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Abstract 

Two of the nine measurements of sin2 0!};an, the effective weak inter­

action mixing angle, are found to be in significant conflict with the direct 
_, 

search limits for the Standard Model (SM) Higgs boson. Using a scale 

factor method, analogous to one used by the Particle Data Group, we 

assess the possible effect of these discrepancies on the SM fit of the Higgs 

boson mass. The scale factor fits increase the value of sin2 0~jyan by as 

much as two standard deviations. The central value of the Higgs boson 

mass increases as much as a factor of two, to ::::::: 200 GeV, and the 95% 

confidence level upper limit increases to as much as 750 GeV. The scale 

factor is based not simply on the discrepant measurements, as was the 

case in a previous analysis, but on an aggregate goodness-of-fit confidence 

level for the nine measurements and the limit. The method is generally 

applicable to fits in which one or more of a collection of measurements 

are in conflict with a physical boundary or limit. In the present context, 

the results suggest caution in drawing conclusions about the Higgs boson 

mass from the existing data. 

1This work was supported by the Director, Office of Energy Research, Office of High Energy 

and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under 

Contract DE-AC03-76SF00098. 
2 Email: chanowitz@lbl.gov 



1. Introduction 

Beautiful measurements of Z boson decay asymmetries at LEP and SLC[1] 

and of the top quark mass at Fermilab[2] appear to constrain the mass of the 

Standard Model (SM) Higgs boson at the level of a factor two or better. The 

combined fit of nine measurements of the effective leptonic weak interaction 

mixing angle yields sin20~j;on = 0.23148 ± 0.00021, which implies the SM Higgs 

boson mass mH = 86:!::~i GeV and the upper limit mH < 260 GeV at 95% 

confidence level (CL). In a previous letter[3] I observed that the most precise of 

the nine measurements, the left-right asymmetry ALR, then implied mH = 16 

GeV and an upper limit mH < 77 GeV at 95%CL, in contrast to the lower limit 

from direct searches, then given by mH > 77 GeV, also at 95%CL. I analyzed 

the possible impact of this discrepancy on the SM fit of mH using a scale factor 

method inspired by a method the Particle Data Group[4] (PDG) has used to 

combine discrepant data. The conclusion was that both the central value and 

the upper limit on mH could be appreciably higher than in the conventional 

fit. Similar observations had been made previously, using different methods, by 

Gurtu[5] and Dittmaier, Schildknecht, and Weiglein.[6] 

The work presented here differs significantly from reference [3] in which the 

discrepancy between the ALR measurement and the search limit was evaluated 

simply as the likelihood for a 95%CL upper limit at 77 GeV to be consistent with 

a 95%CL lower limit at the same mass, i.e., 2·0.05·0.95 ~ 0.1 or 10%. This may 

be a fair appraisal if we have an a priori reason to focus on the ALR measurement, 

such as for instance that it provides the most precise determination of sin2 0~j;on, 
rather than choosing to consider it because we have noticed that it implies a 

value of mH below the SM search limit. In the latter case we need to consider 

the likelihood that any of the nine relevant measurements of sin20~j;an could 

fluctuate to produce a like discrepancy. It is fair to say that in this instance our 

attention is drawn to ALR by both its precision and the fact of its conflict with 

the SM search limits. 

It may therefore be appropriate to approach the analysis from the perspec­

tive of the consistency of the complete ensemble of nine measurements with the 

SM search limit. That is the perspective of the analysis presented here, in which 

a suitable scale factor method is proposed. The method can be applied to a va­

riety of different physical situations, for instance, the problem confronted by the 
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PDG of how to set an upper limit on the electron neutrino mass when several 

measurements (of the kinematic end-point in tritium decay) imply a tachyonic 

mass.[4] Here I will apply the method to the SM fit of mH, using the Spring 

1998 data, which differs appreciably from the Summer 1997 data used in the 

earlier analysis. 

In the previous analysis the scale factor was introduced based on the goodness­

of-fit CL between just the discrepant measurement and the limit. In the method 

presented here the scale factor is determined by the goodness-of-fit CL between 

the complete set of asymmetry measurements and the limit, therefore taking 

account of the likelihood that any measurement in the set might fluctuate into 

the low tail of the sin20~j;on distribution. The method is then truly analogous 

to the PDG method, which rescales the fit uncertainty by a scale factor deter­

mined by the goodhess-of-fit CL of the chi-squared distribution of the complete 

data set. 

It is important to keep in mind that the analysis presented here assumes the 

validity of the Standard Model (or the MSSM in the decoupling limit) and that 

in general, without a specific theoretical framework, the electroweak radiative 

corrections tell us nothing about the nature of electroweak symmetry breaking. 

In addition to quantum corrections from the Higgs sector, the value of sin20~j;on 
could be affected by quantum corrections from other sectors of new physics 

and/or from gauge boson mixing in theories with extended gauge sectors. The 

nature of electroweak symmetry breaking can only be definitively established 

by direct discovery and detailed study of the Higgs sector quanta at a high 

energy collider. Until then anything is possible: light Higgs scalars, dynamical 

symmetry breaking without Higgs scalars, or even that the Higgs _mechanism is 

not realized in nature at all. Here we assume that no new physics contributes 

to sin20~j;on except the quantum corrections from the Higgs sector, and that 

any Higgs scalar decays as prescribed in the SM so that the Higgs boson search 

limits are applicable. 

Section 2 is a brief review of the 1998 data and the SM fit of mH. The 

uncertainties in the fit are examined for two different evaluations of a(mz).[7, 
8] (The values quoted in this introductory section are based on reference [7].) 

