
LBNL-42271 
Preprint 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 

GUT and SUSY Breaking 
by the Same Field 

Kaustubh Agashe 

Physics Division 

October 1998 
Submitted to 
Physics Letters B 

'•, 

. •' 
• ,£,1') 

r 

' ; 

\S. ·. 

. ' 

r 
Ill 
~ , 
(!) 
:::l 
(') 
(!) 

0 
0 
"0 
'< 

r 
OJ z 
r 
I 

.1:> 
N 
N 
.....,j 

1-' 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



October 28, 1998 

LBNL-42271 

OITS-659 

GUT and SUSY Breaking by the Same Field 1 

Kaustubh Agashe 2 

Theoretical Physics Group 

Lawrence Berkeley National Laboratory 

University of California, Berkeley, California 94120 

and 

Institute of Theoretical Science 

5203 University of Oregon, Eugene, Oregon 91403-5203 3 

Abstract 

We present a model in which the same modulus field breaks both 

SUSY and a simple GUT gauge group down to the SM gauge group. 

The modulus is stabilized by the inverted hierarchy mechanism in a 

perturbative region so that the model is calculable. This is the first 

example of this kind in the literature. All mass scales (other than the 

Planck scale) are generated dynamically. In one of the models doublet­

triplet splitting is achieved naturally by the sliding singlet mechanism 

while another model requires fine tuning. The gauge mediation con­

tribution to the right handed slepton (mass)2 is negative. But, for the 

modulus vacuum expectation value close to the GUT scale, the super­

gravity contribution to the slepton (mass)2 is comparable to the gauge 

mediation contribution and thus a realistic spectrum can be attained. 
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1 Introduction 

One of the central issues in studying supersymmetric extensions of the Stan­

dard Model (SM) is how to break supersymmetry (SUSY) and mediate SUSY · 

breaking to the sparticles. In models of dynamical SUSY breaking, SUSY is 

broken by the non-perturbative effects of a gauge group. Thus, the SUSY 

breaking scale is related to the energy scale at which some gauge group be­

comes strong and, in turn, to the Planck scale by dimensional transmutation. 

For the mediation of SUSY breaking to the sparticles, two mechanisms have 

been discussed in the literature - gravity and SM gauge interactions. 

The measurements of sin2 Ow are in very good agreement with the pre­

dictions of SUSY grand unified theories (GUT's). This has led to a lot of 

interest in SUSY GUT's. One of the important issues in SUSY GUT's is 

the origin of the energy scale rv 2 x 1016 GeV at which the GUT symmetry 

breaks down to the SM. 

There have been efforts to generate the GUT scale dynamically. In the 

models of Cheng [1] and Graesser [2], the GUT scale is related to the dynam­

ical scale of a gauge group, but SUSY breaking is unrelated to GUT sym­

metry breaking, i.e., there is a separate dynamical scale for SUSY breaking 

and GUT symmetry breaking. 

In the models of Goldberg [3], Kolda and Polonsky [4] and Chacko, Luty 

and Ponton [5], there is a connection between GUT and SUSY breaking. 

However, there are two different sectors (and potentials) for GUT and SUSY 

breaking, but with related parameters (and one dynamical scale). Once 

SUSY is broken in one sector, a potential is generated for a field in another 

sector determining the GUT scale. In other words, in these models, the field 

breaking the GUT symmetry j determining the GUT scale is different from 

the field breaking SUSY. 

In the model of Hirayama, Ishimura and Maekawa [6], the field breaking 

SUSY and GUT symmetry is the same. However, the GUT gauge group is 
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SU(5) x SU(3) x SU(2) x U(l), which is not a simple gauge group.4 Also 

an assumption about a non-calculable Kahler potential is required for the 

model to work. 

In this paper, we present a model in which not only are SUSY breaking 

and GUT symmetry breaking related, but the same field breaks both SUSY 

and a GUT gauge group down to the SM gauge group. However, unlike 

the model of reference [6], the GUT gauge group is simple. The well known 

. inverted hierarchy mechanism is used to generate a local minimum for the 

modulus field in a perturbative region, thus making the model calculable, 

unlike the model of reference [6]. There are no dimensionful parameters in 

the model other than the Planck scale. The mediation of SUSY breaking to 

the sparticles is by a combination of gravity and SM gauge interactions. 

