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New parallel SGILD modeling and inversion 

Ganquan Xie, Jianhua Li, and Ernest Majer 

Earth Sciences Division, Lawrence Berkeley National Laboratory 

Abstract 

In this paper, A new parallel modeling and inversion algorithm using a Stochastic 
Global Integral and Local Differential equation (SGILD) is presented. We derived 
new acoustic integral equations and differential equation for statistical moments 
of the parameters and field. The new statistical moments integral equation on the 
boundary and local differential equations in domain will be used together to obtain 
mean wave field and its moments in the modeling. The new moments global Jacobian 
volume integral equation and the local Jacobian differential equations in domain 
will be used together to update the mean parameters and their moments in the 
inversion. A new parallel multiple hierarchy substructure direct algorithm or direct­
iteration hybrid algorithm will be used to solve the sparse matrices and one smaller 
full matrix from domain to the boundary, in parallel. The SGILD modeling and 
imaging algorithm has many advantages over the conventional imaging approaches. 
The SGILD algorithm can be used for the stochastic acoustic, electromagnetic, and 
flow modeling and inversion. 

Key words: SGILD; modeling and imaging; stochastic; moments integral and 
differential equation 

1 Introduction 

Seismic, electromagnetic, and hydrology modeling and inversion are important 
for the prediction of oil, gas, coal,. and geothermal energy reservoirs in geo­
physical exploration. Many imaging works in the geophysical research areas 
are used the determinstic frame. The deterministic inversion approaches are 
used to obtain the ensemble mean of the random target parameters. Because 
the data is incomplete and contaminated by noise, it is reasonable to study 
inverse and forward problem in the probability frame and to use stochastic 
approaches [1]. There are two ways to study the stochastic inversion, one is 
Markov chain Monte Carlo (MCMC) approach, other way is to recover the 
statistics moments of the parameters and fields using posterior probability 
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optimization and annealing regularizing. Each approach has its own advan­
tages and limitations. 

In this paper, we developed a new parallel SGILD modeling and inversion 
using a stochastic global integral and local differential decomposition. The 
parameters and data are assumed to be random variables. We derived a new 
acoustic integral and differential equation system about the statistical mo­
ments of the mean, covariance, and standard deviation. A parallel SGILD 
algorithm is used to solve the moments integral and differential equations. 
The second order correction term can be used to improve the resolution of the 
mean impedance imaging. The parameter covariance and standard deviations 
can be used to estimate the uncertainty and construct a confidence interval 
for the acoustic velocity. 

The new SGILD inversion method consists of five parts: (1) The domain is 
decomposed into subdomain SI and subdomain SII. (2) A new statistical mo­
ments global acoustic integral equation on the boundary and local differential 
equations in domain will be used together to obtain mean wave field and mo­
ment fields in the modeling step. (3) The new moments global Jacobian volume 
integral equation in SI and the local Jacobian differential equations in SII will 
be used together to update the mean velocity parameters and their moments 
from the random field data in the inversion step. ( 4) The sub domain SII can 
naturally be decomposed into 4n smaller sub-cubic-domains; the sparse ma­
trix in each sub-cubic- domain can be inverted separately, in parallel. (5) A 
new parallel multiple hierarchy substructure direct and direct-iteration hybrid 
algorithms will be used to solve the smaller full matrix in SI from domain to 
the boundary, recursively and in parallel. 

