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1. INTRODUCTION 

The fmite element model TRINET [Karasaki, 1987; Segan and Karasaki, 1993] calculates 
transient or steady-state fluid flow and solute transport on a lattice composed of one-dimensional 
fmite elements (i.e., pipes) of porous medium. TRINET incorporates an adaptive gridding 
algorithm to minimize numerical dispersion for transport calculations. Although TRINET was 
originally developed to study fracture networks, the primary interest here is in applying TRINET 
more generally to simulate transport in porous media (or a fractured medium being treated as an 
effective continuum). This requires developing expressions to relate TRINET inputs to equivalent 
parameters used to describe flow and transport in homogeneous porous media. In this report, we 
briefly describe the basic TRINET formulation for flow and transport, present TRINET 
equivalences for porous medium parameters, and compare TRINET to analytical solutions using 
the proposed porous medium equivalents. 

2. GOVERNING EQUATIONS USED IN TRINET 

2.1. FORMULATION FOR FLOW 

The flow equation between the two nodes at either end of a one-dimensional fmite element may be 
written as 

(1) 

where h is hydraulic head and S s , w, and T are the specific storage, aperture, and 

transmissivity, respectively, of the element. The height of each element b is taken to be unity. 
Hence, the product of specific storage and aperture is storativity: Ssw = S. The lattice of 

elements need not be uniformly spaced: it can be two'- or three-dimensional, and rectangular, 
triangular, or a combination thereof. In the present report, we consider regular rectangular lattices. 

Notice that TRINET requires the pair of input parameters ( T, S s ), which is somewhat 

unconventional. Typically, the flow equation is written in terms of the element hydraulic 
conductivity K and specific storage Ss, where K = Tjw, or (T, S), where S = Ssw. Note 

that constant head or constant flow boundary conditions can be specified for any node. In this 
way, wells can be modeled as point sources or sinks located at nodal points, which are the 
intersections between elements of the lattice. 

2.2. FORMULATION FOR TRANSPORT 

The transport equation between the two end nodes of a finite element is written as 

(2) 
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where C is the concentration, D* is the dispersion coefficient of the element and v P is the pore 

velocity in the element. Analogous to flow, the concentration boundary conditions may be 
specified at any node. This is particularly useful if the purpose is to model a contaminant source 

such as an injection well in a tracer test. In addition, notice that D* is a direct TRINET input, 
whereas v P is not and must be inferred from TRINET concentration breakthrough curves. For the 

sections pertaining to transport, this discussion is limited to transient solute transport in a steady 
state flow field only. 

3. PROPOSED EQUIVALENCES FOR LATTICES 
I 

3.1. PARAMETERS FOR FLOW 

3.1.1. 2D FLOW IN A CONFINED AQUIFER 
UNIFORM LATTICE SPACING 
To simulate flow in a two-dimensional horizontal porous medium, TRINET may be used with a 
two-dimensional rectangular lattice to represent an areal view of an aquifer. Fig. 1 shows a 
schematic view of a portion of such a lattice. The distance L gives the lattice spacing, and w and 
bare the element aperture and height, respectively, for each element in the lattice. The region 
marked by the dashed line represents the unit cell of the lattice. The following algorithm provides a 
basis for choosing the element properties S s, w, and T required for equation ( 1) so that the lattice 

as a whole acts like a confined aquifer with storativity S and transmissivity T . Although 
TRINET always uses b = 1 , treating b as a variable helps make the following derivations 
clearer. 

From Equation (1 ), it is apparent that the hydraulic conductivity of an element is K = T j w, and 

therefore its conductance (hydraulic conductivity times cross-sectional area) may be written as 
Kwb . Fig. 1 shows that the conductance through a unit cell of the lattice is exactly this value 
since the element has hydraulic conductivity K and cross-sectional area wb . The conductance 

through an equal volume of aquifer would be KLb , where K is the equivalent aquifer hydraulic 
conductivity. Equating these expressions for conductance gives 

w 
KL. (3) 

Writing this expression in terms of the input variable T = Kw and the desired output variable 

T = Kb , and recalling that b 1 , give the desired relationship for transmissivity for a lattice 
with uniform spacing L : 

T 

L 
(4) 

The storage-of a unit cell of the lattice is given by the element specific storage times the volume of 
the elements within the unit cell. Since half of four elements (each with length L and cross
sectional area wb) lie within the unit cell, the storage capacity is given by S.2wbL. The storage 
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of an equal volume of aquifer would be SsbL2 
, where Ss is the equivalent specific storage of the 

aquifer. Equating these expressions for storage gives 

- (2w) ss = ss £. (5) 

Writing this expression in terms of the desired output variable S Ssb, and recalling that 

b = 1, give the desired relationship for storativity for a lattice with spacing L: 

- (2w) s = ss £. (6) 

NESTED LATTICE SPACING 
For a lattice with variable spacing to behave as a uniform porous medium, element properties must 
vary with lattice spacing. One example of a lattice with variable spacing is a nested lattice in 
which a central fine region with spacing L is surrounded by a region with spacing aL, which in 

turn is surrounded by a region with spacing a 2 L, and so on, so that the jth region has lattice 

spacing aj L. In Fig. 1 a = 2 and portions of the j =0 through j =l regions are shown. One 

consistent prescription for lattice element properties is to require that as lattice spacing increases 

from L to aj L, the element properties are modified as follows: 

w ~ w. (7a) 

Another possible prescription is 

Ss ~ Ss, (7b) 

These modifications can be easily derived by examining Fig. land equating conductance and 
storage for regions of the lattice with different values of j. Equations (4) and (6) relating effective 

porous medium properties to lattice properties may be generalized for a nested lattice as follows: 

and S = Ss 2jw . 
a L 

(8) 

The form of Equation (8) shows explicitly why the prescriptions for T and S given in Equation 

(7) yield values of f and S that are independent of lattice spacing. 

3.1.2. QUASI 3D FLOW IN A LEAKY AQUIFER 
UNIFORM LATTICE SPACING 
The two-dimensional aquifer model described in the previous section has completely impermeable 
confming layers above and below it. It is straightforward to extend the model to include small 
vertical flows into the aquifer through a leaky confining layer. Fig. 2 shows a schematic view of 
the quasi three-dimensional lattice that is used to accomplish this. One new element and one new 
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constant-head node are added for each non-boundary node in the original two-dimensional lattice. 

Each new element has specific storage s; , aperture W
1

, transmissivity T 1
, and length L 1 

'. Due 

to the requirement that TRINET elements have height b = 1 , the cross-sectional area of the new 

elements is W
1b = W

1
, whereas Fig. 2 indicates that it should actually be W

12
• This limitation 

can be circumvented by using W
1 = b = 1 throughout the lattice. 

In order for the confming layer as a whole to have vertical hydraulic conductivity K1 and specific 

storage S.; , vertical conductance and storage for a unit cell of the TRINET lattice are equated to 

those of a unit cell of the porous medium, as before. For lattice spacing L , 

- 2 - Tl 
K 1w 1b = K 1L -7 K 1 = - 2 L 

(9) 

I I I 

Ss bw1L 1 S- L2 L1 S-
s -7 s (10) 

where W
1 b 1 and T 1 K 1

W
1 have been used. 

