HIFAR 496
'LBNL-42173

The HIBEAM Manual

Transverse Phase Space at 7z = 48.059

EC R
L Am T Pt

v lmml

A

Version 1.1 - February 2000
William M. Fawley

CHAPTER 1 Introduction, History, and Physics
Model 1

Introduction 1
History, Porting to Fortran90, and
Improvements 1
Physics Model 3
Staggered Leap Frog Scheme 3
Field Solver 4
Nurmerical Emittance Growth Study 6

CHAPTER 2 Obtaining and Running the
HIBEAM code 7

Obtaining the HIBEAM executable xhibe 7

Running HIBEAM directly from a terminal
window 8

Running HIBEAM under NERSC batch 9

CHAPTER 3 HIBEAM Input/Output File
Specifications 13

Main Input File Structure and Variables 13
Overall Structure of HIBEAM Main Input File 13
HINIT input namelist 14
ZTIME inpnt namelist 16

Lattice Input File Specifications 18
“MAD"-style lattice input format 18
“Old" Lattice Input File Form 23

Wire Input File Specifications 24

Output File Formats and Specifications 25

CHAPTER 1 Introduction, History,
and Physics Model

Sec. 1-1 Introduction

HIBEAM is a 2 1/2D particle-in-cell (PIC) simulation code developed in the late 195(s in the
Heavy-Ion Fusion research program at Lawrence Berkeley National Laboratory. The major purpose
of HIBEAM is to simulate the transverse (i.e., X-Y) dynamics of a space-charge-dominated, non-
relativistic heavy-ion beam being transported in a static accelerator focusing lattice. HIBEAM has
been used to study beam combining systems, effective dynamic apertures in electrostatic quadru-
pole lattices, and emittance growth due to transverse misalignments. At present, HIBEAM runs on
the CRAY vector machines (C90 and J90’s) at NERSC, although it would be relatively simple to
port the code to UNIX workstations so long as IMSL math routines were available.

Sec. 1-2 History, Porting to Fortran90, and Improvements

The original author of HIBEAM was Kyoung Hahn. The code, as he left it in early 1996, was an
updated Fortran77 version of the venerable SHIFT-XY code written by I. Haber (NRL), targeted
toward the Cray C90 machine at NERSC, However, the original HIBEAM had a number of both
minor and more serious flaws. Many simnlation pararameters (e,g. macroparticle number, grid cell
number, beam combiner dimensions) were “hard-wired”, Hence, to do something as simple as
increase the macroparticle number from 4096 to 8192 required one to recompile and relink the
entire cede. The Hahn version also bad the non-optimal feature of only allowing one set of input

HIBEAM PIC Code Manual 1

Introduction, History, and Physics Model

file names and, in similar fashion, always assigning the same names to the output diagnostic text
and graphics files, Therefore, one always risked inadvertently having a new simulation Tun write
over and destroy some important previous run, Graphics were generated both by the main code and
by & post-processor code, the latter doing rather simple particle scatter and history plots. The Fast
Fourier Transform (FFT) routines originally used in HIBEAM were apparently adapted from a
NIST modification of quite general (i.e. not targeted toward a particular computing platform)
NCAR routines written in the early 1980’s and thus were not optimised for vector platforms such as
the Cray-J90's. Finally, the code was not particularly robust and could suffer unpredictable *hard™
crashes (i.e. core dumps), for example if small changes were made to grid sizes,

Due to all these problems, I decided to do a major rewrite to the code with the following goals:

» Use modern FORTRANY0 constructs, including the “module” structure for global variables
and “type” definitions for structures such as multiple beamlets, lattice arrays, efc.

» Use FORTRAN90 memory management/allocation constructs such as allocatable pointer
arrays and stack-based “automatic” arrays

» Improve the robustness of particle and field subroutines to eliminate array bound-caused
crashes when particle coordinates exceeded the nominal physical boundaries

=Replace the NIST/NCAR FFT routines with CRAY-supplied 2D FFT library routines that are
optimized for multiprocessor, vector architectures such as the C90 and J90

«Replace most hard-wired simulation parameters by defanlt values that can be easily over-ridden
by user-specified input

e Eliminate the need for a graphics post-processor code but give the user the ability to write par-
ticle and history dump files for later post-processing if wanted

= Allow the user to specify names for input and output files to make different runs easily identifi-
able and unique

»Put together a “MAD"-style lattice input parser (see Sec. 3-2 “Lattice Input File Specifications”
on page 18) to reduce the pain and error-proneness of having to specify individual lattice ele-
lents in multiple, huge input arrays

s Collect all graphics calls into the main program (i.e., eliminate post-processor program) and
use a “standard” graphics library whose core routines are built upon GKS and NCAR

Furthermore, modern code management practices were implemented for HIBEAM. All of the
approximately 15 HIBEAM Fortran source files were put under the Source Cade Control System
(SCCS) which is a standard UNIX utility. Among other features, SCCS allows one to a) “check”
in and out individual source files for user editing and annotate changes made to each version of a
given file b) easily “back up” the entire source code to a version corresponding to & given past date
(useful, for example, if necessary to benchmark a recent version against a much older version).
Moreover, all HIBEAM source and “make” files were put in a single directory under the Andrew

HIBEAM PIC Code Manual

Physlcs Mode!

File System (AFS), now supported at NERSC on each of the CRAY 190 PVP platforms. Thus, it no
longer is necessary to FTP the most modern version of the source to each individual CRAY follow-
ing each modification.

With these changes, HIBEAM now is quite robust and core dumps essentially only happen when
new bugs are introduced due to source modifications. The code runs significantly faster due to bet-
ter vectorization and also due to increased parallelism, although this latter area was not specifically
addressed and could probably be much improved. The source management under SCCS and AFS
makes version control and updating straightforward and is recommended to anyone with source
codes exceeding a couple of thousand lines. There still remains some work to be done concerning
elimination of “hard-wired” parameters, especially with regards to beam combiner specification.
Likewise, as new transport problems are studied, undoubtedly one will want other diagnostic plots
and improvements to the physics models such as the addition of magnetic focusing, including both
quadrupoles and solenoids.

Sec. 1-3 Physics Model

The overall sequence of events in HIBEAM is rather standard for a PIC code. First, all beam, grid,
and lattice quantities are read in through a series of FORTRAN namelists contained in several input
files (see CHAPTER 3 “HIBEAM Input/Qutput File Specifications” beginning on page 13 for an
explanation of the individual files). Then the grids, graphics, and beam macroparticle distributions
are initialized. Then an outer loop over lattice element is entered. The properties of the given ele-
ment are brought in, including calculating the appropriate capacity matrix if necessary and the 2-
step size is adjusted so that the element spans an integer number of z-steps. Then an inner loop over
the given lattice element is begun. Each loop step involves a particle move and field and history
diagnostic calculation, If wanted, diagnostic “snapshots” such as particle scatter plots or field con-
tour maps are written to the output graphics metafile, Particle dump files may also be written at
user-chosen z locations. At the end of the final iattice element, diagnostic history plots are produced
and the program exits.

