 

i N1 

ko + L L lnAno 

PnVn- PoVo 

PnVn + PoVo 

n=l 

(2.7) 

(2.8) 
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Including the background layers, N is the total number of layers in the stack and 

the scatteringfunctions Ano for n=N1+1, ... ,N are unity. Hence, equation (2.8) 

is equivalent to 

i N 

kN s = ko + L L ln Ano 
n=l 

(2.9) 

The non-self-con'sistent wavenumber kNs in equation (2.9) is dependent upon 

the choice of the matrix wavenumber k0 . If the background and the layers 

are interchanged, the resulting non-self-consistent wavenumber will generally be 

different. Hence, equation (2.9) has to be modified in a self-consistent way to 

eliminate the arbitrary choice of the matrix. Nevertheless, equation (2.9) is the 

resulting wavenumber for multiple forward scattering, if the interactions between 

the layers are being ignored. 

2.3.2 Self-consistent theory 

With an increasing number of layers, reverberations between the layers be-

come important and the non-self-consistent theory is no longer valid. In this 

case, a self-consistent formulation is needed (e.g., Berryman, 1980a). To accom-

plish this task, we have to replace the true background medium by an effective 

medium. In this way, all the layers, including the true background layers, act as 

scatterers relative to the effective medium and the arbitrary choice of the rna-

trix has been eliminated. The properties of the effective medium are determined 

by all layers in the stack, but multiple scattering is limited to two neighboring 
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layers and the reflection coefficient is computed relative to the effective medium 

properties. To compute the self-consistent wavenumber ks, we simply replace 

the background by the effective medium and equation (2.9) becomes 
( 

or 

with 

Ps 

. N 
~ 

ks = ks + - L ln Ans 
L n=l 

i N 
L L lnAns 

n=l 

0, 

1- R2 
----=-----'-n=S __ e- i( kn-ks )dn 
1 _ R;se-i2kndn 

PnVn- psvs 

PnVn + PsVs 
1 N 
L L Pndn, 

n=l 

(2.10) 

(2.11) 

where Ans, vs and Ps are the self-consistent scattering function, phase velocity 

and density, respectively. Since the wavenumbers are complex,' equation (2.11) 

describes a set of two equations, which must be solved for the real and the 

imaginary parts of ks at each frequency. In general, these equations can not 

be solved analytically. From a number of numerical methods to solve nonlinear 

equations, we found Muller's numerical method (Press et al., 1992) the fastest 

and most stable. 
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2.3.3 Low and high frequency approximations 

In order to compare the results of this study with other theories and to show 

the limitations of the dynamic-composite elastic medium theory, it is helpful to 

determine the low and high frequency limits. At low frequencies the scattering 

function between layer n and m becomes 

[ 
1 Rz 2Rz l-t . A = 1 + _ nm (2k d )2 + i nm k d e-•(kn-km)dn. 

nm 2 1 - R2 n n 1- R2 n n 
nm nm 

(2.12) 

With equation (2.9) and (2.12), the non-self-consistent wavenumber is therefore 

(2.13) 

and, in the limit of low frequencies, the non-self-consistent phase velocity be-

comes 

_1_ = I_ ~ 1 + R;0 dn 
L..t Rz . 

VNS L n=l 1 - nO Vn 
(2.14) 

With equation (2.11) and (2.12) the self-consistent wavenumber is the solution 

of the equation 

(2.15) 

and in the limit of low frequencies the self-consistent phase velocity is 

1 [ 1 N dn l ~ -= ps-L:-
vs L n=l PnV~ 

(2.16) 

Thus, in the low frequency limit, the self-consistent phase velocity (equation 

(2.16)) is equal to the correct Reuss average (Reuss, 1929), but the non-self-

consistent phase velocity (equation (2.14)) is different. 
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At high frequencies, the scattering function between layer nand m becomes 

(2.17) 

With equation (2.9) and (2.17) the non-self-consistent wavenumber is 

. N 

kNs = ko + ~ L [ln(1- R~0)- i(kn- ko)dn] 
n=l 

(2.18) 

and in the limit of high frequencies the non-self-consistent phase velocity is 

1 _ 1 ~ dn 
VNS- L~ Vn. 

(2.19) 

With equation (2.11) and (2.17) the self-consistent wavenumber is obtained from 

. N 

~ ~ [ln(1- R~8)- i(kn- ks)dn] = 0 
. n-1 

(2.20) 

and in the limit of high frequencies the self-consistent phase velocity is 

(2.21) 

In the high frequency limit, both theories yield the correct ray theory phase 

velocity (equation (2.19) and (2.21)), but only the self-consistent phase velocity 

is correct for both frequency limits. The attenuation of both theories shows the 

w 2 dependence of the Rayleigh scattering for stratified media (equation (2.13) 

and (2.15)). However, there exist no equivalent attenuation averages to compare 

with the low frequency attenuation limits. At high frequencies, the non-self-

consistent approach yields the correct sum of all the transmission coefficients 

(equation (2.18)). The non-self-consistent attenuation is generally different and 

has to be inspected for each specific case (equation (2.20)). 



15 

2.4 Numerical simulations 

For the following numerical simulations we have used the self-consistent the-

ory only because its phase velocity is correct for both frequency limits. We 

have used Kennett's propagator method (Kennett, 1983) to calculate the exact 

seismogram of waves propagating through a stack of layers at normal incidence. 

Kennett's method requires a specific realization of the medium, whereas the 

dynamic composite elastic medium theory does not require information about 

the position of the layers within the stack. However, our theory assumes evenly 

distributed but uncorrelated layers in the stack. With Kennett's method this 

can be simulated by averaging different realizations, i.e., by using ensemble av-

erages. To compute the attenuation and phase velocity with Kennett's method 

we have computed the complex spectrum of the seismogram 

~{U} 
</> = arctan ~{ U} (2.22) 

where lUI is the modulus and </> the phase. Comparing equation (2.22) with 

equation (2.2), the attenuation a and the phase velocity v are 

a = - _!_ ln I !!_I 
L Uo' 

wL 
v =- . 

</>- <Po 
(2.23) 

The computation of the phase velocity v requires continuous phase functions </> 

and </>0 , whereas the phase </> in equation (2.22) is defined only in the interval 

[-1r /2, 1r /2]. Thus, the phase </> has to be unwrapped, which can cause non-

umqueness. Nevertheless, we found the phase velocity to be a useful tool for 
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comparing numerical simulations. 

2.4.1 Perturbed media 

There exist a number of studies concernmg wave propagation in layered 

perturbed media (e.g., Banik et al., 1985b; White et al., 1990; Goff et al., 

1994; Shapiro et al., 1994). Most of these studies characterize the medium 

with statistical parameters. In this study, we are focusing on the microscopic 

scale, i.e., the medium is perturbed and the layers are truly random. One can 

also think of homogeneous mineral layers, which have slightly different physical 

properties. Burridge et al. (1988) have shown that the propagation distance has 

to be large to obtain reliable estimates of the scattering effects. We have found 

that this condition is fulfilled if the propagation distance is four times larger 

than the maximum wavelength. In terms of the normalized frequency kd0 , the 

condition is therefore fulfilled if kd0 > 27r·4/N, where k is the wavenumber, d0 

the mean layer thickness and N the number of layers in the stack. Once this 

condition is fulfilled, the attenuation coefficient will remain unchanged if more 

layers are added to the stack. Thus, the attenuation coefficient is equal to the 

inverse of the localization length, which has been frequently used in radiophysics 

and more recently in elastic wave propagation. 

For all the following simulations we chose the unit impulse function as the in­

cident wave. For our first simulation, we chose 500 layers with constant density. 
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a) Simulation 1 b) Simulation 2 c) Simulation 3 d) Simulation 4 
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Figure 2.2: Velocity profiles for the numerical simulations: a) 10% perturbation 
in velocity and layer thickness, b) 20% perturbation in velocity and layer thick­
ness, c) periodic layering of a binary medium with 5% perturbation in velocity 
and 10% perturbation in layer thickness, d) random layering of a binary medium 
with 5% perturbation in velocity and 10% perturbation in layer thickness. v0 is 
the mean velocity, d0 the mean layer thickness, v the velocity and z the position 
within the stack. 
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Figure 2.3: One realization of the 10% perturbed medium of Figure 2.2a. Com­
parison of the generalized effective medium theory and Kennett's method. a) 
Phase velocity v, b) attenuation a and c) seismogram. v0 is the mean velocity, 
d0 the mean layer thickness, t the travel time and Vray is the ray theory velocity. 
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Figure 2A: Similar to Figure 2.3 with the 10% perturbation of Figure 2_2a and 
the ensemble average of 20 realizations_ 
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Perturbed medium: crd = crv = 10% (normal distribution) 
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The velocity and layer thickness had a normal distribution with 10% standard 

deviation (Figur~ 2.2a). With the restriction above, the attenuation and phase 

velocity are significant if kd0 > 0.05. Figure 2.3 shows the phase velocity, at­

tenuation and seismogram of one single realization. The normalized attenuation 

ad0 shows that the perturbed medium acts as a low pass filter due to scattering 

attenuation. As expected, Kennett's method shows interference effects, which 

are typical for this single realization. The dynamic composite elastic medium 

(DYCEM) theory shows a smooth spectrum, but predicts the average veloc­

ity and attenuation of Kennett's method at all frequencies. The time axis in 

Figure 2.2c has been normalized by the ray velocity. Hence, the first arrival 

at time zero is the high frequency wave traveling with the ray theory velocity. 

After performing an ensemble average with 20 different realizations, most of the 

interferences are suppressed and Kennett's method and the dynamic composite 

elastic medium theory agree well at all frequencies (Figure 2.4). In the process 

of ensemble averaging, the incoherent signals have been suppressed and only the 

coherent signal remains. Hence, the dynamic composite elastic medium theory 

has to be interpreted as the coherent part of the seismogram at all frequencies. 

'Even for one single realization, the dynamic composite elastic medium theory 

describes the first few arrivals reasonably well (Figure 2.3c). This feature agrees 

with Burridge et al. (1988), who have shown that the coherent field in the seis­

mogram can be described without ensemble averaging. One can therefore choose 
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a time window and apply it to the seismogram obtained by Kennett's method 

with only one realization and compare it with our theory. We have chosen the 

position and length of the time window according to the non-zero part of the dy­

namic composite elastic medium theory seismogram (Figure 2.3c). The results 

in Figure 2.5 show good agreement between our theory and Kennett's method 

with only one realization. 

For the second .numerical simulation we chose 500 layers with constant den­

sity and increased the perturbation of velocity and layer thickness to 20% (Fig­

ure 2.2b ). For the computation with Kennett's method we used a single realiza­

tion and the time window in the same manner as in the previous example. The 

results in Figure 2.6 show good agreement for this strongly perturbed medium. 

So far we have kept the number of layers constant, because the phase velocity 

and attenuation remain constant and are independent upon the propagation 

distance if kd0 > 27r·4/N. However, the scattering effects can also be analyzed 

with the seismogram as a function of propagation distance. Figure 2. 7 shows, 

the normalized seismograms for the 10% and 20% perturbed media. The time 

axis has been normalized by the ray velocity and the first arrival at time zero 

is the high frequency wave traveling with the ray theory velocity. In the 10% 

perturbed medium, this wave can be observed at every propagation distance, 

but in the 20% perturbed medium, the wave is totally attenuated after about 

600 layers. In both examples the low frequency wave with the Reuss average 
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Figure 2.6: Similar to Figure 2.5 with the 20% perturbation of Figure 2.2b and 
the windowed arrival (83 time samples) of one realization. 
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Figure 2. 7: Single realization of the 10% perturbed medium on the left hand 
side and of the 20% perturbed medium on the right hand side. The dotted line 
has been computed with Kennett's method and the solid line with the DYCEM 
theory. The amplitudes have been normalized by the maximum amplitude of 
the individual traces. The numbers on the seismograms indicate the absolute 
amplitude relative to the incident wave. The input pulse is the delta function 
with kd0 = 27r maximum frequency. 
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velocity becomes dominant with increasing propagation distance. The absolute 

amplitudes however are much smaller for these waves, but they do not decay as 

rapidly as for the wave with the ray theory velocity. Figure 2. 7 shows generally 

good agreement of the coherent wave between Kennett's method and our theory. 