NESTED LATTICE SPACING 

To account for the variable lattice density, when the lattice spacing increases from L to aiL, the 
TRINET properties are modified as follows: 

T 1 -7 a 2iT1 

' ss W
1 

-7 W
1

• (11) 

At the boundaries between regions of the lattice with different densities, intermediate values of T 1 

I 

and S" are used, with a 2
i in Equation (11) replaced by 0.375 a 2i along the edges of the regions, 

and 0.5625 a 2
i at the comers. These coefficients are determined by making the conductance and 

storage as uniform as possible across the density-boundaries in the lattice using unit cell 
arguments. For the lattice shown in Fig. 3 this correction is not exact, because the different density 
regions are of very different extents (e.g., the 2 L = 6 m region of the lattice is only one element 
wide, while the 4 L = 12m region is eight elements wide). For a lattice with continuously 
increasing density (each region of the lattice is only one element wide), the appropriate correction 

2. 2" 
factors would be 0.333 a 1 for edges and 0.2857 a 1 for comers. Equations (9) and (10) can be 
generalized for a nested lattice as follows: 

Kl 
Tl 

(ai L)2 
(12) 

( ' J I S W
1 

ss (a~ L)2 . (13) 
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3.2. PARAMETERS FOR TRANSPORT 

For simulating transport in a steady-state flow field, algorithms are developed for choosing element 
properties required for equation (2) so that a TRINET lattice behaves as a homogeneous porous 

medium with hydraulic conductivity K, hydrodynamic dispersion D , and effective porosity <jJ • 

Four types of transport problems are considered: longitudinal transport through a 1D pipe, 
longitudinal transport in a 2D porous medium, longitudinal tranport in a 3D porous,medium, and 
transport in a radially divergent flow field. In all four problems, it is assumed that soluty is 
released in a steady state flow field and the solute concentration at the source, C0 , is held constant. 

Although the effective porosity </J does not appear explicitly in equation (2), it is required because 

the rate at which solute is transported through the medium is 

(14) 

where the Darcy velocity v d is given by the ratio of specific discharge to the cross-sectional area 

normal to flow: 

(15) 

For a given aquifer with parameters K, D and <jJ, an equivalent set of TRINET input parameters 

is determined so that TRINET accurately simulates transport through the aquifer using a lattice. 
Note that the set of equivalent TRINET parameters depends on lattice dimension and the 
orientation of lattice elements to the flow field. These equivalence expressions are verified by 
comparison to either an analytical solution or an approximation to an analytical solution. For the 
case of the 3D medium, an algorithm is presented, but not verified. 

3.2.1. 1D TRANSPORT IN A 1D MESH 
A pipe of length LP , width w P , and thickness b P is filled with fluid. The hydraulic conductivity 

through the pipe is K. In TRINET, a one-dimensional input mesh can be used to simulate 1D 
transport through the pipe. The one-dimensional input mesh is simply a series of nodes connected 
along a line by elements of equal lengths L with Ss, w, b, D, and T denoting the specific 

storage, aperture, thickness, dispersion coefficient, and transmissivity, respectively, of each 
element. A schematic diagram of a mesh for a 10 m pipe is shown for example in Fig. 4. 
Alternatively, the mesh could consist of a single element of length LP. To assign element 

transmissivity, recall from Section 2.1 that an element with transmissivity T has hydraulic 
conductivity K = Tjw. Hence the conductance in the TRINET pipe element is Kwb. A pipe 

with hydraulic conductivity K has conductance KwPbP. Equating conductances implies T 

should be chosen to satisfy 
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(16) 

For a 1 m thick pipe, TRINET can simulate transport only when the effective porosity of the 
medium is lf> = 1 . This is obvious by observing that the effective volume available for transport 

in the pipe is the product of the pipe volume and the effective porosity, which is l/Jw Pb P LP . If 

lf> = 1 , this is exactly the effective volume transport in the fracture element since w = w P and 

b = bP = 1. This is obvious since the pipe and the 1D mesh have the same volume and 

TRINET assumes a fracture element consists entirely of void space. 

In addition, if the element dispersion coefficient is set equal to the value of the dispersion 
coefficient of the pipe and steady-state flow through the pipe is assumed, then the TRINET element 
parameter values required to simulate transport through the pipe in addition to (16) are 

f5 = D l/> = 1 (17) 

for w = w P and b = 1 . 

3.2.2. 20 LATTICE WITH UNIFORM SPACING 
In this section an equivalent set of TRINET input parameters is developed for longitudinal 

transport through an aquifer with dispersion coefficient D and effective porosity lf> when 

transport is simulated on a 2D lattice. A 10 m by 10 m uniform lattice is shown for example in 
Fig. 5. Here; the lattice represents a rectangular slab of a porous medium with length LP, width 

w P , and thickness b P = b = lm. A solute with concentration C0 = 1.0 is released on the left 

hand side and is transported across the slab by advection and dispersion. The hydraulic 

conductivity, storativity, and porosity of the medium are denoted by K, S , and lf> respectively. 

The dispersion through the slab is denoted by D . Each lattice element has a transmissivity T, 
aperture w, length L, thickness b, specific storage Ss, and dispersion coefficient D. To 

develop an algorithm for dispersion, we first recognize that the flow equation and the diffusion 

equation have the same mathematical form with the hydn.mlic diffusivity, ii, playing a similar role 

in the flow equation to the dispersion coefficient, D, in the diffusion equation. We will take 
advantage of this similarity by deriving an expression for hydraulic diffusivity and propose an 
analogous equivalence for the dispersion coefficient. Recall that the one dimensional flow equation 
rewritten in terms of ii, the hydraulic diffusivity, is 

ah K d2h 

at = ~' dx 2 = (18) 

Equation ( 18) is of the same mathematical form as the one-dimensional diffusion equation, 

. ac - d2C at = D axz . (19) 

This similarity suggests that arguments for ii for the flow problem can be applied analogously to 

D for the transport problem. Since 
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K 
{i' = (20) s: 

the hydraulic diffusivity can be written in terms of the TRINET element diffusivity, a K/ S s 

as 

Kw I L 
a s. S.2w I L 

by using equations (3) and (5).This suggests the equivalence 
. - D 

D = z· 

a 
2 

(21) 

(22) 

This implies that dispersion in an aquifer with a dispersion coefficient jj can be simulated by 
TRINET if the element dispersion coefficient is chosen to be twice the value of the aquifer 
dispersion coefficient. 

In order to develop an algorithm for determining the correct element parameter values so that a 
two-dimensional lattice behaves like a porous medium with effective porosity l/J , two uniform 

lattices are considered: a "linear" lattice (Fig. 5), and a "diagonal" lattice (Fig. 6). The flow 
direction is horizontal and parallel to the x-direction. The lattices differ in orientation and overall 
size, however, a L = 1 m lattice spacing is used for both. In the linear mesh, elements are either 
parallel or perpendicular to the direction of flow, and in the diagonal mesh, all elements are at a 45 
degree angle to the flow direction. 

Consider a L X L in unit cell in the linear mesh. Fig. 7 shows a section of the lattice and the 
boundaries of a unit cell (shaded gray). The effective porosity of the lattice is given by the ratio 
V1 /V2 , where ~ is the volume of lattice space available for transport (effective volume of pore 

space) in the unit cell and V2 is the volume of the unit cell. Since the lattice represents a slab with 

uniform thickness b , V2 = bL2 
• The volume of lattice space used for transport in TRINET is the 

volume contribution of the two element halves along the flow direction so V1 = 2( wb L/2). If 

the lattice is to represent a porous medium with effective porosity l/J , then the aperture must be 

chosen to satisfy 

2(wb L/2) 

hi! 
wb 

Lb 

w 

L 
(23) 

Note that only two of the four half-elements are counted since there is no tranport per se in the 
elements perpendicular to flow. In TRINET these elements can be filled by the solute due to 
dispersion, but once these elements are occupied, no more solute can enter. Hence, these elements 
essentially do not participate in the advective part of solute transport and are not counted in the 
pore volume. 