2 General Structure 

The gauge group of the model is:5 

and the particle content is 

The superpotential is 

SU(6)aur x SU(6)s 

~ "' (35, 1) 

Q "' (6,6) 

Q "' (6, 6). 

(1) 

(2) 

(3) 

4Thus, the unification of the SM gauge couplings at ,....., 2 x 1016 GeV is not an automatic 

consequence of the model. 
5This model was used in [7] as a model of gauge mediation. However, in [7], the SM 

was an additional gauge group, i.e., it was not embedded in the SU(6) gauge symmetry. 
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'E3 lifts all fiat directions in 'E except tr 'E2 [7] along which the vacuum 

expectation value (vev) of 'E, upto SU(6)GuT rotations, is6 

v . 
('E)= 1'10 d1ag[1, 1, 1, -1, -1, -1] . 

.y 12 
(4) 

This can be seen as follows. The vev of 'E breaks SU(6)GuT to SU(3) x 

SU(3) x U(1). The resulting Nambu-Goldstone fields, with their SU(3) x 

SU(3) quantum numbers, are: 

(3, 3) + (3, 3). (5) 

'E decomposes as: 

(3, 3) + (3, 3) + (8, 1) + (1, 8) + (1, 1). (6) 

Thus, the (3, 3) + (3, 3) components of 'E are eaten in the gauge symme­

trybreaking. The (1, 8) + (8, 1) components get a mass from the 'E3 term 

and the (1, 1) component is the fiat direction. Thus, far out along this fiat 

direction, Q, Q and all components of 'E other than the fiat direction are 

heavy. The only light fields are the SU(6)s gauge field and the fiat direction 

parametrized by tr 'E2
• We will denote the fiat direction (both the chiral 

superfield and the vev of it's scalar component) by v. The dynamical scale, 

AL, of the pure SU(6)s gauge theory is related to the dynamical scale, A, of 

the high energy SU(6)s by the matching relation at the mass of Q, Q (we 

assume v »A): 

( AL ) 
18 

( A ·) 
12 

AQv/v'12 - AQv/v12 
(7) 

Gaugino condensation in the low energy SU(6)s generates the superpotential: 

(8) 

6We use the normalization tr TaTb = 1/2 Dab, where the T's are the generators for the 

fundamental representation of a gauge group. 
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Below the scale AL, we have only the field v with the above superpotential 

with Fv = .J3AQA 2 • Thus, SUSY. is broken and with a canonical Kahler 

potential, vtv, the vacuum energy is 3A~A4 • The vev v is undetermined 

at this level. To determine v, we need to include the corrections to the 

Kahler potential of v. The dominant corrections, for v »A, are due to the 

wavefunction renormalization Z of ~. 7 Thus, the potential for vis: 

3A2 A4 
V - Q 

- Z(v) · (9) 

Since v » A, we can compute Z in perturbation theory. The one loop 

Renormalization Group Equation (RGE) for Z is: 

dZ(v) 2Z(v) ( 2 2 16 2 ) 
d(ln v) = 167r2 1296(v)- 6AQ(v)- 3A~(v) , (10) 

where 96 is the SU(6)aur gauge coupling. The potential can develop a 

minimum by the inverted hierarchy mechanism [8] as follows. We can choose 

the gauge and Yukawa couplings so that, for large v, A dominates in the 

above RGE so that Z(v) decreases with increasing v, whereas, for small v, 96 

dominates so that Z(v) increases with v. Thus, there is a minimum of Vat 

v such that A(v) rv 96 (v) so that dZ(v)jd(lnv) = 0.8 Due to the logarithmic 

dependence of Z, A and 96 on v, it is possible that at the minimum v » A 

which is required for the perturbative calculation to be valid. 

To get the SM gauge group from the unbroken gauge group, SU(3) x 

SU(3) x U(1), we identify one SU(3) with SU(3)c and we need to break the 

(other) SU(3) x U(1) to SU(2)L x U(1)y. For achieving this, we use the 

model in [5] with a slight modification. We next discuss the model. 

7There are corrections to the Kahler potential from higher dimensional operators. But, 

for v » A, these are smaller than the corrections due the wavefunction renormalization 

[7]. 
8This is a local minimum only since there is a supersymmetric minimum near the 

origin with(~),..., A diag[2,2,-1,-1,-1,-1] and (QQ),...., A2 diag[l,l,-2,-2,-2,-2]. 