2.4.2 Binary media 

In practical applications stratified media often consist of materials with dis­

tinct but different physical properties. For instance, in many sedimentary basins 

there exists periodic layering of sand and shale. In the following we simulate a 

stratified binary medium, i.e., a layer is either of type 1 or type 2. Binary sedi­

ments have been studied by a number of authors (e.g., Richards and Menke, 

1983; Frazer, 1994; Marion et al., 1994). In particular the study by Mar­

ion et al. (1994) is relevant to our work, since it considers experimental data of 

velocity dispersion over a wide frequency range in binary one-dimensional media. 

In the third and fourth simulation the velocity ratio of type 2 to type 1 material 

was 3/2. The layer thickness and the velocity were normally distributed with 

standard deviations of 10% and 5%, respectively. 

For our third simulation we chose a periodic layering of two materials, i.e., 

each type 1 layer lies always between type 2 layers (Figure 2.2c ). Figure 2.8 

shows the results of this calculation for 500 layers and an ensemble average 

of 20 realizations. The unwrapping of the phase with Kennett's method was 
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Figure 2.8: Similar to Figure 2.4 with the periodically layered binary medium 
of Figure 2.2c and the ensemble average of 20 realizations. The velocity ratio 
of type 2 to type 1 medium is 3/2 and the velocity and layer thickness are 
perturbed by 5% and 10%, respectively. 
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Binary medium: viv 1 = 1.5 , crd = 10% , crv = 5% (normal distribution) 
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Figure 2.9: Similar to Figure 2.8 with the randomly layered binary medium of 
Figure 2.2d and the windowed arrival (66 time samples)of one realization. 
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not successful for some higher frequencies due to the strong attenuation (Fig­

ure 2.8b). However, this does not interfere with the observation that the dif­

ference between the dynamic composite elastic medium theory and Kennett's 

method is generally large at most frequencies. The seismogram of Kennett's 

method shows strong oscillations of the wavelet, which can not be observed on 

the seismogram of the dynamic composite elastic medium theory (Figure 2.8c). 

The reason for this discrepancy lies in the violation of the basic assumption of the 

dynamic composite elastic medium theory, which requires randomly distributed 

layers within the stack. If this assumption is not fulfilled, multiple scattering 

between the individual layers becomes important and causes strong dispersion 

of the phase velocity (Figure 2.8a) and marked resonances in the amplitude 

(Figure 2.8b ). 

For our fourth simulation we shuffled the type 1 and type 2 layers and placed 

them randomly in the stack (Figure 2.2d). Since the first arrival should there­

fore be coherent, we performed the numerical simulation for one realization only 

and windowed the arrival in the same manner as in the earlier examples. The 

results in Figure 2.9 show generally good agreement. Only at higher frequencies 

does Kennett's method show some interferences (Figure 2.9a and 2.9b) which 

can not be predicted by the dynamic composite elastic medium theory. Never­

theless, the waveform of the first arrival is almost identical except for the high 

frequency interferences (Figure 2.9c). Compared with the experimental results 



29 

of Marion et al. (1994), the transition from low to high frequency phase veloc­

ity is less abrupt, but the center of this zone at kd0 =1 agrees well with the 

experimental data. 

2.5 Discussion and conclusions 

The comparison between the non-self-consistent and self-consistent theory 

has demonstrated that only the self-consistent theory accurately predicts the 

phase velocity at all frequencies. This is a strong argument for the validity 

of self-consistent theories, and we conjecture that this also applies for three­

dimensional media. The comparison between a complete numerical solution 

and the dynamic composite elastic medium theory shows good agreement for 

perturbed and binary media if the media are truly random. In this case our 

theory predicts the coherent arrival of a seismic wave at all frequencies. In 

addition, our theory is not restricted to small impedance contrasts between the 

layers. Another advantage of the dynamic composite elastic medium theory 

is that it can be computed independently of the travel distance. Any intrinsic 

attenuation within the layers can easily be incorporated by making the velocities 

complex. 



Chapter 3 

Dynamic composite elastic medium theory. 

Part II. Three-dimensional media 

3.1 Abstract 

30 

Non-self-consistent and self-consistent methods of estimating velocity and 

attenuation of P-waves and S-waves at all frequencies for heterogeneous media 

with three-dimensional inclusions are formulated using the scattering functions 

of the individual inclusions. The methods are the generalization of methods for 

one-dimensional media presented in the first paper of this series. The specific 

case of spherical inclusions is calculated with the exact scattering function and 

compared with several low frequency approximations. The self-consistent esti­

mates are consistent with Berryman's low frequency approximation. We present 

spectra and waveforms of materials with solid and liquid inclusions in a solid 

matrix. The results show that the exact scattering functions are required to 

adequately describe wave propagation at all frequencies. The analysis of liquid 

inclusions demonstrates that viscous damping may become important only if 
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scattering attenuation due to spherical pores is small. 

3.2 Introduction 

Over the last few decades the influence of three-dimensional inclusions on 

wave propagation has been studied extensively. On one hand, wave propagation 

has been described by scattering from the inclusions (e.g., Spitzer, 1943; Foldy, 

1945; Silberman, 1957; Kuster and Toksoz, 1974; Twersky, 1975; Berryman, 

1980a; Berryman, 1980b ). On the other hand, fluid flow inside the inclusions 

has been attributed to have a major effect on wave propagation (e.g., Biot, 

1956a; Biot, 1956b; O'Connell and Budiansky, 1977; Dvorkin et al., 1995; Sams 

et al., 1997). 

In the present series of papers we focus on elastic wave propagation which 

includes scattering and viscous attenuation. The analysis of one-dimensional 

media has shown that the elastic properties of randomly layered media can 

be described by the scattering function of the individual layers (chapter 2). 

In the following, we derive the analogous general dynamic composite elastic 

medium (DYCEM) theory for three-dimensional inclusions. The results are 

compared for the special case of spherical inclusions with various low frequency 

approximations and the general result is applied to solid and liquid inclusions 

in a solid matrix. 
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3.3 General dynamic composite elastic medium theory 

(DYCEM) 

A number of different methods have been used to describe the effects of 

multiple scattering upon the propagation of a plane wave. One is to represent 

the multiple scattering in terms of an integral equation for the average field 

(Foldy, 1945; Twersky, 1975) and then solve this integral equation by the method 

of stationary phase (Ishimaru, 1978). This same integral equation can also be 

converted to a differential equation which is then solved for a plane wave (Mehta, 

1983). Another approach is to estimate the coherent field directly by averaging 

the effects of multiple scattering in the forward direction over the first Fresnel 

zone by the method of stationary phase (Groenenboom and Snieder, 1995). Still 

another approach, which is similar to the one followed in this paper, is to average 

the scattering field in the forward direction by using the parabolic approximation 

(Korneev and Johnson, 1998). While these different methods involve somewhat 

different approximations, any of them could be used for the purposes of this 

paper, which is to determine the effect of scattering upon the wavenumber of 

the average field, and all of the methods would produce the same results. In 

this paper we derive the basic equations in a method slightly different from 

those just described, primarily to point out how results can be obtained when 

the concentration of scatterers becomes large, which is generally assumed to be 

small in the studies mentioned above. 
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In the following we follow the basic idea of Korneev and Johnson (1998) 

to calculate P-waves and S-waves in media with three-dimensional inclusions. 

First we study the effect of one single inclusion on an incident plane wave. Then 

we use the obtained scattering function to calculate plane waves propagating 

through media with a small number of three-dimensional inclusions. Finally, we 

formulate the non-self-consistent and self-consistent estimates to describe the 

effects of many inclusions. 

If a plane wave propagates along the z-axis through an elastic medium, the 

resulting plane wave at distance z is 

U e-ikmz 
mO , (3.1) 

where the index m represents either the P-wave or S-wave, km is the correspond-

ing complex wavenumber and Um and Umo are the spectra of the wave field at 

distance z and of the incident wave, respectively. Equation (3.1) can also be 

written in terms of the attenuation am and phase velocity Vm 

(3.2) 

where w is the angular frequency. Comparing equation (3.1) and (3.2), we obtain 

(3.3) 

Attenuation and phase velocity are both a function of the complex wavenumber 

and their frequency dependent properties can therefore be calculated. 
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Figure 3.1: A single inclusion with radius R at z=O in a spherical coordinate 
system (r,O,<f>). 
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If there is a single inclusion inside the medium, the disturbance of an incident 

plane wave propagating along the z-axis is described by the scattered field u~ 

and the total field outside the inclusion u~t has the form 

utot = u + usc(r () A.) 
m m m ' l'f' (3.4) 

in a spherical coordinate system ( r ,() ,</l) centered on the scatterer (Figure 3.1). 

In the far field the scattered field becomes (Korneev and Johnson, 1996) 

Usc( {) A.) = U A ({) A.) COS{) -ikm(r-z) 
m r, , 'f' m mm , 'f' e , 

r 
(3.5) 

where Amm is the scattering function for P-waves or S-waves. If a small number 

of inclusions are randomly distributed inside a layer of thickness L (Figure 3.2), 

the average disturbance of the initial wave field .6. Um at distance L is 

L.6.M j j U:;:_(r, e, <P )dxdy (3.6) 

or 

where the integration is over the entire plane perpendicular to the direction of 

the incident wave and .6.M is the number of inclusions per unit volume. The 

forward traveling wave is coherently influenced by the inclusions within a few 

central Fresnel zones only (Van de Hulst, 1957). Thus, we have to consider the 

forward scattered amplitudes only and can use the parabolic approximation 

(3.8) 



Z=O 

• • • 
• • . 

Z=L 

z • 

• . . 

36 

y 
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Figure 3.2: Schematic illustration of an incident plane wave Umo and the trans­
mitted plane wave Um through a layer of thickness L with randomly distributed 
inclusions. 
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With this approximation equation (3. 7) becomes 
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-rvl. 
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m 
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(3.9) 

(3.10) 

(3.11) 

Since the number of inclusions is very small, the disturbance of the initial wave 

field at distance L can also be described by the Taylor series expansion of equa-

tion (3.1) keeping the first order derivative 

(3.12) 

and comparing with equation (3.11), the wavenumber change is 

(3.13) 

3.3.1 Non-self-consistent theory 

In the first paper of this series, we have shown that only the self-consistent 

theory yields the correct attenuation and phase velocity in one-dimensional me-

dia at all frequencies. Nevertheless, the non-self-consistent theory is still a good 

approximation for small inclusion concentrations and is generally easy to com-

pute. We will also use the non-self-consistent theory to derive the self-consistent 

theory, analogous to the one-dimensional case. 
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To derive the non-self-consistent wavenumber (km)Ns, we assume a homo-

geneous matrix of type 0 with inclusions of type 1. For this composite elastic 

medium, equation (3.13) becomes 

27r 
~km = -k [Am(0)] 10 ~M, 

mO 
(3.14) 

where the indices 1 and 0 indicate the type 1 inclusion and the type 0 matrix, 

respectively. Equation (3.14) can be integrated over the number of inclusions 

and we obtain 

(3.15) 

where M is the number of inclusions per unit volume. If there are N1 different 

kind of inclusions, equation (3.15) can be generalized to 

(3.16) 

where Mn is the number of the n-th type inclusion per unit volume. Including the 

matrix, N is the total number of objects and the scattering functions [Am(O)]no 

for n=N1 +1, ... ,N are taken to be zero. Equation (3.16) is therefore equivalent 

to 

(3.17) 

3.3.2 Self-consistent theory 

As the number of inclusions increases, the non-self-consistent theory is no 

longer valid and a self-consistent formulation is needed (chapter 2). Analogous 
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to the one-dimensional media, we replace the true background medium by the 

effective medium. In this way, all objects including the matrix act as scatterers 

relative to the effective medium. To compute the self-consistent wavenumber 

(km)s, we simply replace the matrix by the effective medium and equation (3.17) 

becomes 

(3.18) 

or 

0. (3.19) 

It is also necessary to introduce the self-consistent density defined by 

Ps (3.20) 

where V n is the volume and Pn the density of the n-th type inclusion. Equa-

tion (3.19) is the analogous result to equation (2.11) for one-dimensional media. 