Though the 1998 data set for sin20~j;on is more internally consistent than the 

1997 data, its confidence level is still not robust and it continues to exhibit 
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discrepancies with the SM search limits. The central value of mH implied by 

ALR has increased to 25 GeV, but the direct search limit[9] has also increased, 

to mH > 89.3 GeV at 95%CL, and the precision of the ALR measurement 

has improved. Putting all these changes together there is still a significant 

discrepancy, with ALR now implying mH < 89.3 GeV at 93%CL. 

A somewhat bigger discrepancy occurs in the less precise tau front-back 

asymmetry measurement, A:p8 , which implies mH = 4 GeV and mH < 89.3 

GeV at 95%CL. Although a single value of sin20~j;an is typically presented for 

the combined leptonic front-back asymmetry, A~8 , the measurements of AF8 , 

AP,8 , and A:p8 are in fact quite distinct, each posing a unique set of experimental 

issues. As can be seen in table 2 below, AP,8 , and A:p8 are individually at the 

same level of precision as all but the two most precise measurements, so it is 

most natural to consider them separately. 

It is certainly the case that our attention is drawn to A:p8 by the low value 

of mH it implies, so in considering the conflict of ALR and A:p8 with the search 

limit we must assess the goodness-of-fit of the measurements with the search 

limit from the perspective of the complete set of nine measurements. The scale 

factors computed in this way then appropriately weight the increased likeli­

hood of outlying measurements when A~8 is disaggregated, with the number of 
. zelepton . d f . szn ef f measurements mcrease rom seven to nme. 

Section 3 begins with a review of the PDG scale factor method for com­

bining discrepant data and then presents a method to extend it to the case of 

measurements in conflict with a limit. The central observation of the PDG is 

that low CL data sets occur more often than expected by chance, and that his­

torically many discrepancies are found to result from underestimated systematic 

errors. This should not be a surprise, since the estimation of systematic error 

is perhaps the most challenging task faced by experimenters in the analysis and 

presentation of their data. The PDG scaled error is meant to provide a more 

cautious interpretation of low CL data sets, with minimal impact on moderately 

discrepant data. After reviewing the motivation and formulation of the PDG 

scale factor, S*, an analogous scale factor is constructed for situations in which 

the discrepancy is between a collection of measurements and a limit. Section 3 

concludes with a brief discussion of the complementary relationship of the scale 

factor method with a recent analysis by Cousins and Feldman[lO] of confidence 
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intervals near a physical boundary. Their construction is used to determine the 

upper limits on mH from the scaled fits. 

Section 4 presents the application of the scale factor method to the fit of 

ffiH from the nine measurements of sin20~j;an. The result is a continuum of fits -

which differ in how the scaling is shared between the two low measurements, ALR 

and AFB· At one extreme, it suffices to scale the uncertainty of A}B by a factor 

3 while leaving ALR unmodified; in this case the effect on the fit is small. At 

the other extreme, when the rescaling is dominantly applied to ALR, the fitted 

central value of mH increases by a factor two relative to the conventional fit, 

while the 95%CL upper limit (in the Cousins-Feldman construction) increases by 

nearly a factor three relative to the conventional 95%CL limit. These extremes 

and a sample of intermediate cases are presented in Section 4. 

The analysis in sections 2-4 assumes a perfect search limit, mH > 89.3 GeV 

with 100% CL. In section 5 I show that the results obtained in this approximation 

apply to the actual, less than perfect experimental limits. The conclusion relies 

on the sharply increased confidence level obtained by the search experiments for 

values of mYJMIT slightly below 89 Ge V. 

A brief summary and discussion are given in Section 6. 

2. The electroweak data and the SM Higgs boson mass 

Our strategy is to focus on the most direct determination of mH, using the 

measurement of sin2 0~j;an, augmented by the direct measurement of the top 

quark mass (by CDF and DO) together with the value of o:(mz). The effective 

mixing angle, sin2 0~j;an, has the greatest sensitivity to mH with the least collat­

eral dependence on various other quantities such as the strong coupling constant 

as(mz) or the fraction ofhadronic Z decays to b quarks, Rb. From the nine mea­

surements of sin20~jJon, which combine to yield sin2 0~j;an = 0.23148 ± 0.00021, 

and the conservative determination of a( mz) = ( 128.896 ± 0.090t1 by Eidel­

mann and Jegerlehner[7] I obtain using the state of the art radiative corrections 

of Degrassi et al.[ll] mH = 86:!:~ GeV, compared with the EWWG[1] global 

fit value mH = 66:!:~~ GeV (which also uses reference [7] for o:(mz)). Gaussian 

statistics are assumed for the sin20~j;an measurements, from which it follows 

in the SM fit that the logarithm of the Higgs boson mass, ln mH, is Gaussian 

distributed. 
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The difference between the global fit and the fit based just on the sin20~j;an 
data is not great and is due primarily to the fact that the global fit uses the 

top quark mass, mt = 171.1 ± 5.1 Ge V, determined from the combination of 

direct and indirect measurements, while in the fit restricted to the sin20~j;an 
data I have used the-directly measured Fermilab value[4], mt = 173.8±5.1 GeV. 