The iteration of conventional nonlinear inversion includes two parts: (I) a 
finite element or finite difference scheme for differential equations with an ab­
sorption condition was used to obtain the seismic wave and EM field in the 
modeling step; (II) a discrete integral equation or its optimization was used 
to update the seismic velocity and electric conductivity in the inverse step. 
The limitations of the conventional nonlinear inversion are: (1) determinstic 
description of parameters will cause a disastrous ill posed inversion; (2) the in­
accurate reflection error of the absorption boundary condition in part I enters 
the inversion domain as numerical noise, in particularly, the ill-posed property 
of the inversion will enhance the numerical noise that will cause divergence 
and low resolution; (3) the discrete integral equation in part II produces an ill­
posed larger full matrix which is difficult or impossible to invert and to store; 
(4) the conjugate gradient (CG) iterations will become very slow due to the 
repeated calculation of the 3D Greens functions and the many complicated 3D 
integral terms. Moreover, since the ill-posed nonlinear optimization has many 
local minimum points, the CG iteration easily falls into a local minimum and 
gets a wrong or low resolution imaging. 
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The new SGILD parallel modeling and nonlinear inversion algorithm is de­
signed to overcome the shortcomings of the conventional inversion. The advan­
tages of the SGILD algorithmare: (1) Supposing the parameters and measured 
data are random variable, the new statistical moments acoustic and magnetic 
integral and differential equation will be together used to assess the poste­
rior probability using Bayes theorem; (2) It uses new exact moments global 
boundary integral equations and local differential equations in the domain that 
reduces the numerical boundary noises and improves accuracy of the modeling 
and inversion; (3) Using a new moment global integral and local differential 
decomposition in inversion that decompose the ilt·posed full matrix into 4n 
small sparse matrices and a smaller full matrix, greatly improved the ill-posed 
condition, and reduced computation time and storage requirements; ( 4) The 
SGILD is a high performance parallel multiple hierarchy algorithm with paral­
lel efficiency of 90 %; (5) it minimized data communication between processors 
that is suitable for the MPP T3E; (6) The moments of the parameters can 
be used to construct a confidence interval of the parameter. (7) the SGILD 
parallel algorithm can be widely useful to solve stochastic elliptic, parabolic, 
and hyperbolic modeling and inversion. The algorithm can be used for elastic 
wave, electromagnetic, and flow modeling and inversion, that will be a ben­
efit for developing a new coupled GEO-HYDRO imaging. The new coupled 
stochastic modeling and high resolution imaging software will be useful for 
the prediction of oil, gas, coal, and geothermal energy reservoirs in geophysi­
cal exploration. This paper is constructed as follows: In section 1 we describe 
the stochastic acoustic equation and derive new moment Galerkin equations 
and boundary integral equations for forward modeling. The stochastic acoustic 
equations for nonlinear inversion are described in section 2, we derive the new 
moment volume integral equation and variation Garlerkin equations, translate 
the posterior probability optimization into a stochastic nonlinear regularizing 
optimization, and describe a Gauss-Newton annealing iteration. In section 4 
we present the new parallel SGILD modeling and inversion algorithm using 
the global integral and local differential equations. Applications are described 
in section 5. Finally, we describe conclusions in section 6. 

2 Stochastic acoustic equation for forward modeling 

2.1 Stochastic differential equation 

(1) 

where u is the acoustic impedance, u is an acoustic wave function, w is the 
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angular frequency, S is a source term. Suppose that the u is a random variable, 
the w and S are deterministic variables, the acoustic wave, u, is a random 
variable. Substituting the perturbation expanding formula, 

u =< u >+us, 
U = Uo + Ut + U2 + ' ' ' , (2) 

into (1), we have the following forward moment Galerkin equations 

and 

J < u > ~~ ¢>ds- J < u > "Vuo"V¢>df2e + w2 j uo¢>df2e = J S¢>df2e,(3) 
one ne ne ne 

FMG(< cr >,Cv.u,Cu,uo,¢>) = 0, 
F MG ( < u >, Cv., Cv.u, uo, ¢>) = 0, 

F M G ( < cr >, < u 2 >, 1, c:u, ¢>) = 0, (4) 

where 

J 8Cv.u (r', ~) j 8uo 
F MG ( < cr >, Cuu, Cu, uo, ¢>) = < u > Bn ¢>ds + Cu Bn ¢>ds 

one one 

-J < u > "VCu.u (r', ~)"V¢>df2e + w2 J Cv.u¢>df2e- J Cu "Vuo"V¢>df2e, (5) 
~ ~ ~ 

< u > is the mean of the acoustic impedance, < u0 >= u0 , < u1 >= 0, 
< Us >= 0, the head covariance Cu (r, ~) =< Us(r)us(~) > , Cu. (r, ~) =< 
u1 (r)u1 (~) > , Cv.u (r, ~) =< Ut(r)us(~) > is the cross covariance between 
the acoustic impedance and wave field, c:U = { Cv.u }!l=r, ¢> is a basic testing 
function, ne is a compact support set of the basic testing function ¢>. 