Staggered Leap Frog Scheme

The particle move and acceleration sequence is written as a staggered leap-frog to maximize diag-
nostic symmetry between x and v. In short, at the beginning of z-step N, both the particle position
and velocity are known. Then using vy, the position xy is advanced to Xy, /. At this point, the
charge density, potentials, and electric fields are calculated. Then the velocity is advanced a full z
step from N to N+1 using Ep,.1 0. Finally, the position is advanced from xp..j/2 to Xy USIng vy
thus leaving the particles and velocities known at the same point in z again. Since the z step can

HIBEAM PIC Code Manual 3

Introduction, History, and Physics Maodel

change from one optics element to the next {this is done in order that elements are entered/exited at
the exact beginning/end of a z step), this procedure is not equivalent to a pure leap-frog, even for a
constant v, It also is “anti-symmetric™ to the modified leap-frog scheme used in WARPXY where
the velocity is advanced a half-step, and then the position. For appropriately small z-steps, the net

differences between the two move algorithms are likely to be quite smail. If v, varies from particle

to particle, the equivalent time step, df= dz /v, is computed and used for each individual particle.
In this case, the resulting algorithm is no longer exactly symplectic.

Field Solver

At present, HIBEAM models only forces due to electrostatic fields. Thus, all fields are due to a gra-
dient of a potential and are curl-free. If one desires to add magnetic fields such as solenoids or
quads, something equivalent to a “Boris” mover should be coded. Likewise, additional coding will
be necessary if acceleration gaps are desired. HIBEAM, like its predecessor SHIFT-XY, uses a
capacity matrix method together with a periodic Fast Fourier Transform (FFT) to solve for the elec-
trostatic potential. Consequently, the field is presumed periodic in both x and y and if the beam and
focusing electrodes are not completely surrounded by a conducting surface (i.e. open boundary
conditions), the user must be careful to deal with (or prevent) non-real forces from adjoining peri-
odic regions due to any net charge in the central simulation region.

Determining the x and y components of the total electric field requires the following steps:

1. Determine the capacity matrix C for the given conductor/electrode configuration. Since a given
geometrical configuration with N capacity “nodes” requires N FFT's followed by inversion of a
NxN matrix with N normally ranging from 128 to 256, it is computationally expensive to deter-
mine C and the CPU charges would be enormous if the matrix had to be computed anew for
every single z-step in the simulation. Fortunately, the node configuration does not change within
the z-span of a given lattice element (which normally contains many z steps) and, moreover,
most focusing lattices contain multiple elements which are identical save for a change of volt-
age. Thus, C only needs to be computed once for a given conguration. To take advantage of this,
HIBEAM can now internally store (via allocated pointer arrays) up to 8 different capacity matri-
ces, with N being a free parameter for each. The original Hahn version could write a single
matrix to disc to allow re-use by later runs; this feature was disabled (mainly because it requires
the grid geometry remain the same from the old to the new run) but could easily be revived.

2. Assign the beam space charge to the prid using area weighting, Particles whose trajectories have
exceeded the grid boundaries and/or have struck electrode surfaces are marked as “lost” and
their charge is not weighted to the grid.

3, Determine the electrostatic potential on the grid using an FFT with periodic boundary condi-
tions in both x and y.

HIBEAM PIC Code Manual

Physics Model

4. Interpaolate the potential to the locations of the capacity matrix nodes. Determine the image
charges at the nodes from multiplying the capacity matrix C times the difference between the
node external voltage and the computed potential from the beam charge. Weight the determined
image charge to the grid, adding it to the beam charge density.

5. Compute the electrostatic potential a second time with the periodic FFT, now using the “total”
charge density including both beam and image charges.

6. Compute E, and E, from a centered, two-point finite differencing of the potential.

There are a number of input variables and switches that allow one to modify the field solution. One
may change the number of grid cells through nx and ny, and the cell size through the simulation
transverse boundary limits of xdsize and ydsize, If ibc£=0 rather than the default of 1, volt-
ages on the conductors and electrodes are set to zero and hard-wired external focusing is applied
(but image charges are still calculated via the capacity matrix). If 1_use_capmatrix is input
as false, ibecf is set to 0, and neither the capacity matrix nor the image charges are calculated. The
number of capacity nodes for a given focusing element is set vian_cap_nodes in the lattice
input file; if not set, the default value is the parameter nc_default=144 in the module
HIB_CAP in hib_cap_mod f90. The index of the capacity matrix for a particular element is set by
i_cap_pointer in the lattice inpnt file,

In the original Hahn version of HIBEAM, a set of neutralizing “ghost™ charges were put at the four
corners of the simulation grid to balance the non-neutral beam charge. Due to unease with the artif-
ical solution, this feature was eliminated (it should have no effect whether present or not for a round
pipe drift section but will have an effect in the case of an electrostatic quadrupole element). Due to
requests from a particular HIFAR individual, the option to including neutralizing *ghost” charges
was re-implemented into HIBEAM via the 1_neut_charge input switch. When true, neutraliz-
ing charges are put uniformly along all four border edges (as opposed to the four corners only).

In the past it was apparent that unwanted effects could be produced by the combination of periodic
boundary conditions and a “squirrel cage” element whose average voltage was biased away from
zero (as is true for the MBE-4 combiner experiment). In order to eliminate erroneous low order
multipoles, the average voltage of the cage wires was subtracted from the individual wires. Once
this was done, the interior fields of the squirrel cages in the absence of beam became extremely
close to the wanted, analytical values. All this refers to code behavior before the option of neutral-
izing charges was re-implemented. It is not clear if such neutralizing charges would have elimi-
nated the prablem of a non-zero average cage voltage.

Due to speed considerations in the periodic FFT employed for the potential solution, HIBEAM
requires that the number of grid cells in the x and y direction, nx and ny respectively, be powers of
two (e.g. 16, 32, 64 ...} or three times a power of two (e.g. 24, 48, 36, 192, ...). Normally, nx=ny
and the grid sizes are the same in the x and y directions (xdsize and ydsize). In “theory”, there

HIBEAM PIC Code Manual 5

introduction, Histary, and Physics Mode!

should be no problem if nx differs from ny and/or xdsize differs from ydsize, but no exhaus-
tive check has been done in this regard.