We showed for one-dimensional media (chapter 2) that the self-consistent formu-

lation is valid if the layers are randomly distributed. In analogy with that result, 

we therefore conjecture that equation (3.19) is valid for randomly distributed 

three-dimensional inclusions. 
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3.4 Dynamic composite elastic medium theory for spher-

ical inclusions 

A spherical inclusion is one of the few three-dimensional objects for which the 

scattering problem has an exact solution. For light scattering it was formulated 

by Mie (1908) and a comprehensive discussion of the topic can be found in Van 

de Hulst (1957). Elastic scattering by spherical inclusions has been the topic of 

a number of studies, where some authors used potentials in their approach (e.g., 

Ying and Truell, 1956; Truell et al., 1969; Yamakawa, 1962) and others used 

displacements (e.g., Petrashen, 1950; Korneev and Johnson, 1993; Korneev and 

Johnson, 1996). Since we have formulated the scattering problem in terms of 

displacements, we use the results for incident P-waves and S-waves by Korneev 

and Johnson (1996) for our calculations. 

For one single spherical type 1 inclusion with radius R1 in a homogeneous 

type 0 background, Korneev and Johnson (1996) give the scattering functions 

0 00 

f- 2)2l + 1)afP 
pO l>O 

(3.21) 

0 00 + L(2l + 1)(b[8 + cl), 
2 sO 1~1 

(3.22) 

with 
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Here afP, bfs and ci are the 1-th order canonical scattering coefficients, which 

consist of spherical Bessel and Hankel functions. For spherical inclusions we can 

define the concentration 

(3.23) 

where Rn is the radius of the n-th type inclusion. With equation (3.17) and 

(3.23) the non-self-consistent wavenumber is 

(3.24) 

with 

and with equation (3.19) and (3.23) the self-consistent wavenumber is the solu-

tion of the equation 

0 (3.25) 

with 

N 

Ps L Cn = 1. 
n=l , n=l 

To obtain the self-consistent wavenumbers, equation (3.25) must be solved 

'\ 

simultaneously for P-waves and S-waves. Since the wavenumbers are complex, 

equation (3.25) describes a set of four equations for each frequency. In general, 

equation (3.25) cannot be solved analytically and we have applied Muller's nu-

merical method (Press et al., 1992) to compute the self-consistent wavenumbers. 
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3.4.1 Low frequency approximations 

The general results of the dynamic composite elastic medium theory for 

spherical inclusions can be compared with the low frequency solution by Berry-

man (1980a). At low frequencies the scattering function between a type 1 in-

elusion and type 0 background for the P-wave becomes (Korneev and Johnson, 

1996) 

R3 k;0 [Eo- B1- B2] (3.26) 

_ . R6 ks [B2 + 2 + 18 B2 + 3 + 216 B2] 
z po o 3,5 1 1 o,6 2 

and for the S-wave 

(3.27) 

with 

2 f-lo 2 _ ( Vso) 
2 

Vso = lo -
Po Po Vpo 

I<o + ~f-lo 

I<o - I<1 Po - P1 
B1 (PI, Po) = '---

3 
-'---

3!{1 + 4!-lo' Po 
20 f.lo(f.li -f-lo) 

3 6!11 (I<o + 2f.lo) + f.lo(9I<o + 8f.lo)' 

where Ko, f-lo, Po and K1, f.ll, p1 are the bulk modulus, shear modulus and 

density of the type 0 background and of the type 1 inclusion, respectively. With 

equation (3.24) and (3.26) the non-self-consistent wavenumber at low frequencies 
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for the P-wave is therefore 

(3.28) 

and with equation (3.27) for the S-wave 

(3.29) 

with 

Ko-Kn Po-Pn 
3Kn + 4J.Lo' B1(Pn, Po) =-= 3po 

20 J.lo (J.ln - J.lo) 

3 6J.Ln(/<o + 2J.Lo) + J.Lo(9Ko + 8J.Lo) 

In the low frequency limit, equation (3.28) and (3.29) simplify to 

N -1 

( vp)Ns Vpo [1 + ~ E (Eo- B1 - B2) Cn] (3.30) 

(vs)Ns = Vso [1- ~ t (B1 + 
4
3
2B2) Cn]-

1 
(3.31) 

n=1 lo 

With equation (3.25) and (3.26) the self-consistent elastic moduli at low 

frequencies for the P-wave are obtained from 

0 (3.32) 
n=1 

- . ( k )3 ~ [B2 + 2 + ~~ B2 + 3 + 21~ B2] R3 
z P S ~ 0 3-v3 1 1 O-v4 2 n Cn 

n=1 IS IS 



and with equation (3.27) for the S-wave 

0 

with 

I<s + ~J-ls 
Ps 

I<s- I<n 

2 _ ((vs)s)
2 

Is- (vp)s 
Ps- Pn 

Bt(Pn,ps) = 
3 

, 
Ps 

20 J-ls(J-ln-J-ls) 
3 6!-ln(I<s + 2J-ls) + J-ls(9I<s + SJ-ls) 
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(3.33) 

where Ks, J-ls and ps are the self-consistent bulk modulus, shear modulus and 

density. In the low frequency limit, equation (3.32) and (3.33) simplify to 

N 

L Bo(I<n, I<s, /-lS )en 0 
n=l 

N 

L Bt(Pn, Ps)cn 0 (3.34) 
n=l 

N 

L B2(J-ln,I<s,J-ls)cn 0 
n=l 

Equation (3.30) and (3.31) describe the non-self-consistent elastic properties 

in the low frequency limit for P-waves and S-waves, respectively. Kuster and 

Toksoz (1974) have formulated the non-self-consistent estimates differently, but 

for small inclusion concentrations their phase velocities agree with those ob-

tained here. Equation (3.34) describes the self-consistent elastic properties in 

the low frequency limit and was first derived by Berryman (1980a),. where the 
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solutions of equation (3.34) are discussed in detail. Berryman has shown that 

the estimates for the bulk and shear moduli always satisfy the rigorous Hashin­

Shtrikman bounds (Hashin and Shtrikman, 1963) and reduce to the exact results 

in those cases where exact results are known. 

It is important to note that in the low frequency approximation the real part 

of the wavenumbers are independent of the inclusion radii, but the imaginary 

part is proportional to R3 (equation (3.28), (3.29), (3.32)) and (3.33)). Thus, at 

low frequencies the attenuation due to scattering of P-waves and S-waves always 

depends on the microscopic geometry of the inclusions, whereas the velocity does 

not. 

3.5 Viscous fluids 

The case of fluid inclusions is of special interest in geophysical problems. 

There exist a variety of theories which predict significant effects of pore fluids 

on seismic and ultrasonic waves due to fluid flow in pores and cracks (e.g., Biot, 

1956a; Biot, 1956b; O'Connell and Budiansky, 1977; Dvorkin et al., 1995). In the 

case of the dynamic composite elastic medium theory, the fluid movement within 

the inclusions can be incorporated by treating fluids as viscoelastic materials. A 

detailed derivation of elastic waves in linearly viscous fluids is given by Caviglia 

and Morro (1988). They have shown that there exist transverse and longitudinal 



waves in viscous fluids. The wavenumber of the transverse wave is 

and of the longitudinal wave 

w 

Vo 

with 

Q-1 -
L -
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(3.35) 

(3.36) 

where p is the density and ry the dynamic viscosity of the fluid. v0 is the low 

frequency velocity and QL the quality factor of the longitudinal wave. The 

elastic parameters are therefore 

f.l = zwry, (3.37) 

where K is the bulk modulus and f.l is the shear modulus of the fluid. Since 

the shear modulus is purely imaginary, the transverse wave is a diffusive wave 

and causes attenuation of the longitudinal wave. With equation (3.37) viscous 

fluids are easily incorporated into the general dynamic composite elastic medium 

theory. 

3.6 Examples 

For all the following examples we have chosen composites that consists of 

only two different materials to simplify the interpretation of the results. We 
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Table 3.1: Material properties of the matrix and inclusions: P-wave velocity vp, 
S-wave velocity V 8 , density p and dynamic viscosity 'TJ· 

Material vP (m/s) 

Matrix 6000 
Inclusion in Model 1 4500 
Inclusion in Model 2 1500 

Vs (m/s) 

4000 
3000 

0 

2650 
2300 
1000 

'T] (Pa s) 

0 
0 

0.001 

have also assumed that the number of inclusions is equal to the number of 

matrix objects. Thus, if R1 is the inclusion radius, the matrix radius Ro is 

(3.38) 

where c is the inclusion concentration. 

3.6.1 Model 1: Solid spherical inclusions with identical 

radii in a solid matrix 

For the first example we chose a material with 10% inclusions having iden-

tical radii and the material properties in Table 3.1. Figure 3.3 shows the 

phase velocity and attenuation for P-waves and S-waves, respectively. The 

self-consistent method has been calculated with equation (3.25) and the non-

self-consistent method with equation (3.24). The difference between the two 

methods is small due to the small inclusion concentration, although the non-self-

consistent method consistently gives higher velocities and lower attenuation at 

low frequencies. The self-consistent low frequency approximation has been com-
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puted with the scattering functions in equation (3.32) and (3.33), i.e., Rayleigh 

scattering has been assumed. The low frequency approximation and the exact 

solution merge if kmR1 < 0.1. A closer inspection of Figure 3.3 shows that 

the Rayleigh approximation for the attenuation is valid for kmR1 < 0.4, i.e., 

the phase velocity starts to deviate from the Rayleigh approximation before the 

attenuation does. 

Based on the non-dimensional frequency kmR1 , the frequency dependence of 

P-waves and S-waves can be separated into three different regimes: 

• kmR1 < 0.1: This low frequency range is commonly called the Rayleigh 

regime and can be described by the low frequency approximation. The 

phase velocity is less than the matrix velocity and the attenuation is pro­

portional to w4
. 

• 0.1< kmR1 < 10: This intermediate frequency range marks the transition 

from the low frequency to the high frequency behavior. The phase velocity 

is slightly less than the effective medium velocity at lower frequencies, but 

rises sharply to the matrix velocity at higher frequencies. The attenuation 

shows no simple power law frequency dependence and starts to oscillate · 

at higher frequencies. 

• kmRl > 10: In this high frequency range the phase velocity approaches the 

matrix velocity and the attenuation becomes approximately constant. The 
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P-wave: Model1 with 10% inclusions S-wave: Model1 with 10% inclusions 
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Figure 3.3: Self-consistent calculations of ,phase velocity and attenuation as a 
function of normalized frequency for Modell with 10% inclusions having radius 
R1 • Vm is the phase velocity, Vmo the matrix velocity and am the attenuation, 
where the index m is either the P-wave or the S-wave. The results for the P-wave 
are on the left hand side and for the S-wave on the right hand side. 
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Figure 3.4: Similar to Figure 3.3: Model 1 with 40% inclusions with radius R1 . 

oscillations in velocity and attenuation are due to resonance effects within 

the inclusions and are therefore characteristic of the inclusion dimensions 

and properties. 

Figure 3.4 shows similar results for 40% inclusions with identical radii. Now, 

at low frequencies the non-self-consistent phase velocity deviates significantly 

from the self-consistent results. Only at higher frequencies do the two meth-

ods begin to merge, which indicates that the interaction between the inclusions 
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Figure 3.5: Seismograms for Model 1 with L = 50 R1 propagation distance 
for different inclusion concentrations using the self-consistent method. t is the 
travel time, L the propagation distance, Vpo the P-wave velocity and Vso the S­
wave velocity of the matrix. The input pulse is a delta function with kPR1 = 20 
maximum frequency. 
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becomes less important. In comparison to Figure 3.3, the self-consistent phase 

velocity changes more rapidly from the low to the high frequency behavior, be­

cause the first resonance peak of the inclusions is much stronger. In addition, the 

interference effects at high frequencies are more pronounced. The phase velocity 

and attenuation enables one to compute seismograms for different inclusion con­

centrations. Figure 3.5 shows the seismograms for the Model 1 inclusions with 

L = 50 R1 propagation distance. The waveforms look similar to the waveforms 

in one-dimensional media except for the small oscillations following the primary 

pulse. For 10% inclusion concentration the wave traveling with the matrix ve­

locity can still be observed. With increasing concentration the high frequencies 

have been attenuated and the slower low frequency wave becomes dominant. 