However, since v »A, the tunneling rate from the "false" vacuum to this global minimum 

is very small [7]. 
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3 Specific Models 

Add the following particle content and superpotential:9 

s '"" (1,1) 

H '"" (6,1) 

[I '"" (6,1) (11) 

W2 = S(Hfi- E 2
). (12) 

The F-fl.atness condition for S forces Hand fi to acquire vev.10 We look for 

a minimum with the vev's of H, fi in the form: 

(H) = (fi) '"" v (1, o, 0, 0, o, 0). (13) 

This breaks SU(3) x U(1) to SU(2) x U(1). 

We now discuss the mass spectrum. The superpotential has a separate 

SU(6) symmetry acting on E and H, fl. The SU(6)H is broken to SU(5) 

resulting in the Nambu-Goldstone fields (with SU(3)c x SU(2)L quantum 

numbers): 

(3, 1) + (3, 1) + (1, 2)"+ (1, 2) + (1, 1). (14) 

The breaking of SU(6)r; to SU(3) x SU(3) x U(1) generates the Nambu­

Goldstone fields: 

(3, 2) + (3, 2) + (3, 1) + (3, 1), (15) 

which is the same as Eqn.(5) but with quantum numbers under SU(3) x 

SU(2) shown. The following fields are eaten in the breaking of the SU(6) 

gauge symmetry to the SM gauge group: 

(3, 2) + (3, 2) + (3, 1) + (3, 1) + (1, 2) + (1, 2) + (1, 1). (16) 

9Henceforth, we will suppress the Yukawa couplings in the superpotential. 
10In [5], the terms S(tr:E2 - c1> 2 ) and T(HH-:- cl> 2 ) (where S, T, cl> are singlets) were used 

instead to relate the H, fi and :E vev's to the vev of the GUT modulus cl>. 
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The various fields decompose as: 

I: rv {3, 2) + {3, 2) + {3, 1) + {3, 1) + {8, 1)+ 

(1, 2) + (1, 2) + (1, 3) + (1, 1) + (1, 1) 

H rv {3,1)+{1,2)+{1,1) 

fl rv {3, 1) + {1, 2) + {1, 1). (17) 

As mentioned before, the (8, 1) + (1, 2) + (1, 2) + (1, 3) + {1, 1) components .. 

of I: (which transform as {8, 1) + (1, 8) under SU(3) x SU(3): see Eqn.(6)) 

get a mass from the I:3 term. The (3, 2) + (3, 2) components of I: and the 

(1, 2) + (1, 2) components of H, flare eaten by the broken gauge symmetry 

(see Eqn.(16)). From Eqns.(14) and (15) there are two pairs of Nambu­

Goldstone triplets in I: and H, fl. From Eqn.(16) only one combination of 

these two pairs is eaten.U The other combination is massless. The remaining 

SM singlet in I: is the flat direction tr I:2 . One combination of the SM 

singlets in H, fl is eaten by the broken symmetry (see Eqn.(16)) or in other 

words is constrained by the D-flatness condition. The other combination is 

parametrized by H fl. The singlet S marries one combination of tr I:2 and 

· H fl due to the superpotential W2 . The orthogonal combination of I:2 and 

H fl is r:p.assless. Thus, the massless fields are this flat direction and a pair 

of triplets in I:, H and fl. 
To make these triplets heavy12 

, we can use the sliding singlet mechanism 

[9, 5]. Add the following to the superpotential: 

W3 = H(I: + X)h + fl(I: + X)h, (18) 

where 

X rv (1, 1) 

11 Without the H, fi, the (3, 1) + (3, 1) components of :E, which along with the 

(3, 2) + (3, 2) components form (3, 3) + (3, 3) under SU(3) x SU(3), are eaten as men­

tioned before (see Eqns.(5) and (6)). 
12Giving mass to these Nambu-Goldstone triplets is equivalent to getting the orientation 

of the :E and H, fi vev's in Eqns.(4) and (13). 
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(1,1) 
(6,1) 
(6, 1). (19) 

Fx = Fx = 0 forces h = h = 0. Fh = F, = 0 along with the form of the H, H 
vev's makes the singlets slide so that X = X = -v / .Jfi. Thus, the form of 

the (:E +X) vev is such that the triplets in H, H get a mass with the triplets 

in h, h. There is no mass term for the doublets in h, h with those in H, H. 
However, the H, H vev's with the above superpotential give a mass term for 

the doublets (and also the triplets) in :E with those in h, h (there is also a 

mass term for the doublets in :E from the :E3 term). Also, the H, H vev's 

give mass to the first (SM singlet) components of h, h with combiri.ations of 

tr :E2 and X, X. Thus, the only massless field is the flat direction which is 

now a combination of tr :E2 , H H, X and X. Along this flat direction, both 

SUSY and the GUT symmetry are broken. 

