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1 Introduction 

It was conjectured in [1) that the infinite momentum frame description of M

theory is given by the large n limit of supersymmetric quantum mechanics 

(SQM) [2, 3, 4), obtained as the dimensional reduction of the 9 + 1 dimen

sional U(n) supersymmetric Yang-Mills (SYM) gauge field theory. Shortly 

afterwards Susskind took this a step further [5), conjecturing that the dis

crete light cone quantization (DLCQ) of M-theory is equivalent to the finite 

n matrix theory. 

Toroidal compactification of M-theory can then be obtained by first con

sidering matrix theory on the covering space and then imposing a periodicity 

condition on the matrix variable [1, 6, 7), also known as the quotient condi

tion. The result is a SYM field theory on a dual torus. 

If we consider the DLCQ of M-theory and compactify on a torus Td 

for d 2: 2 there are additional moduli coming from the three-form of 11-

dimensional supergravity. For example, if we compactify on T 2 along X 1 and 

x2 then c-12 .cannot be gauged away, and is a modulus of the compactifica

tion. It was conjectured in [8) that turning on this modulus corresponds to 

deforming the SYM theory on the dual torus to a noncommutative SYMon 

a quantum torus [9) with deformation parameter (} given by 

Evidence for this conjecture comes from comparison of the BPS mass spectra 

of the two ~theories and of their duality groups. Further evidence and discus

sions of this conjecture followed in [10, 11, 12, 13, 14, 16, 15, 17, 18, 19). 

In Section 2 we present a review of matrix theory compactification leading 

to noncommutative SYM gauge theory on trivial quantum bundles. We 

follow the elementary treatment of [17) with an emphasis on giving explicit 

formulae that closely resemble the commutative case. We further present an 

explicit realization of the algebra of the quantum torus A(Tj) in-terms of 

quantum plane coordinates. 
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In Section 3 we introduce non-trivial quantum bundles as in [17] corre

sponding to compactified DLCQ of M-theory in the presence of transversely 

wrapped membranes. We also explain in some detail how to solve the bound

ary conditions for sections in the fundamental and adjoint quantum bundle. 

Finally using the special form of the transition functions in the given gauge 

we find an equivalent but simpler form of the general solution for fundamental 

sections. 

In Section 4 we discuss the more abstract language of projective modules, 

as presented in [8] and references therein, and we then give the explicit map 

between this formulation and the mo;e elementary formulation in [17]. We 

also explain the notion of Morita equivalence [20, 8, 18, 19, 23] applied to 

our specific case. For an expanded coverage of noncommutative geometry 
' see [22], and for a brief description see [24]. 

Finally in Section 5 we discuss the general theory of gauge transformations 

on the noncommutative torus and find an explicit gauge transformation that 

trivializes one of the transition functions. With trivial transition functions 

T-duality transformations take the standard form, allowing us to interpret 

the gauge field as D-strings on the dual torus. 

2 Review of Matrix Compactification 

In this section we present a review of matrix theory compactification closely 

following the description given by Ho in [17]. The P_ = n/ R sector of the 

DLCQ of uncompactified M-theory is given by the U(n) SQM [2, 3, 4] whose 

action in the temporal gauge is given by 

where J-t, v = 0, ... , 9. We will compactify matrix theory on a rectangular 

2-torus of radii R 1 and R2 . First let us consider matrix variables on the 
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covering space and impose the quotient condition 

ui-1 xjui 

ui-1 XaUi 

u-:-1e u.-t t e, i,j = 1, 2 a= 2, ... '9. 

(2) 

Here the Ui are unitary operators. The consistency of these equation requires 

U U 2niou u 
1 2 = e 2 1· 

Before solving the quotient condition (2), it is convenient to introduce two 

more unitary operators Ui, i = 1, 2 which commute with the U/s and satisfy 

the relation 

(3) 

One way to realize this algebra is by using canonical variables <Ji satisfying 

(4) 

Then [Ji def eia; satisfy (3). The variables <Ji are noncommutative coordinates 

on the quantum plane which is the covering space of the quantum torus. 