Numerical Emittance Growth Study

A small series of tests have been done to study numerical emittance growth as a function of particle
number and grid cell size. For a given set of grid parameters, macroparticle number, and time step,
a non-neutral beam propagating through a FODO lattice will have a emittance growth term that is

approximately linear with z. As the macroparticle number is increased, the numerical emittance

growth rate decreases inversely as (NP)"!. For example, with 8192 particles in a 256 by 256 grid
with a 72-degree undepressed and six-degree depressed phase advance per lattice peried, the emit-

tance has a normalized growth rate of 7.6 x 10 per lattice period. As the grid cell size is decreased

by increasing nx and ny, the growth rate will increase as (nx * ny)*12, Most runs employed
4096-8192 macropartices and a 256 by 256 grid. Most of the field quantiities are stored in pointer
or allocated arrays and it is concievable that if one uses too many grids cells that one might over-
fiow the stack size. The macroparticie number is limited to 16¥ndim with ndim currently 1024,
this value can be increased by editing the module HIB_PAR in the file hib_par_mod f90. There are
unlikely to be any problems until the product 16*ndim approaches 100,000 and/or the product
nx*ny exceeds 1,000,000. .

HIBEAM PIC Code Manual

CHAPTER 2 Obtaining and Running
the HIBEAM code

As previously mentioned, HIBEAM runs on the NERSC CS0 and J90 vector machines. The exe-
cutable file is normally named xhibe, although this can be easily changed either directly through
the UNIX mv command or in the Makefile. A user can either run the code in “interactive” mode
from a terminal window or, alternatively, submit a job to the NERSC batch system. We first dis-
cuss how to obtain HIBEAM and then how to make a run.

Sec. 2-1 Obtaining the HIBEAM executable xhibe

For the immediate future, a copy of xhibe will be kept in W, Fawley’s HFS public space under
NERSC user number u1532 in the directory pub. As of early 2000, u1532 HPSS files belong to
in the /nserc/agp HPSS directory {even though u1532 is in the ajb repository). Presuming you
are on the killeen interactive 90 machine, you can obtain HIBEAM by typing:

killeenf2] hei
*

* NERSC HPSS ARCHIVE SYSTEM *
* #

V1.5 Username: ullll UID; 1111

7Ted /nersc/agp/ul532/pub

?71s

HIBEAM PIC Cade Manual 7

Obtaining and Running the HIBEAM code

/nersc/agp/iul 532/pub:

S5new.wire inmbed_SS5g mbed_S5mad.lat xhibe.c90.dec97
xhibe, j90.aug98 xhibe.j90.dec97 xhibe.j90.may99

?7get xhibe.jf0.decd7

Transfer started for {xhibe.j90.dec97]

get xhibe.j90.dec97:/nersc/agpful 532/pub/xhibe j90.dec97 (97/12/12 00:00:00 5142960
bytes, 3848.3 KBS)

? gquit

killeen[3] 1s -1 xh*

-rwx-—-—- 1ullll ajb 5142960 May 20 1{):23 xhibe j90.dec97*
killeen{4] mv xhibe.j90.dec97 xhibe

killeen[S]

The /nersc/agp/ul1532/pub/ HPSS space should have executables for both the C90 and J90
machines with the date of each version appended to the name. There should also be archives (writ-
ten and readable with the UNTX utility “ar™) of input decks and a README file.

Sec. 2-2 Running HIBEAM directly from a terminal window

For short runs (e.g. less than a couple of CPU minutes), it is generally most efficient to run
HIBEAM directly from a “shell” window. Examples include Xterm windows (as would be pro-
duced by logging in from a UNIX workstation running X-Windows or a Macintosh running
MacX), Telnet windows (normally VT100 or VT220 emulations) from a remote login and/or any
other window that supports a “Command Line Interface™ (CLI).

The standard execution line from a shell is:
shibe { r=run-name l=lattice-file w=wire-file i=input-file }

where each of the options within the bracket is optional. Table 2-1 on page 9 gives a summary of
these options. The string corresponding to run-name is used to identify the particular HIBEAM run
and forms the prefix for the output graphics which (which is an NCAR CGM metafile). Note that if
neither the run-name nor input file are specified, the default name for the main input file will be
intest, If the run-name is specified (which is the usual case) but not the main input file name, then
HIBEAM will look for an input file named “infrun-name]" where [run-name] stands for a 14 char-
acter or fewer ASCII string. One can mix on the same execution line the “=’ notation

(e.g. r=teasat7) (which was the standard form for LRLTRAN utilities) with the “-” notation (e.g,
-i intest8) {(which is the standard UNIX notation for options on execute lines). Permitted
characters for these strings include alphabetical letters (both upper and lower case), numbers, and

HIBEAM PIC Code Manual

Running HIBEAM under NERSC batch

TABLE 2-1 Optional arguments in the xhibe execute line

Maximum #
Option Explanation Default value characters
Run name to be used as s suffix for
r= 0r -xr the input file (if not specified) andas test 16
a prefix for graphics and dump files
1= or -1 Full lattice input file name inlattice 24
w= or -w Full *wire” input file name iwire 24
i= or -i Full “main” input file name in[run-name] 24

the underscore symbol {“_"). As is trua for nearly all UNIX file systems, please do not use strings
containing abnormal, politically incorrect characters such as slashes (*/° or *\"), periods or commas
(% or "), brackets or parentheses of any sort, asterixes or similar symbols (e.g, “#", “=", “&",
“@v, T, T, e, T, -7, ete) or spaces () . Note that any attempted mc]usmn of smlleys

[“(-" }is 0fﬁc1ally vnewed as subversive and may be grounds for immediate dismissal.

R

Here the run-name will be mbe4_A3 and thus the output CGM graphics file will be named
mbed_A3.cgm and any dump files will also have the same prefix (e.g., mbe4_A3.txr). HIBEAM
will also expect a main input file named irmbed_A3 and a lattice input file containing focusing lat-
tice specifications named mbe4_A1.lat. If an input wire file is needed (normally only if one or more
beams is run through a combiner), HIBEAM will attempt to read the default name of iwire.

!i I fﬁlii

lﬁmm ‘ xhibe r=mbed4_AS5 i=inASnew -w std.wire l=mbed_»Al.liat

As in Example 1, the graphics and dumnp files will use the run-name of mbe4_A5 as their prefix (e.g.
mbed_A5.cgm). Since the user has specified a separate main input file named inA5new, HIBEAM
will look for this file (rather than the default of inmbe4_AS). It will also look for a lattice input file
named mbed Al lat and a wire input file named std, wire.