The travel time is approximately a linear function of the inclusion concentra­

tion and the amplitude changes are small for P-waves and S-waves. However, 

the primary pulse widens significantly with more inclusions. The appearance 

of the seismograms changes significantly for L = 5000 R1 propagation distance 

(Figure 3.6). The signal becomes more oscillatory and is no longer confined to 

one dominant pulse. The travel time is still a linear function of the inclusions 

concentration and the amplitude changes remain small. 
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3.6.2 Modell: Solid spherical inclusions with log-normal 

distributed radii in a solid matrix 

In general, inclusion radii are rarely uniform and a distribution in radius 

is more appropriate. In hydrological problems, the log-normal distribution is 

commonly used, partly because there are no negative values possible. Figure 3. 7 

shows log-normal radius distributions with 0%, 20% and 100% standard devi­

ations. We have used these distribution and Model 1 with 40% inclusions to 

compute phase velocity and attenuation using the self-consistent method. Both 

phase velocity and attenuation show that 20% standard deviation is sufficient 

to suppress most of the resonance effects within the inclusions (Figure 3.8). The 

phase velocity changes less rapidly from low to high frequency behavior and the 

attenuation at lower frequencies increases due to a few large inclusions. With 

100% standard deviation these features become more pronounced. The phase 

velocity behavior resembles the standard linear solid model (Aki and Richards, 

1980), but the frequency power law for the attenuation is different. The overall 

attenuation due to scattering is stronger due to some large inclusions. The effect 

of the log-normal radius distributions on the seismogram is shown in Figure 3.9, 

where the oscillatory nature is being suppressed, the duration of the first pulse 

is increased and the amplitudes have decreased. However, the duration of the 

entire wavelet remains approximately the same. 
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Figure 3.8: Similar to the self-consistent calculations in Figure 3.3 for Model 1 
with 40% inclusions and the log-normal radius distributions in Figure 3.7. 
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Figure 3.9: Seismograms for Modell with L = 5000 Rmean propagation distance 
for 40% inclusions and the log-normal radius distributions in Figure 3.7 using 
the self-consistent method. 

3.6.3 Model 2: Liquid spherical inclusions with identical 

radii in a solid matrix 

The inclusion type in Model 2 is water and the material properties are listed 

in Table 3.1. For the following calculation we varied the viscosity of water by 

four decades to demonstrate the effect of viscous damping. Figure 3.10 and 3.11 

show the phase velocity and attenuation for 10% and 40%inclusions with 1 mm 

' . 
radius, respectively. For 10% inclusions, the effect of viscous damping on the 

phase velocity is generally small for P-waves and S-waves and at low frequencies 

only viscous damping becomes stronger than scattering attenuation. However, 

the total attenuation at those frequencies is small enough to be negligible in 

practical applications. With 40% inclusions, the resonance effects at higher 
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S-wave: Model 2 with 10% inclusions 
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Figure 3.10: Similar to Figure 3.3 for Model 2 with 10% inclusions having radius 
R1 =1 mm and different viscosities rt using the self-consistent method. 

frequencies have been suppressed and the total attenuation is stronger, but 

viscous damping is still only important for highly viscous fluids. 

Figure 3.12 shows the seismograms for water inclusions with R1 = 1 mm ra-

dius and L = 50 R1 propagation distance. In contrast to Model 1 (Figure 3.5), 

the waveforms are strongly dependent on the inclusion concentration. With 10% 

concentration dispersion is already pronounced and the seismogram still con-

tains all the frequencies. The high frequency wave at time·zero is the strongest 
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S-wave: Model 2 with 40% inclusions 
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Figure 3.11: Similar to Figure 3.10 for Model 2 with 40% inclusions. 
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wave followed by waves with lower frequencies. With increasing inclusion con-

centration the high frequency wave is attenuated and the slower low frequency 

waves become dominant. With 50% concentration the wavelet has widened and 

the amplitudes have decreased. With L = 5000 R1 propagation distance, the 

differences between the different concentrations become even more pronounced 

(Figure 3.13). Travel time as a function of concentration is strongly nonlinear 

and all the wavelets show strong dispersion. 

3. 7 Discussion and conclusions 

We have modeled the coherent part of the wave field propagating in an 

isotropic medium with randomly distributed three-dimensional inclusions by 

the scattering function of the individual inclusions. Analogous to the one-

dimensional media, we have derived self-consistent wavenumber~ for media with 
> 

large numbers of inclusions and arbitrary impedance contrast. The special 

case of spherical inclusions has been used to gain more insight into the elas-

tic properties of media with three-dimensional inclusions. The calculations have 

shown that the exact scattering functions are required to adequately describe 

wave propagation at all frequencies. The properties of P-waves and S-waves are 

strongly dependent on the normalized frequency kmR, i.e., they are dependent 

both on frequency and inclusion size. 

At low frequencies (kmR < 0.1 ), the dynamic composite elastic medium the-
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ory is consistent with Berryman's results. The phase velocity depends on the 

inclusion concentration only, whereas the attenuation also depends on the inclu­

sion size. At higher frequencies the scattering functions become more complex 

and there exists no simple power law frequency dependence. This might explain 

the frequently observed scale problem between measurements at exploration fre­

quencies (rv100 Hz), logging frequencies (rv10 kHz) and laboratory frequencies 

(""' 1 MHz). Furthermore, we have shown that the coherent signal is not confined 

to one cycle. Because dispersion becomes very pronounced in media with three­

dimensional inclusions, data analysis must be performed on full waveforms to 

obtain correct results. 

The analysis of liquid inclusions has demonstrated that viscous damping is 

generally smaller than scattering attenuation due to spherical pores for the pa­

rameters used. Fluid viscosity may become important only if the normalized 

frequency kmR is very small or if the impedance contrast between matrix and 

inclusion is small. Non-linear fluid flow due to large displacements within the 

solid matrix may also be important and requires further investigation. How­

ever, a recent study of laboratory measurements on sand samples with different 

viscous fluids has shown no significant effect on ultrasonic waves (Seifert et al., 

1998). 
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Chapter 4 

Seismic rock properties of partially water 

saturated tuffs in the Yucca Mountain region 

derived from well logs and VSP data 

4.1 Abstract 

64 

We have analyzed VSP data of partially water saturated tuffs in the Yucca 

mountain region. The tuffs are generally poorly to moderately consolidated and . 

show porosities between 10% and 70%. We found that the VSP velocities can 

be explained by combining self-consistent theories for pores and cracks. The 

parameters needed for the calculations are porosity, pore water saturation, bulk 

density and mineral composition. All these parameters are commonly obtained 

in well logs and no further microstructural .information is needed. The effective 

matrix velocities in the studied tuffs deviate strongly from the uncracked ma­

trix velocities. In our interpretation, this effect is due to the presence of two 

dimensional inhomogeneities like cracks and mineral contacts. The strongest 
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manifestation of this effect was found in one of the vitric zones, where the ma­

trix velocities are reduced by about 50%. The theoretical model used is suitable 

for poorly to moderately consolidated sediments and large porosities, if the long 

wavelength assumption is fulfilled. 

4.2 Introduction 

Seismic waves are widely used in the oil industry to investigate rock proper­

ties (e.g., Gregory, 1977; Wang and Nur, 1992; Winkler and Murphy III, 1995). 

Seismic measurements are important in environmental projects in the shallow 

subsurface. Unfortunately, most of the theories developed by the oil industry 

provide unreliable results at shallow depths. It has been generally accepted 

that the low effective pressure environment and poor consolidation are mainly 

responsible for this failure (e.g., Gregory, 1977; Dvorkin and Nur, 1996). Ex­

tensive theoretical work has been done in the past to explain seismic velocities 

in porous media (e.g., Gassmann, 1951; Biot, 1956a; Biot, 1956b; Kuster and 

Toksoz, 1974; Berryman, 1980a; Berryman, 1980b; Dvorkin et al., 1995; Bryant 

and Raikes, 199.5). Most of these theories 'require microstructural information 

or broad frequency band data, which are generally not available. In this study 

we present a new approach to predicting of seismic velocities in porous media 

by using in situ measurements only. The theory for spherical inclusions by 

Berryman (1980a) and the theory for cracked solids by O'Connell and Budi-
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ansky (1974) are combined to calculate the seismic velocities of porous media. 

The parameters needed are porosity, pore water saturation, bulk density, min­

eral composition and seismic velocities of the minerals. All these parameters are 

commonly obtained in well logs and VSP (Vertical Seismic Profiling) measure­

ments. We use this information to calculate the effective matrix velocities, which 

are generally smaller than the mineral velocities due to low pressure environment 

and imperfections of the minerals. 

We apply our approach to partially saturated tuffs in the Yucca mountain 

region in the southwestern part of Nevada, which is currently being evaluated 

as a potential site for a nuclear waste repository. The zone of interest consists 

mainly of partially saturated thick tuff layers (Nelson and Anderson, 1992), 

which show variable degrees of welding and diagenetic alterations (Broxton et 

al., 1987). 

4.3 Long wavelength theory for seismic velocities in po­

rous media 

At low frequencies, seismic velocities of porous materials are determined by 

the solid matrix and the pore fluid. In low effective pressure environments one 

has to consider mineral contacts and possible cracks within the solid matrix. We 

want to use the most general theories to describe pores and cracks, which are 

much smaller than the wavelength of the seismic waves. Several studies have 
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shown that for high porosities only the self-consistent theories are applicable 

(e.g., Berge et al. 1995). In the following we will use the classical theory for 

cracks by O'Connell and Budiansky (1974) and Berryman's theory for spheres 

(1980a) to calculate the seismic velocities of porous media. Both theories are 

self~consistent and valid only if the wavelength of the displacement field is large 

compared to the pore and crack size. 

In general, porous media consist of different minerals. If the grain boundaries 

are perfectly tied together and the minerals are perfect crystals the bulk modulus 

Ks, shear modulus Jls and density Ps of the solid matrix can be calculated using 

Berryman's (1980a) self-consistent theory: 

1 t (cs); 4 

I<s + ~Jls i=l (JC); + 3J1s 
1 t (cs); 

Jls + Fs i=l (Jls); + Fs 
( 4.1) 

Fs Jls ( 9/{s + 8J1s) 
6 I<s + 2J1s 
n 

Ps L ( Cs);(Ps);, 
i=l 

where (Ks)i, (Jls)i, (Ps)i and (cs)i are the bulk modulus, shear modulus, density 

and relative volume concentration of each different mineral (Figure 4.la). In 

reality, the minerals in porous media are usually not perfect crystals. Since 

these imperfections have approximately zero volume, they will not be considered 

as pores. One simple way to include their effect on the seismic velocity is to 

introduce cracks with zero volume into the solid matrix (Figure 4.1 b). O'Connell 
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Figure 4.1: Schematic outline of the theory. Step A: Calculation of the uncracked 
matrix. Step B: Introducing grain boundaries and cracks into the matrix. Step 
C: Introducing pores and porefluids. 

and Budiansky formulated the effect of cracks in a solid matrix and calculated 

the effective bulk modulus I'<s and shear modulus fis of the cracked solid for 

different shapes of cracks. They concluded that the shape of the cracks does not 

change the moduli significantly. Hence, the fluid saturation of the cracks e and 

the crack density E are the only two parameters needed to describe a cracked 

solid. The number of cracks is defined by the crack density 

2N A2 

E=-<-> 
1f p ' ( 4.2) 

where N is the number of cracks per unit volume, A is the area and P the 

perimeter of the cracks, respectively. The effective moduli of the cracked solid 

are 

I<s 
I<s 
/Ls 

/Ls 

16 ( 1 - v; ) 1-- _ (1- 0 E 
9 1 - 2vs 

32 ( 3 ) 1 -
45 

( 1 - v s) 1 - e + 
2 

_ v s E (4.3) 
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45 (lis - Vs) (2 - Vs) 
E = 16 1 - v; [(1 - e)(l + 3lls)(2- Vs)- 2(1 - 2lls)]' 

where lis is the Poisson ratio of the uncracked matrix and ils of the effective rna-

trix. The density is not affected by cracks, since the cracks have approximately 

zero volume. 