The smaller value of mt from the indirect determination is due principally to 

the remnant of the Rb anomaly - since the current value of Rb is 1.6 standard 

deviations above the SM fit value, the global fit prefers smaller values of mt 

in order to minimize the discrepancy. Because mt and mH are correlated in 

the fit, a higher value of Rb thus leads indirectly to a lower value of ffiH in the 

global fit. Since in this paper I am assuming the validity of the Standard Model, 

the strategy followed seeks to minimize the extent of such indirect effects, which 

during the height of the Rb anomaly (when Rb was believed to be three standard 

deviations above the SM value) led to a serious distortion of the global fit of 

ffiH.[6j 

The uncertainty in the SM determination of mH is analyzed in table 1. 

The principal sources of uncertainty are the uncertainties in the measurements 

of sin20~j;an and mt, and the evaluation of the fine structure constant at mz. 

I use sin20~j;an = 0.23148 ± 0.00021 from the conventional least square fit of 

the nine measurements and mt = 173.8 ± 5.1 GeV from the current PDG fit 

of the Fermilab top quark mass measurements. For a(mz) I use two values, 

(128.896 ± 0.090)-1 and (128.933 ± 0.021)-1 . The former is the conservative 

evaluation by Eidelmann and Jegerlehner[7], while the latter, from Davier and 

Hocker[8], is one of several[12] recent, more optimistic evaluations, which rely on 

perturbative QCD down to lower energy scales. These typically have a smaller 

estimated .error and a smaller central value, the latter implying a larger value of 

mH. In this paper I will present results using both references [7] and [8]. Table 

1 also displays much smaller contributions from the QCD coupling constant, 

as(mz) = 0.120±0.003, and fromuncomputed higher order corrections. For the 

latter I rely on the estimate of Degrassi et al.[ll], whose compact representation 

of their calculations of the radiative corrections are used throughout this paper. 3 

3 Weiglein and coworkers[l3] have recently estimated a somewhat larger theoretical error 

for the results of reference [11]. However in any case the theoretical error is overwhelmed by 

the three dominant uncertainties in table 1. 

5 



Combined in quadrature the net uncertainty in ln(mH) is ±0.67 or ±0.52 for 

the two evaluations of a(mz), corresponding respectively to a factor 2 or 1.7 

uncertainty in mH. 

The measurements of sin2 0~j;an have been characterized by three discrep­

ancies, which persevere, though at a diminished level, in the Spring 1998 data. 

In the Summer 1997 data the two most precise measurements, ALR and A}B, 

differed by 3.1o- (CL = 0.002), and ALR differed from the LEP average by 2.9o­

(CL = 0.005). In the Spring 1998 data sin 20~j;an from ALR has increased by 

0.7o- while sin20~j;an from A}B has decreased by 0.6o-, so that the correspond­

ing discrepancies are 2.3o- (CL = 0.02) and 2.4o- (CL = 0.015). The chi-squared 

for the nine measurements has improved from x2 /dof = 14.5/8 (CL = 0.07) 

to a more acceptable x2 /dof = 10.7/8 (CL = 0.2). The nine measurements 

are shown in table 2 along with their "pulls", defined as the number of stan­

dard deviations that each measurement differs from the least-squares fit value 

0.23148 ± 0.00021. As another estimator of the consistency of the nine measure­

ments I have used a Monte Carlo to compute the confidence level to replicate the 

observed distribution of the absolute values of the pulls, obtaining a probability 

of 0.07.4 

Tables 3 and 4 (corresponding to a(mz) from references [7] and [8] respec­

tively) shows the Higgs boson mass predictions of each of the nine sin20~j;an 
measurements listed in order of precision. For each measurement the tables 

display the central value for mH, the symmetric (in ln( mH)) 90% confidence 

interval, and the implied probability that mH lies below 89.3 GeV, which is the 

current 95%CL lower limit from the LEP direct searches.[9]. To compute the 

confidence intervals in ln(mH) and the implied probabilities for mH < 89.3 GeV 

we must of course include the parametric errors shown in table 1, fm instance, by 

treating ln( mH) as a Gaussian statistical variable for each measurement, com­

bining in quadrature the uncertainty arising from the- particular measurement 

of sin2 0~j;an with the other parametric errors shown in table 1. Equivalently, 

as a matter of convenience, one may express the parametric errors as effective 

errors in sin 20~j;an (e.g., for fixed, known mH) and combine them in quadrature 

4That is, 0.07 is the probability that the absolute value of the largest pull is 2:: 1.61, the 

second 2: 1.57, ... , and the ninth 2: 0.01. 
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with the experimental <5(sin20~jtn). 5 

The question we wish to consider is whether /how the discrepancies of ALR 

and Af-.8 with the SM Higgs boson search )imits should affect the SM fit of 

the Higgs boson mass. The first part of the question is how big in fact is the 

discrepancy? The answer depends on precisely how we frame the question. If, 

without considering the particular central value obtained, we had an a priori 

reason to focus on a particular measurement, say on ALR because it is the 

most precise and therefore most important single measurement in the fit, then 

the discrepancy could be read off from table 3 or 4 (though also including the 

effect of the less than perfect 95% confidence level of the search limit) and the 

analysis might then proceed as in reference [3]. However it is fair to say that in 

the present context our attention is drawn to ALR and A:p8 by the fact of their 

conflict with the search limits. In that case the appropriately framed question 

is how likely is it that any two of the nine measurements could fluctuate to 

provide discrepancies with the search limits equal or greater than the observed 

discrepancies? We obtain an upper limit on that probability by assuming that 

the true value of my is precisely at the value of the direct search lower limit, 

my= 89.3 GeV. 

