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ON MATRICES WITH LOW-RANK-PLUS-SHIFT STRUCTURE: 

PARTIAL SVD AND LATENT SEMANTIC INDEXING 

HONGYUAN ZHA • AND ZHENYUE ZHANGt 

Abstract. We present a detailed analysis of matrices satisfying the so-called low-rank-plus-shift 
property in connection with the computation of their partial singular value decomposition. The 
application we have in mind is Latent Semantic Indexing for information retrieval where the term
document matrices generated from a text corpus approximately satisfy this property. The analysis 
is motivated by developing more efficient methods for computing and updating partial SVD of large 
term-document matrices and gaining deeper understanding of the behavior of the methods in the 
presence of noise. 

1. Introduction. In many applications such as compression of multiple-spectral 
image cubes, regularization methods for ill-posed problems, latent semantic indexing 
in information retrieval for large document collections, it is necessary to find a low 
rank approximation of a given large and/or sparse matrix A E nmxn [11]. The theory 
of singular value decomposition (SVD) provides the following characterization of the 
best low rank approximation of A in terms of Frobenius norm II·IIF [6]. 

THEOREM 1.1. Let the singular value decomposition of A E nmxn be A = P"EQT 
with "E = diag(a1, ... ,amin(m,n)), 0"1 ~ ... ~ O"min(m,n)• and P and Q orthogonal. 
Then for 1 :::; j :::; min( m, n), 

min(m,n) 
L al =min{ IIA- Ell~ I rank(B) :::; j}. 

i=j+l 

And the minimum is achieved with Aj =Pi diag(a1, ... , ai)Q], where Pi and Qi are 
the matrices formed by the first j columns of P and Q, respectively. 

It follows from Theorem 1.1 that once the SVD of A is available, the best rank
j approximation of A is readily computed. We call Aj = Pi diag( a 1, ... , O"j )Q] a 
partial SVD of A. The state-of-the-art methods for computing the partial SVD of 
large and/or sparse matrices are based on variants of Lanczos algorithms and the 
core computation at each iterative steps involves matrix-vector multiplications [9]. In 
order to effectively deal with large-scale problems, one is required to exploit various 
structures of the matrices. Despite its importance, the exploitation of structures so far 
has been restricted to 1) using the sparsity of a sparse matrix, 2) using displacement
rank structures such as Toeplitz or Hankel structure of the matrix, to accelerate the 
matrix-vector multiplications used in the Lanczos process. In this paper, however, 
we propose to explore an alternative structure that is based on the singular value 
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spectrum of a matrix. Specifically, we investigate matrices possessing the so-called 
low-rank-plus-shift structure, i.e., those matrices A (approximately) satisfying 

(1.1) AT A= a low rank matrix+ a multiple of the identity matrix. 

The particular application we have in mind is Latent Semantic Indexing (LSI) for 
information retrieval and we will show by way of examples that the term-document 
matrices generated from text corpora approximately satisfy Equation ( 1.1). In large
scale LSI applications such as the World Wide Web, the term-document matrix gen
erated is usually very large and can not be kept in RAM or disk. In [15, 16] we have 
shown that the low-rank-plus-shift structure of the term-document matrix A allows 
us to compute its partial SVD in a block-wise fashion whereby partial SVD of sub
matrices of A are computed separately and then merged to obtain a partial SVD of 
A. The purpose of this paper is to further analyze the properties of matrices with 
low-rank-plus-shift structure especially when Equation (1.1) is only approximately 
satisfied. We hope our analysis will provide deeper insights into this special class of 
matrices which will enable us to develop more efficient methods for computing their 
partial SVD. 