To get the usual pair of light Higgs doublets, we duplicate the above 

structure of S, H, H, h, h, X and X [9, 5]. The superpotential is: 

2 2 2 

w2 + w3 =I: si(Hiiii- :E2
) +I: Hi(:E + xi)hi +I: iii(:E + xi)hi. (20) 

i=l i=l i=l 

Fs2 = 0 forces H 2H2 = :E2 . We look for a minimum with the vev's of H 2 , H2 

aligned with H1 , H1 , i.e., H 2 = fi2 ,......, v(1, 0, 0, 0, 0, 0). Then, as before, the 

sliding singlet mechanism gives mass for the triplets in H2 , H2 with those in 

h2 , h2• As before, due to the vev's of H 2 , H2 , the SM singlets in h2 , h2 get 

a mass with two combinations of tr :E2 and X 2 , X2 . Thus, the flat direction 

is now a combination of tr :E2
, HiHi, Xi and Xi with i = 1, 2. Only one 

combination of the doublets in h1 , h2 marries the doublet in :E due to the 

H vev's (similarly for the doublets in h1,2 ). This leaves one pair of massless 

doublets in the h, h's which can be the usual Higgs doublets. There is also a 

pair of massless doublets in the H's since. only one pair is eaten in the gauge 

symmetry breaking (see Eqn.(16)). Also, there is a massless SM singlet in 

7 



the H's which can be seen as follows. The H, fi's have four SM singlets. 

The Fs = 0 conditions relate two combinations of these, namely H1fi1 and 

H1fi2 , to E 2 . One combination is eaten by the broken gauge symmetry (see 

Eqn.(16)); in other words, one combination of the vev's is constrained by the 

D-fl.atness condition. This leaves one combination of the vev's unconstrained, 

i.e., one massless SM singlet in H, fi's. We discuss two ways to give mass to 

the extra pair of doublets and the SM singlet in H, fi .13 

In the first model we add the superpotential W4 + W5 where: 

W4 =! ((H1fi1) (H2fi2)- (H1fi2) (H2fi1)), 
' 

(21) 

with, say, M = Mp1 and 

(22) 

where 53 is a singlet. W2+W3+W5 is invariant under (H, fi, h, h, 5, X, Xh t-t 

(H, fi, h, h, s, X, Xh and s3 f-t -S3 and w4 is invariant under two global 

SU(2) symmetries - one with (H1 , H 2 ) as a doublet and the other with 

( fi1, fi2) as a doublet. 14 We look for a minimum with (53) = 0. Fs3 gives 

an additional constraint between the H, fi vev's giving a mass (with 53 ) to 

the SM singlet mentioned above. The doublets in H, fi have a mass matrix 

of the form (9]: 

(23) 

which has one zero eigenvalue corresponding to the eaten pair of doublets 

and one non-zero eigenvalue rv M~ui-/M which is the mass for the other 

pair of doublets. This shifts the prediction of sin2 Ow by about -f:-3 x 10-3 if 

as(mz) and aem(mz) are used as inputs. 

13 Giving mass to the extra pair of doublets and the SM singlet in H, H is equivalent to 

getting the alignment of the H 2 , H2 vev's with the Hr, H1 vev's. 
140therwise, we have to tolerate some fine tuning to get this form of the superpotential. 
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In the other method (5], we add the terms: 

(24) 

where bJ. is a 35 of SU(6). W2 + W3 + W~ is invariant under the symmetry 

(H, fl, h, li, S, X, Xh +--+ (H, fl, h, li, S, X, X)2 and bJ. +--+ -bJ.. We look for a 

minimum with the vev of bJ. = 0 so that"the Fx and FH-f1.atness conditions 

are not affected. The vev's of X 1,2 give mass to bJ.. F~:::. = 0 gives a constraint 

between the vev's of the H, fl's giving a mass (with a singlet in bJ.) to the 

SM singlet mentioned above. Due to the H, fi vev's, the massless pair of 

doublets in the H's gets a mass with those in bJ.. Thus, the only massless 

field is the flat direction which breaks both SUSY and the GUT symmetry. 