Let Pr and PLR be the probabilities implied by the measurements of ALR 

and Af-.8 that my lies below 89.3 GeV. Then the upper limit on the probability 

that any two of nine measurements, a and b, could fluctuate into the low tail of 

the sin20~j;an distribution such that Pa 2 Pr and Pb ~ PLR is given by6 

(1) 

Equation (1) is the goodness-of-fit CL between the nine measurements and the 

direct search limit in the Standard Model, assuming the search limits to be 

perfect. Taking Pr and PLR from tables 3 and 4 we find Pg(pr, PLR) = 0.12 and 

0.18 respectively. Though we assume here that the search limit has 100%CL, 

5 The theoretical uncertainties of the very large and very small values of mH in tables 3 

and 4 are somewhat bigger than indicated in table 1. The largest values, » 1 TeV, have no 

precise meaning in any case. For the very small values, such as mH = 4 MeV from AJ...a, we 

are really only concerned with the implied probability P(mH < 89.3 GeV) which only depends 

on the relationship between mH and sin2 B~jrn at mH = m}/MIT where table 1 does apply. 
6That is, P9(Pr, PLR) is the complement of the probability that all nine measurements have 

Pi < Pr or that one among them has Pi > Pr while the other eight have Pi < PLR· 
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it is shown in section 5 that essentially the same results are obtained when the 

actual confidence levels of the searches are taken into account. 

These confidence levels, 0.12 and 0.18, might be characterized as marginal, 

not big enough to be considered "robust" nor small enough to force us to choose 

between the Standard Model and the experiments. They are in the gray area to 

which the Particle Data Group scaling factor S* would apply if similar CL's were 

obtained from the x2 distribution of a collection of measurements, as discussed 

in the next section. 

3. Scale factors for discrepant data 

Having quantified the extent of the discrepancy between the search limit 

and the measurements of sin20~jyon in the SM, we now consider the more diffi­

cult aspect of the question: whether/how these discrepancies should affect the 

SM fit of the Higgs boson mass. There is no single "right" answer. A maxi­

mum likelihood fit including both the precision data and the direct search data 

would replicate the conventional fit if the central value lies above the lower limit, 

mYJMIT, from the direct searches. That is a defensible interpretation, since if the 

true value of mH were near mYJMIT we would expect values of mH obtained from 

measurements of sin20~j;an to lie both above and below mWMIT. By under­

weighting downward fluctuations while leaving upward fluctuations at their full 

weight, we risk skewing the fit upward. Mindful of this risk, it is still instructive 

to explore the sensitivity of the fit to the weight ascribed to measurements that 

are in significant contradiction with the direct search limit. 

Clearly the direct search limit is not irrelevant. If, for instance, the only 

. information available were the direct search limit and the ALR measurement, 

we would conclude that the standard model is excluded at 90% CL. Theorists 

would have flooded the Los Alamos server with papers on the death of the 

standard model and the birth of new theories W,X,Y,Z... In the SM fit the 

ALR measurement causes mH to shift by a factor two, from 170 to 85 GeV, 

and the 95% upper limit to fall from 570 to 260 GeV. It is fully weighted in 

the conventional standard model fit despite a significant contradiction with the 

standard model. 

If the discrepancy were even greater - say, for instance, a precision mea-
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surement implying 7 mH = 11 MeV with a 99.9% CL upper limit at 89 GeV­

we would be faced with three alternatives: 1) omit the measurement from the 

SM fit, presuming a plausible reason exists to suspect a large systematic error, 2) 

disregard the search limits, presuming them to be systematically flawed in some 

way, or 3) to abandon the Standard Model. On the other hand, a measurement 

one half standard deviation below the lower limit, with a ~ 30% probability to 

be consistent with the limit, would surely be retained at essentially full weight. 

The difficult question is how to resolve the intermediate cases in which the 

discrepancy is significant but not so significant that we are forced to choose 

between the data and the SM. Assuming the validity of the search limits and of 

the SM we consider a method that interpolates between the extremes of cases 

1) and 2) above and which allows us to explore the sensitivity of the fit to the 

weight assigned to the discrepant measurements. 

The problem of how to combine inconsistent data has led to the break-up 

of many beautiful friendships. The mathematical theory of statistics provides 

no magic bullets and ultimately the discrepancies can only be resolved by fu­

ture experiments. The PDG(4] has for many years scaled the uncertainty of 

discrepant data sets by a factor 

S* = Vx2 /(N -1) (2) 

where N is the number of measurements being combined. They scale the un­

certainty of the combined fit by the factor S* if and only if S* > 1. This is a 

conservative prescription, which amounts to requiring that the fit have a good 

confidence level, ranging from 32% for N ~ 2 to ~ 44% for N ~ 10. If the 

confidence level is already good, the scale factor has little effect; it only has a 

major effect on very discrepant data. The PDG argues (see (15]) that low con­

fidence level fits occur historically at a rate significantly greater than expected 

by chance, that major discrepancies are often, with time, found to result from 

underestimated systematic effects, and that the scaled error provides a more 

cautious interpretation of the data. 

As an illustration we apply S* to the determination of mH from the nine 

71n fact, parity violation in atomic Cesium currently implies mH ~ 11 MeV (MeV is not a 

typographical error) though only 1.2u from 89 GeV.[14] Its weight in the combined fit would 

be negligible. 