Sec. 2-3 Running HIBEAM under NERSC batch

For multiple and/or long individual HIBEAM runs, it may be most convenient to run these via the
“batch™ procedure at NERSC. This gives the additional advantage that batch CPU time, at a given

HIBEAM PIC Code Manual 9

Obtaining and Running the HIBEAM code

priority, is charged at a much lower effective rate than is “interactive” time, Moreover, the much
Jlower priority allowed in batch mode permits even greater savings. Disadvantages inciude the
inability (without extensive script coding) to recover gracefully from execution line errors and/or
input/lattice/wire file problems. Furthermare, if one sets the priority too low or requests an exces-
sively Jarge run time or memory allocation, it is possible that a batch request might not run until the
next millennium. Fortunately, most HIBEAM runs require well under ane hour of CPU time on a
J90 and can run in 8§ MW of memory or less.

Depending upon your personal masochism level and previous experiences, the necessity of dealing
with NERSC UNICOS batch scripts may be yet another of life’s little joys held in store for you.
Apart from various “bookkeeping” requirements and niceties, there are three basic things thata
batch script must do. First, by hook or crook, it must gather together the necessary files to run the
wanted job(s) in the chosen directory (which in general, is probably not the actual directory where
the executable resides but, more likely, some temporary directory that will disappear after the over-
all batch job is done). Usually, you will either read the files from a long-term storage medium (e.g.
CFS) or copy them over from active user disk space {e.g., your “superhome” directory area where
you hopefully put a copy of HIBEAM). Second, the script must then have the UNICOS batch sys-
tern run the job, being sure it previously specified sufficient CPU time and memory so that
HIBEAM could finish. Fortunately, this part of the batch script is simple, being a one-liner of the
type presented in the previous section (e.g. xhibe r=mbed_AS5 ...). Third, presuming your
job(s) actually ran, the batch script must transfer the generated output files to a safe place such as
archival storage (e.g. CFS) or your personal disk space (e.g. superhome space). Otherwise, you
may find that you just spent 10 CRU’s of your group’s repository for nought.

Figure 2-1 on page 11 displays an example of batch script (named HIBEAM. bat) to run HIBEAM.
The equivalent execute line interactively would have been: ¥hibe r=tbird l=1lat_h.lat.
The total bateh job is allowed 3000 seconds of CPU time, asks for 8 MW of memory, and wants to
run at a niceness of 14 which wili put this job in the “medium” queue. This particular example was
targeted (via the #QSUB ~q batchf command) toward the “franklin” 190 machine at NERSC. The
setenv NCPUS 2 command requests parallel processing by 2 of the 32 CPUs on franklin;
HIBEAM seems to run reasonably effectively with 1-4 CPU’s. A log file named logHIB will con-
tain the various accounting information generated by the “ja” account program. The necessary files
to Tun the job (xkibe, intbird, llat_h.lat) are copied over to the user’s temporary (only during the
duration of the batch job) directory whose environment variable is $TMPDIR. Afier the job is com-
plete, the NCAR graphics CGM file (named tbird.cgm) is copied over to the user’'s HIBEAM/
WORK subdirectory in his/her “home™ disk space on the J90 cluster. This is necessary since the
copy created in $TMPDIR will disappear once the batch job is complete. NOTE: this batch script
was written in 1997 and should be modified as per current NERSC practices (which evolved signif-
icantly in late 1999)

10

HIBEAM PIC Code Manual

Running HIBEAM under NERSC batch

To submit this job to batch on the “franklin” machine,
the user would type: I#
gesub -g batchf HIBEAM.bat #
To check on the job status, one would type '.#"'SUB

gstat -h franklin -a | grep uXXXX Hgduh
where uXXXX is the user’s login name. Depending #osm
upon the length of the run and the number of phase- %@’Eﬁ’n
space scatter plots requested, the graphics file sizes Ydant
typically run in the 100kB to 1.5MB range In general,
one obtains reasenably fast turn-around if one chooses
a priority that lands the submitted batch job in either
the fast or medium queue.

&m!iimuf
QSUB

Until recently, there had been an anomaly that occured
when running HIBEAM on the J90 “batch™ machines.
Namely, relative to an identical run on the “killeen™ IS0
interactive machine, a batch run would suffer an
extremely high charpe for system time {often compara-
ble to the CPU charges!). The vunderlying reason for
this was that the NCAR-based graphics routines in
HIBEAM use more than one font. Apparently, each
time a font change was made, a NFS-mount system call 3%
was made to read over the font information (typically
only ten’s of kilobytes!) from disk space on the killeen
machine. In November 1997 this anomaly was “fixed”
and systemn charges dropped to about 12% of the CPU
charges.

it

FIGURE 2-1. Sample UNICOS batch
script for HIBEAM

HIBEAM PIC Code Manual 11

Obtaining and Running the HIBEAM code

12

HIBEAM PIC Code Manual

CHAPTER 3 HIBEAM Input/ Output File
Specifications

T o o

Sec. 3-1 Main Input File Structure and Variables

HIBEAM uses a number of separate ASCII input files and, within each input file, one or more
namelists to specify the needed beam, lattice, and computational parameters. Output specifiers are
also in the “main” input file but focusing lattice properties (in general) are given in a separate lattice
input file whose requirements will be covered in the next section of this chapter. Yet another file, the
wire input file, is required to specify the positions and voltages of a wire “squirrel-cage” focusing
element if present (as is true in the MBE-4 combiner experiment). We now discuss each of these
files in turn, beginning with the main input file.

Overall Structure of HIBEAM Main Input File

The main input file contains “header” information at its beginning, followed by two different input
namelists: {1) hinit to specify various beam and grid properties and (2) ztime to specify z-locations
for diagnostic output. The header is normally 1-10 lines of text in 80-column (i.e. ABO) format. The
last line of the header must be terminated by a $ (i.e. dollar) symbol which signals the input parser
routine to then begin reading the namelists. If the header is not terminated by a $, normatly
HIBEAM will exit with an error message to the user that no $ sign was found (and no namelists
either since the parser will advance past them to the end of the file in its mindless quest for a $).
Apart from a $ sign, any normal ASCII character may be used anywhere in the header lines. Lines
longer than 80 characters will be truncated. The input file header has two purposes. First, it provides

HIBEAM PIC Code Manual 13

HIBEAM Input/Output File Specifications

a simple means to identify various characteristics of the particular input file, e.g. what experiment
configuration was being modeled, special beam characteristics, efc. . A well written header might
remind the user what it was the made this file so incredibly special eight months ago. Second, since
the header lines are echoed to the first page of the output graphics metafile, they also provide a
means for identifying the graphics file beyond the simple run-name. Consequently, the user is
advised to spend an extra 10-20 seconds revising and improving the header lines of a new or
revised input file. This is a small price to pay relative to the clock and CPU time of a typical
HIBEAM run.