2.2 Stochastic boundary integral equation 

f 8Gb (r', r) f 8u (r) 
Au (r) =Bub (r) + Ub Bn u (r) ds- u Bn _, Gb (r', r) ds, (6) 

an+ an_ 

where Gb (r', r) is background Green's function, ub (r) is incident wave, A 
and B are coefficients. Upon substituting (2) into (6), we have the following 
forward moment integral equations on the boundary: 
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and 

() f 8Gb(r1,r) 1 . Au0 (r) . Bub r + O"b an uo (r) ds 
an+ 

f 8uo (r1
) 1 - <O"> an Gb(r,r)ds, 

an~ 

FMI(< 0" >,CutnCu,uo,<P) = 0, 
FMT(< 0" >,Cu,Cuu 1 Uo,</J) = 0, 

F M I ( < (1 >, < u 2 >, 1, c:u, <P) = 0, 

where 

(7) 

(8) 

We use the Galerkin finite element method to discretize the forward moment 
Galerkin equations (3) and (4), and the collocation finite element method to 
discretize the boundary integral equations (7) and (8),see [2] [4]. The discrete 
equations (3) and (7), (4) and (8) will be coupled as a complete equation 
system. The SGILD modeling algorithm will be used to solve the equations 
from the domain to the boundary, in parallel [3] [4]. 

3 Stochastic acoustic equations for nonlinear inversion 

In this section, we describe the new stochastic acoustic volume integral equa­
tions and differential equations for nonlinear inversion. 

3.1 Stochastic acoustic volume integral equation 

ud(r) = Ub (r) + j (l1- l1b)\1Gb (r, r) \lu (r) dr, (10) 
Vs 

Because the measured data u, and the acoustic impedance, u, are assumed 
to be random variables, the equation (10) becomes a stochastic first type 
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nonlinear integral equation. Using the perturbation method we have 

6ud(r) = j 60'\/Gb (r, r) \lu (r) dr. 
v. 

Substituting the expanding formulas, 

6ud(r) =< 6ud(r) > +6ud,s(r), 
u =< u >+us, 

and 
60' = 60'o + 60'1 + 60'2 + ..... , 

(11) 

(12) 

into equation (11), we have the perturbation first type moments volume inte­
gral equations for inversion, 

and 

< 6ud(r) >= j 60'0\/Gb (r, r) \l < u > (r) dr, 
v. 

I M I(< U >, Csud' Csuu, Cu, 60'o) = 0, 
I M I(< u >, Csuoud' Csu, Csuu, 60'o) = 0, 
IMI(< u >,0,< 60'2 >,1,C;uu) = 0, 

where 

I M I(< u >, Csud, Csuu, Cu, 60'o) = Csud 

(13) 

(14) 

- j CsuuVGb(r,r)\1 < u > (r)dr+ j 60'o\JGb(r,r)\JCu(r)dr, (15) 
~ ~ 

I M I means the inverse moment integral equation, < 0'1 >= 0, < Us >= 0, 
Csud =< 6ud(r)6ud(~) >, Csuu =< 60'1 (r) Us OR) >, Cu =< Us (r) Us(~) >, 
Csusud =< 60'1(r)6ud (~) >, Csu =< 60'I(r) 60'1(~) >, c;uu = { Csuu}!R=r, 
they can be calculated in order of Csuu, Csusud' and Csu· 

3.2 A posterior probability optimization 

Because equations (13) and (14) are ill posed, they can not be solved directly. 
We translate the inversion to the following posterior probability optimization 
problem, 

P ( O'ld) = max. (16) 
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Let 

. 1 - !(< -4(~-!t),~-!t)+( &-!t)2) 

p ( u) = A e 2 vJ 
J2;Vu 

(17) 

(18) 

By Bayes theorem, 

P (diu) P (u) 
p (uld) = f P (diu) P (u) dm' (19) 

the optimization (16) is equvalent to the following stochastic nonlinear opti­
mization of the random variable u, 