The rest of the paper is organized as follows: In Section 2, we provide a brief 
background on LSI and review some of the results in [14, 15, 16] related to computing 
the partial SVD of term-document matrices. In Section 3, we discuss some matrix 
approximation problems associated with the low-rank-plus-shift structure, and show 
by way of examples that the term-document matrices generated from text corpora ap
proximately satisfy Equation (1.1). In Section 4 we prove a result on the partial SVD 
of a block-column partitioned matrix with low-rank-plus-shift structure. This result 
enables us to efficiently compute the partial SVD either with an incremental approach 
or divide-and:..conquer approach. We will also discuss the ramification of the 'result in 
dealing with LSI updating problems. In Section 5 we provide a perturbation analysis 
of the result when the low-rank-plus-shift property is only satisfied approximately. In 
Section 6 we conclude the paper with some remarks on future research. 

2. Latent Semantic Indexing. Latent semantic indexing is a concept-based 
automatic indexing method that aims at overcoming the two fundamental problems 
which plague traditional lexical-matching indexing schemes: synonymy and polysemy 
(2, 5]. Synonymy refers to the problem that several different words can be used to 
express a concept and the keywords in a user's query may not match those in the 
relevant documents while polysemy means that words can have multiple meanings 
and user's words may match those in irrelevant documents [8). LSI is an extension of 
the vector space model for information retrieval [7, 10). In the vector space model, the 
collection of text documents is represented by a term-document matrix A = [aij] E 
n m X n, Where aij is the number of timeS term i appearS in dOCUment j, and ffl iS the 
number of terms and n is the number of documents in the collection. Consequently, a 
document becomes a column vector, and a user's query can also be represented as a 
vector of the same dimension. The similarity between a query vector and a document 
vector is usually measured by the cosine of the angle between them, and for each query 
a list of documents ranked in decreasing order of similarity is returned to the user. LSI 
extends this vector space model by modeling the term-document relationship using 
the singular value decomposition (SVD) of the term-document matrix A. Specifically, 
using the notation in Theorem 1.1, we substitute A by its best rank-k approximation 
Ak = Pk'EkQ'f, where 'Ek is the k-th leading principal submatrix of 'E. Corresponding 
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to each of the k reduced dimensions is associated a latent concept which may not have 
any explicit semantic content yet helps to discriminate documents [2, 5]. 

Large text corpora such as those generated from World Wide Web give rise to 
very large term-document matrices, and the computation of their partial SVD poses 
a very challenging problem. Fortunately the term-document matrices possess certain 
useful properties besides sparsity that can be exploited for this matter. In [15, 16], 
we developed a theoretical foundation for LSI using the concept of subspaces, and we 
showed that the model we proposed imposes a so-called low-rank-plus-shift structure 
that is approximately satisfied by the cross-product of the term-document matrices. 1 

Specifically, we showed that the term-document matrix A E R m x n satisfies 

(2.2) 

where C E nnxk is the matrix whose columns represent latent concepts, WE Rkxk 
is a symmetric positive definite matrix, and a is the variance of the noise. In LSI 
applications k « min { m, n}, justifying the use of the terminology low-rank-plus-shift 
structure. 

In [14], we considered the updating problems for LSI: Let A be the term-document 
matrix for the original text collection and D represents a collection of new documents. 
The goal is to compute the partial SVD of [A, D]. However, in LSI applications, only 
Ak for some chosen k is available and the matrix A has been discarded. Since updating 
in this situation is based on a low-rank approximation of A, it has been argued in the 
literature that one will not be able to get an accurate partial SVD of [A, D]. In Section 
4, we show, however, that this is not the case since [A, D] has the low-rank-plus-shift 
structure [14). We will show that no retrieval accuracy degradation will occur if 
updating is done with a proper implementation. In [15, 16), we also discussed how to 
compute the partial SVD of.a term~document matrix in a blo.ck-column partitioned 
form A = [A1 , A2 ) using a divide-and-conquer approach whereby the partial SVDs of 
A1 and A2 are first computed and the results are then merged into a partial SVD of A. 
This approach is rich in coarse-grain parallelism and can be used to handle very large 
term-document matrices. The justification for this divide-and-conquer approach will 
be discussed in greater detail in Section 4, and perturbation analysis will be provided 
to show that the approach is still valid even if the term-document matrix A only 
approximately satisfies the low-rank-plus-shift structure. 