HINIT input namelist

The hinit namelist specifies the “physical™ setup of the problem. All quantities are in MKS units -
e.g., 8ll dimensions should be in meters. One exception is that the beam energy (emevQ) is given in
mega-electron volts. Most integer quantities start with the letters [i-n] and most logical (boolean)
variables with the letter “1”. String variables may be written using either single or double quotes.
The namelist should begin with a line containing &hinit and end with a line containing /END.
Table 3-1 gives the various quantities that can be set in the hinit namelist. The column labelled
Type indicates Fortran variable type [i.e., real (R), integer (1), logical (L)] together with their
default values and a simple explanation,

TABLE 3-1 Variables in hinit Namelist

Variable Name Type | Units Default Value | Explanation

a R meters Se-3 initial radius of x-envelope

amu R amu 133.0 Mass of ion

ap R 0. initial dx/dz of envelope

b R meters 5.e-3 initial radius of y-envelope

beam name String :g:E j;,' ete. label for individual beamlets

bp R 0. initial dy/dz of envelope

chazge R electron charge 1.0 i t':;l;l lonization state {positive for
currentd R Amps 0.004 Current per beamlet

current fae R 1.0,0.0, 0.0, ... Lﬁ?g;%u\{nl;ﬁgmlet current relative to
dvzth R m/sec 0. longitudinal velocity spread
emevD R MeV 0.160 Initial beam energy

HIBEAM PIC Code Manual

Main input File Structure and Variables

TABLE 3-1 Variables in hinit Namelist

Variable Name Type | Units Default Value | Explanation
- Afray containing normajized eqge
emitno R meter-rad 0. emittance for multiple beamlets
Armay containing un-normalized
emit0 R meter-rad 0. edge emittance for multiple beamlets
Normalized “edge” (4 x RMS) emit-
. 2,0e-
enoxrmd R meter-rad 2.0c-8 tance of a single beam
R 1.0 Chromaticity factor to multiply
fchrome ' default energy (emev0)
U'=> quad voltages set to U for capac-
ity matrix inversion; hardwired
. I 0 external focusing applied
ibef 1=> quad voltages in capacity
matrix inversion set to actual volt-
ages
transverse phase space distribution
P 1) 1= K-V
idist = 2 => semi-Caussian {bit-reversed)
3 => semi-Gaussian (random)
I 0 if 1, load beamlet major and minor
izot axes at 43° rotation to X-Y axes
1 0 random numbper seed for focusing
iseed_offset element offsets
1ambda R coulomb/m -1. Line charge density
L false Jfrue. to calculate envelope equation
1 _env i {independent of macroparticles)
L false 1t Jtrue.read 1n MAD-style
1 _mad_lat_file B Tattice file information
L irue switch for neutralizing “ghost”
1_neut_charge e charges along boundary edges
if .true., load 1 (rather than 4) beams
1_offset_one L Jfalse, at multibeam creation point for com-
biner runs
l_usa_capmatrixJ L true. switch for capacity matrix use
1_varydsz Jalse, switch to allow vz variations
npart I 4096 tota] number of macroparticles
1 256 number of grid cells in & direction
nx
[256 number of grid cells in y direction
ny
HIBEAM PIC Code Manual 15

HIBEAM Input/Qutput File Specifications

TABLE 3-1 Variables in hinit Namelist

Variable Name Type | Units Default Value | Explanation
nle name contaiming pariicle phase
par dump file |SHing ‘NOT SET” space information from n previous
- HIBEAM run - needed for restart
rapert meters 0.014 default quadrupole aperture
rgquad R meters 0.016 default quad electrode radius
default beam pipe radius (for drift
rwall R meters 0.020 Z0nes)
name of single beamlet to create and
single_cage String ‘NOT SET' follow in combiner (other beamlets
are neglected)
. R 1.0 overall scaling factor for wire cage
vwire_ fac ' voltages
wdsize R meters 0.05 full grid extent in x
soffaet R meters 0. initial x offset of centroid
xpoffset R 0. initial value of centroid dx/dz
ydsize R meters 0.03 full grid size in y
yofEset R meters 0. initial y offset of centroid
ypoffset R 0. initial value of centroid dy/dz
ZTIME input namelist

The ztime namelist is mainly used to control diagnostic locations and settings but also handles the
z-limits of the simulation and some additional odds and ends concerning grid rescalings. The vari-
ous namelist variables are given in Table 3-2; the notation M*(V) under “Default Value” indicates
that the array is of length M with all values defaulied to value V. One can control the locations of
phaseplots, “big” (single plot/frame) X-Y plots, electrostatic potential and charge density contour
plots, and the locations at which particle dumps will be written. Many of the diagnostic locations
can be set either as distinct locations in z (e.g. zphaseplot = 1.1, 1.5, 2.3, 2.95, ...) or as a peri-
odic interval beginning at z=zstart (e.g., dzphaseplot = 0.4 will produce plots at 2=0.55,
0.95, 1.35 meters, and so on for zstart=0.15).

One can control the plotting range in x,y and dx/dz, dy/dz in the transverse phase space plots by
defining components of phasep_info which is a “vector” of length 4 with the FORTRAN90
“type” of phasep_range whose codings is given by:

HIBEAM PIC Cade Manual

Main Input Flle Structure and Variables

TYPE phasep_randge
real, DIMENSION{Z2) :: zrange, Xrange, yrange, Xprange, yprange
END TYPE phasep_ range

TYPE{phasep_range) :: phasep_info(4)

Here zxrange controls a range in z beginning with zrange (1) and ending with zrange (2)
for which the user-defined limits of xrange, efc., will be used in the phase space plots. If more
than one element of phasep_inFfo is defined, the zrange of the 1st element should be less than
the of the second which should be less than that of the third, etc.; otherwise, peculiar behavior
might ensue, Among the various reasons one might want to use this feature are if one wants to gen-
erate a movie with the axes labels and scales remaining constant from one frame to the next and/or
needing a particular range in a given plot to compare with some other plot.