9 



measurements of sin2()~j;an. The chi-squared for the nine measurements is 10.7 

for 8 degrees of freedom, corresponding to CL = 0.20. Then S* = J10.7 /8 = 
1.16 and the conventional fit sin2()~j;an = 0.23148 ± 0.00021 is modified to 

0.23148±0.00024. The effect on mH is negligible: the central value is unchanged, ___ _ 

while the 95%CL upper limit increases from 255 to just 272 GeV (using [7]' for 

o:(mz)). The effect on mH is suppressed by the fact that the experimental error 

from sin2 ()~j;an is dominated by the parametric error from mt and o:(mz) shown 

in table 1. Even for the more discrepant Summer 1997 data, with x2 = 14.6 for 

8 d.o.f. and CL = 0.07, the effect of the S* factor is moderate, with the 95%CL 

upper limit increasing from 310 to 370 GeV. 

We wish to ~onstruct an analogous method for situations in which the dis­

crepancy is between some of a collection of measurements and a limit or physical 

boundary. In analogy to the x2 confidence level for S* our point of departure 

is the G-0-F CL (goodness-of-fit confidence level) between the measurements 

and the limit, for instance, equation (1) for the case at hand. The method is 

to rescale the errors of the measurements that conflict with the limit by factors 

that increase the G-0-F CL of the rescaled data to a robust minimum value. 

Following the PDG the minimum CL is chosen to equal the CL corresponding to 

x2 = N- 1 for N- 1 degrees of freedom. Regarding the limit as an additional 

degree of freedom we have N = 10 for the nine measurements and the limit. 

The minimum CL is then 0.44, corresponding to x2 = 9 with 9 d.o.f. 

Since there are two discrepant measurements, there are in general two dif­

ferent scale factors, 57 and SLR· In the notation of equation (1) the G-0-F CL 

requirement is 

(3) 

where p~ and P~R are the values of p7 and PLR after rescaling, 

r( . zelepton) ------'- s . r( . ze/epton) o szn el 1 7 ----, 7 o szn el 1 T (4) 

and 
r( . ze/epton) s r( . ze/epton) o szn ell LR--+ LR"O SZn ell LR· (5) 

Equation (3) imposes one constraint, leaving a one dimensional parameter space 

within the (57 , SLR) plane to consider. 
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Before turning to the electroweak data, we conclude this section with a 

general formulation of the method. Consider a collection of N measurements of 

a physical quantity x, 

i = 1, ... ,N (6) 

where the Xi are the individual measured values and 8i are the one standard de­

viation uncertainties. Suppose there is an exact lower limit or physical boundary 

(this assumption is relaxed in section 5 for the Higgs boson search limits), 

XTRUE > XLIMIT, (7) 

and that n ::; N of the measurements fall below the limit, 

Xi < XLIMIT i = 1, ... ,n 

Xi> XLIMIT i = n + 1, ... , N. (8) 

Furthermore assume, in analogy to Pr and PLR defined above, that the probabil­

ity density function associated with each of then low measurements, P DFi(x­

Xi, 8i) implies a probability Pi that the measurement conflicts with the limit (7), 

1
XLJMJT . 

Pi = -oo P DFi(x- xi, 8i) dx. (9) 

By analogy with equation ( 1) we compute an upper bound on the G-0-F CL 

between the N measurements and the limit. We order the n low measurements 

such that p1 > p2 > ... > Pn· The upper bound is then obtained by assuming 

XTRUE = XLIMIT (10) 

and computing the probability that any n of the N measurements, designated 

by ordered integer n-tuples { a1 , ••• , an} chosen from the integers {1, ... , N}, 

ordered such that Pa 1 > Pa2 > ... > Pan, satisfy the condition 

Pa, 2::: Pi 

for all i = 1, ... , n. 

The combined PDF for theN independent measurements is 

N 

PDFN({x-xi,8i}) = IJPDFi(X-Xi,8i)· 
i=l 

11 
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Finally we can write the upper bound on the G-0-F CL between the N mea­

surements and the limit in the general form 

PN(PI, · · · ·Pn) = L fv P DFN( {Xa;- XLJMIT, OaJ) dXa 1 • • • dxan (13) 
{at, ... ,an} 

where the sum is over all ordered integer n-tuples { a 1, ... , an} chosen from the. 

integers {1, ... , N} and the domain of integration Dis defined by the condition 

XLIMIT- Xa; > XLJMIT- Xi 
<>a; - oi 

(14) 

for all i = 1, ... , n. 

Equations ( 12-14), in all their obtuse generality, are just the straightforward 

generalization of the G-0-F CL P9 (p1 ,p2 ) given explicitly in equation (1). The 

general statement of the method now closely follows that example. We require 

a minimum G-0-F CL 

(15) 

where PMIN is the confidence level corresponding to the chi-squared distribution 

with x2 = N for N degrees of freedom. If equation (15) is satisfied by the data 

we combine the data without further ado. If equation (15) is not obeyed we 

rescale the errors of the n low measurements, 

(16), 

so that the Pi defined in equation (9) are replaced by p~ 

I ~XLIMIT I 
Pi= -oo PDFi(x- Xi,oi) dx. (17) 

such that the G-0-F CL for the scaled data satisfies the requirement, 

(18) 

The condition equation (18) is satisfied by an n- 1 dimensional subspace of the 

space of n-tuples (S1 , ..• , Sn)· 

This section concludes with a brief discussion of the relationship of the 

scale f~ctor method to the Cousins-Feldman definition of confidence intervals 

near a physical boundary.[10) They observe that the standard construction of 
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confidence intervals near a physical boundary is flawed, in that it leads to in­

tervals that in some instances "under-cover" (i.e., correspond to less than the 

nominal probability) and which have discontinuities as a function of the central 

value that are artifacts of the construction. Particularly germane to the method 

presented here is their observation that near a boundary the conventional con­

struction confuses two aspects of the fit that are or should be conceptually 

distinct: that is, the goodness-of-fit CL between the measurement and the limit 

is typically assessed based on the extent that the conventional confidence inter­

vals obtained from the fit overlap the region allowed by the boundary or limit. 