Finally the effect of the pores pace itself has to be considered (Figure 4.1c). 

For pores with different fluids, the bulk modulus K 1 of the fluid mixture within 

the pores can be calculated by the Reuss average (Reuss, 1929), the shear mod-

ulus f-lJ is zero and the density PJ is the volumetric average of the individual 

components 

t (cs)i 
i=l U<t)i 

1-l! 0 ( 4.4) 

m 

P! = L(cJ)i(PJ)i, 
i=l 

where (KJ)i, (PJ)i and (cJ)i are the bulk modulus, density and relative volume 

concentration of each differ~nt fluid. Assuming the pores have approximately 

spherical shape, Berryman's theory can be used to calculate the effective bulk 

modulus K, shear modulus f.l and density p of the porous medium 

1 1-q) q) 

f{ + ~f.l 
~ + 4 

I<s + ~f.l f{f + 3/-l 
1 1-q) q) 

( 4.5) 
!-l+F 

+-
iis + F F 

F !!.. (9]{ + 81-l) 
6 f{ +2f-t 

p (1- q))ps + q)pj, 
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where rjJ is the total porosity. It has to be pointed out that none of the governing 

equations contajns any information about the dimensions of the pores or crack 

sizes, i.e., the relative volume concentrations are important only. 

4.4 Application for partially water saturated tuffs 

4.4.1 Log data and VSP data 

The theory described above is used to calculate the effective matrix velocities 

in partially saturated tuffs in the Yucca mountain region at well UZ16. Several 

logs (Lugo, 1993) and a zero offset VSP survey (Balch and Erdemir, 1996) were 

available for the analysis. The log data consist of porosity, water saturation and 

density measurements every 0.15 m (0.5 ft). The VSP survey was conducted 

with three component receivers, placed every 4.9 m (16ft) between 29m (95ft) 

and 492 m (1615 ft) depth. The maximum frequency of the seismic waves varies 

between 40 and 100 Hz. P- ·and S-wave interval velocities were derived from. 

the phase difference of the first arrivals between two adjacent receivers. For this 

purpose the first arrival in the seismic trace was interpreted as the direct wave 

from source to receiver. We transformed both signals into the frequency domain 

and determined the low frequency velocity in the appropriate frequency range. 

Figure 4.2 shows all the log and VSP data, which were used in the following 

analysis. The profiles are divided into lithological units which are significantly 

different from each other (Geslin et al., 1994). It turns out that there are four 
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Table 4.1: Seismic velocity, Poisson ratio and density of the important minerals 
in UZ16. 

Mineral Vp (m/s) V 8 (m/s) 

Fused Quartz 5600 
K-Feldspar 5880 
Glass 5850 
Zeolite 6110 

3600 
3050 
3250 
3530 

v 

0.15 
0.32 
0.28 
0.25 

p (kg/m3
) Reference 

2200 
2570 
2300 
2300 

Carmichael, 1982 
Anderson, 1989 
Johnson and Plona, 1982 
Carmichael, 1982 

major groups in UZ16: lithophysal (L), vitric (V), zeolitic (Z) and welded (W) 

zones. 

An analog mineral log was available to provide the approximate mineral 

composition in all the lithological units. The four important minerals are fused 

quartz, K-feldspar, glass and zeolite. The elastic properties of these minerals 

are listed in Table 4.1. Comparing the matrix densities derived from the logs 

with the mineral densities, a more accurate mineral ~omposition log was con-

structed, which was used to calculate the uncracked matrix velocities in each 

interval. Table 4.2 shows the average mineral composition and its variation in 

each lithological unit. 

4.4.2 Calculations 

The data described above provide almost all the information needed to cal-

culate the theoretical seismic velocities. The only undefined parameters are the 

crack density and the water saturation in the cracks. Using the VSP velocities 
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Table 4.2: Average volume concentrations and one standard deviation of the 
different minerals in UZ 16. 

Lithologic unit Fused Quartz (%) K-Feldspar (%) Glass (%) Zeolite(%) 

Lithophysal zone 25 ± 36 75 ± 36 
Vitric zone 37 ± 12 9 ± 32 54± 19 
Zeolitic zone 15 ± 1 20 ± 6 65 ± 5 
Welded zone 15 ± 16 85 ± 16 

together with equation ( 4.5) we can solve two equations for the crack density 

E and the water saturation in the cracks ~' defined in equation (4.3). Equa-

tion ( 4.5) can therefore be solved in each depth interval for E and ~. In general, 

the solution will not be exact, since there are uncertainties in our measurements 

and phase analysis, but the theoretical approach will find the best physically 

correct solution under the assumption of our model. Hence, we have to expect 

a slight misfit between real data and theoretical estimates. The results for the 

smallest misfit for P- and S-velocities are shown in Figure 4.3. 

The fit of the VSP velocities is generally very good, except for the first vit-

ric and nonwelded zone ( 42.8 - 72.5 m). The calculations predict much smaller 

velocities due to the high porosity in this zone. For porosities larger than about 

60% the calculated shear velocity actually vanishes since there are no grain con-

tacts left according to the model of spherical pores. However, the measured 

porosity in the bedded tuffs exceeds 60%, but at the same depth the VSP ve-

locities show no change. There are different explanations for this disagreement: 
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Figure 4.3: Comparison of measured VSP-velocities and calculated velocities. 
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1. The log data overestimate the actual porosity. 

2. The large porosity is only a local effect and the seismic waves find a fast 

path. 

The velocitie:;; of the uncracked matrix, the calculated crack densities, crack 

water saturations and effective matrix velocities are shown in Figure 4.4. As 

discussed above, the first 72 m can not be explained by our model and have to 

be disregarded. The effective matrix velocities are relatively smooth within the 

units, but show sharp changes at the unit boundaries. The crack density varies 

between 0.3 and 0.6 all the way down to about 330 m depth. In the vitrophyric 

subzone (V3) the value drops to 0.1 and reaches a maxinmm of about 1.1 in 

the non welded vitric zone (V1 + V2). Such large crack densities have a strong 

effect on the effective matrix velocities. In the nonwelded vitric zone the P­

and S-velocities of the matrix drop below 3500 m/s and 1200 m/s, respectively. 

But P- and S-velocities sometimes show quite different behaviors. For instance, 

between 120 and 340m the matrix S-velocity remains relatively unchanged, but 

the P-velocity shows a sharp change at about 200 m depth, which results in a 

large change of the Poisson ratio. Figure 4.4 shows that this change is mainly 

due to smaller water saturation in the cracks, whereas the crack density does 

not change. Figure 4.5 shows the Poisson ratio as a function of depth, which 

illustrates in a more pronounced form the different behavior of P and S-velocities. 
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Figure 4.4: Velocities of the uncracked matrix and calculated crack densities, 
crack water saturations and effective matrix velocities. 
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4.5 Discussion 

The presented method explains seismic velocities accurately, as long as the 

porosity is smaller than about 60%. In this case the correct seismic velocities 

and information about the matrix properties can be obtained. For larger porosi­

ties Berryman's theory for spherical inclusions is probably not appropriate. The 

analysis has shown that in partially water saturated tuffs the matrix proper­

ties vary significantly over short distances. Simple seismic velocity-to-porosity 

relationships are therefore not appropriate in this environment. In contrast to 

empirical relationships the presented method always yields physically correct 

results within the limits of the model assumptions and the measured data do 

not have to be smoothed for the analysis. 

It has to be noted that none of the effective matrix parameters shows a simple 

correlation with porosity, pore water saturation or bulk density. This indicates 

that the approach used separates the properties of the matrix and of the pores in 

an effective way. For instance, the extreme changes of the seismic velocities in the 

vitric zone are due to changes of the matrix velocities and not due to changes in 

porosity or pore water saturation. The reason for these abrupt changes is most 

likely the diagenetic or tectonic history. Using a similar modeling approach 

Berge et al. (1995) did not infer a significant number of cracks in fused glass 

beads, consistent with direct observations. We suspect that the cooling history 

and the variety of minerals with different thermal properties will alter the matrix 



79 

in a specific way. We also found that the volume concentration of the minerals 

~ 

is not critical in the studied tuffs. The velocity of the uncracked matrix shows 

relatively little variation compared to the effective matrix velocities (Figure 4.4). 

Before using the presented method for other data one has to carefully exam-

ine the scale problem. If gaseous phases are present in the pores, the seismic 

velocity within the pores can be as small as 25 m/s, as one can see by examin-

ing equation ( 4.4 ). If the seismic frequencies are in the kHz range, the smallest 

wavelengths are only on the order of centimeters. Such slow velocities are rather 

common in marine seismology and have been studied in great detail (e.g., An-

derson and Hampton, 1980). The long wavelength assumption is fulfilled for 

the presented data since the frequencies ·are always smaller than 100 Hz and 

the corresponding smallest wavelengths are in the order of tens of centimeters. 

However, frequencies in the kHz range may violate the long wavelength assump-

tion and Berryman's theory has to be replaced by a more general theory. For 

instance, sonic logs which commonly use frequencies larger than 10 kHz may 

only be used with caution for a similar analysis since the smallest wavelengths 

are on the order of millimeters. 

4.6 Conclusions 

We find that the VSP velocities in partially saturated tuffs can be explained 

by combining self-consistent theories for pores and cracked matrix material. If 



80 

the long wavelength assumption is fulfilled no microstructural information is 

required. To derive the velocity of the cracked matrix, in situ measurements of 

porosity, pore water saturation, bulk density, mineral composition and mineral 

velocities are needed. It turns out that the volume concentration of the minerals 

is not critical in the studied tuffs. The major changes are probably due to cracks 

and mineral contacts. The presented method separates the matrix and pore 

properties in an efficient way if the pore and crack sizes are much smaller than 

the seismic wavelength. In this case the presented approach is very suitable 

for poorly to moderately consolidated sediments. Further studies have to be 

conducted to investigate the effect of smaller wavelengths, which are common 

in high resolution seismic surveys and laboratory measurements. 



Chapter 5 

Using seismic cross well surveys to determine 

the aperture of partially water-saturated 

fractures 

5.1 Abstract 
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An air injection experiment in a shallow fractured limestone at Conoco's 

borehole test facility near Newkirk, Oklahoma has shown large effects on the 

amplitude, but small effects on the travel time of the transmitted seismic waves. 

We have analyzed data from a seismic monitor survey in the kilohertz range per­

formed during the experiment and have modeled the fracture zone as a single 

fracture. The large amplitude decrease during the experiment is mainly due to 

the impedance contrast between the small velocities of gas-water mixtures inside 

the fracture and the formation. The intrinsic attenuation of the fracture fluid 

seems to be a second order effect for small apertures. During the experiment 

the seismic wavelengths inside the fracture become comparable to the aperture 
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dimension, which allows an estimation of fracture apertures. We also have an­

alyzed a .crosswell survey acquired shortly after the experiment and computed 

aperture and gas concentration profiles. Our aperture estimates range from less 

than one millimeter to a few millimeters, which is comparable to previous tracer 

tests. The results of this study are generally consistent with prior hydrologic 

work and single well surveys. This study demonstrates that crosswell surveys 

are an effective tool for obtaining in situ estimates of fracture aperture and gas 

concentration. 

5.2 Introduction 

When present, fractures can play a dominant role in fluid transport in the 

shallow subsurface. In the oil industry, fractures are important as reservoirs and 

high permeability flow paths. In environmental applications, knowledge about 

fracture location and properties in the subsurface helps to contain contaminants. 