If we are willing to tolerate fine tuning to "solve" the usual doublet­

triplet splitting problem to get a pair of light doublets, we can gauge only 

the SU(5) subgroup of the SU(6). Then, with only the ~ field and Wb 

the generators of the global SU(6) in Eqn.(15) are broken (SU(6) 9tabal is 

broken to SU(3) x SU(3) x U(1)). Of these generators, only (3, 2) + (3, 2) 

are gauged. Thus, SU(5)tocal is broken down to the SM. We get a pair of 

massless triplets in ~ corresponding to the broken generators which are not 

gauged. rhese can be given a mass by adding: 

(25) 

where H, fi are fundamentals of SU(5) and ~5 , ~5, ~1 and ~24 denote compo­

nents of~ transforming as 5, 5,1 and 24, respectively, under SU(5). 15 Since 

(~1 ) rv diag(1, 1, 1, 1, 1] and (~24 ) rv diag(-3, -3, 2, 2, 2] (in SU(5) space), we 

can fine tune the couplings A, .X so that there is a mass term for the triplet 

in H (fl) with the triplet in ~5 (~5 ) but not for the doublets. Then, the 

doublets in H, fi can be the usual Higgs doublets. 16 

15The superpotential in Eqn.(3) is invariant under the SU(6) global symmetry whereas 

the one in Eqn.(25) is only SU(5)zocal invariant. 
16The doublets in 1:5 ,5 get a mass from the 1:3 term as before. 
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In all these models, the J.L term has to be generated by some mechanism. 

Also, these models are only technically natural, i.e., the superpotential is not 

the most general one allowed by symmetries. For example, in the model with 

the full SU(6) symmetry gauged, we need the terms SHfi, tr E 3 and S tr:E2 

and so the term HEfi is also allowed which is undesirable. So, these models 

should be viewed as existence proofs of models in which both a simple GUT 

gauge group and SUSY are broken by the same field. 

4 MSSM Spectrum 

4.1 Quarks and Leptons 

The SM fermion Yukawa couplings can be generated using the method in [5] 
as follows. Add the following fields charged under SU(6)aur and superpo­

tential: 

WYukawa Ni(Plifll + P2jfl2) + Ni(P1/1,1 + P2ih2) 

+NiNiY + (X1 + X2)YY + Y(H1h1- H2h2), 

(26) 

(27) 

where i, j = 1, 2, 3 are generation indices. This superpotential is invariant 

under the symmetry (H, fl, h, h, Xh +--7 (H, fl, h, h, Xh and P1 --+ iP2, P2 --+ 

iP~, N --+ -iN, Y --+ - Y and Y --+ - Y. For each generation, the N P fi 
terms make the 5 (under SU(5)) of theN and one combination ofthe S's of 

P1,2 heavy, leaving the usual 5 + 10 massless. The N Ph terms give the down 

quark and lepton Yukawa couplings whereas the up quark Yukawa couplings 

arise from the terms N NY and Y Hh after integrating out the Y, Y fields. 
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4.2 Sparticle Spectrum 

There is a gauge mediation (GM) contribution to the sparticle masses. The 

model has both "matter" messengers (the Q, Q fields and the heavy compo­

nents of H, h's) and "gauge" messengers (the heavy gauge multiplets which 

have a non-supersymmetric spectrum since the field breaking the GUT sym­

metry has a non-zero F-component). We compute the sparticle spectrum 

using the method of [10]. In this method, the scalar (massY~, mr, are com­

puted from the RG scaling of the wavefunctions of the matter fields and the 

gaugino masses, MA, are related to the RG scaling of the gauge couplings. 

