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We give a classification and overview of the confining N = 1 supersymmetric gauge 
theories. For simplicity we consider only theories based on simple gauge groups and 
no tree-level superpotential. Classification of these theories can be done according 
to whether or not there is a superpotential generated for the confined degrees of 
freedom. The theories with the superpotential include s-confining theories and 
also theories where the gauge fields participate in the confining spectrum, while 
theories with no superpotential include theories with a quantum deformed moduli 
space and theories with an affine moduli space. 

1 Introduction 

In this talk, we give an overview of the confining N = 1 supersymmetric g:;tuge 
theories. Before jumping into the details of the classification of such models, 
one has to answer the question of what we mean by a confining theory. The 
definition we will be using throughout this talk is the following: we call a theory 
confining, if there is a low-energy description purely in terms of composite 
gauge singlets (that is, the low-energy effective theory is a Wess-Zumino model 
for the gauge singlet fields, there are no massless gauge degrees, of freedom in 
the IR theory). This broad definition of confinement does not automatically 
imply that there would be an area law for the Wilson loop, or a linear potential 
between external test charges. The reason is that in some cases (when there 
are massless dynamical fields in a faithful representation of the gauge group), 
the external charges can be screened, and instead of a linear potential there 
will be no potential at all. In this case there is no phase boundary between the 

a Talk presented at the 3rd workshop on Continuous Advances in QCD, Minneapolis, MN, 
16-19 April 1998. 
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Higgs and the confining phases, and there is no invariant distinction between 
these two phases. This is what will actually happen in most of the examples 
reviewed below. Keeping this broad definition of confinement in mind, we are 
ready to discuss the classification of these models. 

For simplicity, we will consider only theories based on simple gauge groups 
and no tree-level superpotential. Then the confining theories can be classified 
into two broad categories, according to whether or not there is a superpotential 
generated for the composite fields. These two categories can be further refined: 
for the case of theories with a confining superpotential, one can distinguish be­
tween theories where the composites contain only chiral superfields (these are 
the s-confining theories), or theories where the gauge field W,. also participates 
in forming the composites. In the case of theories with no superpotential, one 
can distinguish between theories where there are classical constraints relating 
the composites and theories where there are no such constraints. These cat­
egories will be discussed in detail below. A final category which we will not 
discuss in detail is when the low-energy effective theory is empty, that is there 
is a mass gap, and no massless chiral superfields are present. This is the case 
for example for N = 1 pure Yang-Mills theories. However, we expect such the­
ories to be very rare for the following reason. If there is an exact continuous 
global symmetry present in the theory, then it is either spontaneously broken 
or not. If it is spontaneously broken, we expect massless Goldstone-bosons, 
if it is not broken, then the 't Hooft anomaly matching conditions have to be 
satisfied, implying the presence of massless fermions. Thus we expect that only 
theories like pure N = 1 Yang-Mills, with no continuous global symmetries to 
exhibit such behavior. Finally, a warning: the four categories to be explained 
below contain all confining theories known up today. However, it is possible, 
that there might be a lot more confining theories around, which might not fit 
into the above classification scheme. 

2 Theories with a Non-vanishing Confining Superpotential 

2.1 The S-confining Theories 

S-confining theories are defined as follows 1 : 

-there is a non-vanishing superpotential for the confined degrees of freedom 
(non-singular at the origin) 

- the composites involve only chiral superfields 
- the description in terms of gauge invariant composites is valid everywhere 

on the moduli space. 
The first example of an s-confining theory has been found by Seiberg2 • We will 
use this exampl~ (SU(N) theory with F = N + 1 flavors) to explain the most 
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important properties of such theories. The field content and global symmetries 
of the theory, together with the confining spectrum is given below. 

SU(N) SU(N + 1) SU(N + 1) U(1)B U(l)n 
Q D D 1 1 ___.!___ 

Q Ei 1 D -1 
Ntl 
N+l 

M = (QQ) D D 0 _.L_ 

B = (QN) 0 1 N 
N~l 

N~l 
B = (QN) 1 0 -N 

N+l 

The confining superpotential is 

1 -
A2N-l (detM- BMB) (1) 

There is ample of evidence that this is indeed the correct low-energy description 
of the original SU(N) theory 2 . First of all, the confined degrees of freedom 
M, B and B satisfy the 't Hooft anomaly matching conditions. Second, the 
classical limit is correctly reproduced by the superpotential, since the equations 
of motion result exactly in the classical constraints of the theory. Finally, 
integrating out flavors results in the correct descriptions of the theories with 
less flavors. Subsequently, several others-confining theories have been found 3 ,4 . 

The natural question to ask is how to find all other s-confining theories. We 
will answer this question below. 