(20) 

where P ( uld) is the posterior probability, P ( u) is the prior probability on 
the acoustic velocity, P (diu) is data probability based on the acoustic veloc­
ity model, ~ is the Laplacian operator, 0' is the mean value of the random 
velocity that will be measured by core analysis or direct observation, 1T is the 
fitting distribution ba.Sed on u, ud is the measured data with noises, Vud is 
the standard deviation of ud, Vud is normalized deviation, Va- is the standard 
deviation of u, and Yu is normalized deviation. Because there is incomplete 
information of Vu which is measured in a few logging well or on the surface, 
we introduce a regularizing parameter a and translate (20) into the following 
stochastic nonlinear regularizing optimization, 

the regularizing parameter is relative to the confidence interval of the random 
velocity set. 

3.3 Gauss-Newton iteration with annealing process 

We use the modified annealing Gauss-Newton iterativemethod[5] to solve the 
optimization problem (21). The iteration scheme is a;s follows, 
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-\ST [ "•- "' -; (u- u6) 'V'G6 (r, r) '\'udr] + a8u, 

Upon substituting (12) into (22), we have 

[~T~- a~] huo = 

\ST [ < uo > -u, -; ( < u > -u,) 'V'G, (r', r) '\' < u > dr'] 

(22) 

-a~< u >, (23) 

[~T~- a8] Cs~ = ~T [c .. ,-; Ou0'\'G6 (r', r) 'V'C.dr'] - a8C •• , 

[~T ~ - a8] C6, = ~T [ C6, 6., -; Ou0 'V'G, ( r', r) '\' Cs~dr'] - a8C., 

[~T~- a8] < Ou2 >= -~T V. 'V'G, (r', r) ('V'Cs~) drl, (24) 

where 

~ = j VGb(r',r)V < u > '1/Jedr'. (25) 
v. 

After obtaining < 8u0 >, < 8u2 >, Csuv., and Csu, we can update < 8u >, < 
u >, Cuv. , and Cu using the follwing formula, 

< 8u >=< 8u0 > + < 8u2 >, 
< U >(n+l)=< U >(n) +A < 8u >, 

( Cuv.)n+l = ( Cuv.)n + 8Cuv., 
(Cu)n+l = (Cu)n + 8Cu. (26) 

Substituting < u > and Cu into (3) and (7), (4) and (8), we can calculate 
< uo >, Cv.u, Cv., u2 , and < u >. The circle is Gauss-Newton regularizing 
iteration. The parameter A depends on the random annealing process [5] and 
the increment of 8Cu, The regularizing parameter is belong to [0, a 0] which de­
pends on the standard deviation and covariance of the data and discrete error. 
The optimum regularizing parameter can be chosen by discrepancy principle 
[4] and [8], The '1/Je in (25) is a picewise constant base function. 
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3.4 Stochastic acoustic variation differential equation 

The collocation finite element method is used to discretize the first type volume 
integral equation (23) and (24) and obtained full matrix equations. The high 
cost of computation time and storage is a serious limitation of the discrete 
integral equations of (23) and (24). A new parallel SGILD algorithm will be 
developed to overcoming this shortcoming in the next section. 

Using SGILD algorithm, we don't need to solve the complete discrete volume 
integral equations on the whole domain, but only on a subdomain SI. In the 
subdomain SI I, we solve the following moment Galerkin differential equations, 

and 

J o<u> j hao . a~ ¢>ds - hero V' < u > V' ¢>dfte 
80e Oe 

J oh < u > A..d 
=- < (j > on .,., s 

80e 

+ J <a> Y'h < u >'V'¢>dfte- w
2 J hu¢>dfte, 

Oe Oe 

IMG(< U >,hCuu.,hCu,Cu,Cuu,h < U >,hao,< a>,¢>)= 0, 
IMG(< U >,hCu,hCuu,Cu,Cuu.,h < U >,hao,< a>,¢>)= 0, 

(27) 

I MG ( < u >, < ha2 >, 0, Csuu, Cusu, 1, 1, 0, ¢>) = 0, (28) 

where 

(29) 

ne is a compact support set of the basic testing function¢>, Csuu = { Csuu}:R=r, 
Cusu = {Cusu}:R=r· The moment Galerkin equations (27) and (28) are built 
on the sub domain 811. The Galer kin finite element ~ethod is used· to discrete 
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(27) and (28) and to obtain the sparse matrix. The global volume integral 
equation (23) and local Galerkin equation (27) will be used to assemble a 
SGILD decomposition algorithm. Same SGILD algorithm is suitable for (24) 
and (28). 