For the diagonal mesh, all fmite elements are used in transport. Consider the unit cell as shown in 
Fig. 8. The diagonallattice has L = 1 m spacing so the dimensions of the unit cell are 

.fiL X .fiL X b m. The cell volume is v2 = b( .fiL r = 2bL2
, and the effective volume of 

pore space is the total volume of the four intersecting elements so that V1 = 4bwL. If the 
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diagonal lattice is to behave as a porous medium with an effective porosity lfJ , the aperture must be 

assigned a value so that 
4bwL 

2bL2 

2w 
L 

Therefore, the TRINET element parameters in the linear lattice must be chosen to satisfy 

- D w 

(24) 

D = - l/J = - (25) 
2 L 

as given by (22) and (23). In the diagonal lattice, the TRINET element parameters must be chosen 
to satisfy 

- D D=-
2 

2w 

L 
(26) 

as given by (22) and (24). This means that for an aquifer with dispersion coefficient f5 = l.Oe-04 
m2/s and effective porosity lfJ = 0.3, a 2D lattice with 1 m length elements should have the element 

dispersion coefficient set to D = 2.0e-04 m2/s for both the linear lattice and the diagonal lattice. 
In the linear lattice, the aperture should be set to w = 0.3 m. The apertures in the diagonal lattice 
must be half as large as the apertures in the linear lattice ( w = 0.15 m). 

3.2.3. 3D LATTICE WITH UNIFORM SPACING 
In this section, an equivalent set of TRINET parameter values are developed for i5 and ¢ for 

simulating longitudinal transport in a 3D lattice (i.e., the elements are either parallel or 
perpendicular to the flow direction). Here, the lattice represents a volume of porous medium with 
length LP , width w P , and thickness b P . The hydraulic conductivity, storativity, effective 

porosity, and dispersion of the medium are denoted by K, S , l/J , and f5 repectively. For a 

uniform 3D lattice of elements with transmissivity T , aperture w , specific storage S , length L , 

thickness b , and dispersion coefficient D , the relationship between D and i5 can be derived by 
analogy to the relationship for hydraulic diffusivity. Note that L is chosen so that L>>b and 
L >> w so that each element represents a rod-shaped rectangular solid with volume wbL . 

The conductance through the lattice is given by nKwb ( K = Tjw) where n is the number of 

elements on the left face that contribute to the cross-sectional area perpendicular to the direction of 
flow. Since the lattice has uniform spacing, n = b P I L X w P I L . The conductance through the 

equivalent porous medium is given by Kw PbP. Equating these conductances yields 

K = Tjw wb (bPwPJ = Tb. (2?) 
w b L2 L2 

p p 

Note that this coincides with equation (9) when the element thickness b is unity. 

Now consider the unit cell shown in Fig. 9. The unit cell is a cube with sides oflength L and 
centered about a lattice node. Since each of the six half-elements contributes a volume of 
wb L/2, the storage in the unit cell is given by S = 6S s wb L/2 . For the equivalent porous 

medium, the storativity is given by S = Ss L3 
• Equating these quantities yields 
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(28) 

Flow through the lattice can be modeled by TRINET if T, Ss, and w are chosen to satisfy 

K = Tbj I} and Ss = 3S. ( wb/ L2
). Hence the effective hydraulic diffusivity is 

K TbjL2 T K a 
ii = Ss = 3Ss(wb/L2 ) = 3wS. = 3Ss = 3' (29) 

which implies that the 3D lattice behaves as a porous medium with dispersion iJ if D is chosen 

to satisfy iJ = D/3 . The equivalence for the porosity is obtained by referring to the unit cell in 

Fig. 9. The volume of the unit cell is V2 = JJ . If the flow is horizontal (as indicated in Fig. 9), 

the volume of lattice space in the unit cell is the total volume contribution of the two half-elements 
parallel to the flow. The four remaining half-elements are perpendicular to the flow direction so no 
advection occurs along these elements. Since each element has length L, width w , and thickness 
b, V1 = 2wb L/2 . In order that the fraction of pore volume match the aquifer porosity, w 
should be chosen to satisfy 

V1 2wb L/2 wb 
A.--- --
'r - V - L3 - L2 . 

2 

(30) 

Note that setting b = w simplifies this expression to l/J = w2 
/ L2 

. 

By analogy with the 2D case (Section 3.2.2), we assume that for diagonal flow, which occurs 
parallel to one plane of the lattice, but not parallel to any of the elements within that plane, w 
should be chosen so that </> = 2wb/ L. For flow that is not aligned with any lattice plane, all 

elements will be used in transport and w should be chosen so that </> = 3wb/ L2 
• 

3.2.4. NESJ'ED LATTICES 
In this report, nested lattices are not considered for modelling transport. Typically, the application 
for nested lattices is in simulating flow (such as in a: confined aquifer) where the mesh boundary 
must extend far beyond the well field so that with the prescribed boundary conditions, the mesh 
behaves as an infmtely extending medium. Since resolution is required in the vicinity of the well 
field but not necessarily near the boundary, the nested lattice is an economical compromise between 
the need for resolution and the computation burden of a uniformly fine mesh. The situation is not 
the same for simulating transport for several reasons. In field experiments, tracer tests are usually 
conducted under steady-state flow conditions, so that modelling tracer transport does not require a 
mesh with extended boundaries (as is the case with modelling well test data and matching pressure 
transients). If resolution greater than that offered by the uniform lattice is required, the obvious 
choice is not the nested lattice. On the contrary, in the radial transport problems described in 
Sections 4.4 and 4.5, pore velocity decreases with radial distance so resolution is required in the 
outer region of the mesh, not near the center. In this case, a mesh with increasingly fmer regions 
away from the contaminant source (e.g., the mesh center) is preferable. Beyond the applicability of 
nested lattices, there are difficulties in constructing such a mesh as well as computational issues. 
For example, if a lattice with a coarse center and fine outer region is input to TRINET, the mesh 
could easily be large enough (based on the number of nodes) that memory requirements and run 
time would make using TRINET impractical. For example, doubling the number of nodes can 
result in a four-fold increase in run time. In addition, the number of additional advective or 
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dispersive nodes that must be added in order to accurately model transport in the coarse region 
might also be unreasonably large. This would occur in the event of a sharp concentration gradient 
or if the velocity in elements is low. 

4. APPLICATION AND COMPARISON TO ANALYTICAL SOLUTIONS 

4.1. COMPARISON TO THEIS SOLUTION FOR 2D TRANSIENT FLOW 

The ability of TRINET to properly model flow through a porous medium has been verified by 
comparing its results to the Theis solution for transient radial flow in a confmed homogeneous 
isotropic aquifer, in which a fully-penetrating well is pumped at a constant flow rate [Theis, 1935]. 
The lattice used for the calculation (see Fig. 3) was developed to model an aquifer with a well-field 
shown by the solid circles, with the pumping well at the center (x=O, y=O). The spacing in the 
central region of the lattice is L = 3m, and the aperture throughout the lattice is w = lm . The 
nested lattice design is practical for modeling flow in porous media, where fme resolution is needed 
to represent flow near well adequately, but the lattice must extend far beyond the well field to 
realistically implement pressure boundary conditions. Fine resolution is undesirable beyond the 
well field because it greatly increases the size of the calculation without improving the ability of the 
model to predict flow or pressure at the well field. 