The most severe constraint on s-confining theories comes from the require­
ment that there is a non-vanishing confining superpotential. Global symmetries 
fix this superpotential to be of the form 1 

(2) 

where <I>i are the underlying chiral superfields (not the composites), /-Li is the 
Dynkin index with respect to the gauge group of the ith chiral superfield given 
by TrT~TiJ = J-Li8AB, where the T's are the generators of the gauge group in 
the ith representation, and G is the Dynkin index of the adjoint. For example 
in the case of Seiberg's example SU(N) with N + 1 flavors <I>i = Qi, Qi (i is 
the flavor index i = 1, ... , N + 1), f..Li = 1, G = 2N, thus the superpotential has 
the form QN+I(JN+l / A2N-t, which can be written in terms of the confined 
degrees of freedom either as det M or BM B. 

Examining the form of (2) one can observe, that the confining superpoten­
tial is singular at the origin unless the overall exponent is an integer, implying 
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the index constraint 

LJ1i- G = 2 or 1. (3) 

This is a very severe constraint on the matter content of a given theory. In 
fact, it restricts the candidates for s-confining theories to a finite set. This 
set of theories for the case of SU(N) groups is given in Table 1. In order 
to find out which of those theories listed in Table 1 are actually s-confining, 
we note one more necessary condition the s-confining theories have to satisfy: 
an s-confining theory flows only to s-confining theories. The reason behind 
this is simple. An s-confining theory is described by a set of gauge invariant 
operators. Going along a flat direction in this language just means giving 
VEV's to some gauge invariant fields, thus the resulting theory also has to 
be describable in terms of a theory of gauge invariants. Using this condition 
one can go ahead and check the various flows of the candidate theories listed 
in Table 1. The theories where a flow results in a non-s-confining theory can 
be excluded. For the remaining examples one can explicitly find the confined 
spectrum and show that the consistency conditions are all satisfied. This way 
one can find all s-confining theories based on simple groups. The results for 
SU(N) theories are listed in Table 1. Here we give just one more simple s­
confining example, which is based on SU(5) with three antisymmetric tensors 
and three antifundamentals. The detailed description of the remaining SU(N) 
theories together with the theories based on other groups can be found in 1 . 

SU(5) SU(3) SU(3) U(1) U(1)R 
A ~ D 1 1 0 
Q 1 0 -3 2 

"i 
AQ2 D 0 -5 .i 

3 
A3(J EP 0 0 2 

3 
A5 OJ 1 5 0 

2.2 Composites Contain Wa 

This category does not have its own name, since there is only one known 
example 5 . This example is based on an SO(N) theory with N - 3 vectors. 
Intriligator and Seiberg argued, that there is a branch on which the theory 

4 



Table 1: All SU theories satisfying L:i J.Li - G = 2. This list is finite because the indices 
of higher index tensor representations grow very rapidly with the size of the gauge group. 
We give the gauge group in the first column, and the field content in the second column. In 
the third column, we indicate which theories are s-confining. For the theories which do not 
s-confine we give the flows to non s-confining theories or indicate that there is a Coulomb 
branch on the moduli space. 

SU(N) (N + 1)(0+0) s-confining 
SU(N) 8+~0+40 s-confining 

SU(N) 8+8+3(0+0) s-confining 
SU(N) Adj +D+D Coulomb branch 

SU(4) Adj +tJ Coulomb branch 

SU(4) 3 +2(0+0) SU(2): 80 
SU(4) 4 +0+0 SU(2): rn + 40 
SU(4) 5 Coulomb branch 
SU(5) 31-- +D) s-confining ,._, 
SU(5) 2j+~0+4D s-confining 

SU(5) 2<8+E) Sp(4): 3EI+ 20 

SU(5) 2~+EI_!-2o+o SU(4): 3EI+2(0+D) 
SU(6) 2 + 50+0 s-confining 

SU(6) 28+8+20 SU(4): 3EI+ 2(0 +D) 

SU(6) + 4(0 +Ei) s-confining 

SU(6) f.. +8+30+0 SU(5): 2EI+B+20+0 

SU(6) ;.t-8+8 Sp(6): §+8+0 
H 

+0+0 SU(5): 2<8 +B) SU(6) 2H 
'r-1 

SU(7) 2t + 30) s-confining 

SU(7) +40+20 SU(6),~+B+ 3[)+0 

SU(7) +R+o Sp(6): +R+o 
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confines with the following spectrum: 

The confining superpotential is given by 

U(1)R Z2N-6 
1 1 

N-3 
2 

N-3 2 
1+-1

- N-4 N-3 

There are lots of checks that this spectrum is indeed correct 5•6 , including 
integrating out a flavor from the theory with F = N - 2 and obtain this 
branch, continuous and discrete anomaly matching, and integrating out one 
more flavor. However, this is the only known example of this kind, and it 
would be very interesting to find more confining theories of this sort. 