The algebra of functions on the quantum torus denoted A(T.:0 ) is generated 

by [Ji· Similarly the -ui operators generate the algebra denoted A(Tl). To 

realize them we introduce partial derivative operators on the quantum plane, 

satisfying the following algebra 

(5) 

Then, we realize Ui as 
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For () = 0 we have Ui = [Ji = eiu;; all generators commute allowing us to use 

either U/s or Ui's to generate the algebra of functions on the classical torus. 

It is then easy to check that 

u:-1 !a. U· = !a.+ o· · 
t i J .t i J tJ. (6) 

This and many other formulae in this paper can be proven using the Campbell

Baker-Hausdorff formula which can be written in closed form since commu

tators like (4) and (5) are c-numbers. Equation (6) is very similar to the 

quotient condition (2) so one can write a solution as a sum of the partial 

derivative and a fluctuating part that commutes with the Ui 's. However this 

is just the definition of the covariant derivative 

(7) 

Xa Xa(Ui), 

e e(Ui), 

where Ai, X a and each spinorial component of 8 are n x n hermitian matrices 

with operator valued entries. Note that since the partial derivatives already 

satisfy the cocycle condition, the gauge fields Ai and the scalar fields Xa 

must satisfy a homogeneous quotient condition like the secqnd relation in (2). 

Hence Ai and Xa must depend only on [Ji· Hidden in this dependence is the 

fact that we are working on a trivial bundle over the quantum torus. 

If one inserts (7) into the SQM action {1) the result is a noncommutative 

SYM gauge field theory in 2 + 1 dimensions, with the space part given by 

the above quantum torus and a commutative time. For the commutative 

case, matrix compactification on Td results in a SYM gauge theory in d + 1 

dimensions on the dual torus. In the limit when the size of the original torus 

vanishes the dual torus becomes Rd, therefore we obtain the opposite of 

dimensional reduction. If one starts from a Euclidean 10-dimensional SYM 

and dimensionally reduces in all directions including the Euclidean time one 

obtains the IKKT [25] functional. Matrix compactification of one direction 
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in the IKKT functional results in the finite temperature action of the original 

theory (1). 

3 Twisted Quantum Bundles 

We can consider more general solutions of the quotient condition (2) which 

are connections on twisted bundles. They correspond to compactification of 

the DLCQ of M-theory in the presence of transversely wrapped membranes. 

Again the solution is a sum of two terms, a constant curvature connection 

Di and a fluctuating part 

xi -27riR·O··D· + A·(Z·) J ~] J ~ J ' (8) 

X a Xa(Zi), 

e e(zi)· 

Here the Zi 's are n x n matrices with operator entries and, just like the f.Ji 's 

for the trivial bundle, commute with the U/s, but now are sections of the 

twisted bundle whose exact form will be discussed shortly. However, while 

for the trivial bundle Ai, Xa and the spinorial components of 8 are n x n 

matrix functions, in (8) Ai,Xa and the components of 8 are one-dimensional 

functions but with matrix arguments. Later, this will allow us to establish 

a relationship between a SYM on a twisted U(n) bundle and one on a U(1) 

bundle. 

Following [17], up to a gauge transformation the constant curvature con

nection can be written as 

(9) 

where f is the constant field strength 
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e 
Such a gauge field can only exist in a non-trivial bundle. One can intro-

duce transition functions ni such that the sections of the fundamental bundle 

satisfy the twisted boundary conditions 

<I>(a1 + 21f, a2) 

<I>(a1,a2 + 27r) 

Similarly the adjoint sections satisfy 

nl (al, a2) <I>(al, a2), 

n2(al, a2) <I>(al, a2)· 

w(al + 21f, a2) = nl (al, a2) w(al, a2) nl (al, a2)-1' 

w(al, a2 + 27r) = n2(al, a2) w(al, a2) n2(al, a2)-1. 