TABLE 3-2 Variables in ztime Namelist

Default

Variable Name Type |Units Value Explanation

R meters 0 Start pomt of SInnlacon; SUperceded by Z
zstart ’ location of dump restart file if used
Zmax Rl meters 0.5 end point of simulation
zetepd R meters 0.005 nominal z-step size in push
zphaseplot R meters 24% (-1.0) z-locations to plot phase space
dzphaseplot R meters -1.0 periodic phase space plot interval

Struc- structure to specify hard-wired plot ranges
phasep_info ure meters see text for x, y, dx/dz, dy/dz’ and z-interval for

B see text each set of ranges
* [Z-locanons for Tull grapE:cs page R-Y par-

zpazplot R meters 24* (-1.0) ticle plats
zfldplot R meters 24% (-1.0) z-locations for density and potential
zplo: cbsolete contour maps
dzfldplot R meters -10 periodic density/potential map interval
dzhist R meters -1.0 intervatl for storing history array values

L false switch to write cutput text file containing
1_print_hist e derived beam envelope values

. . . tormat for dump information; allowable =

dump_type String BINARY" | |-gINARY”, ‘ASCIT", ‘HDF")
zpardump R meters 8% (-1.0) z-locations to write particle dumps
1_hdf L .false. switch to force dump_type="HDF

HIBEAM PIC Code Manual 17

HIBEAM Input/Output File Specifications

TABLE 3-2 Variables in ztime Namelist

Default
Variable Name Type Units Value Explanation
] 1 1 combiner Taflice €lement index or creaton
imarge of multiple beams
rzf_merge R 2.0 grid re-zoning factor at imerge
. 1 3 Jattice element index where grid should be
irezone re-zoned using rzf
rzf R 1.0 grid re-zoning factor at irezone
1_plot_cap_nodes| L Jrue. if .true., make x-y plot of capacity nodes

sec.3-2 Lattice Input File Specifications

HIBEAM requires a completely separate input file from the “main” input file to specify the focus-
ing lattice properties. Thig lattice input file can be written in two different “flavors™ either ina
stripped-down “MAD" format or in a somewhat painful series of arrays. In general, one will proba-
bly put together a lattice file that will be used in many separate runs with different input files (often
one will do a series of runs where a quantity such as beam current varies but the lattice properties
remain constant). The format of the “MAD"-style lattice input will explained first, followed by a
explanation of the “array”-style format that is a holdover from the original (Hahn) version of
HIBEAM.

“MAD"-style lattice input format

MAD (Methodical Accelerator Design) is a charged-particle optics code originally written at
CERN and extensively used in the high energy storage ring community for beam transport calcula-
tions. One of its most attractive features is an input hierarchy for specifying the focusing lattice —
in fact, the MAD system is considered so attractive that authors of other codes such as TRANS-
PORT have created versions that will accept “MAD"-style input. Partly due to this generality and
partly due to the desire to see how easily such an input formalism could be written in FORTRANS0
with its TYPE structures, pointers, and dynamic memory allocation, we decided to give HIBEAM a
subset of “MAD” input capability. The basic structure of the HIBEAM “MAD™ Iattice file is first an
optional number of comment lines, then a series of focusing element “class” definitions, followed
by a “LINE” and “USE” specification that builds up and “instantiates” the actual focusing beam
line out of the previously defined classes. A parser routine (contained in the source files
beamline_mod.f90 and bl_parserf30) inspects the lattice input file and generates the beam line.

18

HIBEAM PIC Code Manuual

Lattice Input Flle Specifications

Each line in the file may be up to 132 ASCII characters, although for readability, a maximum of B0
characters is wisest.

A commeat is always preceded by an exclamation point {“!"") and may be at the beginning of the
line, signifying that the entire line is a comment, or, alternatively, at the end of a line whose begin-
ning contains lattice information such as a class definition, An unlimited number of comments may
be in the file and may occur essentially anywhere, the beginning, the middle, the end, etc. However,
remember, once the parser encounters an “!”, all additional information on that line following the
exclamation point is treated as a comment and, essentially, is tossed away. Usually, comments
should be used to remind the HIBEAM user of the significance of this particular lattice file.

As with MAD, the general class definition format is
label: keyword {, attribute , attribute ... }

The label is a simple ASCII name for the class being defined. The label must be terminated by a
colon (and, obviously, should not contain a colon internally). If needed, one may use multiple lines
for a given class definition by use of the ampersand (&) character at the end of every line but the
last (as in Fortran 90 free-form style). The keyword indicates the type of element being defined in
the class. At present, the following physical element types are pre-defined in HIBEAM: guad,
drift, box, kyperb, wire, child. As one would expect, guad refers to a quadrupole element; drif
refers to a drift zone with a circular aperture and no external focusing; a box is a drift zone with a
square or rectanguiar aperture. A hyperb class is a special quadrupole whose electrode surfaces are
hyperboli; at present, this is a “hard-wired” element whose geometry is that of the “Q4"" hyperbolic
quad in the MBE4 combiner experiment. A wire-type element is a focusing element composed of
discrete conducting rods; the positions and voltages of the rods are specified in a “wire” input file
(see Sec, 3-3 *“Wire Input File Specifications” on page 24}.

Once defined, a given class can then be used by subsequent classes. For example, a new class, such
as a a syncopated FODo lattice cell, can use previously defined quadrupole and drift space classes.
This allows the user to build up in a hierarchical fashion rather complicated beam lines.

A child class is a class which by default inherits all properties of a previously defined parent class,
but may then change one or more of the attributes. Any physical focusing element class can be a
parent class, including a previously defined child. For example, if one has a particular quad class
(e.g. 'QFQ" defined with various rod and aperture sizes and a given voltage, and one also needs an
essentially identical quad class (e.g. 'QD0") which differs in only one or two properties (e.g. a -4.0
KV voltage rather than +4.0 KV voltage), it is most efficient to define QDO with the child keyword
giving its parent as “QF0", e.g.

QF0: guad, length=0.3, voltage=4.0e3, aperture=0.l1l, &
r elem=0.04 ! focusing quad

HIBEAM PIC Code Manual 19

HIBEAM Input/Output File Specifications

oD0: child, parent='QF0’, voltage=-4.0e3 ! defocusing gquad
QDhalf: child, parent=/QD0’, length=0.15 ! half defocusing guad

There are a fairly large number of attributes (see Table 3-1 on page 14; a star indicates a given
attribute is relevant to the given keyword). Some are applicable to many keywords, others to just
one or two. The logic of the underlying coding is that once a label together with a permitted key-
word have been found by the parser at the beginning of an input line, the remainder of the line is
then internally restructured as a FORTRAN namelist (to give maximum flexibility with attributes
that are needed by only some keywords and not by others) and then re-read by the parser. Most
attributes are straight-forward, referring to physical properties of the element such as aperture size,
voltage, length, transverse offsets, efc. A couple are rather specific, referring to some underlying
FORTRAN code (e.g., i_cap_pointer which indexes the pointer array contains the capacity
matrix information for that class).