4 Parallel SGILD modeling and inversion algorithm 

In the preceding sections, we have described two systems, integral equation 
system and differential equation system, for the stochastic acoustic modeling 
and inversion. A question is why do we need two systems for the modeling 
and inversion? A new parallel stochastic global integral and local differential 
decomposition algorithm, SGILD, for the modeling and inversion is presented 
in this section. 

4.1 The conventional. nonlinear inversion using the Gauss-Newton iteration 

In the conventional nonlinear inversion using the. Gauss.., Newton iteration, the 
algorithm process is that (1) For giving coefficient parameter, using finite el­
ement or finite difference scheme to solve acoustic differential equation with 
an artificial absorption boundary condition to obtain the wave filed. (2) Solv­
ing a discrete norm equation of the regularizing optimization of the first· type 
integral equation to update the velocity. (3) The step (1) and (2) constructed 
the Gauss-Newton iteration for the conventional nonlinear inversion. The reg..: 
ularizing Gauss-Newton nonlinear inversion is a robust approach, but the lim­
itations are: (1) Along the iterations, the inaccurate reflection error of the 
absorption boundary condition in the forward modeling enters the inversion 
domain as numerical noise that will cause low resolution; (2) the discrete inte­
gral equation in the inversion produces an ill-posed larger full matrix which is 
difficult or impossible to invert and store. A new SGILD modeling and inver­
sion algorithm is developed to overcome these limitations of the conventional 
nonlinear inversion. 

4.2 New SGILD modeling and nonlinear inversion 

For simplicity, we used a rectangular mesh for modeling and inversion. The 
unknown wave field and its moments are defined on the set of the nodes for 
modeling. The unknown velocity parameters and their moments are defined 
on the set of the cells for inversion. The new SGILD modeling and inversion 
method consists of three steps: First, in Figure 1, the domain is decomposed 
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into a subdomain Sf with white cellsDand a subdomain SI I with dark cells 
. This decomposition is called a cells-decomposition. The cells-decomposition 
should satisfy the following requirements: (1) the subdornain S I should include 
thebouildary of the domain; (2) the subdomain SI should be a logical bound­
ary of the subdomain SII; (3) the subdomain SII can be decomposed into 
2P x 2q x 2r subdomains for 3D problem or 2P x 2q subdomains for 2D problem, 
the p, q,r are integer. The cells-decomposition induced a nodes-decomposition 
of the whole_ nodes of the domain, N S I and N S I I .. The sub domain N S I is the 
set of the boundary nodes • and internal nodes •, i.e., the set of the nodes on 
the S I. The sub domain N S I I is the set of the internal circle nodes o , i.e., the 
set of the inside nodes of Sll. Second, suppose that the acoustic impedance 
mean < u > and the covariances are obtained by the previous iterative step, 
the discrete acoustic integral equation (7) and (8) on the boundary nodes and 
the discrete acoustic Galerkin differential equations (3) and( 4) on the inter­
nal nodes of domain will be coupled to construct a complete equation system 
for the discrete moments of the acoustic wave field. The nodes-decomposition 
and multi-level parallel direct or direct-iteration hybrid methods can be used 
for solving the modeling equations. Third, after obtaining the wave field and 
its moments, the global discrete Jacobian volume integral equations (23-25) 
on cells of Sl and the local discrete Jacobian differential equations (27-28) on 
cells of S I I will be coupled to construct a complete equation system for updat­
ing the velocity. The cells-decomposition can be used for solving the equation 
system for updating parameters and their moments. The second step and 
third step are used to construct a loop of the parallel SGILD Gauss-Newton 
iteration. If the residual of the misfit between the model field moments and 
the measured field moments less than the giving tolerance then the iteration 
will be stop, otherwise the iteration should be running continuously. In the 
parallel program, the shared data, the shared do loops, and message passing 
interface (MPI) are used for communication and distribution of subdomain 
field data and matrix data on a massively parallel computer. In this parallel 
program, distribution of the jobs in the parallel processing is uniform and the 
parallel arrangement is done appropriately. The new global integral and lo­
cal differential parallel inversion has been tested in the multiple processor of 
the Special Parallel Processing (SPP) in the CRAY-A.NERSC.GOV and the 
Massively Parallel computer T3D. The parallel effective rate is 80% to 96%. 
The detailed description of the new parallel SGILD modeling and inversion al­
gorithm is presented in a Lawrence Berkeley National Laboratory technology 
reports (3] (4]; 