Fig. 1 Oa compares the Theis solution to the dimensionless draw down calculated by TRINET using 
the material properties and boundary conditions shown in Table 1. Overall, the match is excellent. 
The open circles in Fig. 3 show the locations where the drawdowns are compared. An equally 
good match is obtained if the draw downs are compared along a line parallel to the x- or y-axis. 
The calculation was also done with a finer nested lattice in which L = 3m throughout the region 
defmed by-120m< x <120m and-120m< y <120m, beyond which lattice spacing was 

successively doubled. A comparison of the calculated drawdowns to the Theis solution is shown in 
Fig. lOb. Although the match is even better than in Fig. lOa the fine lattice contains about 9,000 
nodes and 17,000 elements as compared to 800 nodes and 1,500 elements for the lattice shown in 
Fig. 3. Computer time roughly increases by a factor 2m when the number of nodes and elements 
increases by a factor m . If TRINET is implemented as part of an inversion in which many 
forward calculations must be made, the nested lattice in Fig. 3 is preferable to the fine mesh since it 
provides a good compromise between accuracy and efficiency. 
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Table 1. Parameters for Theis solution verification. 

Ss =5.6e-05 m·1 t 

b= 1m 

- 2w 
S =S - = 3 73e-05 m·1 

s L . 

b= 1m 
Initial and Bound Conditions 

h = 0 for all x and y at t =0 h =0 for all r at t =0 

h = 0 at x= y=± 600 m :f: h = 0 as r ~ oo 

Q=0.333e-03 m3/s at x=y=O Q=0.333e-03 m3/s at r=O 

t Used in the finest region of the lattice, where L = 3m; where lattice spacing is a j L , T ~ a j T and 

Ss ~ ajSs. 
:f: Calculation time is short enough so that a finite lattice acts like an infinite medium. 

4.2. COMPARISON TO HANTUSH & JACOB SOLUTION FOR QUASI 3D 
TRANSIENT FLOW 
Fig. 11a compares the results of TRINET using the quasi three-dimensional nested lattice 
described in Section 3.1.2 to an analytical solution for transient radial flow in a homogeneous 
isotropic aquifer with a slightly leaky confming layer, in which a fully-penetrating well is pumped 
at a constant flow rate [Hantush and Jacob, 1955]. In the confining layer, flow is taken to be 
purely vertical, storage is assumed to be negligible, and head is held fixed, making the leakage Into 
the aquifer act like a source term proportional to aquifer drawdown. Tables 1 and 2summarize the 
material properties and boundary conditions used. The parameter B, which is used to scale radial 

distance from the pumping well, is given by B = (Kbb'/ K'yt2 = 170m [Doughty, 1995]. The 

TRINET drawdowns for the locations marked by the open circles in Fig. 3 reproduce the analytical 
solution quite well, especially for the values of rj B ::; 1.0. Use of the alternate edge and comer 

correction factors described in Section 3.1.2 improves the match for large values of rj B at the 

expense of the smaller ones, which is undesirable for the intended purpose of this lattice to model 
the drawdown at the wells shown as solid circles in Fig. 3. The calculation was repeated using the 
finer nested lattice described above, and Fig. 11b shows that a better match to the analytical 
solution can be obtained. As in the case of the two-dimensional lattice, the increased computation 
time for the fme lattice makes its use impractical in an inverse method, and the accuracy of the 
lattice shown in Fig. 3 provides an adequate representation of a slightly leaky aquifer. 
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Table 2. Parameters for !fantush and Jacob [1955] solution verification, in addition to those given in 
Table 1. 

.:.· ·· .. 

.. 
'fRI!'lET Input p~affieters ·j··.. ·~uivruentPoro~~ M~~ium 

, . Properties .... · . 
; ·' Confitilng:Layer Properties ~tid :Dimensions ., .. 

T 1 
= 1.9e-06 m2/s t - Tl 

K 1= Lz =2.11e-07 rnls 

I 
I w -! ss =5.6e-13 m-1 t+ S 1=S s Lz =6.22e-14m :j: 

b1 
= 6.1 m b1 =6.1m 

Boundary Condition in Confining Layer 

h = 0 for all X and y at h =0 for all r at z = bl 

z = bl 

t Used in the finest region of the lattice, where L =3m; where lattice spacing is aj L, T 1 ~ a 2 jT1 

I I 

and Ss ~ a2
j Ss . 

_I 

:j: S s is assumed to be zero in the analytical solution. 

4.3. ONE-DIMENSIONAL TRANSPORT 

In the 1D transport problem, a slab of length LP, width w P, and thickness b P is filled with a 

porous medium of porosity lfJ . The hydraulic conductivity and storage of the medium are K and 

S , respectively, and the longitudinal dispersion in the slab is D . The pressure is held fixed at the 
ends of the slab: 

h(O, t) 

h(LP, t) 

with ~ > h2 • Applying Darcy's law to determine the steady-state flow rate, the discharge is 

Q = -KA (hz - ~)/Lp, 
which implies a Darcy velocity of v d = Qj A = - K( hz - ~) / LP . A source is located at 

x = 0 m with concentration C0 = 1.0 . The solute is transported by advection and dispersion 

under steady-state flow. The one-dimensional advection dispersion equation is 

- ()
2 C ac ac 

D axz - v P ()x = at ' 
where C is the solute concentration. The concentration at a distance x along the pipe at time t 
with initial concentration C0 is given by the analytical solution [Ogata and Banks, 1961] 
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C(x, t) (31) 

Since C0 =1.0, the concentrations calculated by TRINET are referred to as relative concentrations. 

In Sections 4.3.1, 4.3.2, and 4.3.3 below, the relations derived in sections 3.2.1 and 3.2.2 are 

verified in two steps. First, expressions for i5 are verified by simulating transport with TRINET 
when the hydraulic gradient is set to zero. TRINET breakthrough curves are plotted together with 

breakthrough curves from the analytical solution substituting the value for D prescribed by 
equation (17) or (25) or (26). Agreement between the breakthrough curves is verified by 
inspection. Second, expressions for the porosity are verified by simulating advection only. In 
TRINET, the element dispersion coefficient is expected to be nonzero so the dispersion parameter 
is set to a very small value so that dispersion can be considered negligible. The TRINET 
breakthrough curves are plotted and the pore velocity is estimated at several time steps. Since the 
estimated pore velocities are expected to vary at each time step, an average is taken for the overall 

estimated pore velocity. D is set to zero and the estimated pore velocity is substituted for the pore 
velocity in the analytical solution. The breakthrough curves from the analytical solution are 
compared with the TRINET breakthrough curves and agreement is verified by inspection. Next, 
given the values of T, w, and L specified in the lattice, the equivalent porosity and dispersion 
prescribed by (17) or (25) or (26) are calculated, and it is demonstrated that the estimated pore 
velocity agrees with the velocity predicted via equation (14) and (17) or (25) or (26). The method 
for estimating the pore velocity is described in section 4.3.1. 

4.3.1. lD MESH 
In TRINET, transport is simulated in a pipe of length LP = lOrn with the mesh shown in Fig. 4. 