The expressions for the masses are: 

(28) 

where bA's are the beta functions of the SM gauge couplings below the GUT 

scale and b6 is the beta function of the SU(6)cur above the GUT scale, and 

(29) 

where C~ is the quadratic Casimir invariant for the scalar i under the gauge 

group A, i.e., 4/3, 3/4 for fundamentals of SU(3)c, SU(2)L respectively and 

3/5 Y2 for U(1)y. C~ = 35/12 for fields in 5 of SU(5) (6 of SU(6)cur) 

and 14/3 for fields in 10 of SU(5) (15 of SU(6)cur ). The beta function for 

SU(Nc) group is defined as 3Nc-NJ,eff, where Neff is the "effective" number 

of flavors. a 6 is the SU(6) coupling at the GUT scale. The messengers do not 

form complete SU(5) representations and thus the above mass spectrum is 

different from the models of gauge mediation with complete SU(5) multiplets 

as messengers. For example, the gaugino masses are not unified at the GUT 

scale. 

The above results depend on the beta functions of the SM gauge group 

below the GUT scale and the beta function of SU(6)cur above the GUT 
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scale. We assume that there are no particles with SM quantum numbers 

between the weak and the GUT scales so that b1,2,3 are the usual MSSM beta 

functions. The SU(6) beta function, b6 , depends on the particle content at 

the GUT scale and thus, in turn, on the method used to generate SM fermion 

Yukawa couplings and the method used to make the extra pair of doublets 

in H, fi heavy. We consider the case where the above method is used to 

generate SM fermion Yukawa couplings and the higher dimensional operator 

(Eqn.(21)) is used to make the extra doublets heavy. In this case, the beta 

function b6 (defined as 3Nc- Nf,eJJ) is -11. We get m~R(J..l rv mz) ~ -8 X 

10-4 (Fv/v) 2
, whereas all other scalar (mass) 2 are positive. We have to add 

the supergravity· (SUGRA) contribution to the (mass) 2 rv (Fv/ Mp1)
2 where 

Mp1 rv 2x 1018 GeVY For v rv 6x 1016 GeV, the two contributions to m~R are 

comparable and thus we can get a phenomenologically acceptable spectrum.18 

However, since the supergravity contribution is comparable to the flavor blind 

GM contribution, we need to impose some flavor symmetries or alignment 

(of the SUGRA contribution with the Yukawa couplings) to avoid too large 

SUSY contributions to FCNC's. For the squarks, the GM contribution is 

larger so that less degeneracy is required in the SUGRA contribution. 

5 Inverted Hierarchy 

Since the flat direction is a combination of the fields tr ~2 , Hifli, Xi and 

Xi ( i = 1, 2), the RG E analysis for the wavefunction of the flat direction 

involves too many Yukawa couplings. To simplify the analysis, we assume 

the the vev's of all the fields in the flat direction are of the same order and 

that among the Yukawa couplings, only the ~QQ coupling is large. The 

17We assume that the SUGRA contribution to the (mass)2 is positive. 
18It might seem that this value of v is a bit larger than the "usual" GUT scale ~ 2 x 1016 

GeV. However, as mentioned earlier, the flat direction v is really a combination of~ 7 

fields. If we assume that all these fields have roughly the same vev, then the vev of each 

field, in particular, the 'E, H fields i.s ~ vfv"i which is closer to the usual GUT scale. 
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' 
SU(6)GuT coupling at the Planck scale is fixed with the assumption of a 

desert between the weak and the GUT scales and the particle content at the 

GUT scale. We require (Fv/v) rv 10 TeV to get the sparticle masses rv 100 

GeV to 1 TeV. With v rv 1016 GeV, this determines Fv rv A2 and hence the 

SU(6)s gauge coupling at the Planck scale. Then, we checked that for the 

. 'EQQ coupling rv 2 at the Planck scale, we do get a minimum of the potential 

at around the GUT scale. 

There is also a SUGRA contribution to the (mass)2 
rv (FvfMp1)

2 of the 

flat direction. For v rv 1016 GeV, we expect this to be comparable to the 

(mass) 2 due to the inverted hierarchy which is"' -Fv2 /v2 d2 Z(v)/d(lnv) 2
• It 

turns out that in this case the SUGRA contribution is smaller (by a factor of 

rv 4) than the (mass)2 due to the inverted hierarchy. This results in a shift 

of the minimum of v by rv 0(1/4) v. 

To summarize, we have presented a model in which the field breaking 

SUSY is the same as the field which breaks a simple GUT gauge group to 

the SM gauge group. The model is calculable- it uses the inverted hierarchy 

. mechanism to generate a minimum for the field in a perturbative region. As 

far as we know, this is the first example of such a kind in the literature. 
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