3. A Matrix Approximation Problem. From the discussion in Section 2 
we know that the term-document matrix A approximately satisfies the low-rank
plus-shift property and therefore A should have flat trailing singular values. In this 
section we use several example text collections to illustrate this issue. In order to 
assess whether a given matrix has the low-rank-plus-shift property, we investigate the 
following matrix approximation problem: Given a general rectangular matrix, what 
is the closest matrix that has the low-rank-plus-shift property. To proceed we first 
define a matrix set for a given k > 0, 

Jk ={BE nmxn I al(B) ~ ... ~ amin{m,n}(B), ak+l(B) = ... = amin{m,n}(B)}. 

With this notation, the matrix approximation problem reduces to finding the distance 
between a general matrix A and the set Jk. In the following we consider the cases 
where distance is defined either by Frobenius norm II·IIF or spectral norm ll·llz. 

1 The low-rank-plus-shift structure was first discussed in the context of array signal processing 
(12, 13, 17]. 
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THEOREM 3.1. Let the SVD of A be A= UEVT, E = diag(a1, ... , O"min{m,n}), 
and U and V orthogonal. Then for k ~ min { m, n}, 

(3.3) arg min IIA- Jllp = UkEk vt + TpUf(V/·f, 
JE.:Tk · 

Proof. First define 

E:!~~7,n} ai/(min{m,n}- k), 

(ak+l + O"min{m,n})/2, 

p=F 

p=F 

p=2. 

where ak = [ak+l, ... , O"min{m,n}l· It is readily checked that minp is achieved by the 
right-hand side of Equation (3.3). Therefore all we need to prove is IIA- Jllv 2:: minv 
for p = 2,F and for any J E Jk· 

To this end we use standard perturbation analysis of singular values which states 
that [6] 

i£Ti(A)- ai(J)i ~ IIA- Jll2, i =I,.:. ,min{m,n}, 

and 

min{m,n} 

L (O"i(A)- ai(.!)? ~ IIA- Jll}. 
i=l 

It follows that 

and 

min{m;n} min{m,n} 

L (ai(A)- O"i(J)? ~ L (£Ti(A)- a~(J))2 ~ IIA- Jll}. 
i=k+l i=l 

Notice that ak+I(J) = · · · = O"min{m,n}(J), it can be readily verified that the minima 
of the left-hand sides of the above two inequalities, i.e., minp, p = 2, F, are achieved 
by r2 and rp, respectively. 0 

EXAMPLES. In the following we will apply the above theorem to two example text 
collections and see how close the associated term-document matrices are to the set 
of matrices with low-rank-plus-shift structure. Our first example is the MEDLINE 
collection from the Cornell SMART system [3]. The term-document matrix is of size 
3681 x 1033. The singular value distribution is plotted on the left of Figure I. Our 
second example is from a collection consisting of news articles from 20 newsgroups 
[4]. The term-document matrix is of size 33583 x 1997. Its singular values are plotted 
on the right of Figure 1. From Theorem 3.1, the best approximation from Jk to A is 
given by 
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FIG. 1. Singular value distributions: 3681 x 1033 term-document matrix of MEDLINE Collection 
(left) and 33583 x 1997 NEWSGROUP Collection (right} 

For the MEDLINE collection we have IIA- A(100)IIF/IIAIIF = 0.2909 and for the 
NEWSGROUP collection we have IIA- A(lOO)II2/IIAII2 = 0.0491. Several other text 
collections from the Cornell SMART system have also been tested and we observed 
similar singular value distributions: initially the singular values decrease rapidly and 
then the spectrum curve levels off, but the singular values are never close to zero. 
(Unless the sparse term-document matrix is structurally rank-deficient.) The last 
point is very important: we usually should not treat those matrices simply as near 
rank-deficient and it is more appropriate that the more general low-rank-plus-shift 
structure with a nonzero a be used (cf. Equation (2.2)). 