Consistency of the transition functions of the bundle requires that 

(10) 

(11) 

This relation is known in the mathematical literature as the cocycle condition. 

The covariant derivatives transform just as the adjoint sections 

Di(a1, a2 + 21r) = 02(a1, a2) Di(a1, a2) 02(a1, a2)-1. 

A particular solution for the transition functions compatible with the con

stant curvature connection (9) and satisfying the cocycle condition is given 

by 

(13) 

where U, V are n x n unitary matrices satisfying 

UV = e-21fimfnvu 

and m is an integer. For simplicity, here we will only consider the case when 

nand m are relatively prime. For the general case see [8, 14, 28]. Using the 

representation given in [17]. one has 

U _ e21fikmfn0 kl- k,l, 
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where the subscripts are identified with period n. 

We can express the above matrices in terms of the standard 't Hooft 

matrices [26] denoted here by U' and V' and satisfying / 

U'V' = e-2nifnV'U' U'n = vm = 1. 
' 

The relation is given by 

U = e2nimfn U'm' V = V'. (14) 

The phase in (14) is due to the nonstandard definition of U used in [17]. This 

has certain advantages but similar phases will appear when comparing the 

results of [17] with similar results where the standard 't Hooft matrices were 

used. We also introduce a unitary matrix K which changes the representation 

so that V' is diagonal, and satisfies 

(15) 

Note that n is quantized since we are considering a U ( n) gauge theory 

and m is quantized since the magnetic flux f through T2 is quantized 

m 
27rf = 0 

n- m(} 

In M-theory m is the transversal membrane wrapping number. 

One can solve the boundary conditions (10) for the fundamental sections 

as in [17] generalizing a previous result for m = 1 in the commutative case 

presented in [7]. Using the ordered exponential explained below, the general 

solution has the form 

"~ (m (a-2 ) . ) ~ (a-2 nj) <Pk(a-1, a-2) = ~ ~ E - - + k + ns + J, ia-1 cpj - + k + ns +- . 
sEZj=1 n 27r . 27r m 

The ordered exponential [17] is defined for two variables whose commutator 

is a c-number 
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The normalization is such that 

E(-B, A)E(A, B) = 1 

and it has the following desirable properties similar to the usual exponential 

E(A + c, B) = E(A, B)ecB, 

E(A, B +c) = ecA E(A, B). 

(16) 

The <Pi functions are defined on the whole real axis and are unrestricted 

except for the behavior at infinity. They should be considered as vectors in 

a Hilbert space on which all the elements of the algebra are represented. 

Next we explain in some detail how to obtain this result. First we define 

The second boundary condition (10) implies that the definition of <P is con

sistent, i.e. k-independent. Using vn = 1 we also find that </> is a periodic 

function in 0"2 

The other boundary condition gives 

It is convenient to separate out a factor to eliminate the above twist 

and to require a simpler periodicity condition for ¢ 

Then the function f must satisfy 
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This is satisfied exactly for 

j(a1,a2) . E (: (;; + 1) ,ia1), 

where in the right hand side we used the ordered exponential defined above. 

Now we can Fourier transform¢ in a 1 

¢(ai, a2) = L eipu1 </Jp(a2) 
pEZ 

and using the property (16) of the ordered exponential we obtain 

¢(a1, a2) = ~ E (: (;; + 1) + p, ia1) </Jp(a2)· 

Let p = ms + j with j = 1, ... , m and sis an integer. Then the solution can 

be written as 

where <Ps,j def <Pms+j· Periodicity in a2 then implies </Js-I,j(a2+21rn) = <Ps,j(a2) 