TABLE 3-3 Defined keywords and attribute variables in HIBEAM MAD-style lattice inpui

Attribute \ Keyword | Type Units drift box |quad . {hyperk |wire
aperture real maters 4] [

exror_type String G o o o
gradient real valts/meter o

i_cap_pointer integer @ o 4] [+

length (alt.: 1) [real meters ¢] s o o o
n_cap_ncdes integer L+ e & o
offset_x real meters Lo 4] 4]

offset_¥y real meters s] 5] [+

parent String) o o o o
r alem real meters 4]

voltage real Megavolts o) o

width % real meters o

width y real meters [+

As previously mentioned, the “hase™ classes provide a foundation, upon which more complicated
classes and, eventually, the entire beam line lattice {which itself is a class) is built. To definc a
multi-element class which is known as a sub-beam line in the MAD syntax, the keyword LINE=

20

HIBEAM PIC Code Manual

Lattice Input Flle Specifications

must be used after the colon-terminated class name. Beam lines may contain both normal physical
elements (e.g., quads) and previously defined beam lines. All of these should be separated by com-
mas. Chapter 4 of the User’s Reference Manual for MAD gives a fairly complete summary of how
to build up beam lines. As of now, HIBEAM allows one to include parentheses-delimited sub-lines
and repetition.

I 1lat j.lat’:: . input lattice file for long transport test e
R . x offsets set to 0. 4mm_ : rod ra.dius-ﬂ 0 ‘om
'Bigmao 60 degrees g : -f i : i S

Qo quad “1=0.2, aperture:ﬂ 04, i GEP_PDinte:c-—l. 'y -
SIHETE R - elem-0:_036,§.: offset x--O 46-3 offset_y-o 4--—3

".:-QE' 'child, pa:ant:-'QO'," voltage—d.ﬁ 89—3 ! focus:.ng !'IBE—A quad
. QDz ‘ehild," parant-'QF' voltaga-—--46 Be-3 1 de-focus MBE4 ‘quad
j_HQD-' child, a::ant:-'QD" 1- _;_1 : half de-focus:.ng quad

drift, 1= '0. 2,- apsrt:ure—o 04, ' cap nades-lza, & G B
S N cap_pointer~2 T elam--o 04 dr:.ft in MBE4 cell j R

 ;393. LINE" QF, QD
;TﬁﬁB; LINE“ 1o*sasg

BLINE: LINE" HQD,_ls*TEuB S

'=USE; BLINE ‘

FIGURE 3-1. Lattice input file for FODO array begun with half-length defocusing quad

Figure 3-1 on page 21 gives an example of a relatively simple FODO lattice definition. After some
comment lines, the basic quad building block “QU” is defined with its length, aperture, rod size, and
offset errors. Then, its children, QF and QD, are defined with their appropriate voltages. Then a
“grandchild”, HQD, is defined whose sole difference from its immediate parent QD is that it is a
half-length element (one needs this for matching a beam with da/dz=db/dz=0 at the middle of a full
quad). Finally, the final elementary building block of a drift cell is defined.From these elementary
elements, a base FODO cell (i.e. a sub-beam line), named “BASE”, is made from the full quads and
drifts. Then a 10-cell block (also a sub-beam line) named TENB is made from repeating the BASE
cell ten times, and finally, the final beam line (“BLINE") is built from repeating the ten-cell block
15 times, preceded by the half-length defocusing quad.

Note: The actual FORTRAN coding for the repetition function is very simple and waorks by build-
ing up the beam line string via literally repeating the ASCII strings for the sub-elements. Therefore,
in order not to exceed the maximum string length of 512 characters, it is necessary in a long lattice
with (e.g. 20 or more elements) to use sub-beam lines to build up the final beam line. In the present

HIBEAM PIC Code Manual 21

, the
true in

ior ---
staternent

18

It should also be
statement, no

that will be repeated a number

would not be a pood choice

150*BASE"
ines is certainly not bullet-proof and one may encounter abnormal behav

The coding for the
KEEN'D,’
‘KUSE!?

I(HQD
o)
“USE” command (as
attice file with an

becomes instantiated by a

me

.

BASE, BASE, BASE, BASE". 1t should be rather
-beam 1
ine

r
.

k a long name for a sub

BASE, BASE
once a beam |

ic
T

HIBEAM Input/Quiput File Specifications

BASE, BASE

*OLD_MBE4_FoDO_CELL”

MAD lattice rout

caveat emptor.
as presently written

]

example, the string representation of “BLINE” is “HQD, TENB, TENB, TENB, TENB, TENB,

TENB, TENB, TENB, TENB, TENB, TENB, TENB, TENB, TENB, TENB”. TENB itself is

“BASE, BASE
expanded string representation of BLINE would exceeded the 512 character limit.

obvious that if we had not defined TENB but had rather defined BLINE as
Once the final beam line is defined, it becomes instantiated by the

the MAD program itself). One should then terminate the]

apparent that it is not wise to p

of times (e.g.
(although

==

of November 1997,

FIGURE 3-2. A Iattice file for the MBE4 combiner experiment -- parameters are current as

additional lattice input file statements are actually parsed or used)

HIBEAM PIC Code Manual

22

Lattice Input File Specifications

A more complicated example, Figure 3-2, shows the lattice input file for the MBE-4 combiner
experiment. Here, nearly every quad and drift zone is unique, differing in length or voltage or aper-
ture, and must have its own class defined. Hence, there is no need to define sub-beam lines in order
to exploit repetition. The Q5 wire zone in reality has only one parameter -— its length — that can be
set in the lattice file. The rest of its parameters are set in the wire input file. Similarly, the Q4 hyper-
bolic quad actually only has three parameters --- length, voltage, and offset error — which can be
set, since the aperture and individual electrode geometry is presently “hard-wired”.