The Berkeley National Laboratory has an ongoing effort, in cooperation with 

Conoco and Amoco, to characterize fractured heterogeneous media. A series of 

joint seismic and well-test field experiments have been conducted at Conoco's 

Newkirk, Oklahoma, Borehole Test Facility (Majer et al., 1996). Pump tests 

showed good hydraulic connections between some of the wells, which indicated 

a local fracture zone (Datta-Gupta et al., 1994). An air injection experiment was 

carried out in 1994 to seismically image this fracture zone (Majer et al., 1997). 
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A monitor survey during the experiment sh_owed large amplitude changes which 

have been interpreted as an indication of air entering the fracture zone. From 

single well surveys, the position of the fracture zone was determined and later 

verified by slant well drilling (Majer et al., 1997). From core analysis and single 

well surveys Majer et al. (1997) inferred a single vertical fracture perpendicular 

to the crosswell survey analyzed in this study. 

The purpose of our analysis is to explain quantitatively the effects of the 

air injection experiment on the seismic waves and to obtain air concentration 

and aperture estimates from crosswell surveys. In the following we use the a 

priori information and represent the fracture as a single vertical fluid layer with 

variable air concentration. To invert the seismic data for the fracture aperture 

and air concentration inside the fracture, we developed an inversion scheme 

which is then applied to the seismic monitor survey. The same scheme is also 

applied to a crosswell survey acquired shortly after the air injection to obtain 

aperture and air concentration profiles. 

5.3 Theory 

5.3.1 Effect of a single vertical fracture on seismic waves 

Majer et al. (1997) have shown that a single vertical fracture lies perpendic­

ular to the analyzed crosswell surveys. Given aperture d, velocity v and density 

p of the fluid inside the fracture and a normally incident plane P-wave u0 ( t), 
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the transmitted P-wave u[t,(v,p),d] can be written as (Aki and Richards, 1980) 

u[t,(v,p),d] u0 ( t) * ( 1 - R2
) * [ 8 ( t - ~) + R2 8 ( t -

3
vd) + ... ] ( 5.1) 

R 
pv - (pv) formation 
pv + (pv )formation' 

where R is the reflection coefficient between formation and fracture fluid, 8(t) is 

the unit impulse function and the star symbol denotes the convolution. In the 

frequency domain, equation (5.1) becomes 

-i!£.d 
( 

2 ) e v U[w,(v,p),d] = 1- R .2"'dUo(w) = G[w,(v,p),d]Uo(w), 
1- R2e-t" 

(5.2) 

where U and U0 are the spectra of u and u0 , respectively. G[w,(v,p),d] represents 

Green's function of a fracture with given velocity v, density p and aperture d. 

The effect of intrinsic attenuation of the fluid can be included by adding the 

appropriate imaginary part to the fluid velocity (Aki and Richards, 1980). 

During the air injection experiment, an air compressor rated at 345 kPa was 

used to inject air into the fracture (Majer et aL, 1997). Assuming 23 kPa/m 

(1 psi/ft) parting pressure of the formation, the pressure inside the fracture was 

always kept below the parting pressure of the formation. Hence, we only have 

to consider a change in the fluid velocity and density inside the fracture (i.e., 

air-water mixtures), but not of the aperture. Using equation (5.2), the measured 

spectrum before the air injection Ubefore and the calculated spectrum after the 

air injection Uafter can be written as 

Ubefore [w, ( V, P hefore 1 d] G [w, (v, Phefore, d] S (w) I (w) L (w) Uo (w)(5.3) 
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Uafter [w, (v, P)after, d] G [ W 1 ( V 1 P) af ten d] S ( W) J ( W) L ( W) U 0 ( W) 1 

where S(w), I(w) and L(w) represent the effect of the source, receiver and site, re-

spectively. These three effects remain unchanged during the experiment. Equa-

tion (5.3) can therefore be rewritten as 

Uafter [w, (v, P)aften d] G[w,(v,p)after,d] [ ( ) d] ( ) 
G [ ( ) dl Ubefore W V, P before, 5.4 

G [w, ( V, P )after 1 d] 
G [w, ( V, P )before, d] 

w, V, P before 1 

- i __.1.!!L_ d 
1 R2 1 R2 e Vbefore 

- after - before 

1 R 2 -i~d 
- before 1 - R2 e Vajter 

after 

-iw(-1 
--

1 )d ·e vafter vbefore 

' 

(5.5) 

where Rbefore and Rafter are the reflection coefficients before and after the air 

injection. In equation (5.5), the spec
1
trum after the air injection is a function of 

the velocities and densities inside the fracture before and after the air injection, 

the aperture of the fracture and the measured spectrum before the air injec-

tion. The first term in equation (5.5) is the ratio of the squared transmission 

coefficients. The second term describes the sense of motion change due to re-

verberation inside the fracture and the third term is the time delay of the first 

transmitted wave due to the velocity change inside the fracture. 

5.3.2 Seismic properties of air-water mixtures 

In most studies of the seismic properties of air in water it is generally assumed 

that air exists in the form of spherical bubbles inside the fluid. Numerous 

observations have shown that the radii of air bubbles in natural waters range 
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between 1 pm to about 3000 pm (e.g., Anderson and Hampton, 1980). The 

acoustic properties can be divided into two different frequency ranges relative 

to the resonance frequency of the air bubbles. By neglecting the surface tension 

of an air bubble, the resonance frequency fo is (Minnaert, 1933) 

fo ' PJiuid 
I<air =/Po, (5.6) 

3/{air 

where r0 is the air bubble radius, Kair the bulk modulus of air, P!luid the density 

of the surrounding fluid, 1 the ratio of specific heats and p0 the ambient pressure. 

The ratio of specific heats for air is one for frequencies much smaller than the 

resonance frequency (i.e., isothermal pulsation) and 1.4 for frequencies much 

higher than the resonance frequency (i.e., adiabatic pulsation). Within the 

two frequency limits the ratio of specific heats lies between the isothermal and 

adiabatic limits (Devin, 1959). 

Spitzer (1943) developed the theoretical background of the acoustic prop-

erties of gas bubbles in water for all frequencies, ~hich has been confirmed by 

various laboratory measurements (e.g., Silberman, 1957). Beyond the resonance 

frequency the velocity of air-water mixtures equals the water velocity. The at-

tenuation is extremely strong close to the resonance frequency and decreases to a 

smaller constant value at higher frequencies. At frequencies below the resonance 

frequency, the pulsation of the air bubble is approximately isothermal and the 



87 

velocity v can be calculated by Wood's equation (Wood, 1930) 

1 [ c 1-c] 
}{ . +I< [cPair + (1- c) Pwater] 

atr water 
(5.7) 

v 

I<air Po, 

where c is the air concentration, Kwater the bulk modulus of water, and Pair 

and Pwater are the density of air and water, respectively. It is interesting to 

note that Wood's equation (Wood, 1930) is equivalent to the Reuss average 

(Reuss, 1929), which is commonly used in one-dimensional wave propagation. 

The attenuation in the low frequency range is dominated by thermal damping 

and increases proportional to the frequency squared (Devin, 1959; Eller, 1970). 

During the experiment, the water table was on the average at about 7 m 

depth and the fracture fluid was unconfined. With the crosswell survey covering 

·14-30 m depth, this results in ambient pressures between 170 kPa and 330 kPa. 

Figure 5.1 shows the velocity of air-water mixtures as a function of air concen-

tration for similar ambient pressures of 100, 200 and 300 kPa calculated with 

Wood's equation. Figure 5.1 shows clearly the strong effect of very small air 

concentrations, which lead to a drop in the velocities far below the velocities of 

the individual constituents. The minimum velocity is reached when the mixture 

consists of 50% air and 50% water. At 100 kPa pressure, the velocity inside the 

fracture can therefore vary between 1500 m/s and 20 m/s. 
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Figure 5.1: Velocity of air-water mixtures calculated with Wood's equation. 
Small amounts of air have a strong effect and the velocity can be smaller than 
the velocity of each individual constituent. 
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5.3.3 Example of a single fracture with 0.5 mm aperture 

The effect of a partially water saturated single fracture on transmitted seis­

mic waves is demonstrated in Figure 5.2. For the computation of the seismo­

grams, we have used the same formation properties (velocity=3860 m/s, den­

sity=2450 kg/m3 ) and ambient pressure (230 kPa) as in the observed monitor 

survey at receiver 1 (Figure 5.4) with 0.5 mm fracture aperture. Velocities and 

densities inside the fracture for different air concentrations are given in Table 5.1. 

Green's function obtained from equation (5.2) has been convolved with the ini­

tial signal of the monitor survey before the air injection. Table 5.1 shows that 

the transmission coefficient drops by almost two orders of magnitudes when air 

is injected into the fracture, but the travel time delay is less than 20 f.LS. Ta­

ble 5.1 also shows that for large air concentrations, the seismic wavelength inside 

the fracture becomes comparable to the aperture. 

Figure 5.2a shows that there are large amplitude changes due to the air­

water mixtures inside a single fracture with only small changes in travel times. 

The modulus changes in Figure 5.2b are almost frequency independent, whereas 

the phase in Figure 5.2c shows significant frequency dependence at large air 

concentrations and high frequencies. Analysis of equation (5.5) demonstrates 

that it is capable of explaining these types of frequency behavior of modulus 

and phase. The modulus changes are mainly determined by the first term in 

equation (5.5), which describes the ratio of the squared transmission coefficients. 
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Figure 5.2: Example of seismic waves transmitted through a partially water sat­
urated single fracture with 0.5 mm aperture. The ambient pressure inside the 
fracture is 230 kPa and the velocity and density of the formation are 3860 m/s 
and 2450 kg/m3

, respectively. These values are equal to the top receiver of 
the monitor survey (Fig~re 5.4). The solid lines and boxes show the time win­
dow, which was used to compute the spectra. a) shows the seismogram, b) the 
modulus changes and c) the phase changes for different air concentrations. 
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Table 5.1: Parameters for Figure 5.2. c is the air concentration, v the velocity 
and p the bulk density inside the fracture, dt the travel time delay of the first 
transmitted wave, >. the seismic wavelength, d = 0.5 mm the fracture aperture 
and f the frequency. The velocity v has been calculated with Wood's equa­
tion and 230 kPa ambient pressure. To calculate the reflection coefficient R 
between formation and fracture, we have used the same formation properties 
(velocity=3860 m/s and density=2450 kg/m3

) as in Figure 5.4. 

c (%) v (m/s) p (kg/m3
) dt(tts) >.jd (f=5kHz) (1-R2

) (%) 

0 1500 1000 0.33 600 47 
0.1 461 999 1.1 184 18 
1.0 153 990 3.3 61 6.2 
10 51.0 900 9.8 20 1.9 
50 30.5 501 16 12 0.64 

The phase changes at higher frequencies are due to the reverberations inside the 

partially saturated fracture, described by the second term in equation (5.5). 

Furthermore, if the frequency dependence of the phase is strong enough, as it is 

for high frequencies and large concentrations in Figure 5.2c, then the effects of 

velocity and aperture can be separated. From this we conclude that the inversion 

for apertures is only reliable if the velocity inside the fracture is small enough 

and the seismic wavelengths become comparable to the aperture. We found that 

the velocity inside the fracture must drop below 100 m/s before apertures in the 

millimeter range can be resolved. 
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5.4 Inversion method 

5.4.1 Windowing the direct wave 

Seismograms consist of different waves which have to be identified and ex-

tracted by windowing before equation (5.5) can be applied. In general, the 

arrivals can never be sorted out perfectly because they often represent a su-

perposition of waves with different travel paths. In crosswell surveys the direct 

wave is a clean arrival only if it is the fastest wave on the seismogram. Hence, 

we have applied the following procedure in our analysis. First we have iden-

tified the direct wave before the air injection and defined the time t 0 at the 

maximum amplitude. We have centered a time window W with length am at t 0 

and applied this window to the measured signal before Ube fore and after the air 

injection Uafter to compute the observed changes due to the air injection. From 

equation (5.5), we know that the fracture delays the first transmitted wave by 

dt=(l/vafter-1/vbefore)d. Thus, we have centered the same time window W at 

t0 +dt and applied it to the measured signal after the air injection Uafter and the 

calculated signal Uafter, as follows 

[
t- to] 

Ubef ore ( t) W ---;;:::- (5.8) 

[
t - to] 

Uajter ( t) W ---;;:::--

( ) W [ 
t - ( t 0 + dt) l 

Uajter t 
am 

I 
, ( )W [t- (to+ dt)l 
Uajter t , 

am 
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where the calculated signal Uafter is the Fourier inverse transform of Uafter ( equa-

tion (5.5) ). In a last step, we have transformed all the windowed arrivals into 

the frequency domain, where we defined the objective function for the inversion. 