so that using this recursively we have <Ps,1(a2) = ¢0,1(a2+27rns). Finally after 

defining ¢1(x) def ¢0,1(27r(x- 1)) we obtain 

<I>k(a1, a2) = L f: E (m (a
2 

+ k + ns) + j, ia1) ¢1 (a
2 

+ k + ns). 
sEZ j=l n 27r 27r 

This is the result mentioned above up to another redefinition 

While the solutions for the sections of the fundamental bundle given 

m [17] are suitable for showing the equivalence to the projective modules 

of [8] as we will discuss in Section 4, the appearance of the ordered expo

nential is somewhat inconvenient. Using the special form of the transition 

functions we were able to rewrite the solution in an equivalent but simpler 
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form. The transition functions in this gauge do not contain o-1 and it is 

convenient to order all o-1 to the right in the solution. Using vn = 1 in the 

second condition (10) one can express all n components of ci> in terms of a 

single function with period 27m in o-2 . After Fourier transforming in o-2 and 

imposing both boundary conditions (10) we obtain the general solution 

ci>k(al, o-2) = I:: e27ri(u2/2n+k)p/n e27ri(ul/27r-pjm)mjn {fip(ai/27r _ v/m), 
pEZ 

where only m of the '1/Jp functions are independent, since 

Using the same technique one can show that an arbitrary adjoint section 

has the following expansion 

1Tr( ) '"""' zsz-t .,.- 0"1,0"2 = ~ Cst 1 2 · (17) 
s,tEZ 

Here C8 t are c-numbers and , 

where b is an integer, such that we can find another integer a satisfying 

an - bm = 1. For n and m relatively prime one can always find integer 

solutions to this equation. Again, we emphasize that the Zi 's commute with 

the Ui 's. They are generators of the algebra of functions on a new quantum 

torus 

Z Z 2ni9'z z 
1 2 = e 2 1, 

where ()' is obtained by an S£(2, Z) fractional transformation from -() 

()' = a( -e) + b . 
m(-e) + n 

Now we outline how to obtain this result. Note first that 
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In the last equality we used the fact that un = 1, and we also used the 

exponential formula to shift o-1. Using both boundary conditions we have 

w(a-1 + 21r(n- mO), a-2) = w(a-1, o-2), 

w(a-1, 0"2 + 27rn) = w(a-1, o-2)· 

We can expand the section as 

w(a-1, o-2) = L eisui/(n-mO)e-itu2/nw s,t, 

s,tEZ 

where w s,t is a n x n matrix and can be expanded as 

n+io n+jo 

w s,t = L L Cs,t,i,j V'iulj. 
i==io j==jo 

(18) 

Here i 0 , j 0 are two arbitrary integers, allowing us to freely shift the summation 

limits assuming that Cs,t,i+n,j = Cs,t,i,J+n = Cs,t,i,j. Then one can obtain further 

restrictions on the cs,t,i,j coefficients using the boundary conditions (11). For 

example using the first equation (11) and comparing like coefficients in the 

Fourier expansion we have 

C . ·e21fis/(n-m0) = C . -e-21fimifne21fism0/[n(n-,O)] 
s,t,t,J s,t,t,J · 

From this and the similar relation obtained by imposing the second equa

tion (11) we have that Cs,t,i,j vanish unless (s + mi)/n = k and (t + j)/n = s 

fork and s two integers. These equations have multiple solutions. However, 

if (i,j) and (i',j') are two solutions then i- i' E nZ and j- j' E nZ. This 

ensures that only one term survives in the sum (18) over i and j. Choosing 

for later convenience i 0 = sb and j 0 = mbt we have 

n+sb n+mbt 
w(a-~,a-2) = L eisurf(n-mO)e-itu2/n L L Cs,t,i,j V'iU'J. 

s,tEZ i==sb j==mbt 

Since n and m are relatively prime let a, b E Z such that an - bm = 1. Then 

k = as, l = at, i = bs, j = mbt 
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is an integer solution inside the i and j summation range. Dropping the i, j 

indices since they are determined by s and t we have 

w(o-l,o-2) = L Cs,t (eiul/(n-mO)ylbr (eio-2/nul-mb)-t' 
s,tEZ 

which is just (17) after an additional phase redefinition of Cs,t to accommodate 

the phase difference between U and U'm. 