3 Theories with a Vanishing Confining Superpotential 

There are two broad classes of known confining theories with vanishing super­
potential. One class includes the famous theories with a quantum deformed 
moduli space, while the other class contains the theories with an "affine moduli 
space" of vacua. These can be distinguished by noting, that in the first case 
there are non-trivial classical constraints among the basic composite invariants, 
while in the second case there are none. 

3.1 Theories with Constraints: Quantum Deformed Moduli Space 

The first example of a theory with a quantum modified constraint has been 
discovered by Seiberg 2 . The example is SUSY QCD with the number of colors 
equal to the number of flavors, SU(N) with F = N. The field content and 
global symmetries of the theory, together with the confining spectrum is given 
below. 

SU(N) SU(N) SU(N) U(1)B U(1)R 
Q D D 1 1 0 
Q D 1 D -1 0 

M = (QQ) D D 0 0 
B = (QN) 1 1 N 0 
{J = (QN) 1 1 -N 0 

The composites M, B and fJ satisfy the classical constraint det M- BB = 0. 
In the infrared, quantum effects modify this constraint to det M- BB = A 2N. 
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Table 2: The SU theories satisfying the index constraint 2:; p,; = G. The first column gives 
the gauge group, the second column the field content and the third column gives the phase of 
the low-energy theory. QDMS stands for confining with a quantum deformed moduli space, 
and i and c distinguish between the cases where the constraint which is quantum modified 
is invariant or covariant under the global symmetries of the theory 9 . Note, that all theories 
satisfying 2:; J.ti = G are either confining with a quantum modified constraint or in the 
Coulomb phase. The theories in the Coulomb phase have been discussed in Ref. 12 • 

SU(N) N(D+O) i-QDMS 
SU(N) 8+<~-1)0+30 i-QDMS 

SU(N) 8+8+ 2(0+0) i-QDMS 
SU(N) Adj Coulomb phase 
SU(4) 38+ (0+0) c-QDMS 
SU(4) 48 Coulomb phase 
SU(5) 28+0+ 30 i-QDMS 

SU(5) 2~8~o c-QDMS 
SU(6) 2 +40 i-QDMS 

SU(6) %+3(D+Ei) i-QDMS 

SU(6) +;§20 c-QDMS 

SU(6) Coulomb phase 

SU(7) §+40+20 c-QDMS 

Again there is a lot of evidence that this is indeed what happens. The 't 
Hooft anomaly matching conditions are not satisfied at the origin, but they 
are satisfied at any point on the quantum deformed moduli space (from which 
the origin is excluded). Integrating out one flavor reproduces the well-known 
Affieck-Dine-Seiberg superpotential 7 , and higgsing the gauge group will also 
give a consistent result. Later more theories with a quantum modified con­
straint have been identified 3•

4
•8 . 

One can again try to find all theories that similarly have a quantum modi­
fied constraint. In these theories a classical constraint of the form 2:(lliXi) = 0 
(where Xi are gauge invariant operators) is modified quantum mechanically to 
2:(IIiXi) = APIIiXi. Here, the Xi are some other combination of the gauge 
invariant operators, including the possibility that the quantum modification is 
just AP. The power p must necessarily be positive to reproduce the correct 
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classical limit. Such a modification of the classical constraint is only possible 
in theories where I: JLi - G = 0. To show this, consider assigning R-charge zero 
to every chiral superfield. This R-symmetry is anomalous and the anomaly has 
to be compensated by assigning R-charge I: JLi - G to the scale of the gauge 
group raised to the power of its one loop {3 function coefficient A (3G-I: ttd/2 . 

Since the constraints have to respect this R-symmetry one immediately sees 
that A can only appear in a constraint if it has vanishing R-charge. There­
fore, we conclude that only theories with I: JLi - G = 0 may exhibit quantum 
deformed moduli spaces. We can find all theories satisfying I: JLi - G = 0 by 
simply leaving out a flavor from the matter contents listed in Table 1. The 
resulting theories are displayed in Table 2. The theories based on SU groups 
of Table 1 have been examined in detail by Grinstein and Nolte 9 , and those 
based on other groups by Grinstein and Nolte 10 and Cho 11 . Again, based on 
the flows one can exclude all theories from Table 1 which do not flow to a con­
fining theory. In the remaining examples one can find the quantum modified 
constraint either by integrating out one flavor from an s-confining theory, or if 
the theory with one more flavor is not s-confining, then one has to consider the 
flows along various flat directions in order to find what the quantum modified 
constraint is. It has been found in 9•10 that there are two types of theories 
with a quantum modified constraint. One possibility is that the constraint is 
invariant under all global symmetries, then the quantum modified constraint 
has the form IIi Xi = AP, and the origin is excluded from the moduli space by 
the quantum modification. The other possibility is that the constraint carries 
a non-vanishing global charge, and thus the quantum modification must be 
field dependent, of the form rrixi = AP xl' where xl is a single composite 
field. In this case, the origin of the moduli space is not excluded, and the 
't Hooft anomaly matching conditions have to be satisfied after the field X 1 