The mesh consists of ten lm elements with the same element parameter values for transmissivity 
T, aperture w, specific storage Ss, and dispersion D. Each element has thickness b = 1 m. 

Here, T = 5e-08 m2/s, w = 5e-05 m, Ss = le-05 m·1
, and D = le-09 m%. The pressure is held 

fixed at the ends of the mesh at h,. = 10m and h2 = 0.0 m. 

With the TRINET inputs above, the TRINET Darcy velocity is 

Q 
A 

= -KVh 
-1Vh (32) 

l.Oe-03 rnls -
w 

To compare the TRINET solution to the analytical solution, the algorithms for D and lj> from 

section 3.2.1 are checked by applying the two-part procedure described in Section 4.3. First, i5 is 
inferred by comparing TRINET breakthrough curves to the analytical solution breakthrough 
curves when there is no advection (i.e., diffusion only). This is easily achieved in TRINET by 
imposing a zero hydraulic gradient (i.e., setting h1 = h2 = 0.0 m). By trial and error the best 

match is obtained when the element dispersion coefficient is identiCal to the aquifer dispersion 

coefficient ( D = i5 ). The pore velocity, v P, is then inferred by analyzing breakthrough curves 
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when dispersion is minimal .. Since pore velocities are not directly output by TRINET, the velocity 
is estimated as follows. A breakthrough is recorded at the first position x5 and time t where the 

relative concentration C(x.5 , t) = 05. In some cases, this location is obtained by lin~ar 

interpolation. The pore velocity is then estimated by vP = x 5/t. Breakthrough curves are 
est · 

calculated independently via the analytical solution in equation (31) inputting the values for f5 and 
v P prescribed by equations (14) and (17). TRINET breakthrough curves are plotted together with 

the analytical solution curves to verify that the breakthroughs match. Figs. 12 and 13 show the 
TRINET simulation and the analytical solution under pure diffusion (i) and pure advection (ii). 

D = 2.0e-04 m% to correspond to f5 = 1.0e-04 m% in the diffusion-only case. In the advection

only case, D = l.Oe-09 m% to correspond to f5 5.0e-10 m% in order to set the dispersion 
essentially to zero. The TRINET solution is indicated by the plotting symbols and the analytical 
solution is indicated by the solid line. Overall, the agreement between TRINET and the analytical 
solution is excellent. 

From the TRINET breakthrough curves in Fig. 13, the pore velocity was estimated to be 
l.OOe-03 rn/s. In addition, when the TRINET element transmissivities, apertures, and specific 
storages are perturbed, and the resulting pore velocities are estimated, we find that 

v oc T 
Pest 

oc ljw 
oc 11h 

In addition, we find that the estimated pore velocity coincides with the Darcy velocity. In other 
words, 

T 'Vh 
v :::::: 

Pest - w 

This implies that the TRINET effective porosity for this mesh is lfJ = 1, which is in agreement 

with equation (17). As expected, the pore velocity does not depend on element length (i.e., the 
discretization). For verification, this experiment was repeated for a 1D mesh with twenty 0.5m 
elements, and the pore velocity was estimated to be 1.18e-03 rn/s, which compares quite well to the 
expected pore velocity. 

4.3.2. 2D LINEAR MESH 
Here, the 2D uniform lattice described in section 3.2.2 is used to simulate 1D transport. Now the 
mesh represents a thick slab of some material with porosity lfJ < 1 since tracer is allowed to travel 

only along the bonds of the lattice. The "linear" mesh used for TRINET is shown in Fig. 5. The 
element inputs for this case are: T = 5e-08 m%, w = 5e-05 m, Ss = 1e-05 m·1

, D = 1e-09 m% 

and L = 1 m. Inferring f5 under a zero hydraulic gradient leads to f5 = D/2, which verifies the 

proposed TRINET equivalent for dispersion (equation (22)). Inferring the TRINET pore velocity 
with a very small amount of dispersion (nearly pure advection) leads to observing that 
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VPtsr 
oc T 
oc ljw 
oc Vh 

and 
TVh 

VPtst - w 

The simulated breakthrough curves agree extremely well with the analytical solutions for the 
advection only case (Fig. 14) and the diffusion only case (Fig. 15). Note that the accuracy of pore 
velocity estimates improves substantially with a fmer mesh (0.5 m spacing) and when the time step 
incrementing parameter prr is reduced from 1.4 to 1.1. See Segan and Karasaki [1993] for details 
on prr. The Darcy velocity for this rectangular 20 mesh is (Equation (3)): 

- T 
vd = -K Vh = - Vh L . 

Thus porosity is given by l/J 

equation (25). 

v d jv P = wj L, which verifies the expression for porosity in 

4.3.3. 2D DIAGONAL MESH 
For the diagonal lattice in Fig. 6, a larger porosity is expected since all of the elements are used in 
simulating transport. In fact, for the diagonal mesh, we expect the porosity to be twice as large as 
the linear 20 mesh since the solute can travel along a path that makes use of all the elements 
instead of only those in the x-direction (half of the elements in the 20 linear mesh). The element 
inputs for the 20 diagonal mesh are T = 5e-08 m2/s, w = 5e-05 m, Ss = 1e-05 m-I, L = 1.0 m, 

b = 1.0 m, and D = 1e-09 m%. 

Inferring D by comparing concentrations under pure diffusion gives an excellent match when 

i5 = D/2 is used in the analytical solution (Fig. 16). Simulating transport under pure advection, 

and doubling and halving values of TRINET element inputs, the pore velocity is estimated to be 
close to S.Oe-04 m/s and 

VPest oc T 
oc ljw 
oc Vh 

1 T Vh 
V Pest - 2 ---;-

Thus porosity is given by l/J = v d jv P = 2w/ L, which is in agreement with the porosity 

predicted by equation (26). For the advection only case, TRINET also matches the analytical 
solution. Fig. 17 gives the TRINET breakthrough curves at several times and the analytical 
solution plotted for comparison. 
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4.4. TRANSPORT IN A RADIALLY DIVERGENT FLOW FIELD WITH CONSTANT 
DISPERSION 

In this section we compare TRINET to an analytical solution for the problem of transport in a 
radially divergent flow field (steady state flow). In this problem, contaminant is released from a 
well of radius rw = a (meters) and the contaminant is transported radially by advection and 

dispersion. The aquifer is a homogeneous, isotropic, confined aquifer with thickness b = 1 m. The 

aquifer has transmissivity T and effective porosity l/J, and the rate of release (volumetric flow 

rate) and concentration at the injection well are constant. The governing equation for advective 
heat transport is given by Carslaw and Jaeger [1946]. The analogous solution for mass transport 
is 

(33) 

where r is radial distance, v P is the radial velocity, and D is the lumped dispersion coefficient. 

The pore velocity is given by 
Q 

v = --'---
p 27r rl/Jb' 

(34) 

where Q is the volumetric flow rate at the well. Note that the pore velocity is positive for a 

divergent flow field and negtative for a convergent flow field. Under the conditions 

C(r, t = 0) =O.Oforall r >a 
C(a, t) = 1.0 for all t ~ 0 

C(r = oo, t) = 0.0 for all t ~ 0 

(initial condition) 

(boundary condition) 

(boundary condition) 

and steady-state flow, the analytical solution given by Carslaw and Jaeger [1946] is 

2C0 (r)k 5~ e-l5u
21 

[lk(ur) ~(ua) - ~(ur) Jk(ua)] 
C(r,t) = C0 +-- . du, 

7r a o u[l:(ua)+~2 (ua)] 
where Jk and yk are eh order Bessel functions and k = qj(4n D). 