4. The Low-Rank-Plus-shift Structure. We start with an examination of the 
changes of the singular values of a matrix when its elements undergo certain type of· 
modifications. If some of the elements of a general matrix is set to zero, generally it is 
not possible to tell whether the Singular values of the matrix will increase or decrease. 
However, a result we will show below states that the singular values of a matrix 
will always decrease if some submatrices of the matrix are replaced by its low-rank 
approximations. To proceed we introduce some notation: for any matrix A E nmxn, 
we will use bestk(A) to denote its best rank-k approximation (cf. Theorem 1.1), and 
its singular values are assumed to be arranged in nonincreasing order, 

As a convention when we compare the singular values of two matrices with the same 
number of rows but different number of columns we will count the singular values 
according to the number of rows. With the above preparation we present our first 
result. The proof is similar to that of a slightly special case presented in [14) and 
therefore is omitted. 

THEOREM 4.1. Let A E nmxn and write A= [Al, A2]· Then for any kl and k2, 
we have 

REMARK. It is not true that replacing arbitrary submatrices of a matrix by 
their low-rank approximations will result in the decrease of its singular values as is 
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illustrated in the following example: Let 

A=[~~], A=[~~]-
Notice that A is obtained from A by replacing its (1, I) and (2, 2) elements by zero (a 
best rank-zero approximation). Even though the largest singular value decreases, its 
smallest singular value increases. 

It is rather easy to find examples for which strict inequalities hold in Theorem 4.1. 
In the following we show that this will not be the case if A has the low-rank-plus-shift 
structure. 

THEOREM 4.2. Let A= [A~, A2] E nmxn with m ~ n. Furthermore assume that 

(4.4) AT A= X +u2I, u > 0, 

where X is symmetric and positive semi-definite with rank(X) = k. Then there are 
integers k1 :::; k and k2 :::; k with k1 + k2 ~ k such that 

(4.5) 

Proof. The general idea of the proof is to show that what is discarded when A1 
is replaced by bestk(A1 ) and A2 is replaced by bestk(A2) will also be discarded when 
bestk([A1,A2]) is computed from [A1,A2]. To this end write 

ATA _ 2I _ [ A[ A1 - u
2 
I Af A 2 ] 

u - ATA ATA 2I . 
2 1 2 2-u 

Since rank( X) = k, it follows that rank(Af A1 ~ u2 I)-::=; k and rank(Af A2- u2 I) :::; k 
Let the eigendecompositions of 

A'[ A1 - u 2 I = VAl diag(E~l' 0) vL' Af A2 - u2 I = VA2 diag(E~2' 0) vL' 

where EAl E Rk1 Xkl' EA2 E Rk2 xk2 are nonsingular with k1 ::::: k, k2 ::::: k. We can 
write the SVD of At and A2 as follows: 

(4.6) At= UA 1 diag(f:A17 Uit1)Vk = [U~t;,U~2!Jdiag(EA17 uih)[Vj!>, Vj~>f, 

(4.7) A2 = UA2 diag(f:A2, uit2)VL = [U~~' U~2}l diag(EA2' uit2)[Vj!)' vj~)]T, 

where EA = (E2 +u2 Ik )112 and EA = (E2 +u2 I )t/2 and u(t) E -nmXkl U(1) E 1 A1 1 2 A2 k2 ' A1 1'- ' A2 

nmxk2' and t1 = nt- kt, t2 = n2- k2, respectively, where ni is the column dimension 
of Ai, i = 1, 2. Now write VL A[ A2 VA 2 in a partitioned form as . 