In contrast, the usual procedure for combining data (away from a boundary) 

uses the minimum of the chi-squared distribution to asses goodness-of-fit, while 

the confidence intervals are obtained quite independently from the shape of the 

chi-squared distribution. 

They propose confidence intervals which rectify these shortcomings, at the 

cost of relaxing the upper limits near the boundary. In particular, their confi­

dence intervals only have support in the allowed region, leaving the assessment 

of goodness-of-fit as a separate issue. In this paper I use a goodness-of-fit esti­

mator, PN (Pl, ... , Pn), which is quite distinct from the confidence intervals that 

are the output of the fit. Rather the goodness-of-fit estimator is computed at 

the outset and is then used to constrain the scale factors that determine the final 

fit and confidence intervals. The upper limits on mH obtained from the scaled 

fits are given with the Cousins-Feldman construction, though for companson 

the conventionally defined limits are also provided. 

4. Scaled standard model fits 

In this section the scale factor method is applied to the SM Higgs boson 

mass fit. We indicate how the scaled fit is obtained and present the results. The 

results in this section are obtained under the assumption that the search limit is 

perfect, i.e., mH > 89.3 GeV at 100%CL. In section 5 I showthat essentially the 

same results follow from the actual data of the search experiments, as a result 

of the rapidly rising confidence level for exclusion limits below 89.3 GeV. 

The results are shown in tables 5 and 6 and in figure 1. Consider for instance 

the results using the more conservative evaluation[7] of a( mz ), shown in table 5 

and in the solid curves in figure 1. Recall from section 2 that the goodness-of-fit 
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CL between the nine measurements and a perfect lower limit at 89.3 GeV is 

12%. Table 5 displays a selection of scaled fits with G-0-F CL of 44%. At 

one extreme the ALR measurement is unsealed, SLR = 1, while ST = 3.5. The 

effect on the SM fit is negligible: the central value and 95%CL upper limits for 

mH increase by just ~ 15%. At the other extreme, if we attempt to leave A'Fs 

unsealed, ST = 1, we find that even if ALR is removed from the fit, SLR --+ oo, 

the G-0-F CL is 39%. At this extreme in order to reach 44% it is necessary to 

set ST = 1.06 and SLR--+ oo. The effect on the fit is maximal: the central value 

increases to mH = 175 GeV and the 95%CL upper limit increases to 750 GeV. 

The scaled fits are obtained numerically, as described below. Consider for 

instance the entry in table 5 with SLR = 1. From table 3 we see that PLR = 
PLR = 0.932. Equation (1), P9 (p~, 0.932) = 0.44, is solved numerically to obtain 

p~ = 0.684. Assuming Gaussian statistics we then deduce from the Gaussian 
distribution that sin201epton from AT lies 0 4758' TOTAL below sin201

epton = 
eff FB · T eff 

0.23151, the latter being the value of sin20~};on corresponding to m1JMIT = 89.3 

GeV. Here 'TOTAL' in. 6~ TOTAL denotes the sum in quadrature of the rescaled 

experimental error 6~ and the parametric error from the sources shown in table 

1, 

6~ TOTAL= J6? + 6~. (19) 

Taking sin201
epton = 0 22987 from AT we then obtain 6' TOTAL (0.23151 -eff · FB T 

0.22987)/0.475 = 0.00345. Using reference [7] the effective parametric error, 

expressed as an equivalent uncertainty in sin20~};on is 0.00028, so that8 6~ = 

0.00344, from which we finally obtain ST = 6~j6T = 0.00344/000.98 = 3.51. 

The fits for the intermediate cases are obtained similarly, by fixing either 

ST or SLR and computing the other. Equivalently, one may choose a grid in p~ 

or PLR and compute the other, from which all other quantities in the fit can be 

obtained. (The latter was the procedure actually followed to construct tables 5 

and 6). 

Except for a small "central plateau" it is clear from the tables and figure 

that the value of mH is dominated by SLR, as expected from the importance 

of ALR in the fit. In table 5 the "central plateau" occurs between S LR = 1. 75 

8 The parametric error is negligible compared to 8~ but is important relative to more precise 

measurements such as fJ LR. 
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and SLR = 2.01, for which the inverse effects of increasing SLR, and decreasing 

S,. cancel one another. At the extreme of table 5, with SLR -+ oo, the value of 

sin2B~j;an is greater than the conventional fit value by two standard deviations, 

while the central value of mH is increased by one standard deviation. The shift 

in mH is smaller than the shift in sin2B~j;an because of the diluting effect of the 

parametric error in table 1. 

Table 6 and the dashed lines in figure 1 are based on a( mz) from reference 

[8]. They display the same general features as the fits based on [7]. The central 

values for mH are larger while the 95% CL upper limits are smaller, because 

reference [8] finds larger a( m z) but with smaller claimed uncertainty, and the 

latter effect dominates the former in the determination of the upper limit. Be­

cause the central values are larger, the discrepancies with the search limits are 

somewhat reduced ( cf. tables 3 and 4) and consequently the scale factors are 

smaller. In the extreme case it is possible to satisfy the G-0-F CL requirement 

of 44% for S7 = 1 and finite SLR· The fit in that case, with SLR = 3.6, yields 

mH = 207 GeV and mH < 670 GeV. at 95% CL. 