4 Projective Modules and Morita Equivalence 

A classic mathematical result of Gel'fand states that compact topological 

spaces are in one to one correspondence with commutative C*-algebras. In 

one direction, to a topological space X we associate the algebra of continu

ous functions C(X). Conversely and rather nontrivially, the spectrum of a 

commutative C* -algebra is equivalent to a compact topological space. This 

important result allows for a dual description of topological spaces and brings 

powerful algebraic methods into the realm of topology. On the other hand, 

if we drop the commutativity requirement, a C* -algebra A describe what is 

called by correspondence a quantum space. To illustrate, consider the alge

bra of the quantum torus A(Ti) generated by the Ui's. An arbitrary element 

a has the form 

a= 2:: ak,lu~u~, (19) 
k,lEZ 

where some restrictions (which we do not discuss here) are imposed on the 

c-number coefficients ak,l· For () = 0, formula (19) reduces to the Fourier, 

expansion of functions on T 2. Thus we can read the compact space from the 

commutative algebra. 

Using the same strategy one can describe other spaces of classical ge

ometry in commutative algebraic terms and then remove the commutativity 

requirement. A quantum vector bundle is a projective A-module £. First 

consider the classical commutative picture. The set £ of global sections of a 
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vector bundle over a base space X has the structure of a projective module 

over the algebra C(X). Having a module essentially means that we can add 

sections and can multiply them by functions. Not all modules over a com

mutative algebra are vector bundles .. For example the set of sections on a 

space consisting of a collection of fibers of different dimensions over a base 

space also form a module. However, projective modules over the algebra of 

functions on a topological space are in one to one correspondence with vec

tor bundles over that space. By definition a projective module is a direct 

summand in a free module. A free module Eo over an algebra A is a module 

isomorphic to a direct sum of a finite number of copies of the algebra 

Eo = A E9 ... E9 A. 

Trivial bundles correspond to free modules since the description of their 

sections in terms of components is global, and each component is an element 

of C(X). For every vector bundle we can find another one such that their 

direct s·um is a trivial bundle. In dual language this implies that the module 

of sections E is projective 

Eo= E EB E'. 

Again it is nontrivial to show the converse, that every projective module is 

isomorphic to the seL of sections of some vector bundle. Finally projective 

modules over noncommutative algebras are the quantum version of vector 

bundles. 

In the noncommutative case we distinguish between left and right projec

tive modules. Multiplying fundamental sections from the right with elements 

of A(T~0 ) preserves the boundary conditions (10) while multiplication on the 

left gives something that no longer is a global section. Thus the set of sections 

of the fundamental bundle form a right projective module over the A(T~0 ) 

algebra which we denote :F!,m· This is no longer true for the adjoint sections 

since in (11) the transition functions multiply from both the left and right. 

However one can check that the fundamental and the adjoint are both left 
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and right projective modules over the A(Tl) algebra. This is because the 

exponents of the U/s satisfy 

(20) 

thus the U/s can be commuted over the transition functions in (10) and 

(11). Additionally, the fact that F~ m is both a left A(Tj)-module and a 
' 

right A(T~8)-module can be understood as follows. Since [Ui, aj] = 0 we 

have 

where we dropped the derivatives when there was nothing to their right. 

Thus multiplying on the left with a is equivalent to multiplying on the right 

with a 
a<l> = <l>a, (21) 

where a = L:k,lEZ ak,tUftJf is the same function as a but with fJ/s as argu

ments and with all the factors written in reversed order. 