4.4.1. EQUIVALENT PARAMETERS FOR RADIAL TRANSPORT PROBLEM 
UNIFORM 2D LATTICE 

(35) 

The TRINET lattice shown in Fig. 18 is generated to simulate transport. Based on the set of 
equivalent TRINET input parameters developed for the 1D transport problem (section 3.2.2), it is 
reasonable to choose values for element parameters D and w for the transport problem that 
satisfy 

D=D/2 and 
2w 

L 

The effective porosity l/J = 2w/ L is used since TRINET simulates transport using most of the 

elements in the lattice when the flow field is radial. 
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Note that the radial mesh is "trimmed" to a 20m radius. Trimming is done in order to reduce the 
number of nodes and hence ease computational efforts and to apply the correct outer boundary 

conditions for flow and transport. The transmissivity is T = 5.0e-08 m% and the well radius is 
rw = a = 1 m. A well with a 1 m radius is modeled by the four nodes marked by filled diamonds 

at the center of the lattice (Fig. 18). The four nodes are required in order to accurately simulate a 
radial flow field in TRINET. A simple procedure is used to determine the appropriate injection 
rate at each well node so that a unit hydraulic head gradient is simulated between the well center 
and the lattice boundary. It is determined that a flow rate at each well node of 5.24e-07 m3/s is 
appropriate. The total flow rate is QTRINET= 2.1e-06 m3/s. Details ofthis procedure are described 

in Appendix 1. 

Due to boundary effects, a larger mesh was required so a mesh with a 40 m radius ~as 
constructed. Unfortunately, the number of nodes for this mesh is quite large and due to 
computational constraints, only a quarter of the mesh is considered (Fig. 19). The TRINET 
solution is unaffected due to the symmetry of the lattice. Note that there are now only two injection 

wells, each with half oftheir original flow rate or Qnode = Ys QTRINET =2.62e-07 m3/s. 

4.4.2. NUMERICAL EVALUATION OF THE ANALYTICAL SOLUTION (SCIENTIST 
PROGRAM) 
In order to compare the TRINET simulation to the analytical solution, a program was written to 
numerically integrate the solution in equation (35). The program uses a commercial integration 
package (Scientist program). The analytical solution is evaluated at radial distance r, and time t, 

with input parameters f> for dispersion, well radius a (fixed at a = 1 m), and a volumetric flow 
rate Qsci as input for the velocity. The flow rate Qsci is the total flow rate at the well radius. The 

pore velocity at radius r is actually given by 
VP = Qsci I (27rrb). 

Note that the analytical solution assumes a unit effective porosity so that the pore velocity in the 
analytical solution coincides with the Darcy velocity. In order for TRINET to produce 
breakt4rough curves with the same pore velocity, the flow rate must be adjusted by the effective 
porosity of the lattice. The appropriate flow rate input to the Scientist program is 

Q QTRINET F h TRINET 0 "fj d h" 0 sci = 
2

w I L. or t e mputs spec11e , t 1s gtves 

_ 2.0974e-06 m3 /s _ m3 1 
Q,ci - ( ) = 2.1e-02 Is . 

2 x Se-05 m/lm 

4.4.3. COMPARISON TO ANALYTICAL SOLUTION 
In order to verify that the equivalence for dispersion in equation (26) also holds for radial 
transport, we follow the procedure described in Section 4.3.1 for estimating TRINET pore 
velocities from breakthrough curves. TRINET breakthrough curves simulating diffusion only are 
compared to breakthrough curves calculated by the Scientist program. In addition, TRINET and 
the Scientist program are checked by comparison to a solution for the diffusion only problem 
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published by Jaeger [1956]. Concentrations at specific times for several radial distances under 
pure diffusion are compared. Fig. 20 shows an excellent match between the TRINET simulation, 
the Scientist program, and the solution by Jaeger [1956]. The open circles indicate concentrations 
calculated by TRINET at nodes located along a 45 degree angle. The open triangles indicate 
concentrations calculated by TRINET at nodes located along the horizontal. 

Based on the results in section 4.3.3, the TRINET equivalent for radial velocity is expected to be 
close to 

::::::: 
vdarcy(r, t) 

2w/L 

QTRINET/(27! r(t) b) 

2 w jL 

The expression for pore velocity was verified by comparison with the analytical solution for two 

values of D. Figs. 21 and 22 show the location of the front at three times for a case with 

moderate dispersion ( D = 5e-04 m%) and a case with a small amount of dispersion ( D = 5e-05 
m2/s). For the case with moderate dispersion (Figs. 21a- 21c), the agreement is very good for 
nodes located along the 45 degree line (along the diagonal). As expected, the front appears to 
move faster along the x-direction than along the diagonal. Again, this is an effect due to the mesh 
since the flow path in the x-direction is shorter on average, because elements perpendicular to the 
flow direction do not participate in advective transport. 

When the dispersion is small (Figs. 22a- 22c), the agreement is not as good. Although the 

contrast in Dis only one order of magnitude, difficulties arise in calculating values from the 
analytical solution. This appears to be the smallest value of dispersion that can be input before the 
Scientist program shows signs of numerical instability. In addition, there are problems selecting 
stable parameter values for integration. The Scientist program appears to be sensitive to 
integration limits and step size, particularly for smaller values of dispersion. This makes the 
Scientist program cumbersome to use because of the need to constantly "fine tune" integration 
limits. Fortunately, TRINET concentrations are easily obtained in this case and for dispersion 

values as small as D = 5e-06 m% (i.e., D = 1e-05 m%). 

4.5. TRANSPORT IN A RADIALLY DIVERGENT FLOW FIELD WITH CONSTANT 
DISPERSIVITY 

In equation (33) the hydrodynamic dispersion D was assumed to be a constant lumped parameter 
which takes into account mechanical mixing and diffusion: 

(36) 

where Dm is molecular diffusion, ~ is the dynamic dispersivity, and v P is the pore velocity. It is 

reasonable to suggest that TRINET is able to simulate transport in a porous medium aquifer with 
dispersivity ~ if the TRINET element.dispersivity a 1 is chosen to satisfy ~ = a1 • This 

equivalence between ~ and the TRINET element dispersivity a 1 is verified for a 2D uniform 

quarter lattice described in Section 4.4.1 (Fig. 19). Here, an equivalent set of TRINET input 
parameters is developed for a1 • In the following example, the radial transport problem in section 
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4.4 is solved for in terms of aquifer dispersivity instead of the hydrodynamic dispersion. Note that 
molecular diffusion is assumed to be negligible. See Javandel et al. [1984] for details. 