One last example (Figure 3-3 on page 23) i3 given to show the role of parentheses in a MAD-style
input lattice file. Here rather than define a separate sub-beam line for the FODo cell, multiple repe-
titions of the cell are achieved by enclosing its defining elements in parentheses and then using an
integer repetition factor in front of the parentheses. Parentheses may be nested essentially unlim-
ited levels deep. In practice, however, if one needs to use more than three levels, it is probably best
(for the sake of clarity) to define some sub-beam lines to hold one or more of the deeper levels, For
“normal” HIF beam lines, one will rarely need to use parentheses.

i

|l
J,!i!fl

“0ld” Lattice Input File Form

The original “Hahn™ version of HIBEAM used a namelist (named lattice) to input large arrays to
specify the beam line focusing lattice. Essentially, there are eight arrays: (1) ielement, an inte-
ger array that specifies the type of element (see Table 3-4 for a key); (2) 21, a real array that speci-
fies the element length in meters; (3) yapt, a real array specifying the clear aperture radius (in
meters); (4) gx, a real array specifying the rod radius (in meters) of each focusing element; (3) vq,
the element voltage (in megavolts) with positive values corresponding to focusing in the x-plane;
(6) vq6, the voltage at r=yapt corresponding to the dodecapole component (7) gof£x and gofy,
the exact x and y offsets of each element from the nominal center of the beam line. One should

HIBEAM PIC Code Manual 23

HIBEAM Input/Cutput File Specifications

note that the preferred way to input lattice quantities is in “MAD” style format and that a number of
element types (e.g. dipoles) that existed in HIBEAM prior to summer 1996 have been disabled.

TABLE 3-4 Correspondence between “ielement’” and physical type of element in the “old”

form of the lattice input file
ielement | description lelement | description
0 circular aperture drift zone 1 accelerating gap
2 quadrupole - no dodecapole 3 quadrupole - dodecapole permitted
4 rectangular pipe (i.e. a box} 6,7.8 obsolete, non-functional types
97 wire cage 98 MBE4 combiner hyperbolic quad

Sec. 3-3 Wire Input File Specifications

The wire input file details the positions and voltages of the individual rods comprising a “squirrel
cage” focusing element, in addition to some geometry information concerning the alignment of the
cage. While to date this type of focusing element has been defined only for the MBE4 combiner
experiment, in principle the input file structure is general enough that any element composed of dis-
crete rods should be representable by a wire input file. Since all focusing electrodes in the capacity
matrix field solver are in practice represented by discrete nodes, which are equivalent to wire rods,
one could use a wire input file to represent some quad or dipole with a peculiar shape.

TABLE 3-5 Variables in Namelist in_wire

Variable Name | Type Units Default Value | Explanation

bias_voltage | real volts 0.0 offset bias for wires

conv_angle real degrees 6.0 convergence half-angle of beamlets
conv._factor real 0. upstream/downstream convergence

ratic of wires

delx w real melers 18.7042-3 x-offset of left and right beams at

element imerge
g y-offset of top and bottom beams at
dely w real meters 26.198e-3 element imerge
node_per_wire | integer 2 number of nodes for each wire
nw integer 72 number of rods in cage

24 HIBEAM PIC Code Manual

Output File Formats and Specifications

TABLE 3-5 Variables in Namelist in_wire

Variable Name | Type Units Default Value | Explanation
array containing individual wire

pwire real volits voltages

: transverse separation between nodes
wire_diameter | real meters 1.5e-3 of a given wire
wire_length real meters -1 — see text. length of wire zone (inoperative)
xwire real meters array containing x positions of wires
ywire real meters array containing y positions of wires

The wire input file is one large namelist, setting general properties of the wire zone and specific
positions and voltages of the individual wires. Most of the input parameters in Table 3-5 are rea-
sonably self-explanatory. Note that one is required to input the total number of wires (nw) in the
cage and also the number of capacity mairix nodes (node_per wire) to represent each wire —
2 or 3 is a good value unless the wire diameter is much larger than a field grid zone, in which case
one might want to use 6 or more nodes per wire. However, the present coding currently limits nw to
256 and node_per_wire to 4 by an easily-changed parameter statement in the source file
hib_wire_mod f20. Moreover, at present, the actual length of the wire zone is set in the lattice input
file so one should not set the wire_length variable in the wire zone input file, Similarly, at
present, the convergence factor of the cage is set at the MBE4 combiner nominal value of 1.4 over
the approximately 78.6-mm length. One can override this value by setting the variable
conv_factor.

The last three variables in Table 3-5 describe the placement of multiple beamlets in the MBE4
squirrel cage. Normatly, HIBEAM is run with one beam from the beginning lattice element up to
the beginning of element # imezrge (which is set in the ztime namelist). At that point, the single
bearn is replicated into 4 separate beams., Each of the four beams is given the appropriate rotation
for each of the various cages, and then offset by delx_wand dely w in transverse position and
given a uniform dipole dx/dz or dy/dz corresponding to conv_angle (note this is in degrees, not
radians) for the side/vertical cages respectively. For the MBE4 combiner experiments, this conver-
gence angle is 6 degrees relative to the central axis.

Sec. 3-4 Output File Formats and Specifications

At present HIBEAM can make three different types of output files. The first is in the form of a
NCAR graphic CGM metafile that can be viewed by the ictrans family of codes (available on the

HIBEAM PIC Code Manual 25

HIBEAM Input/Output File Specifications

NERSC Crays) and gplot, available both at NERSC and on the local SUN workstations. As
described in Sec. 3-1 “Main Input File Structure and Variables™ on page 13, most of the graphics
output specifications are set in the namelist Zfime in the “main” input file. Normally, one will want
some combination of phase space plots and field plots, History plots {e.g., transverse emittance ver-
sus z) are automatically produced -— normally the user will only set the variable zhist to control
the spacing of the individual z locations in the history arrays. Once the cgm file is created, one can
use the ictrans program to output individual frames into other graphics formats such as Postseript.

The second form of output file available from HIBEAM is a simple ASCII text file containing col-
umns of “history” information of envelope quantities such as I, Xc» Xeenwoid: Ermse €fC. VETsus
z. One uses the switch 1_print_hist to make HIBEAM write this file, which will have the name
run_name . txt, where run_name is the ASCII string chosen for the run name on the execute line
(see Sec. 2-2 “Running HIBEAM directly from a terminal window” on page 8). Note that if
run_name . txt already exists on disk, the old information will be overwriiten by the new.

The third type of cutput file is a particle “dump” file, which is a snapshot at a given z of the trans-
verse coordinates (x, y, X", ¥} of all the individual macroparticles in the HIBEAM run. The loca-
tions of the dump are controlled by zpardump while the format is chosen by dump_type where
the allowed types are ‘BINARY", ‘ASCIT’, and “HDF'. Unless one is trying to export the phase
space information to a bizarre hardware platform, in which case ASCII is probably the most porta-
ble format, one should probably set dump_type to ‘BINARY™ as this is the most compact. More
importantly, at present HIBEAM can restart from a previously written dump file if and only if this
file was written in binary format. In order to restart, the variable par_dump_£ile in the namelist
Hinit in the main input file should be set to the dump file name. Note that the z-location at which the
old dump file was written will supercede the value of zstart in the ztime namelist - i.e. the new
run will start at where the old run lefi off..

26

HIBEAM PIC Code Manual