Since we have chosen the windows for the measured and the calculated signals to 

be exactly the same, we consider the effect of the time window on the objective 

function to be small. Performing the inversion in the frequency domain has the 

advantage of using an appropriate frequency range and, more importantly, to 

give adequate weight to the higher frequencies. 

5.4.2 Defining the objective function 

After windowing the measured and calculated signals, we can compute their 

spectra and express the observed changes Zn and the difference between the 

estimated and measured spectra Zn at a given frequency Wn as follows 

I U<am,O> ( ) u<am,O> ( ) 12 (5 9) 
before Wn - after Wn · 

z;;am,dt> [ ( v' p hefore, ( v' p )after, d] I (J<am,dt> (w ) - u<am,dt> (w ) 12 
after n after n ' 

h U<am,O> u<am,O> u<am,dt> d u' <am,dt> th t f <am,O> w ere before ' after ' after an after are e spec ra 0 ubefore ' 

<am,O> <am,dt> d '<am,dt> t' 1 Th t l d'.tr · f uafter , uafter an uafter , respec IVe y. e spec ra laerenCies o equa-

tion (5.9) can be combined for a range of frequencies to obtain 

(5.10) 

<am,dt> [( ) · ( ) d] Z V, P before, V, P after, 
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( s;am,dt>) 
2 

[( v, p hefore, ( v, p )after, d] 
1 N [z<am,dt> ]

2 

___ '"""' n <am,dt> 
N - 1 L...J z<am,O> - z ' 

n=l 

where z<am,dt> represents the weighted objective function and (S?am,dt>) 2 its 

variance in the frequency range from Wt toWN for the given parameters ( v ,p he fore, 

( v ,p )after and d. By normalizing with the observed change before and after air 

injection, the objective function is equal to tl).e unexplained changes in the ob-

served data. 

In the experiment analyzed, the fracture is fully water-saturated prior to the 

air injection and the velocity Vbefore and density Pbefore are therefore equal to the 

water velocity and density, respectively. Hence, we can perform a grid search for 

the remaining parameters ( v ,p )after and d, and determine the values associated 

with minima in the objective function. In the low frequency range only the 

air concentration and aperture are independent parameters, since velocity and 

density are functions of the air concentration (equation (5.7)). To obtain a 

measure for the uncertainty of our estimates, we have used the t-test (Student, 

1908) to decide if the minima in the objective function are significantly different 

from each other and used the results to define the confidence interval of our 

estimates. Since the variances of the objective functions are in general not the 

same, we have applied Welch's t (Smith, 1936) to compute the pooled standard 

errors and degrees of freedom. More details about determining the confidence 

interval of our estimates are given in section 5.8. 

As it turns out, the objective function for a single window is not sufficient to 
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obtain a reliable estimate of the parameters. In general, the objective function 

· increases with longer windows and the confidence intervals of the estimates are 

generally large. In addition, there often exist several local minima for a single 

window length which are not significantly different from each other. Hence, we 

have averaged the objective functions for different window lengths with the same 

parameter pairs and obtained the absolute minimum of the stacked objective 

functions with a minimum of four different window lengths. 

5.5 Data and results 

A detailed description of the Conoco test site and the air injection experiment 

can be found in Majer et al. (1997). We therefore only describe the information 

needed for the analysis of our data. Figure 5.3 shows the geometry of the wells 

used in this analysis. Air injection in GW5 was started at 12:15 p.m. on DAY 1 

and lasted for about 6 hours. On the DAY 2, the air injection was continued at 

7:15 a.m. for about 2 hours. The analyzed crosswell data consist of a seismic 

monitor survey between GW1 and GW4 during the air injection and crosswell 

surveys hetween GW1 and GW3 before and shortly after the air injection. The 

horizontally layered lithologies covered by the crosswell survey consist of the 

Fort Riley limestone, which is bounded by shale layers at the top and bottom. 

Table .5.2 shows P-wave velocity and density for this formation derived from the 

crosswell survey and well logs. After the air injection, a change in the seismic 

.. 
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Table 5.2: Velocity and density in the Fort Riley formation derived from the 
crosswell survey between GW1 and GW3. Depth is relative to the surface at 
the location of the fracture. 

Zone 

1 
2 
3 
4 

depth (m) 

13.8 - 19.7 
19.7- 26.5 
26.5- 28.0 
28.0- 29.5 

P-wave velocity (m/s) 

4120 
3860 
3400 
3740 

bulk density (kgjm3 ) 

2500 
2450 
2320 
2420 

signal could only be observed within the Fort Riley formation and we therefore 

concentrated our analysis on this formation. Both surveys used a piezoelectric 

source with a swept sine wave from 1 to 10 kHz tapered at both ends and a 

sample interval ~t=20 J.lS. For the analysis, we avoided the tapering effects and 

used the frequencies from 2 to 9 kHz only. 

5.5.1 Seismic monitor survey: data and inversion results 

During air injection, a piezoelectric source was placed in well GW1 at 20.2 m 

depth relative to the surface at the location of the fracture. An 8-element 

hydrophone string with 1 m spacing was placed in GW 4 at 21.7 m depth (top 

receiver) to monitor the changes in the fracture zone between GW1 and GW 4. 

The transmitter and receiver were not moved during the air injection. 

Figure 5.4a shows the changes on the seismograms for the top receiver at 

different times during the experiment. The modulus and phase changes relative 
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Figure 5.3: Geometry of the shallow wells at the Conoco borehole test facility. 
GW6 was drilled at GW3 with a slant well drilling rig at 30° from the vertical 
and penetrates the fracture at 25 m depth. , 
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to the initial trace are shown in Figure 5.4b and 5.4c, respectively. The modulus 

changes show only small frequency dependence, which indicates that the intrin-

sic attenuation, i.e., thermal and viscous damping, is only a secondary effect 

in our data and has been neglected in the following inversions. The compari-

son of Figure 5.2 and Figure 5.4 shows strong similarities, which suggests that 

the changes on the seismogram can mainly be attributed to strong scattering 

attenuation due to air-water mixtures inside the fracture. 

After air injection we usually observed a small time delay in the arrival time 

of the direct wave (Figure 5.4a). Hence, the resonance frequency of the majority 

of the air bubbles had to be larger than the maximum measured frequency 

(Spitzer, 1943). Using equation (5.6) and the frequency and depth range of the 

experiment, the maximum radii of the air bubbles were therefore smaller than 

about 500 11m, which is consistent with observations in natural waters (Anderson 

and Hampton, 1980). The velocity of the air-water mixture can therefore be 

described by Wood's equation. 

For the inversion of the monitor survey we have used Wood's equation to cal-

culate velocity and density as a function of air concentration inside the fracture. 

We have used hydrostatic conditions together with water levels in the wells to 

calculate the ambient pressure in the fracture fluid at the appropriate depth. 

Majer et al. (1997) derived an aperture estimate of 1 mm from core analysis in 

well GW6. We set the maximum aperture to 30 mm to include possible larger 
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Figure 5.4: Monitor survey: Measured data at receiver 1 at different times 
during air injection. Similar to Figure 5.2, the solid lines and boxes show the 
time window, which was used to compute the spectra. a) shows the seismogram, 
b) the modulus changes and c) the phase changes at different times. 
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apertures. The monitor data show maximum time delays due to the air injection 

of less than two sample intervals. Hence, we performed the inversion only in the 

range where dt< 2.6.t with a ( c~, ... , c100 ) x ( d~, ... , d2oo) grid. For windowing, 

we have used a minimum of four different lengths of boxcar functions to fit about 

half a cycle of the signal, starting with a length of 11 sample intervals. For the 

t-test, we used the 95% confidence interval. 

Figures 5.5 and 5.6 show the inversion results for the first two receivers at 

21.7 m and 22.7 m depth, respectively. The inversion of both receivers show 

very similar features during the experiment. About two hours after starting the 

air injection, a decrease in the travel time can be observed (Figure 5. 7). Our 

model of a single fracture is not capable of explaining this first small change. It 

is possible that large air bubbles were entering the fracture, which would lead 

to smaller travel times (Spitzer, 1943). In this case a detailed analysis of the 

air bubbles would be required, but such an analysis is beyond the scope of this 

study. About two hours later, our model starts to explain most of the observed 

changes, which indicates small air bubbles in the fracture. At the end of DAY 1, 

air concentrations exceed 10% for both receivers and the velocities inside the 

fracture drop below 100 m/s, which allows reliable aperture estimates. It also 

can be observed, that the objective function is decreasing by the end of DAY 1. 

At the beginning of DAY 2, air concentrations have dropped below 1%, but 

increase rapidly about one hour after starting the air injection again. Using 
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only the reliable aperture estimates, the aperture at the first receiver is 0.5 mm 

and at the second receiver 0.9 mm. 

Figure 5. 7 shows the fit to the measured traces for the same two receivers of 

Figure 5.5 and 5.6. About two hours after the air injection the waveforms start 

to change. By the end of DAY 1 the amplitudes have decreased significantly 

without significant travel time changes. The other six receivers show generally 

the same features as the top two, although the uncertainty of the parameter 

estimates is larger for the lower receivers. 

5.5.2 Crosswell survey: data and inversion results 

The results of the monitor survey have shown that we can resolve apertures 

m the millimeter range due to the extremely slow velocity of air-water mix­

tures. In the following we have applied the same inversion scheme as before to 

a crosswell survey between GW1 and GW3 ( 48.4 m apart) perpendicular to the 

fracture zone and derived velocity, air concentration and aperture profiles. For 

the crosswell survey, the same instruments and technical specifications as in the 

monitor survey were used. The piezoelectric source was placed in well GW3 

and the fourth receiver from the top (receiver 4) was placed in GW1 directly 

across from the source. During the crosswell survey the source and the 8-element 

hydrophone string were moved concurrently in 0.25 m increments up the holes. 

Figure 5.8a shows the seismogram before the air injection for receiver 4 in 
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Figure 5.5: Monitor survey: Inversion results for the top receiver at 21.7 m 
depth. The error bars indicate the 95% confidence interval determined by the t­
test. The last figure on the right hand side shows the observed changes (dotted 
line) and the unexplained part of those changes by the single fracture model 
(solid line, equation (5.10)). Reliable aperture estimates can only be obtained 
if the velocity drops below 100 m/s and are marked by solid boxes. The mean 
aperture for the first receiver is 0.49 mm (95% confidence interval: 0.35 mm-
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Figure 5. 7: Monitor survey: The dotted lines are the measured traces at re­
ceiver 1 and 2 during the experiment. The fitted traces are overlain on top of 
the data and are calculated using the parameters in Figure 5.5 and 5.6. 
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the Fort Riley formation. The traces have been individually normalized by their 

maximum amplitude. Figure 5.8b and Figure 5.8c show the seismogram for 

receiver 4 after the air injection. The traces have been individually normalized 

by the maximum before the air injection and after the air injection, respectively. 

Figure 5.8b shows strong attenuation from the top of the Fort Riley to the 

bottom of ZONE 2 (26.5 m depth). Below this zone the amplitudes are hardly · 

affected by the experiment. 