is eliminated from the spectrum. Below, we present an example where the 
quantum modified constraint is covariant under the global s:ppmetrie~ The 
example is based on an SU(4) gauge theory with matter in 3ti+D+D. The 
theory with an additional flavor is not s-confining. The confining spectrum is 
given in the table below. 
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SU(4) SU(3) U(1h U(1)2 U(1)R 
A ~ D 0 1 0 
Q 1 1 -3 0 
Q Ei 1 -1 -3 0 
A~ [I] 0 2 0 

QA2Q Ei 0 -4 0 
QQ 1 0 -6 0 

A3Q2 1 2 -3 0 
A3Q2 1 -2 -3 0 

The quantum modified constraint is 

~(QQ?(A2)3 + 4(A2)(QA2Q)2 + 64(A3Q2)(A3Q2)2 = As(QQ) 
6 

Note that one can eliminate the field (QQ) from the theory by solving the 
quantum modified constraint. The remaining fields match all anomalies of the 
ultraviolet theory. 

Finally, we note that there are no known confining theories, where classical 
constraints among the basic invariants do exist, but none of them is quantum 
modified. However, there is no argument why theories like that could not exist. 

3.2 No Constraints Among Invariants: Affine Moduli Space 

The first and perhaps most famous example of this class of theories is the 
ISS model 13 , which is an SU (2) gauge theory with one chiral superfield Q in 
the spin 3/2 representation of the gauge group. Classically this theory has a 
single independent gauge invariant Q4 , which satisfies the 't Hooft anomaly 
matching conditions. Therefore it is widely believed that this theory confines 
without generating a confining superpotential. Theories which have at least a 
branch on which they behave analogously have been later found in Refs. 5 •4 •1 . 

The classification of such theories has been done by Dotti and Manohar. They 
obtain a list of all theories where there is no constraint among the fundamental 
composites (which they call theories with an affine moduli space), and on 
these theories they explicitly check whether the 't Hooft anomaly matching 
conditions are satisfied or not. The resulting theories are given in Table 3. 
The first six theories in Table 3 have a confining branch with no superpotential 
generated in addition to a branch with a dynamically generated superpotential. 
The seventh theory is the ISS model which as explained above presumably 
only has a confining phase with no superpotential generated. The phase· of 
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Table 3: The theories which have no classical constraints among the basic invariants and 
satisfy 't Hooft anomaly matching from Ref. 14 • The first column gives the gauge group, the 
second column the matter content. S stands for the spinor of the given SO group. 

SU(2N) B+B 
SU(6) s 

Sp(2N), N?:. 2 ~ 
SO(N), N ?:. 5 (N- 4)0 

S0(12) 2S 
S0(14) S 
SU(2) ITIJ 

SU(8) 

Sp(8) 
SO(N), N?:. 5 

S0(16) 

~ 
~ 

rn 
s 

the last four theories is not very well established. The fact that the 't Hooft 
anomaly matching conditions are satisfied would suggest that these theories 
are confining just like the ISS model. However, a more careful analysis of the 
different branches of these theories shows that it is unlikely that these theories 
confine at the origin, instead they are likely to be in an interacting non-Abelian 
Coulomb phase 15 • 

Finally, we note that Dotti and Manohar have also shown that the only 
theories with no classical invariants at all (which are believed to break super­
symmetry dynamically) are the two well-known examples: SU(5) with 10 + 5 
and S0(10) with a single spinor. 

4 Conclusions 

There have been a lot of new results recently concerning the low-energy dy­
namics of N = 1 supersymmetric gauge theories. The simplest of these theories 
are the confining ones, where the low-energy effective theory is simply a theory 
of gauge singlets. The known confining theories can be classified according to 
whether or not there is a superpotential generated for the confined degrees of 
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freedom. The theories which do have a confining superpotential include the 
s-confining theories and the theories where the composites involve the gauge 
field W0 • The class of theories where there is no superpotential for the con­
fined·degrees of freedom contains the ~heories with a quantum deformed moduli 
space and the theories with an affine quantum moduli space. Some of these 
categories (s-confining, quantum deformed moduli space, affine moduli space) 
have been exhaustively studied for the case of simple gauge group and no tree­
level superpotential. Others are not well understood, and perhaps there might 
be completely new types of confining theories waiting to be discovered. 
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