(4.8) 

Since X = AT A- u 2 I is symmetric positive semi-definite and rank(X) = k, it follows 
that 8t2 = 0, 821 = 0, 822 = 0 and k1 + k2 ~ rank( X) = k. Using the SVD of A1 and 
A2 in (4.6) and (4.7), Equation (4.8) becomes 

[uC1)E uC2)]T[u(1)E uC2)l _ [ 8u o ] 
A 1 A1' U A 1 A2 A2' U A2 - 0 0 ' 
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which leads to2 

Let 0 be an orthonormal basis of R([U,i1
1
), U,i1}]), where R(-) to denote the column 

space of a matrix. Then we can write 

where B E RJ' x (kt +k2 ) with all its singular values greater than u, and k :::; k :::; k1 + k2 • 

Therefore, 

the first term in the right hand side of the above is easily seen to be the matrix 
[bestk1 (AI),bestk2 (A2 )], and the relation in Equation (4.5) therefore holds. D 

REMARK. Generically we will have k1 + k2 = k. In the following we give an 
example that shows the possibility of the case k1 + k2 > k. Given any two positive 
numbers a and b, choose (h and 02 such that 

. - . 
Construct two matrices U1 and U2 as follows, 

[ 

c2 0 ] 
82 0 
0 1 ' 
0 0 

where Ci = cos(Oi) and Si = sin(Oi) fori = 1, 2. Now construct the matrix A= [A1 , A2] 
with 

we obtain that 

and therefore k = 1. However, we also have 

2 we use S l. T to denote STT = 0. 

0 0Lb 
0 0 

b 
0 
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and thus k1 = k2 = 1. So we have the case k1 + k2 > k. 
REMARK. In essence the result in Theorem 4.2 states that if A has the low-rank

plus-shift structure, then an optimal low-rank approximation of A can be computed 
by merging the optimal low-rank approximations of its two submatrices A1 and A2. 
The result can be generalized to the case where A is partitioned into several blo~ks 
A= [A1, A2, ... , As]· 

REMARK. In general k1 and k2 are not available: they exist in the analysis in the 
proof of Theorem 4.2 but never explicitly computed. However, since ki :::; k, i = 1, 2, 
the relation in Equation (4.5) still holds if we replace ki, i = 1, 2, by k, i.e., 

Referring back to our discussion on LSI updating problem in Section 2, we see 
that Theorem 4.2 ·.justifies the replacement of A by its best rank-k approximation 
because 

assuming [A, D] has the low-rank-plus-shift structure. That is to say, we will obtain 
the same best low-rank approximation even though A is replaced by bestk(A). Nu
merical results conducted on several text collections show that no retrieval accuracy 
degradation occurs when updating is computed using a proper implementation [14]." 

On the other hand, Theorem 4.2 also leads to some novel approaches for com
puting a low-rank approximation of a large matrix. There are at least two general 
approaches to pursue ideas based on Theorem 4.2: 

• AN INCREMENTAL METHOD. One is what we call incremental approach 
whereby we can use certain sampling methods to divide the whole collection 
of documents into several groups: Start with one group and compute its 
rank-k approximation, and then add the second group using the updating 
algorithm to produce a new rank-k approximation, and repeat the whole 
process. This incremental process can be very useful when the data collection 
is very large and the whole term-document matrix can not reside completely 
in main memory. Some computational results of this approach can be found 
in [14]. 

• A DIVIDE-AND-CONQUER METHOD. Another approach is what we call a 
divide-and-conquer approach, we can again divide the whole collection of 
documents into several groups, and compute the rank-k approximation for 
each group and then combine the results together into a rank-k approximation 
for the whole data collection. Recursively, the rank-k approximation for each 
group can also be computed using this divide-and-conquer approach and so 
on. The approach has the property that computation can be organized with 
high degree of coarse-grain parallelism. A parallel implementation of this 
method is currently under investigation. 

5. Perturbation Analysis. In this section, we consider the case where A only 
approximately satisfies the low-rank-plus-shift property. Our main goal is to see to 
what extent the result in Theorem 4.2 still holds in the presence of perturbation. We 
first present some lemmas which are of their own interests as well. In the sequel II · II 
denotes two-norm and II· IIF denotes Frobenius norm. We will use MATLAB notation 
for submatrices: A (i: j , k: 1) denotes rows i to j and columns k to l of A. 
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LEMMA 5 .1. Assume that the matrix X defined below is symmetric positive semi
definite, 

[
A BT] 

X= B C -E. 