11 



Xie et al, LBNL 42252, New Parallel SGIW Modeling and Inversion, September I, 1998 

5 Applications 

The SGILD algorithm can be used for the electromagnetic and flow modeling 
and inversion, see [6] and [7]. In [6], new magnetic boundary and volume 
integral equations for the moments of the resistivity, permittivity, and the 
magnetic field are derived[6] [7]. A 2.5D SGILD electromagnetic code is tested 
primarily using a synthetic and field data. The mean resistivity imaging and 
standard deviations are presented. In Figure 2, 16 frequencies, 6 electric line 
sources on the surface and 20 receivers in the vertical logging well are used to 
make synthetic data with Gaussian noise, the maximum standard deviation 
of the data is 5%. The high resolution imaging of the mean resistivity is 
obtained. The total maximum standard deviation (TSTD) of the resistivity is 
11.8%, The local standard deviation (LSTD) of the resistivity of the target in 
left top corner (read) is 6%, The other local standard deviation of resistivity 
in right lower corner (blue) is 18.6%, that is because the read block is in the 
coverage area of the data site. The 2D mesh is 128x128, 64 x 30.5 CPU minites 
in T3E and 58 iterations are used to obtained these moments imaging. The 
optimization mean regularizing is 0.687456x10-6 . Other resistivity imaging 
from practical field data in the geothermal exploration is presented in [6]. The 
field data configuration includes 16 frequencies, 6 electric line sources on the 
surface and 20 receivers in the vertical logging well. The maximum standard 
deviation of the field data is 21%. A reasonable mean resistivity imaging is 
obtained. The maximum standard deviation of the resistivity is 31.8%, The 
local standard deviation of resistivity near the borehole area is 19%, which is 
less than standard deviation of the field data. The second order mean term 
is effective to improve the resolution of the mean resistivity imaging. The 2D 
mesh is 256x256, optimization mean regularizing is 0.32934x10-1 , the 64 x 3.8 
CPU hours in T3E and 96 iterations were used to these moments imaging. The 
parallel rate of the primary SGILD code is 70% "" 90%. The SGILD acoustic 
velocity imaging and data configuration is presented in [6] and SGLID flow 
permeability inversion is presented in [7]. 

6 Conclusions 

The primary tests shown that the SGILD modeling and inversion is a high 
resolution , robust stable, and high performance parallel imaging algorithm. 
There are obvious improvements of resolution of imaging from the field data. 
Actually, most of the conventional deterministic inversion approaches were 
only used to obtain the zero order mean of the target parameters, but no 
second order correction term and the standard deviation term. The -SGILD 
algorithm can be used to obtain the improved ensemble mean parameter with 
second correction term, cross covarience between the parameter and field, and 
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standard deviations of the· parameters and field. These moments can be used 
to estimate the uncertainty and construct a confidence interval. The compu­
tational costs and storage of the stochastic modeling and inversion is 3 "' 4 
times the deterministic inversion. The big cost can not be accepted in the 
workstation. The high performance SGILD algorithm overcomes the limita­
tions. There are two ways to study the stochastic inversion, one is Markov 
chain Monte Carlo (MCMC) approach, other way is to recover the statistics 
moments of the parameters and fields using posterior probability optimiza­
tion and annealing regularizing. Each approach has its own advantages and 
limitations. The moment equation approach to the single phase fluid forward 
modeling was presented by [9]. An advanced version ofthe SGILD algorithm 
will be developed to have the advantages both MCMC and MDE approaches. 
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