5. Including the search limit confidence levels 

In the previous sections we regarded the search limit, mH > 89.3 GeV, as 

an absolute boundary, neglecting the fact that it carries a less than perfect 95% 

confidence level. In this section we will see that the finite confidence level has 

negligible effect on the scaled fits and that the results presented in section 4 

apply to the actual experimental situation. 

The conclusion follows from the rather steep dependence of the Higgs boson 

search limit confidence level as a function of mrJMIT. For instance, preliminary 

data[16] from the ALEPH experiment show that the confidence level for mH > 
mrJMIT is 95% at mrJMIT = 88 GeV, rising to 99% at 83 GeV and to 99.9% at 78 

GeV. These values are conservative since they follow from just one of the four 

LEP experiments. Furthermore the conclusion reached below that the results of 

section 4 apply to the real experimental limits does not depend at all sensitively 

on the values quoted above for mrJMIT at 99% and 99.9%, since the dependence 

on mrfMIT is logarithmic. 

To get an upper limit on the correction to the "perfect search limit" results 

of section 4 we consider fits using the evaluation of a( Mz) claiming greater 
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precision[8], since those fits are most sensitive to the value of mWMIT_ Consider 

the goodness-of-fit CL for the unsealed data. We refine the notation, making ex­

plicit the dependence of the probabilities Pi defined in equation (9) on mYJMIT, by 

writing p7 ( mYJMIT) and PLR( mYJMIT). Notice from equation (9) that these proba­

bilities are defined for perfect search limits. The actual goodness-of-fit CL can be 

obtained by weighting the value for a perfect search limit at 89.3 GeV by its ac­

tual 95% CL, i.e., 0.95 · 0.181, and then integrating over the corresponding larger 

goodness-of-fit CL's for smaller values of mWMIT, P9 (p;(mWMIT),PLR)(mWMIT)), 

weighted by the probability measure given by the derivative of the experimental 

search limit confidence level with respect to mYJMIT. 

In practice it suffices to obtain an upper limit by approximating the integral 

_by a discrete sum over a few regions, representing the goodness-of-fit CL for 

each region by the maximum for the region, which occurs at the lower boundary 

of the region in mWMIT_ In the present instance just two regions will suffice, 

corresponding to the 99 and 99.9% limits quoted above. To an accuracy of 

±0.001 the upper limit on the true goodness-of-fit CL is given by 

p~OMBINED = 0.95P9 (p7 (89.3 GeV),PLR(89.3 GeV)) 

+ 0.049Pg (Pr(83 GeV),PLR(83 GeV)) 

+ 0.001Pg (Pr(78 GeV),PLR(78 GeV)). (20) 

The relevant values of Pn PLR and Pg are given in table 7. Substituting those 

values into equation (20) we find that the actual G-0-F CL is bounded above 

by 0.183 with an uncertainty ±0.001. This value differs hardly at all from the 

0.181 CL that corresponds to a perfect search limit at 89.3 GeV. 

Since the scaled data is less precise, the correction due to the actual confi­

dence limits of the searches will be even smaller and is therefore also perfectly 

negligible for the scaled fits. (I have verified this by applying the above analysis 

to some of the scaled fits, including the most sensitive case, from table 6 with 

SLR = 1.) In fact, the numerical error in calculating tables 5 and 6 is of order 

0.01, much bigger than the 0.002 correction from the finite confidence level of 

the search limits. We conclude that the fits shown in tables 5 and 6 do in fact 

reflect the actual experimental confidence levels of the direct search limits. 

6. Conclusion 
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Motivated by the observation that within the SM framework two of the nine 

measurements of sin2 0~j;an are individually in significant conflict with the SM 
Higgs boson direct search limit, we constructed a scale factor method based on 

an aggregate goodness-of-fit confidence level between the complete set of nine 

measurements and the limit. Like an analogous scale factor used for many years 

by the Particle Data Group, the scale factor proposed here is intended to account 

for the possibility of underestimated systematic effects. It is applicable to other 

physical situations in which some of a set of measurements are in conflict with a 

physical boundary or experimental limit. Applied to the SM Higgs boson mass, 

the scaled fits exhibit the dependence of the fit on the weight accorded to the 

two measurements that are in conflict with the search limits. The fits in which 

the weight of ALR is reduced allow a central value of niH as large as~ 200 GeV 

and a 95%CL upper limit as large as 750 GeV. Relative to the conventional 

least-square fit, the central value of sin20~j;on, increases by as much as two 

standard deviations while mH increases by as much as one standard deviation. 

There is a tendency to think that the value of sin2 0~j;an is only of interest 

as a prognosticator of the Higgs boson mass, so that it will be of only sec­

ondary interest -after/if a Higgs boson is discovered. This view underestimates 

the importance of sin20~};on as a fundamental probe of a variety of new physics, 

not simply restricted to the Higgs sector. By comparing the measured value of 

sin.20~};on with the value predicted by the directly measured mass of the Higgs 

boson, we would have a probe of other possible new physics, such as for instance 

extended gauge sectors or nonsinglet heavy quanta. It would therefore be re­

grettable if the brilliant program of precision studies of Z particle properties 

were to conclude with some measure of uncertainty as to how definitively the 

value of sin20~j;on has been determined. 