Then we have 

IIBII ~ V(IIAII + IIEII)(IICII + IIEII). 

Proof. Without loss of generality we assume that the matrix B is diagonal. (The 
result still holds even if B is rectangular.) Write 

Let au and en be the (1, 1) element of A and C, respectively. Then 

[ 
au 0"1 ] = X + E 
0"1 C11 l 

1' 

for some 2-by-2 symmetric positive semi-definite X1 and E1 with IIE1II ~ IIEII. Since 
the smallest eigenvalue of X1 + E 1 is no smaller than -IIE111, it follows that 

a~ ~((au+ cu)/2 + IIE1ID 2
- ((au- cu)/2)2 

~ (IIAII + IIEII)(IICII + IIEII), 

thus completing the proof. 0 
LEMMA 5.2~ Let the matrix X be partitioned as 

[
A BT] 

X= B C . 

Then IIXII ~ max{IIAII, IICII} + IIBII. 
Proof. The proof is straightforward and is therefore omitted. 0 
THEOREM 5.3. Let A= [A1,A2] E nmxn,m ~ n satisfy 

AT A = X + a2 I+ E, 

where X symmetric positive semi-definite with rank(X) = k. If 

then for some k1 ~ k, k2 ~ k, and k1 + k2 ~ k, we have 

with 

and 
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Proof. The proof is divided into several parts. 
1) We first write the eigendecomposition of the following matrices: 

ATA·- 2I-X· E.-TT.d' (\{i} \(i))VT i t a - t + t - Vi 1ag ~1 ' ... ,An; i , i = 1,2, 

10 

where X and Xi are symmetric positive semi-definite, and V and Vi are orthogonal 
fori= 1,2. The eigenvalues {..\k} and Pii}} are arranged in nonincreasing order. It 
follows that, fori= 1, 2, there are orthogonal matrices ui such that 

Ai = ui diag(dli}, ... , d~])Vt, 
= Ui diag(Dil, Di2)Vt, 

where i.i} = J ..\ ~ i} + a2 and 
J J 

Di1 = diag(dli), ... , di:>), 

D - d' (d(i} d(i)) i2 - 1ag k;+l' ... , n; , 

where ki =rank( Xi), i = 1, 2. The definition of best low-rank approximation leads to 

2) Using the above decompositions we now write the matrix A in several different 
forms: A= [A1,A2] = B[W1, W2jT ~ [B1,B2]WT, whe~e . . . . 

and 

W-[Vu 1- 0 

It can be readily verified that 

Now partition 

(5.9) 

3) Let the eigendecomposition of B[ B1 - a2 I be 

B[B1- a 2 I= G diag(o:1, ... , a 8 )GT, 

where 0:1 2: ... 2: 0:8 ,s = k1 +k2. Now partition diag(GT,I)BTBdiag(G,I) as 

diag(GT,I)BTBdiag(G,I) = [ ~ 
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where C = diag(a1 , ... ,ak), and the matrix E has the form 

Furthermore, let the eigendecomposition of 

Now partition conformally, 

with A1 = diag(>.1 , ... , >.k)· It can be verified that 

(5.11) 

It follows that we can find U orthogonal such that 

which leads to 

and hence 

4) On the other hand, from 

A= U~A + a2 J)l/2QT [ G~Jr ] 

it follows that 

where 

with 

where we have used Equation (5.11). Now we need to bound II[El, E2]1i, and this will 
be done in the following steps. 
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5) Applying Lemma 5.1 to the matrix 

T 2 [ D~2 - a 2I 
B2 B2 - a I = DT u,T U D 

22 22 12 11 

we obtain the bound 

liD it ul:;u22D22112 ::; (IID~2 - a 2 Ill + IIEII)(IID~2 - a 2 Ill + IIEII) ::; 4IIEII2' 

where we have used 11Dl2 - a 2III::; IIEII,i = 1,2. By Lemma 5.2 we obtain. 