As mentioned in [17] the construction in Section 2 is equivalent to the 

projective modules discussed in [8]. By solving the boundary conditions we 

went from a local to a global description. Here we present explicit formulae 

for this equivalence. First one has to express the left actions on the funda

mental sections as actions on the Hilbert space [17]. For example the action 

of the zi generators is given by 

(z ;;:,) ( ) ;;:, ( 1) (z21)
1
·(x) = e-2rrijfme2rrixf(n-m8)1

1
.(x). l'f' j X = 'f'j-a X- - , '+' '+' 

m 

This can be written as 

where. Vi and Wi are operators acting on the Hilbert space as 

14 



These operators satisfy the following relations 

v; 1.r _ e-21fi/[m(n-mB)]T.r v; W W _ e21rijmw W 
1 V2 - V2 1, 1 2- 2 1l 

and can be used to express other operators acting in the Hilbert space. For 

example we have u1 = w1 vt-mB and u2 = W2 v;n-mB. 

We can now present the correspondence between [8] and [17]. The two 

integers p and q and the angular variable Ocns labeling the projective module 

1-l~~os of [8], and Ocns can be expressed in terms of the quantities used in 

this paper or in [17] 

p = n, q = -m, Ocns = -0, Ocns = 0' · 

Then F!,m rv 1-l;;,B_m. The Hilbert space representation of [8] written in terms 

of the function f(s, k) with s E Rand k E Zq is linearly related to the (/jk(x) 
representation 

m 

(/jk(x) = L JCkl (S(- n~m9 )!)(x, l). 
l=1 

Here JC is an m x m representation changing matrix defined as in (15) 

but for m-dimensional 't Hooft matrices, and S>.. is the rescaling operator 

(S>..f)(x, k) = f(A.x, k) which can be expressed using the ordered exponential 

S>.. = A.E((A.- 1)x, Bx)· 

Also, using lower case to distinguish them from our current notation which 

follows [17], the operators in [8] represented in the (/Jk(x) basis are given by< 

V - T .rn-mB v - T .rn-mB w - e21finfmwn w - e21fi/mw 
0 - v2 ' 1 - v1 ' 0- 2' 1 - 1 

Z _ e21fi/mz z _ e-21fiafmz-1 u _ e21finfmu u _ e21fi/mu 
0 - 2, 1 - 1 ' 0- 2, 1 - 1· 

Next we introduce the Morita equivalence of two algebras [20, 21, 18, 19], 

which can be used to describe a subgroup of the T-duality group of the 
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M-theory compactification in the language of noncommutative SYM gauge 

theory. 

Two C* -algebras A and A' are Morita equivalent if there exists a right 

A-module £ such that the algebra EndA£ is isomorphic to A'. Here EndA£ 

denotes the set of endomorphisms of the A-module £. It consists of linear 

maps T on £ where linearity is not only with respect to c-numbers but also 

with respect to right multiplication by elements of A 

T(<Pf) = T(iP)f, iP E £, f EA. 

Ari example of Morita equivalent algebras is A(T..:9 ) and A(Tj,). As dis

cussed above, the projective module associated to the quantum fundamental 

bundle :F~,m is a right A(T..:9)-module. One can prove that EndA(r'!_8 ):F~,m 
is isomorphic to A(Tj,). Here we just show that the two algebras have the 

same generators. Using (21) we have T(<Pa) = T(aiP) and T(iP)a = aT(¢) 
and since Tis an endomorphism we obtain T(a<P) =aT(¢), which can also 

be written as [T, a] = 0. But the Zi's were found exactly by requiring that 

they commute with Ui's so T E A(Tj,). 
The physical interpretation of Morita equivalence is that a U ( n) SYM 

gauge theory on the twisted bundle with magnetic flux m is equivalent to a 

U(1) gauge theory on a dual quantum torus Tj,. This can be seen as a conse

quence of the discussion following equation (8). The gauge field components 

Ai, the scalar fields Xa, and the components of 8 are not matrix valued, 

rather they are one-dimensional. The final result is a matrix because the 

Zi 's are matrices. On the other hand, we can ignore the internal structure 

of the Z/s and just regard them as the generators of A(Tj,), thus allowing 

us to reinterpret the original theory as a noncommutative U(1) gauge theory 

on the quantum torus A(Tj,). 
Generally, two theories with parameters (n1 , m1 , fh) and (n2, m2, 02) and 

appropriately chosen compactification radii are equivalent if they are on the 
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same orbit of the SL(2, Z) duality group 