There are a variety of possible explanations for the anomalies that have 

affected the measurements of sin2 0~j;on, both the internal inconsistencies, which 

have diminished but continue to exist as of this writing, and the inconsistencies 

with the search limits that are the subject of this paper. They may in fact 

simply be the result of bad luck, chance fluctuations. They may result from 

underestimated systematic errors among some of the measurements. Or they 

may represent real effects and be harbingers of new physics. Hopefully the 

situation will be clarified by further experimental work, beginning with new 
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data and/or analyses to be presented at the Summer 1998 conferences. 
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Tables 

Table 1. Uncertainties in the evaluation of the natural logarithm of the SM 

Higgs boson mass, ln mH, from sin2()~jyn. The two values for o:(mz) and 

'Total' correspond to references [7] (larger values) and [8] (smaller values). 

Parameter ~(ln mH) 
· 2()lepton 

szn eff 0.40 

o:(mz) 0.46 or 0.11 

ffit 0.32 

o:s(mz) 0.02 

theory 0.07 

Total 0.67 or 0.52 

Table 2. Individual measurements of sin2 ()~jyn with 1o- experimental errors 

and their pulls with respect to the least-square fit value sin2()~jyn = 0.23148 ± 
0.00021, listed in the order of the absolute value of the pulls. 

Measurement · 2()lepton 
szn eff Pull 

Af.B 0.22987 (98) -1.61 

ALR 0.23084 (35) -1.57 

A}B 0.23211 (39) +1.42 

AT 0.23241 (80) +1.12 

< QFB > 0.23210 (100) +0.60 

Ae 0.23193 (90) +0.48 

AP,B 0.23160 (110) +0.12 

AFB 0.23164 (145) +0.11 

AP,B 0.23147 (82) +0.01 
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Table 3. SM Higgs boson mass prediction for the individual measurements, 

based on a( m z) from reference [7], listed in order of the precision of the measure­

ments. The central value of mH is shown along with the symmetric (in ln mH) 

90% confidence interval m§5, m~ and the implied probability that mH < 89.3 

GeV. 

Measurement mH (GeV) > < mg5,m95 P(mH < 89.3 GeV) 

ALR 25 6, 100 0.93 

A}s 280 62, 1300 0.11 

Ar 500 35, 7100 0.14 

A~B 83 5, 1300 0.52 

Ae 200 10, 3800 0.33 

A:Fs 4 0.2, 95 0.95 

Qps 280 11, 7200 0.29 

AFB 110 4, 2800 0.47 

Aps 110 1, 12000 0.47 

Table 4. Same as table 3 but with a(mz) from reference [8]. 

Measurement mH (GeV) > < mg5,m95 P(mH < 89.3 GeV) 

ALR 33 10, 110 0.91 

A~B 370 100, 1400 0.04 

Ar 660 50, 8600 0.10 

A~B 110 8, 1500 0.45 

Ae 260 15, 4700 0.27 

A:Fs 5 0.2, 120 0.93 

Qps 360 15, 8800 0.24 

AFB 140 6, 3400 0.41 

A}s 150 2, 15000 0.42 
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Table 5. Fits based on a(mz) from reference [7]. The first line is the conven­

tional fit while the other lines display scaled fits that meet the 44% minimum 

goodness-of-fit confidence level for the measurements and search limit. For each 

fit, specified by the pair of scale factors Sn SLR, the table displays the fitted 

value of sin20~j]on with 1u uncertainty, the central value of mH, the conven­

tional 95% CL upper limit, m95 , and the Cousins-Feldman[10] 95% CL upper 

limit, m~f. 

SLR ST · 2()lepton 
szn ef J ffiH mgs mCF 

95 

1 1 0.23148 (21) 85· 260 320 

1 3.51 0.23155 (22) 97 300 370 

1.11 2.27 0.23160 (22) 105 320 400 

1.26 1.87 0.23165 (23) 117 370 460 

1.42 1.74 0.23170 (24) 127 410 510 

1.59 1.71 0.23173 (24) 137 440 550 

1.78 1.68 0.23177 (25) 146 480 600 

2.01 1.28 0.23177 (25) 147 480 600 

2.50 1.16 0.23180 (26) 154 510 640 

00 1.06 0.23186 (27) 175 590 750 
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Table 6. As in table 5 but with o:( mz) from reference [8]: 

SLR ST · 2(}/epton 
sm eff ffiH mgs mCF 

95 

1 1 0.23148 (21) 112 260 310 

1 1.84 0.23154 (21) 124 295 350 

1.07 1.71 0.23157 (22) 131 310 370 

1.18 1.60 0.23161 (23) 143 350 420 

1.31 1.57 0.23165 (23) 155 385 460 

1.45 1.54 0.23169 (24) 167 420 500 

1.62 1.18 0.23170 (24) 169 430 520 

1.75 1.12 0.23171(24) 173 440 530 

2.00 1.08 0.23174 (25) 182 470 570 

3.62 1.00 0.23181 (26) 207 550 670 

Table 7. The goodness-of-fit confidence level between the nine sin20~};an mea­

surements and the direct search limit for m7JMIT corresponding to experimental 

confidence levels of 95%, 99%, and 99.9%. The G-0-F CL's, Pg(pr, PLR), are 

computed assuming perfect search limits at each mrJMIT, as discussed in the 

text. Reference [8] is used for o:( mz ). 

Search Limit CL mrJMIT(GeV) Pr PLR Pg(Pn PLR) 

95% 89.3 0.933 0.910 0.181 

99% 83 0.928 0.894 0.225 

99.9% 78 0.924 0.878 0.264 
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Figure Caption 

Figure 1. Scaled fits that meet the minimum goodness-of-fit criterion. The 

central value and 95%CL upper limit for the Higgs boson mass are plotted as 

a function of the scale factor for sin2 (}~j;an from ALR· Solid and dashed lines 

correspond to the evaluations of a(mz) from references [7] and [8] respectively. 
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