If molecular diffusion is negligible, equation (33) can be rewritten in terms of a 1, and v P : 

~ :r (a, v, r ~) - v, ~ = ~. (37) 

As in equation (33), the aquifer is assumed to be a homogeneous, isotropic, confined aquifer of 
infinte horizontal extent with thickness b = 1 m. A solute with concentration C0 is continuously 

injected into the aquifer through a fully penetrating well. If the injection rate is constant then for 
steady plane radial flow v P r is constant and simplifies Equation (37) to 

azc ac ac 
alvp arz - vp ar = at . (38) 

Moench and Ogata [1981] give a Laplace transform solution for equation (38). Defining the 

dimensionless parameters rv = r '! a1 , t D = Q t /27r:bifJ a1
2

, and Cv = C I C0 for radius, 

time and concentration, Moench and Ogata [1981] give the solution in the Laplace transform 
domain written in terms of Airy functions: 

1 [rv - rvw] Ai(Y) 
~ = -:; exp 2 Ai(Y

0
)' 

(39) 

where ~ is the Laplace transform of dimensionless (relative) concentration, s is the Laplace 

transform parameter, Ai(Y) is the Airy function, and 

y = s-213 (s rv + ~), 

Yo = s-213 (s rvw + ~)' 
where rvw is dimensionless well radius. A numerical inversion of the Laplace transform is 

required to obtain relative concentrations at specified times and radial distances. The FORTRAN 
program LTIRD provided by Javandel et al. [1984] is used to perform the inversion. 

The TRINET solution is compared to LTIRD for the following problem. A solute with initial 
concentration C0 = 1 is continuously recharged into an aquifer with thickness b = 1 m and 

porosity 0.2. The concentration of the recharge fluid is held constant at 1.0 and the rate of 
recharge Q is 0.1m3/day. 

TRINET is compared to the LTIRD solution at t = 10 years (Figs. 23-26). For convenience, the 
40m quarter lattice in Section 4.4.1 (Fig. 19) is used, but apertures are altered slightly in order to 
match the aquifer porosity. Recall that in order for a 2D lattice with uniform grid spacing L to 
behave as a homogeneous aquifer with effective porosity <1> in a radial flow field, the TRINET 
element apertures w must satisfy 

ifJ = 2wjL. 

In this case the appropriate aperture choice is w = ifJ L/2 = (0.2)(1m)/2 = 0.1 m. In 

addition, the contaminant source is assumed to be a point source so a single node can be used to 

19 



simulate the injection well. Since a quarter of the aquifer is modeled, the TRINET flow rate is set 

to QTRINEI' = X Q or 0.025 m3/day. TRINET solutions are compared to LTIRD for three 

dispersivities: ~ = 0.1 m (minimal), ii1 = 1.0 m (mild), and fir =10m (moderate). The element 

dispersivities are set to a1 = ii1 • Plots of relative concentrations for these dispersivities appear in 

Figs. 23-26. As expected, for nodes parallel to lattice elements, the concentration fronts arrive 
early, however for nodes along the diagonal, TRINET compares with the L TIRO solution quite 
well. When dispersivity is minimal, TRINET matches the L TIRO solution extremely well 
although the TRINET front along the diagonal appears to be slightly sharper between 25-30 m 
(Fig. 23). When the dispersivity is mild, TRINET also agrees with the analytical solution (see Fig. 
24). When the dispersivity is moderate, however, the agreement is not as good (Fig. 25). This is 
most likely due to limitations of the mesh. At 10 years, the front has reached the outer boundary of 
the mesh and since the concentration is held constant at the boundary, differences between the 
solutions are to be expected (see Fig. 25). 

In fact it looks as though the effects of the mesh boundaries are evident at around 20 m from the 
injection well and more obviously, at approximately 30m away (Fig. 25). We can conclude that 
the 40 m radial mesh is adequate for modelling transport at early times, but not large enough to 
simulate an aquifer of infmite extent at later times when the front reaches distances beyond 10-15 
m from the well. Ideally, a 60 m radius quarter mesh should be used to verify the case of moderate 
dispersivity. In order to investigate the possibility that TRINET dispersivity might require some 
adjustment, the L TIRO solution is also compared to the TRINET solution when a = 2 a1 = 20 m. 

This is a plausible parameter choice given the correction factor of 2 for hydrodynamic dispersion in 
section 4.4. TRINET relative concentrations for the two dispersivities are plotted in Fig. 26. On 
observation, no correction is warranted. 

These figures demonstrate that TRINET is quite accurate for grid nodes along the mesh diagonal. 
As in the longitudinal transport problem, solute appears to move faster for flowpaths parallel to the 
mesh. However, the plots suggest that no adjustment of element dispersivity is required (i.e., if all 
TRINET elements are given the same value for dispersivity, then element dispersivity and aquifer 
dispersivity are equivalent). 

5. CONCLUSIONS 

We have shown how TRINET can be used to model flow and transport in porous media. Only a 
slight modification of element properties is required in the case of a uniform lattice. For lattices 
with variable spacing, this adjustment is not as simple. However, a nested lattice is likely to be 
needed for modelling flow, not transport. TRINET is accurate for a range of inputs for flow in a 
confmed aquifer and for flow in a leaky aquifer. In addition, we have demonstrated that TRINET 
can be used to closely simulate longitudinal transport and radial transport (under steady flow) for 
porous media. The simulation is accurate even when a fairly coarse, simple mesh such as the 
uniform lattice is used. Some care must be taken in handling the effects of grid orientation for 10 
transport by either using a diagonal mesh or correcting the porosity appropriately for a linear 
mesh. TRINET can be computationally less expensive than evaluating the analytical solution 
directly. For example, in the radial transport problem, it was faster to simulate transport with 
TRINET than to evaluate the analytical solution directly. Equivalence expressions for 
permeability, storativity, dispersion and porosity have been developed and verified with TRINET. 
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For flow in a confmed aquifer with unit thickness b , permeability K or transmissivity T , and 

storativity Ss , a two-dimensional uniform lattice with grid spacing L can be used to model flow if 

element transmissivity is chosen to satisfy T = Tbj L and element storativity and aperture are 

chosen to satisfy Ss = 2S s w / L . For flow in a leaky aquifer with permeability K 
(transmissivity T) and storativity Ss, a three-dimensional uniform lattice with grid spacing L 
can be used to model flow if element transmissivity, aperture and storativity are chosen to satisfy 

T = Twbj L 2 and Ss = 3S s ( w/ L Y . By observation, these expressions suggest a 

generalization for an n-dimensional uniform rectangular lattice: 

T = Tj L n-l if W = b = 1, 

Ss = nSs(w/Lr-
1

• 

For flow and transport, if the flow is parallel to one of the element orientations (i.e., there is flow 
along elements in one particular direction and no flow in the other elements), the effective porosity 

( )

n -I 
is given by lfJ w / L assuming w = b . If the flow direction is such that most of 

( )
n-1 

the elements participate in flow and transport, the effective porosity is given by lfJ = n w/ L . 

For dispersion, the effective hydrodynamic dispersion, is given by D = Djn regardless of the 

direction of flow. This suggests that for modelling transport in a heterogeneous flow field, the 
effect of lattice orientation on the effective porosity (and hence pore velocity) is expected to be 
small since most of the element participate in flow and transport. The linear lattice is 
recommended in this case due to its ease of construction and in the specification of TRINET flow 
and transport boundary conditions. 
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APPENDIX 1. 
INJECTION RATE FOR THE RADIAL TRANSPORT PROBLEM 

In order to correctly assign flow rates and verify that the four nodes collectively behave as a 1 m 
radius well for steady state flow, Thiem's equation is applied twice in the following manner. Using 
Thiem's equation, 

Q (A1) 

the flow rate in TRINET ( QTRINEI') required to achieve a specified head boundary condition can be 

determined if the effective well radius is known. Conversely, the effective well radius for a 
TRINET lattice can be inferred by applying the same prescribed head boundary conditions and 
setting Q = QTRINEI' in Thiem's equation and solving for the effective well radius. First the head 

boundary conditions are imposed with h1 =20m at rw =1m and h2 0 mat r2 =20m. The 

combined flow rate at the four well nodes calculated by TRINET is QTRINEI' = 2.1e-06 m3/s. Next, 

imposing a flow boundary condition at each of the injection wells with each well node assigned a 

flow rate of qnode = .X QTRINEI' = 5.25e-07 m3/s, the following pressures were observed: ~ = 

20.07 mat rw =1m and h2 = 0 mat r2 =20m. Using Theim's equation gives an effective well 

radius of 

rz --(.,----_-=---%...........,.---c-) = 0.99 m. 
exp - 21ff(hz - ~) . 