-B _ A( -BI) + B 
2

- C(-BI) + D' 

Since (} is a continuous variable, we can interpolate continuously, through 

noncomniutative SYM theories, between two commutative SYM theories 

with gauge groups of different rank and appropriate magnetic fluxes. This 

SL(2, Z) duality subgroup has a nice geometric interpretation in the T-dual 

picture of [10] where it corresponds to a change of basis of the dual torus 

lattice [-14, 28]. -

5 Gauge Transformations 

In this section we consider a gauge equivalent formulation of the previous 

results closely following the treatment of Taylor in [27] of the corresponding 

commutative case. In that paper a gauge transformation was considered so 

as to change the standard 't Hooft transition function into trivial transition 

function in the X 2 direction. When the transition functions are trivial T

duality has the standard form, i.e. the gauge field translates directly into the 

position of aD-string on the dual torus. Here we show that a similar gauge 

transformation can be performed in the noncommutative case. See also [28] 

for further discussions of this including a relation to the three-string vertex· 

of Do~glas and Hull introduced in [10]. 

First let us consider a general gauge transformation g(a1 , a 2). Just as 

in the classical case the covariant derivatives transform as D~ = g-1 Dig 

resulting in the following transformation for the gauge fields 

A, -lA . -18 i = g i9 + zg i9· (22) 
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As a result the new transition functions are given by 

n~ (a1, a2) = g-1(a1 + 27r, a2)n1 (a1, a2)g(a1, a2), 

n~(o-1, o-2) = g-1(o-1, o-2 + 21r)n2(o-1, o-2)g(a1, o-2). 

(23) 

Again all this is just as in the classical case except that one has to take into 

account the noncommutativity of the a/s. 

It will be useful to consider first the (} = 0 commutative case. Then we 

know both the original gauge fields (9) and the transformed ones 

A' = 0 A' = m a 1 Q 
1 ' 2 2 + ' n 7r 

where Q = ~diag(O, 1, ... , n- 1), and we use primes for all variables in the 

new gauge. We can write a differential equation for the gauge transformation 

which can be integrated to give 

(24) 

where the integration constant K is the n x n matrix (15). It was fixed by 

requiring a trivial n~ as given by (23). Using the gauge transformation (24) 

we can now calculate both transition functions 

(25) 

where Tk = diag(O, ... , 0, 1, ... , 1), k = 1, ... , n with the first n- k entries_ 

vanishing and the last k equal to unity. 

Next we discuss the noncommutative case. The first thing to notice is 

that the original quantum transition functions (13) are (} independent and 

only contain the o-2 variable. Similarly the classical gauge transformation (24) 

only depends on a2 so that the classical computation' of the new transition 

18 



functions is also valid in the quantum case. Using (22) we can compute the 

new gauge fields 

Since (20) implies [Ui, g] = 0 we see that the gauge transformation is 

compatible with the quotient conditions (2). We can use the gauge transfor

mation to obtain the generators of the sections of the adjoint bundle 

We can also write explicit formulae for the fundamental sections in the new 

gauge 

' ( ) '"'"' iu r ( a1 k - nr) 
<I>k a1, a2 = ~ e 2 

Xk-nr -
2 

+ · 
rEZ 1r m 

The Xs functions are defined over the real axis and must satisfy 

so that only m of them are independent. Again, we note that since the 

transition functions only contain a 2 and all were ordered to the left of a 1 in 

the solution for the sections of the fundamental bundle, they have the same 

form in the noncommutative. and in the classical case. 
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