Before a parameter profile can be constructed, one must first identify the 

direct waves on the seismogram. For this purpose, we have used the velocities 

in Table 5.2 to pick the direct waves (Figure 5.8a). We have noticed that close 

to velocity boundaries the direct wavecannot be separated from reflections and 

refractions. Hence, we expect considerable uncertainty of our inversion close 

to velocity boundaries. Stacking can not be used to enhance the direct wave, 

because the moveout of the later arrivals is not large enough. We therefore 

performed the inversion procedure for three receivers (receiver 3, 4 and 5) and 

calculated the average of the individual inversion results. The average was com­

puted with weighted least squares, using the objective function as the weighting 

function. The stacked parameter profiles are shown in Figure 5.9. The inversion 

results show variable air concentrations and fracture apertures as a function of 

depth. Reliable aperture estimates could only be obtained between 16.4-19.4 m 

and 22.9-24.2 m depth, where air concentrations are large. The aperture esti-

/ 
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Figure 5.8: Seismograms of receiver 4: a) Seismogram before the air injection. 
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arrival time of the direct wave. b) Seismogram after the air injection. Traces 
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mates vary between the submillimeter range to a few millimeters. At 22.9 m 

depth, the aperture estimate is 0.8 mm, which agrees well with the monitor 

survey. At the top of the Fort Riley formation the objective function is large. 

As we have discussed above, the inversion may be affected by the large velocity 

contrast between the Fort Riley formation and the shale layer at the top. At 

about 16 m depth air concentrations rise sharply and the objective function 

decreases. The same feature can be observed at the interface between ZONE 2 

and ZONE 3. Within ZONE 3 and ZONE 4, air concentrations are very small 

and the objective function is large. Hence, from the results in Figure 5.8 and 

Figure 5.9 we conclude that the fracture extends only from 16 m to 26.5 m 

depth, which is consistent with the single well survey (Majer et al., 1997). 

Since the crosswell survey was acquired after the air injection, air may have 

risen due to the density difference between air and water. One would therefore 

expect larger air volumes, where the flow of air has been blocked. In fact, air has 

accumulated in ZONE 1 at the top of the fracture at 16 m depth. In ZONE 2 

large air concentrations can only be observed from 23 rri to 24 m depth, whereas 

air concentrations are significantly smaller below and above this depth interval. 

Hence, apertures may become smaller above 23 m depth or the fracture may 

not be continuous. 
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5.6 Discussion 

The model of one single fracture provides consistent results for the monitor 

survey. Both amplitudes and phase of the seismic signals can be matched accu­

rately and aperture and air concentration estimates are consistent for different 

receivers. The analysis of the monitor survey shows that apertures in the mil­

limeter range can actually be resolved by seismic waves in the kilohertz range. 

The crosswell survey revealed large variability of apertures and air concentra­

tions. The depth range of the fracture from about 16 m to 26.5 m is consistent 

with the single well survey (Majer et al., 1997). 

Majer et al. (1997) est~mated a fracture aperture of 1 mm at about 25 m 

depth from core analysis. However, one side of the fracture was broken into 

rubble, which made it especially difficult to estimate the in situ fracture aper­

ture. At 25 m depth we were not able to obtain a reliable aperture estimate, 

because air concentrations were too small at this depth. Our aperture estimates 

in ZONE 1 and part of ZONE 2 range from less than one millimeter to a few 

millimeters, which is comparable to the core analysis. We are therefore confi­

dent in our inversion results, which provide the only high resolution aperture 

estimates from in situ measurements. 

The question remains if it is appropriate to represent a possible fracture zone 

by a single fracture, which we have assumed from core analysis in well GW5 and 

GW6. In general, seismic measurements will rarely provide an unique solution, 
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because there is no single model which can 'explain the data perfectly. It is 

therefore essential to use additional information to assess the validity of a single 

fracture model. Our aperture estimates are also supported by the interpretation 

of a tracer survey that suggested average fracture apertures between 0. 7 mm 

and 1.2 mm (Sheely, 1991). However, since we have analyzed the difference be-

fore and after air injection, we have only imaged fractures which were actually 

affected by the experiment. There might be smaller fractures with lower perme-

abilities which prevented air from entering. Thus, our inversion of the seismic 

waves probably yields the largest fracture which acted as the main flow path 

during the experiment. 

5. 7 Conclusions 

We have shown that the single fracture model with variable air-water mix-
' 

tures can explain the two major features encountered during an air injection 

experiment in a fractured limestone: 

1. The amplitude of the seismic waves decreases by orders of magnitudes 

during air injection due to strong scattering attenuation of the fracture. 

2. Travel time changes are very small. 

If air concentrations inside the fracture become large and the seismic velocity 

drops below 100 m/s, apertures in the millimeter range can be resolved with 
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seismic waves in the kilohertz range because the corresponding wavelengths be­

come comparable to the fracture dimension. These results are generally true for 

any gassy fluid, where the compressibility of the gas is much larger than of the 

surrounding fluid. Intrinsic attenuation of gassy fluids, i.e. thermal and viscous 

damping, does not seem to be important for small apertures. However, veloc­

ity and amplitude of the transmitted wave become frequency dependent due to 

reverberations inside the fracture. We have also shown that crosswell surveys 

can be used to compute air concentration and aperture profiles, which give more 

insight into aperture changes with depth and the preferential flow paths. 

A priori information about the subsurface and the fracture zone itself is 

very important in obtaining an accurate starting model for the inversion. In 

our case a combination of tracer tests, crosswell and single well surveys proved 

to be appropriate tools for locating and characterizing the fracture zone. There 

may be a variety of other applications for the method we have used, where a 

combination of fractures and volatiles enables seismic methods to resolve features 

of very small dimension. In particular, seismic monitor surveys during steam 

injection could be used to detect and delineate changes in the subsurface. 
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5.8 Appendix: Confidence interval of the parameter es-

timates 

To estimate fracture aperture and the elastic properties of the fracture fluid, 

we have performed a grid search for the aperture and air concentration. For 

every parameter pair (ci,dJ), the objective function (z<am,dt>)i,j and its vari-

ance (s;am,dt> )~,j with the time window length am have been calculated ( equa-

tion (5.10)). Among all objective functions for a single window length am, there 

is one parameter pair CiQ,djo with the minimum objective function. We have 

used the t-test (Student, 1908) to decide, if (z<am,dt>)io,jo is significantly differ-

ent from the objective function of a different parameter pair (ci,dj) 

(z<am,dt>) .. - (z<am,dt>) . . t . . - ~.J ~0,]0 

~.J - S E [ ( z<am,dt> )i,i - ( z<am,dt> )io,jo] ' 
(5.11) 

where SE is the standard error. Since the variance of the objective functions is 

generally not the same, we have applied Welch's approximate t (Smith, 1936) 

to calculate the standard error SE and the degrees of freedom v 

(s<am,dt> )2 + (S<am,dt>)2 
z i,j z iO,jO 

N 
(5.12) 

[( s<am,dt> )2 . + (s<am,dt> )2 . ] 2 

( d · d ) - (N 1) z t,J z ~0 '10 (5 3) 
v Ci, j, CiQ, jO - - (S<am,dt>)4 + (S<am,dt>)4 ' ·1 

z i,j z iO,jO 

where N is the number of frequency values. With equation (5.11), (5.12) and 

(5.13) Student's t for every parameter pair (ci,dj) can be calculated. Figure 5.10 

shows Student's t for the measurement at receiver 1 during the monitor survey 
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at the end of the experiment (Figure 5. 7) with four stacked windows. The min­

imum objective function at t=O is obtained with the parameter pair (c=66.7%, 

d=0.33 mm). For this example, the degrees of freedom are v=9, which yields 

the critical t-value t=2.26 for the 95% confidence level. Parameter pairs with 

t-values smaller than the critical t-value are not significantly different from the 

minimum objective function. The 95% confidence interval for the air concen­

tration is therefore 40-100% and for the aperture 0.33-1.00 mm (Figure 5.10). 

·~·' 
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Figure 5.10: Example of an inversion: Student's t for different pairs of a1f 
concentration and aperture at the first receiver during the monitor survey at 
the end of the experiment with four stacked windows. The minimum objective 
function is at 66.7% air concentration and 0.33 mm aperture. The critical t­
value for this example is t = 2.26 for the 95% confidence level and the shaded 
area denotes the 95% confidence interval. If Student's t exceeds 9.99, no values 
are plotted. 
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Appendix A 

Comparison batween Berryman's theory and 

Gassmann's equations 

For the case of saturated and dry inclusions, Berryman's equation (1980a) 

becomes 

1 

f<sat + ~J.lsat 
1 

/1sat + Fsat 

1 

]{dry + ~ /1dry 

1 

/1dry + Fdry 

1-<P <P 
----,.4--+ 4 
I<o + "j/1sat I<j + "j/1sat 

(A.1) 

1-<P +_l_ 
/10 + Fsat Fsat 

/1sat (9I<sat + 8J.lsat) 

6 I<sat + 2J.Lsat 

1-<P <P 
T/ 4 +· F 4 
HO + "j/1dry 1\.air + "j/1dry 

(A.2) 

1-<P +_j__ 
/10 + Fdry Fdry 

/1dry (gf{dry + 8J.Ldry) 

6 ]{dry + 2J.Ldry ' 

where Ko, Ksat, Kdry, K1 and Kair are the bulk moduli of the mineral grains, the 

saturated composite, the dry composite, the pore fluid and the air, respectively. 

J.lsat and J.ldry are the shear moduli of the saturated composite and the dry 

composite and <P is the porosity. Gassmann (1951) assumed that the shear 

(} 
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moduli of the saturated composite and the dry composite are the same. If this 

assumption is applied to equation (A.1) and (A.2), we obtain 

1 1-¢> ¢> 
(A.3) 

Ksat +X 
+ K 0 + x I<f + x 

1 1-¢> ¢> 
(A.4) 

[{dry+ X + ' I<o + X Kair + X 

where 

4 4 
(A.5) X - 3f.lsat = 3f.ldry 

After some manipulation, equation (A.3) becomes 

~+_..<L __ 1_ 
Ko Kj Ksat 

X = (A.6) 

and equation (A.4) becomes 

x [(1- ¢>) + ¢> J~~r - J~::Y] = J~;~r [(1- </>)I<dry- I<o] + </>I<dry· (A.7) 

Since Kair/Ko ~ 1, equation (A.7) simplifies to 

X = 

Combining equation (A.8) and equation (A.6), we obtain 

1-¢> ¢> 

I<oi<dry + f{ff{dry 

1 
¢ 1-¢ 1 

KtKdry + KoKdry - "Kg" 

I< sat _!L- 1+¢ + _1_ 
Kt Ko Kdry 

1 1 (K~ry- iJ 2 

---

1 

I<J 

!Cat [{dry (K~ry - iJ +</>(if - io) 

1 1 ( 1 1 f Kdry - Ko 
-----
[{dry !Cat (K~ry- io) + ¢> (r~f- io)' 

(A.8) 

(A.9) 

(A.10) 

(A.ll) 

(A.12) 
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where equation (A.12) is exactly Gassmann's equation. Hence, Gassmann's 

equations are a special case of Berryman's equation if the saturated and the dry 

shear modulus are the same. 

Figure A.1 shows the bulk and the shear modulus for different porosities 

and 0.10 Poisson's ratio of the mineral grains. The relative differences between 

Gassmann's equations and Berryman's exact theory are 

~I< 
KaA- KBE 

(A.13) 
/(BE 

~11-
/-lGA- /-lBE 

/-lBE, 

where KaA, /-lGA, KBE and /-lBE are the bulk modulus and shear modulus of 

Gassmann's equations and Berryman's theory, respectively. For small porosities 

the differences between Gassmann's equations and Berryman's exact theory is 

small. However, for porosities larger than 30% the differences exceed 1% and for 

porosities larger than about 40% the differences exceed 10% and increase rapidly. 

This discrepancy is due to the violation of the assumption that the saturated 

and dry shear moduli are the same. For 0.25 Poisson's ratio (Figure A.2) and 

0.40 Poisson's ratio (Figure A.3) of the mineral grains, the differences become 

larger for smaller porosities. 
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Figure A.l: Comparison between Beryman's exact theory and Gassmann's equa­
tions. K is the bulk modulus, f1 the shear modulus, ~ the relative difference, v 
the Poisson's ratio, p the density and ¢the porosity. K 0 fKJ = 5 and v0 = 0.1. 
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