QTRINEI' 

which is quite close to 1 m. Hence, this well configuration is sufficient for simulating flow with a 
1m radius well. The TRINET steady state pressure at each well node is 21.588 m so equivalently, 
the head at the well nodes can be fixed at 21.588 m such that the flow rate from each node is 
exactly 1/8 of the original flow rate. 
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APPENDIX2. 
NUMERICS SENSITIVITY STUDY (Pulse Injection Test) 

This appendix summarizes results from a sensitivity study that was conducted in order to model a 
simple transport problem. Due to computational constraints, we use a new version of TRINET, 
the fmite element code TRIPOLY [Birkholzer and Karasaki, 1996]. TRIPOLY has several 
advantages over TRINET, including the following. 

• An option to specify an element dispersivity instead of a lumped dispersion 
coefficient in the element file. 

• An improved adaptive gridding procedure that reduces numerical dispersion 
by introducing new dispersive nodes either when elements with low velocities 
are detected or in the vicinity of steep concentration gradients. 

• An automatic time step control that reduces computational inefficiency by 
reducing the time step size so that fewer advective nodes are added. Note that 
if the time step is too large, too many new nodes are added and solving the 
transport equation becomes inefficient. 

The numerics control variables examined in this appendix, DEPS, DCDIF, DCON, and DCOFF, 
determine how many new nodes are added during adaptive gridding. These variables are described 
in Birkholzer and Karasaki [1996]. The focus in this section is to determine optimal values for 
these variables in order to accurately and efficiently model a natural gradient tracer experiment in 
the saturated zone of a heterogeneous aquifer [Beach et al., 1996]. Previous studies of the site 
suggest a porosity of 0.35 and the dispersivity is estimated to be approximately 5m [Adams and 
Gelhar, 1992]. Hydraulic conductivity ranges over several orders of magnitude (1e-06 crn/s to 1.0 
crn/s). Piezometric head data suggests that the natural gradient (Se-03) is generally northward, but 
varies in magnitude and direction in time [Beach et al., 1996]. Tracer is injected at a well 
approximately 350m upstream from the furthest downstream monitoring well. Tracer is injected 
for 48 hours and the data consist of concentrations (five snapshots showing the spatial distribution 
of tracer) taken over the course of the experiment (approximately 440 days). 

The task of modelling this experiment is simplified by simulating transport in a 2D vertical section 
along the middle of the monitoring array. This also corresponds to the center of the tracer plume. 
Boundary conditions are specified in order to match the observed hydraulic gradient and to achieve 
a one dimensional flow field. To model the pulse injection, a solute of fixed concentration (unit 
concentration) is injected at a constant rate for approximately 48 hours after which the well is 
turned off for the remainder of the experiment. The injection rate is specified to be small enough 
and the hydraulic conductivity large enough so that the injection well does not significantly affect 
the one-dimensional flow field. Since the pulse injection introduces a steep concentration gradient, 
we are interested in determining appropriate values for DCON and DCOFF, the threshold 
concentration gradients at which _nodes are added and removed, respectively, to accurately model 
advection. In addition, the pressure gradient is not very large, therefore some mesh elements may 
have low velocities and selecting an appropriate value for DCDIF, the threshold concentration 
gradient at which nodes are added to accurately model diffusion, is also of interest. Table 3 
summarizes the values for each variable that are examined in this sensitivity study. 
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Table 3. Values of TRIPOL Y control parameters for each factor level. 

FACTOr{ ..• 
... VARIXBLB LEVEL· •. 

.. N'AME 
.·· :o 1 .. 2 . 3 . .. 

A DEPS 0.001 0.1 1.0 --
B DCDIF 0.1 0.01 0.001 l.E-04 
c DCON 0.01 0.001 1.E-04 --

DC OFF S.E-03 S.E-04 S.E-05 --

Two sets of runs are performed. In the flrst set, the value is changed for a single factor with other 
factor levels held at base values (level 0). In general, higher levels of A (DEPS) have no effect 
when B (DCDIF) and C (DCON, DCOFF) are held at base levels, so TRIPOL Y seems to be 
relatively insensitive to changes in DEPS. In the second set, levels of factors B and C are changed 
simultaneously with A held at base level. Some of these runs are ranked by numerical accuracy 
relative to the base case AOBOCO. 

1. AOB2CO AOB2Cl AOB2C2 AOB3CO AOB3Cl AOB3C2 
2. AOBlCl AOB1C2 
3.AOB1CO 
4. AOBOC2 AOBOCl 
5. AOBOCO AlBOCO 

Runs listed in the same line are more or less equivalent (less than 2% difference in peak 
concentration). Runs in line 1 versus line 3 differ by about 10%, runs in lines 3 and 5 differ by 
about 20-25% and runs in lines 4 and 5 differ by about 15%. Differences between runs in lines 2 
and 3 are difficult to estimate because these runs produce similar breakthrough curves. Note that 
these statistics are intended for use primarily to rank the more accurate runs. Roughly, the runs in 
line 1 are preferable compared to the runs in lines 2 and 3. The runs in lines 4 and 5 are not 
recommended since the relative error (relative to the base case) is more than 10%. 

Tables 4 and 5 below give run time required (in seconds) for the runs listed above and run times as 
a percentage increase over the base case. Note that factor A (DEPS) is omitted. 

Table 4. Run time in seconds for A=O cases. 

FACTOR DURINGINJECTION AFtER INJECTION 
c 0 1 2 . 0 1 .. · 2 

B=O 30 29 33 29 33 45 
B=l 31 34 38 33 38 52 
B=2 33 38 45 38 50 72 
B=3 33 35 45 53 60 88 
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Table 5. Percent increase in run time compared to case AOBOCO, for other A=O cases. 

B=O -3 10 14 55 
B=1 3 13 27 14 31 79 
B=2 10 27 50 31 72 148 
B=3 10 17 50 83 107 203 

These results indicate that the most economical of the sufficiently accurate runs performed so far is 
AOB2CO so we recommend setting DEPS=lE-03, DCDIF=lE-03, DCON=lE-02 and 
DCOFF=SE-03. . 
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Fig. 1. Schematic diagram of a two-dimensional TRINET lattice. 



Fig. 2. Schematic diagram of a quasi three-dimensiona11RINET lattice. 
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Fig. 5. TRINET 2D uniform linear lattice for lD transport problem. 
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Fig. 7. Schematic diagram of a t~nit cell in the two-dimensional "linear" 
1RINET lattice shown in Fig. 5. 
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Fig. 8. Schematic diagram of a unit cell in the two-dimensional "diagonal" 
TRINET lattice shown in Fig. 6. 
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Fig. 9. Schematic diagram of a unit cell in the three-dimensional 
TRINET lattice. 
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Fig. 20. TRINET comparison to analytical solution given by Jaeger [1956] and Scientist 
program for the diffusion-only case at TRINET time step t = 21.4 s. 
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