6) Now applying Lemma 5.1 to BT B- a 2 I in Equation (5.9) we obtain 

where we have bounded 

7) Using Equation (5.10) and the results in Part 5) and 6) we have 

12 

8) Now we are ready to complete the proof of the theorem by showing that for 
j > k, 

In fact, by definition, >..i = >..j(BT B- a 2 I), and therefore 

l>..i- Aj(diag(B[Bt- a2I,B'{B2 -a2I))I::; IIB[Btll-

On the other hand, we have for j > k, 

The assumption of the theorem implies that 

and therefore for j ::; k, 

>..i( diag(B[ Bt - a 2 I, B'{ B2- a 2 I)) = >..i(B[ Bt - a 2 I) = ai. 

Now for any j > k, there is ii > k such that lai - >..i; I ::; IIBJ Btll, and thus 

completing the proof. 0 
REMARK. In many of our numerical experiments, we observed that 11.6.11 = 

O(IIEII) versus the bound 11.6.11 = O(IIEII112) given in the above theorem. Here we 
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give an example for which we do have uau = O(IIEWI2). Let € be small, and define 
t = ../2f.. Denote 

/-Ll = (1 + € + y'(1 + ~:) 2 + 4~:)/2 = 1 + 2€- 2~:2 + 0(~:3 ), 

/-L2 = (1 + €- y'(1 + ~:) 2 + 4~:)/2 = -€ + 2~:2 + 0(~:3 ), 

a= (J.Ll - 1)/t = t(1- e + 0(~:2 )). 

Then it can be readily verified that 

Now let 

~ ] [ 0 1 -a 0 ] 
0 a 0 0 -1 · 

-1 

With k = rank(X) = 2 and IIEII = IJ.L2I = ~:(1- 2~: + 0(~:2 )), it is easy to see that 

X.+ E = V diag(J.Ll, /-Ll, /-L2,J.L2)V, 

where 

[ 

1 0 

V=(1/(1+a2)) ~ ~ 
a 0 

is orthogonal and symmetric. For a given a > 0, define 

c1 = J /-Ll + a2, c2 = J J.L2 + a 2• 

Now construct matrix A as A = [A1 , A2], where 

A1 = [e1,e3,e2,e4]DV(: ,1:2), A2 = [e1.e3,e2,e4]DV(: ,3:4) 

with D = diag(cl,cl,c2,c2), and !4 = [e1 ,e2,e3,e4] is the identity matrix. Then we 
have · 

Since a < 1, it can be verified that 



It follows that 

and therefore 

Partial SVD and Latent Semantic Indexing 

0 

6. = bestk(A)- bestk([best1(AI), best1(A2)]) 

= afv'1 + a2 diag(ct, c2, c1, c2)[-e4, es, e2, e1] 

which leads to 116.11 = actf.../1 + a2. Then we see that 
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6. Concluding Remarks. In this paper we present a detailed analysis of ma
trices with low-rank-plus~shift structure. Our emphasis is placed on justifying some 
novel methods for partial SVD computation and partial SVD updating problems aris
ing from LSI in information retrieval. Our perturbation analysis demonstrates that 
the results we have derived are still valid even the low-rank-plus-shift structure is 
approximately satisfied. The results we have proved provide theoretical justifications 
for the novel LSI updating algorithms and the incremental and divide-and-conquer 
approaches proposed in [14, 16]. Our future research will concentrate on further de
veloping the numerical algorithms and their parallel implementations. We will also 
refine our perturbation analysis, especially we will try to find conditions on the ma
trix A that will allow us to improve the perturbation bounds in. Theorem 5.3 .from 
O(IIEWI2

) to O(IIEII). 
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